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Abstract The quadrant technique, a conditional sampling approach that allocates
Reynolds stresses into four different types of events (ejections or bursts, sweeps,
inward interactions and outward interactions), is applied to stable marine atmospheric
boundary-layer data, collected in the framework of the Coupled Boundary Layer
Air—Sea Transfer, Low wind component experiment at Nantucket Island, Massa-
chusetts, USA. The general properties of both scalar and momentum transport are
analyzed under the scope of quadrant analysis experimentally and theoretically. It
is shown that the third-order Gram–Charlier series is necessary and even sufficient
in most of the cases, in describing the experimental time and flux contributions of
each quadrant to the total transfer, for both scalar and momentum transport, while
the ability of the Gaussian distribution is limited to outlining the general pattern of
these quantities. Moreover, a threshold value is applied to the conditional analysis,
separating the most important events from the less significant ones and the sensi-
tivity of the flux and especially the time fraction of each quadrant on the choice
of this value is presented and discussed. Also, a set of numerically extracted equa-
tions, completing the analytical relations, is derived, enabling the prediction of the
time and flux fractions of each quadrant, for a wide range of correlation coeffi-
cient and threshold values. Finally, the sensitivity of the analysis to the atmospheric
stability and the Reynolds averaging scales showed that correlated and uncorrelat-
ed motions tend to balance for increasingly stable conditions and/or for large time
scales.
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1 Introduction

Quadrant analysis, among other conditional sampling techniques, has been exten-
sively used in the study and description of turbulent shear flows near rough and
smooth boundaries (Antonia 1981, Willmarth and Lu 1974). This technique allo-
cates momentum and/or scalar transport into four different types of events (ejections
or bursts, sweeps, inward interactions and outward interactions), which can be con-
sidered as the foundation of coherent structures in turbulent flow (Cantwell 1981,
Robinson 1991). Direct comparisons with turbulent flow visualization have shown
that the quadrant technique exhibits great reliability in providing correct quantitative
data in support of the visual observations. Bogard and Tiederman (1986) evaluated
the effectiveness of various burst detection algorithms (VITA, Quadrant, TRAPV,
U-level, Positive slope and VITA with slope) in comparison with flow visualization
and concluded that: “the quadrant technique has the greatest reliability with a high
probability of detecting the ejections and a low probability of false detections”. How-
ever, the effectiveness of each of the detection algorithms, including the quadrant
analysis, exhibits a high dependence on operational parameters, such as the threshold
level or the averaging time. This fact, combined with the use of different techniques
under different field or laboratory conditions, makes the comparison between the
results uncertain and the unification of the conclusions and interpretations difficult.

A brief outline of the historical progress of turbulent boundary-layer structure
research can be found in Robinson (1991). The turbulent fluxes, for smooth and
rough open channels (Nakagawa and Nezu 1977), or smooth and rough wind tunnels
(Raupach 1981), or within the atmospheric surface layer (ASL) for different terrain
types, such as forests (Hogstrom and Bergstrom 1996, Maitani and Shaw 1990, Berg-
strom and Hogstrom 1989), bare soil (Maitani and Ohtaki 1987, Katul et al. 1997), rice
paddy (Maitani and Ohtaki 1987), low vegetation (Hogstrom and Bergstrom 1996,
Katul et al. 1997), corn and wheat (Shaw et al. 1983, Shaw 1985), have been often
described in terms of the quadrant analysis. While the study of momentum flux struc-
ture in the ASL has received considerable attention, much less work has been done
for the scalar transport (heat or humidity) and especially over the ocean. However,
the existence of large-scale motions (Boppe et al. 1999) and the grouping of ejections
into larger structures (Boppe and Neu 1995) have been verified in the marine ASL,
through the quadrant analysis of the u′w′ covariance.

Our work aims at the experimental and theoretical study of the marine atmospheric
boundary-layer (MABL) structure, under the scope of quadrant analysis. An attempt
to describe both scalar and momentum fluxes uniformly, under the same mathemat-
ical relations is made. Also, the sensitivity of the analysis to the threshold level, the
Reynolds averaging time and the atmospheric stability is examined and discussed.

2 Experimental site and instrumentation

The quadrant technique is applied to stable marine ASL data, collected in the frame-
work of the Coupled Boundary Layer Air—Sea Transfer, Low wind component



Quadrant analysis of the scalar and momentum fluxes 337

experiment (CBLAST-Low), during the 2003 experimental campaign (from 30 July
2003 to 27 August), at Nantucket Island, Massachusetts, USA. The experimental site
was located on the south coast of the island, at a distance of 94 m from the water-
front. The terrain surrounding the site is relatively flat, except for the eastern and
south-eastern directions, where elevated sand dunes exist.

On a 20 m high meteorological mast there were two levels (10 and 20 m) of high
frequency (20 Hz) sampling sonic anemometers for three-dimensional wind compo-
nents (u, v and w) and virtual temperature (T) measurements, and a fast hygrometer
at 20 m for water vapour (q) and carbon dioxide (CO2) concentration measurements.
These high frequency measurements yield estimates of momentum (u′w′ and v′w′),
heat (w′T ′), humidity (w′q′) and CO2 fluxes through the eddy correlation method, for
10-min time intervals. There were also measurements of the mean wind, temperature
and relative humidity (RH), with slow response sensors, at 5, 10 and 20 m heights
for 10-min time intervals, with a sampling frequency of 1 Hz. Soil temperatures at
0.1 and 0.3 m below the surface were also measured at the foot of the 20-m meteo-
rological mast. About 10 m to the north of this mast was a 2-m high mast (installed
by Woods Hole Oceanographic Institution) on a tripod, instrumented to measure air
temperature, RH, wind speed and direction, air pressure, precipitation and down-
ward solar radiation at 1-min time intervals. More details on the experimental site
and instrumentation can be found in Wang et al. (2004).

Only the dataset that refers to the MABL will be analyzed. It should be mentioned
that this experimental site was chosen because the wind direction was predominantly
south to south-west. As will be explained in the next section, the marine data corre-
spond to measurements taken for wind directions in the sector 200◦ to 250◦.

3 Data correction and processing

A set of data correction/selection procedures was applied to the whole dataset before
the analysis. The first one was the data correction due to the axis tilt of the sonic ane-
mometer. To do this, 10-min averages of the three wind components (us, vs and ws),
calculated in the sonic coordinate system, for a 28-day time period (the whole experi-
mental period), were utilized. This correction was performed in order to eliminate the
dependence of the vertical wind component ws on both horizontal wind components,
us and vs, which is expected to arise due to the tilt of the anemometer from the true
vertical (Mahrt et al. 1996). The following relation describes this dependence:

ws = a0 + a1us + a2vs. (1)

Multiple regression was used to solve for the unknown coefficients a0, a1 and a2, by
performing a least squares fit to Eq. 1. Nullification of the coefficients a1 and a2 was
achieved by the rotation of the anemometer’s coordinate system. Two rotations were
applied: (a) a rotation around the v-axis (pitch angle ϑ1), in order to eliminate the
dependence of ws on us, and (b) a rotation around the u-axis (roll angle ϑ2), in order
to eliminate the dependence of ws on vs. In addition to the rotation, the correction of
the data is completed by the subtraction of a0. The transformation is applied to the
instantaneous wind speed components.

Although the calculated rotation angles were relatively small (ϑ1 = −0.063◦ and
ϑ2 = −2.486◦), the influence of the correction was quite important for certain wind
direction sectors. Suggestively, the errors on the computed friction velocity exceeded
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50% in some cases, and a similar influence of the tilt correction was reported by
Mahrt et al. (1996) for the drag coefficient. However, the errors for the wind sector
that corresponds to the pure MABL (200◦–250◦, as will be discussed later) are very
small, due to the orientation of the anemometer.

A third rotation was applied to the tilt corrected data, around the z-axis, in order to
align the x-axis to the 10-min averaged vector of the horizontal wind. Thus, hereinafter
u coincides with the alongwind component, v is the wind component normal to the
mean wind direction and w is the vertical wind component.

Since an internal boundary layer (IBL) is expected to develop due to flow from
the land, the data concerning the MABL were carefully separated from the whole
dataset, for the 20-m height level. The marine dataset was defined through a detailed
examination of the measured momentum and heat fluxes, and the stability parameter
(−z/L, where L is the Obukhov length and z is the height) time series at both 10-m
and 20-m levels. It was clarified that the wind sector from 200◦ to 250◦ corresponds to
a pure MABL.

From total 28 days of continuous data, only the marine data that correspond to
stable conditions are analyzed (e.g. 713 10-min periods).

4 Theoretical background

4.1 Quadrant analysis

Quadrant analysis provides information on the processes of turbulent production and
transfer by sorting the instantaneous values of the Reynolds stress, u′w′ and v′w′, as
well as of scalar transport (w′T ′ and w′q′), into four categories according to the sign
of the two fluctuating components. The quadrants for u′w′ in the (u′,w′)-plane are
numbered conventionally, as follows (Shaw et al. 1983):

quadrant 1 (Q1): u′ > 0, w′ > 0 outward interaction,
quadrant 2 (Q2): u′ < 0, w′ > 0 ejection or burst,
quadrant 3 (Q3): u′ < 0, w′ < 0 inward interaction,
quadrant 4 (Q4): u′ > 0, w′ < 0 sweep or gust.

Quadrants 2 and 4 both correspond to the downward transport of momentum (cor-
related motions) and quadrants 1 and 3 represent upward transfer (uncorrelated
motions). The hyperbola:

|u′w′| = H|u′w′| (2)

defines a fifth area in the (u′,w′)-plane for the conditional analysis and it is used to
separate the most important events, with large values of |u′w′|, from the less impor-
tant ones. By the term “event” a single occurrence at a specific quadrant is implied.
According to Raupach (1981) a stress fraction Si,H is defined as:

S(i, H) = < w′u′ >i, H

w′u′ , (3)

where the subscript i corresponds to the quadrant number and

< u′w′ >i, H= lim
T→∞

1
T

T∫

0

u′w′(t)Ii, H(t)dt (4)
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is a conditional average, since the term Ii, H is the following conditioning function:

Ii, H =
⎧⎨
⎩

0,
if u′w′ is in quadrant i and |u′w′| ≥ H|u′w′|
1, otherwise.

(5)

From the definition of the stress fraction we obtain:
4∑

i=1

Si,0 = 1. (6)

The total time that is occupied by a specific quadrant within the Reynolds stress
averaging time is called the fractional time Ti, H , defined as:

Ti, H = 1
T

T∫

0

Ii, H(t) dt. (7)

The ratio of upward to downward momentum transfer (E):

E = S1,0 + S3,0

S2,0 + S4,0
(8)

was introduced by Shaw et al. (1983) and was called the exuberance, since it repre-
sents a measure of the upward momentum transfer, which is counter to the overall
downward flux, expressing the exuberant nature of the flow.

The definitions of the four quadrants for the scalar transport (w′T ′ and w′q′, where
T is the sonic virtual temperature and q the specific humidity) are altered compared
to previous definitions for momentum flux (see also Katul et al. 1997, for the quad-
rant nomenclature for scalar transport). For example, the quadrants for w′T ′ in the
(w′,T ′)-plane are named as follows:

quadrant 1 (Q1): w′ > 0, T ′ > 0 ejections,
quadrant 2 (Q2): w′ < 0, T ′ > 0 inward interactions,
quadrant 3 (Q3): w′ < 0, T ′ < 0 sweeps,
quadrant 4 (Q4): w′ > 0, T ′ < 0 outward interactions.

Regarding the heat transfer (w′T ′), it is worth noting that ejections and sweeps
become the dominant quadrants for unstable conditions, while for stable stratification
the interaction quadrants prevail, consistent with the upward and downward over-
all heat transfer, respectively. It should be mentioned that the same definitions of
the stress and time fractions that were given previously for Reynolds stress are also
applied to the scalar quantities.

4.2 Conditional probability distribution of the Reynolds stress

In order to quantify the departures of the joint probability density distributions of tur-
bulent velocities from Gaussianity, we consider the joint probability distribution of the
Gram-Charlier type (Appendix A: Eqs. 26–36). Based on the third-order Gram–Char-
lier distribution and by using conditional calculations (Nakagawa and Nezu 1977), the
contribution to the Reynolds stress from each component of the quadrant analysis
can be predicted (Appendix A: Eqs. 37–52). Two different parts of the time frac-
tion Ti, H and the flux or stress fraction Si, H of each quadrant (i) are considered: (a)
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the ‘Gaussian’ part, and (b) the ‘Residual’ part. The following relations describe this
separation:

Ti, H = Tgauss−
i, H(R) + Tres−

i, H(R, S−, D−), (9)

for i = 2, 4

Ti, H = Tgauss+
i, H(R) + Tres+

i, H(R, S+, D+), (10)

for i = 1, 3

Si, H = Sgauss−
i, H(R) + Sres−

i, H(R, S−, D−), (11)

for i = 2, 4

Si, H = Sgauss+
i, H(R) + Sres+

i, H(R, S+, D+), (12)

for i = 1, 3.
The functions: Tgauss−

i, H (R), Tgauss+
i, H (R), Sgauss−

i, H (R) and Sgauss+
i, H (R)

express the ‘Gaussian’ part of the time and stress contributions of each quadrant,
which is only related to the correlation coefficient (R), while the functions:
Tres−

i, H
(
R, S−, D−)

, Tres+
i, H

(
R, S+, D+)

, Sres−
i, H

(
R, S−, D−)

and Sres+
i, H(

R, S+, D+)
express the non-‘Gaussian’ part (residual functions) of the correspond-

ing contributions. The residual functions are related to the skewness (S+, S−) and
diffusion factors (D+, D−), which are involved in the turbulent energy budget in the
term representing turbulent energy diffusion. These third-order terms are defined in
Appendix A and can be seen as a measure of the skewness or intermittency of the
distribution. The analytical relations for these functions are given below:

Tres−
i, H(R, S−, D−) = − eH(−1+R)

(
3D−H(−1 + R) + (1 + H(−1 + R) + R)S−)

6
√

2π(−1 + R)
, (13)

Tres+
i, H(R, S+, D+) = − e−H(1+R)

(
3D+H(1 + R) + (−1 + H + R + RH)S+)

6
√

2π(−1 + R)
, (14)

Sres−
i, H(R, S−, D−)

= eH(−1+R)
(
3D−(1 + H(−1 + H(−1 + R))(−1 + R)) + (−R + H(−1 + R)(H(−1 + R) + R))S−)

6
√

2πR
,

(15)

Sres+
i, H(R, S+, D+)

= − e−H(1+R)
(
3D+(1 + H(1 + R)(1 + H + HR)) + (R + H(1 + R)(H + R + HR))S+)

6
√

2πR
. (16)

For the special case of a zero threshold value (H) these equations are reduced to the
following expressions:

Tres−
i,0(R, S−, D−) = − S−

6
√

2π
, (17)

Tres+
i,0(R, S+, D+) = − S+

6
√

2π
, (18)

Sres−
i,0(R, S−, D−) = −−3D− + RS−

6
√

2πR
, (19)

Sres+
i,0(R, S+, D+) = −3D+ + RS+

6
√

2πR
. (20)
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The analytical relations for the ‘Gaussian’ part of the stress (Sgauss) and time contri-
bution (Tgauss) of each quadrant can be explicitly approximated only for the threshold
value H = 0, as follows:

Tgauss−
i,0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
√

1−R2
(
π+2ArcSin(R)

)
4π

√
−1+ 1

R2 R
,

R < 0,
1
2 −

√
1−R2

(
π−2ArcSin(R)

)
4π

√
−1+ 1

R2 R
,

R > 0,

(21)

Tgauss+
i,0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 +

√
1−R2

(
π+2ArcSin(R)

)
4π

√
−1+ 1

R2 R
,

R < 0,√
1−R2

(
π−2ArcSin(R)

)
4π

√
−1+ 1

R2 R
,

R > 0,

(22)

Sgauss−
i,0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

√
1−R2

(
−π+2

√
−1+ 1

R2 −2ArcSin(R)
)

4π
√

−1+ 1
R2 R

,

R < 0,

1
2 −

√
1−R2

(
π−2

√
−1+ 1

R2 −2ArcSin(R)
)

4π
√

−1+ 1
R2 R

,

R > 0,

(23)

Sgauss+
i,0(R) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
2 −

√
1−R2

(
−π+2

√
−1+ 1

R2 −2ArcSin(R)
)

4π
√

−1+ 1
R2 R

,

R < 0,√
1−R2

(
π−2

√
−1+ 1

R2 −2ArcSin(R)
)

4π
√

−1+ 1
R2 R

,

R > 0.

(24)

The ‘Gaussian’ part of the stress and time contributions for threshold values different
from zero can be found by numerical integration. Then the analytical relations can be
obtained by fitting the appropriate equation to the numerically calculated data. This
procedure is applied below.

5 Results and discussion

5.1 Comparison between the ‘Theoretical’ and the ‘Experimental’ stress and time
fractions

The ‘Theoretical’ values of the flux and time fractions for each 10-min time interval are
calculated using Eqs. 47–50 (Appendix A), namely the integrals of the correspond-
ing probability distributions (Appendix A: Eqs. 38–41). By neglecting the third-order
terms, these equations provide the corresponding ‘Gaussian’ values. Applying the
conditioning equations: Eqs. 3–5 and Eq. 7 directly to each 10-min time interval of the
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Table 1 The correlation coefficient and the slope of the linear regression (in a least squares sense)
between the ‘Gaussian’ and ‘Measured’ time (Ti) and stress (Si) fractions, for each quadrant i, for all
covariances

Gauss-measurements T1 T2 T3 T4 S1 S2 S3 S4

u′w′ R2 0.44 0.35 0.54 0.50 0.95 0.91 0.96 0.89
Slope 0.997 0.962 1.252 1.287 0.962 1.009 1.029 0.981

v′w′ R2 0.56 0.59 0.52 0.46 0.99 0.99 0.99 0.99
Slope 1.041 1.105 1.019 0.955 0.970 0.980 0.998 0.988

w′T′ R2 0.29 0.52 0.53 0.28 0.99 0.99 0.99 0.99
Slope 0.920 1.362 1.376 0.934 1.170 1.233 0.805 0.742

w′q′ R2 0.19 0.12 0.11 0.18 0.99 0.99 0.99 0.99
Slope 1.144 0.888 0.855 1.111 1.033 1.0783 1.057 1.012

marine dataset, the corresponding ‘Experimental’ or ‘Measured’ values of the time and
flux fractions are derived. Both ‘Experimental’ and theoretically calculated quantities
(‘Gaussian’ or ‘Theoretical’) of the quadrant analysis, which will be presented in the
following sections, correspond to the zero threshold value (H = 0). The sensitivity of
these quantities to the threshold value will be discussed separately.

In the first approximation, the ‘Gaussian’ calculations for time and flux fractions
are compared to the ‘Experimental’ ones, for all covariances (u′w′, v′w′, w′T ′and
w′q′). The square of the correlation coefficient (R2) and the slope of the linear
regression (in a least squares sense) between the ‘Gaussian’ and ‘Measured’ time
and stress fractions for each quadrant are summarized in Table 1. The ‘Gaussian’
data represent the abscissa, while the ‘Measured’ data represent the ordinate. It is
apparent that scalar covariances (w′T ′ and w′q′) exhibit much lower R2 values in
comparison to velocity covariances (u′w′ and v′w′) and that the correlation coeffi-
cients for the time fractions of all quadrants are significantly lower than the respective
values for the flux fractions. The different functional dependence of the time and
stress fractions on the correlation coefficient for a zero threshold value, which is
treated in Sect. 5.2, is probably responsible for this difference. However, for thresh-
olds around 2.5, the ‘Gaussian’ distribution seems to describe almost equally the
‘Experimental’ time and stress fractions, as is shown in Sect. 5.3. It is worth noting
that even when the correlation coefficient is low, implying large data scattering, the
slope is always close to unity, indicating that the regression well approximates the line
y(x) = x.

In the second approximation the third-order terms (skewness and diffusion factors)
for the ‘Theoretical’ estimation of the time and flux fractions are taken into account,
in order to increase the reliability of the calculation. Table 2 summarizes the results
for all cases, and it is evident that all R2 values are improved, while the slopes are not
modified in a significant way, still retaining values around unity.

Even though the inclusion of the third-order terms clearly improve the agree-
ment between experimental and theoretical calculations, expressed in terms of the
correlation coefficient, the regression between the two datasets does not change in
a significant way, well approximating the line y(x) = x in all cases. Thus, one can
say that the ‘Experimental’ data are evenly scattered around the ‘Gaussian’ pattern.
These results demonstrate the necessity and even the efficiency of the third-order
Gram–Charlier series in describing the time and flux contributions of each quadrant,
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Table 2 The correlation coefficient and the slope of the linear regression (in a least squares sense)
between the ‘Theoretical’ (third-order) and ‘Measured’ time (Ti) and stress (Si) fractions, for each
quadrant i, for all covariances

Theory (third-order)- T1 T2 T3 T4 S1 S2 S3 S4
measurements

u′w′ R2 0.81 0.81 0.83 0.84 0.99 0.99 0.99 0.97
Slope 1.154 1.158 1.181 1.158 0.984 0.985 0.994 0.975

v′w′ R2 0.81 0.84 0.82 0.83 0.99 0.99 0.99 0.99
Slope 1.041 1.048 1.085 1.148 0.971 0.982 0.997 0.986

w′T′ R2 0.77 0.84 0.85 0.84 0.99 0.99 0.99 0.99
Slope 1.266 1.013 1.038 1.156 0.993 0.999 0.979 0.970

w′q′ R2 0.76 0.76 0.76 0.76 0.99 0.99 0.99 0.99
Slope 1.284 1.383 1.406 1.279 1.042 1.045 1.048 1.045

and at the same time show the ability of the ‘Gaussian’ distribution to outline the
general pattern of these quantities (averaged values), but not in detail (single values).

5.2 The ‘Experimental’ and the ‘Gaussian’ time and flux fractions as a function of the
correlation coefficient

Since the ‘Gaussian’ distribution is only related to the correlation coefficient, it is nat-
ural to assume that this is the key parameter that defines the averaged values of the
stress and time fractions. In fact, the usefulness of the ‘Gaussian’ distribution in out-
lining the averaged properties of the time and stress fractions consists in its ability of
enabling predictions based on a single parameter. This property will be utilized later,
see Sect. 5.3. However, the fact that the scatter of the experimental data around the
‘Gaussian’ value is sometimes quite large demonstrates the necessity of the ‘Residual’
part of the time and/or stress fraction (Eqs. 13–16) for a more precise estimation of
its exact value.

In Sects. 5.2.1 and 5.2.2 only the time and stress fractions of the u′w′ and the w′q′
covariances will be presented, as representative examples of vector and scalar fluxes,
respectively, to avoid repetition. It is worth noting that these two covariances exhibit
the lowest correlation coefficient of the linear regression between the ‘Gaussian’ and
‘Measured’ time and stress fractions, each one for its own category of flux. Thus, the
largest possible data scatter is expected to arise. Also, the correlation coefficients for
w′q′ and v′w′ exhibit both negative and positive ‘Experimental’ values, while for u′w′
and w′T ′ they exhibit only negative values, since the stable MABL data are analyzed
exclusively. Therefore, the w′q′ covariance is offered as a study of both the negative
and positive branches of the correlation coefficient.

5.2.1 The u′w′ covariance

The time fraction of each u′w′ quadrant (T1, T2, T3 and T4) as a function of the u′w′
correlation coefficient is presented in Fig. 1, where it is apparent that for increasing
absolute values of the correlation coefficient, the time fraction for quadrants 2 and
4 (ejections and sweeps, respectively) increases linearly, while for quadrants 1 and 3
it decreases linearly. When the correlation coefficient’s absolute value exceeds 0.3,
ejections and sweeps together occupy more than 60% of the total time. There is a
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Fig. 1 The u′w′ time fraction of each quadrant as a function of the u′w′ correlation coefficient. The ‘x’
marks represent the bin-averaged experimental values and the error bars represent the corresponding
standard deviation (±σ). The dotted line represents the ‘Gaussian’ curve

good agreement between the ‘Gaussian’ curve and the measurements for all quad-
rants, as already expected for averaged values of the time fraction (the ‘Gaussian’
values are constantly within the range of ±1 standard deviation). The dependence of
the ‘Gaussian’ time fraction on the correlation coefficient is not linear, as is apparent
from Eq. 21 and Eq. 22, but for |R| < 0.5, it can be considered linear. The exact form
of the ‘Gaussian’ time fraction, as well as of the stress fraction, for the whole range of
the correlation coefficient will be demonstrated in Sect. 5.3.

The flux fraction of each u′w′quadrant (S1, S2, S3 and S4) as a function of the
u′w′ correlation coefficient (−Ruw) is presented in Fig. 2, where it is apparent that
for increasing absolute values of the correlation coefficient, the absolute value of the
flux fraction for all quadrants exponentially decreases. For large absolute values of
the correlation coefficient, S2 and S4 asymptotically approach 0.5, while S1 and S3
asymptotically approach zero. Again, there is good agreement between the ‘Gauss-
ian’ curve and the bin-averaged ‘Measurements’, for all quadrants. The corresponding
comparison between the ‘Experimental’ data and the ‘Gaussian’ predictions for the
v′w′ covariance (not presented here) reveals that the same good agreement between
the two datasets exists.

5.2.2 The w′q′ covariance

The w′q′ time and flux fractions of each quadrant as a function of the w′q′ correlation
coefficient (−Rwq) are presented in Figs. 3 and 4 respectively.

According to Fig. 3, the agreement between the bin-averaged ‘Measurements’ and
the ‘Gaussian’ curves of the time fractions is satisfactory for small absolute values
of the correlation coefficient, while for larger values deviations are observed and the
‘Gaussian’ values are hardly within the range of ±1 standard deviation.
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Fig. 2 The u′w′ flux fraction of each quadrant as a function of the u′w′ correlation coefficient. The ‘x’
marks represent the bin-averaged experimental values and the error bars represent the corresponding
standard deviation (±σ). The dotted line represents the ‘Gaussian’ curve

Fig. 3 The w′q′ time fraction of each quadrant as a function of the w′q′ correlation coefficient. The ‘x’
marks represent the bin-averaged experimental values and the error bars represent the corresponding
standard deviation (±σ). The dotted line represents the ‘Gaussian’ curve
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Fig. 4 The w′q′ flux fraction of each quadrant as a function of the w′q′ correlation coefficient. The ‘x’
marks represent the bin-averaged experimental values and the error bars represent the corresponding
standard deviation (±σ). The dotted line represents the ‘Gaussian’ curve

Regarding the flux fractions (Fig. 4), it is apparent that for increasing absolute
values of the correlation coefficient the flux fraction for all quadrants decreases. For
large positive values of the −Rwq parameter, S1 and S3 asymptotically approach zero,
while S2 and S4 asymptotically approach 0.5; the opposite occurs for large negative
values of −Rwq. It is worth mentioning that the corresponding comparison between
the ‘Experimental’ data and the ‘Gaussian’ predictions for the w′T ′ covariance (not
presented here) shows a similarly good agreement between the two datasets.

5.2.3 The flux exuberance

In Fig. 5 the absolute values of the exuberance (E) for the momentum and scalar
fluxes, as a function of the correlation coefficient, are shown and the theoretically
predicted curves are also shown (‘Gaussian’ and ‘Theoretical’ values coincide in the
case of the exuberance calculation due to the cancellation of the third-order terms).
A good agreement between the ‘Measurements’ and ‘Theoretical’ calculations is evi-
dent. In the case of almost zero correlation coefficient the exuberance tends to unity,
indicating an absolute balance between the upward and downward transfer.

5.3 Sensitivity of the quadrant analysis to the threshold value

In Sects. 5.1 and 5.2 the ability of the ‘Gaussian’ predictions to describe the ‘Experi-
mental’ stress and time fractions was explained, for zero threshold value. In this section
we examine how this ability is modified for threshold values greater than zero.

Following the methodology described in Sect. 5.1, the evaluation of the ‘Gaussian’
distribution is made in terms of the correlation coefficient and the slope of the linear
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Fig. 5 Absolute value of the exuberance for momentum and scalar fluxes, as a function of the
correlation coefficient. The dotted line represents the ‘Theoretical’ calculation

regression (in a least squares sense) between the ‘Gaussian’ and ‘Experimental’ time
and stress fractions. Suggestively, in Fig. 6a, the correlation coefficient and the slope
of the linear regression between the ‘Gaussian’ and ‘Experimental’ time and stress
fractions, for quadrant 2 of the u′w′ covariance, are depicted. It is apparent that for
increasing threshold values the ‘Gaussian’ predictions gradually deviate, but by a very
small amount, from the ‘Experimental’ stress fractions, both in terms of the correlation
coefficient and the slope of the linear regression between the two samples. Regarding
the time fraction slope, with the exception of the maximum value at the threshold
value of 0.5, it exhibits a pattern very similar to that of the stress fraction. The most
significant feature of this figure is that the time fraction R2 increases in general from
0.35 at zero threshold value to 0.80 for a threshold of 2.5, with an exception again for a
threshold value of 0.5, where a minimum value arises. Thus, the ‘Gaussian’ predictions
exhibit a ‘local inability’ in describing the ‘Experimental’ time fractions for threshold
values around 0.5. The ‘Gaussian’ distribution seems to describe almost equally the
‘Experimental’ time and stress fractions for thresholds around 2.5.

For comparison reasons, the corresponding slopes and correlation coefficients of
the linear regression between the ‘Theoretical’ and the ‘Experimental’ data for quad-
rant 2 of the u′w′ covariance are presented in Fig. 6b. From this figure, the important
role of the third-order terms (‘Theoretical’ calculations) for threshold values around
0.5, where the ‘Gaussian’ approximation and the ‘Experimental’ data deviate signifi-
cantly (Fig. 6a), is clarified. It is important to note that the u′w′ covariance is constantly
negative for the stable MABL data. Therefore, the above-mentioned example does
not incorporate the case of positive covariance.

With the agreement between the ‘Gaussian’ predictions and the ‘Experimental’
data explained for threshold values from 0 to 2.5, at least for the case of negative
covariance, the ‘Gaussian’ predictions are now utilized in order to investigate in
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Fig. 6 (a) The correlation coefficient and the slope of the linear regression (in a least squares sense)
between the ‘Gaussian’ and ‘Experimental’ time and stress fractions, for quadrant 2 of the u′w′ covari-
ance. (b) The correlation coefficient and the slope of the linear regression (in a least squares sense)
between the ‘Theoretical’ and ‘Experimental’ time and stress fractions, for quadrant 2 of the u′w′
covariance

which way the relation between the quadrant fractions (stress and time) and the cor-
relation coefficient is modified for different threshold values. This sensitivity analysis
is expanded to threshold values even greater than 2.5. More specifically, the stress and
time fractions, for quadrants 1 and 2, are theoretically derived from the ‘Gaussian’
distribution for 13 different threshold levels (H = 0, 0.25, 0.5, 1, 1.5, 2, 2.5, 5, 7.5,
10, 15, 30, 45). These values are obtained by numerical integration (‘Gaussian’ part
of Eqs. 47–50, Appendix A). Of course the predictions for quadrant 1 are the same
as those for quadrant 3, and the predictions for quadrant 2 are the same as those
for quadrant 4. Suggestively, in Figs. 7 and 8, the ‘Gaussian’ stress and time fractions
respectively are plotted against the correlation coefficient, for four different threshold
values. In fact, parts of the solid line corresponding to zero threshold value were also
shown in Sect. 5.2 (Figs. 1–4), but only for the range of the ‘Experimental’ correla-
tion coefficients (0.08 < −Ruw < 0.4, and −0.2 < −Rwq < 0.35). It is worth noting
that for negative correlation coefficients (R < 0) the time fractions for quadrants 2
and 4 increase for decreasing correlation coefficient (−R increasing), only for small
threshold values (H < 0.5), while for H > 0.5 the time fractions for quadrants 2 and
4 decrease for decreasing correlation coefficient. The transitional case of the negative
correlation coefficient branches of the time fraction plots, from the increasing cases to
the decreasing ones, which occurs for threshold values around 0.5, seems to directly
affect the ability of the ‘Gaussian’ predictions in efficiently describing the ‘Experi-
mental’ data, as was previously evident (Fig. 6a). Quadrants 1 and 3 exhibit a pattern
with respect to the axis R = 0, which is symmetrical to that of quadrants 2 and 4.

The analytical relation for the curves appearing in Figs. 7 and 8, and for the curves
that correspond to the rest of the threshold values, can be obtained by fitting the
equations

∣∣Si, H
∣∣ = exp(a1 (−R)4 + a2 (−R)3 + a3 (−R)2 + a4 (−R) + a5) and

∣∣Ti, H
∣∣ =
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Fig. 7 The stress fraction of each quadrant, calculated from the Gaussian distribution, as a function
of the correlation coefficient, for four different threshold values (H)

Fig. 8 The time fraction of each quadrant, calculated from the Gaussian distribution, as a function
of the correlation coefficient, for four different threshold values (H)

exp(a1 (−R)4 + a2 (−R)3 + a3 (−R)2 + a4 (−R) + a5) to the numerically calculated
data, except for a zero threshold value, since the analytical relation for this case
is given in Eqs. 21–24. The coefficients ai of the fourth-degree polynomial Q(x) =
a1x4 + a2x3 + a3x2 + ay4x + a5 that fit the data Q(−R) to ln(|S1,H |) and to ln(|T1,H |),
in a least-squares sense, are summarized in Table 3. It should be mentioned that the
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Fig. 9 The errors for the estimated stress and time fractions, as a function of the threshold value (H),
for the first quadrant

least-squares fit is only applied to the data in the range 0.1 < |R| < 0.7, since expand-
ing the fit to a greater range is problematic, at least for the fourth-degree polynomial.
Besides, the experimental correlation coefficient values do not exceed 0.7 for all
covariances.

The coefficients in Table 3 refer only to the first quadrant. The following relations
describe the coefficients that correspond to the other three quadrants:

ai(quadrant 2, −R < 0) = ai(quadrant 1, −R > 0), i = 1, 3, 5
ai(quadrant 2, −R < 0) = −ai(quadrant 1, −R > 0), i = 2, 4
ai(quadrant 2, −R > 0) = ai(quadrant 1, −R < 0), i = 1, 3, 5
ai(quadrant 2, −R > 0) = −ai(quadrant 1, −R < 0), i = 2, 4
ai(quadrant 3) = ai(quadrant 1), i = 1, 2, 3, 4, 5
ai(quadrant 4) = ai(quadrant 2), i = 1, 2, 3, 4, 5.

The errors (Err) that occur for the estimated stress and time fraction logarithms, as
a function of the threshold value, by making use of the above-mentioned equations,
are presented in Fig. 9, at least for the first quadrant.

The interval ±Err around the estimated values corresponds to a 50% confidence
interval, while the interval ±2Err corresponds to a 95% confidence interval. The
errors for the other quadrants can be described as follows:

Error(quadrant 2, −R < 0) = Error(quadrant 1, −R > 0),
Error(quadrant 2, −R > 0) = Error(quadrant 1, −R < 0),
Error(quadrant 3) = Error(quadrant 1),
Error(quadrant 4) = Error(quadrant 2).

Even though these errors are a function of the correlation coefficient, they can be
considered fairly constant, at least for the range 0.2 < |R| < 0.6. In Fig. 9 the mean



352 G. D. Katsouvas et al.

Fig. 10 Stress fractions of all quadrants as a function of the stability parameter (−z/L)

errors for the whole range of the correlation coefficient are considered for each thresh-
old value. It is important to note that the ai coefficients have been obtained for the
logarithm of the absolute values of the stress and time fractions. Thus, when using
the analytical calculations for the time and stress fractions with the above-mentioned
coefficients, the proper sign of these quantities should be considered. More specifi-
cally, the quantities S1(−R > 0), S2(−R < 0), S3(−R > 0) and S4(−R < 0) should
be considered negative. With the above relations, the analytical relations earlier pre-
sented are somehow completed. Using these relations in combination with Eqs. 13–16
and Eqs. 21–24, one can predict the flux and time contributions of each quadrant
and for all covariances for a wide range of threshold and correlation coefficient val-
ues.

5.4 Sensitivity of the quadrant analysis to the stability parameter

Here, the dependence of the stress and time fractions on the stability is examined.
Only the u′w′ covariance, for zero threshold value is examined. As a measure of the
stability the parameter −z/L (defined in Sect. 3) is used. The value of z/L for the
stable MABL dataset ranges from 4.3 (very stable conditions) to 0.003 (near-neutral
conditions). The flux fraction absolute value for all quadrants decreases for decreas-
ing z/L (towards neutral conditions), as shown in Fig. 10, while the time fraction for
quadrants 2 and 4 increases and for quadrants 1 and 3 decreases (not shown).

In analogy to the exuberance for the flux fractions (Eq. 8), the corresponding quan-
tity for the time fractions can be defined by using the time fractions (Ti, H) instead
of the stress fractions (Si, H) in Eq. 8. The time and flux exuberances as a function of
the stability parameter are presented in Fig. 11, where it is apparent that correlated
and uncorrelated motions tend to balance for increasingly stable conditions, probably
due to turbulence suppression and the elimination of larger-scale eddies under strong
stratification. Towards neutral conditions the prevalence of the correlated motions
is evident in terms of both time and stress contributions. Substantially, these results
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Fig. 11 The time and flux exuberance as a function of the stability parameter (−z/L). The equations
and the correlation coefficients (R2) correspond to a linear fit in a least squares sense to the two
datasets

reflect the sensitivity upon stability of the u′w′ correlation coefficient, which has been
identified as a key parameter in the quadrant analysis. More specifically, the u′w′
correlation coefficient gradually increases from values less than 0.1 for very stable
conditions to more than 0.35 for near-neutral conditions (not shown).

5.5 Sensitivity of the quadrant analysis to the local averaging scale

The preceding quadrant analysis is exclusively based on the fluctuating components
of the scalar and momentum transport from 10-min averages (Reynolds averaging
length). In this section the sensitivity of the analysis to the choice of the averaging
length is examined. For this purpose the u′w′ covariance from two different MABL
datasets, one stationary and the other non-stationary, is analyzed for eight differ-
ent averaging time scales: 0.5, 1, 2, 5, 10, 20, 30 and 60 minutes, for zero threshold
value (H= 0). The stationary and non-stationary cases were defined according to the
methodology described by Mahrt et al. (1996), and the classification as stationary or
non-stationary was based on the ratio:

β =
(
σ 2

u + σ 2
v
) 1

2

U
, (25)

where the standard deviations are computed from the six 10-min averages of the wind
components for a 1-h period and U is the 1-h averaged wind speed. If the hourly value
of β exceeds 0.1, the case is identified as non-stationary.

The absolute value of the stress fraction for all quadrants increases for increasing
averaging length and this increase is much more evident for the non-stationary class
(Fig. 12).

The time fraction for quadrants 2 and 4 decreases with increasing time scales, while
for quadrants 1 and 3 it increases, for both stationary and non-stationary cases (not
shown). However, the variation is slightly more intense for the non-stationary class.
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Fig. 12 Mean stress fraction of all quadrants as a function of the Reynolds averaging scale, for a sta-
tionary and a non-stationary dataset. The error bars represent the corresponding standard deviations
(±σ). Error bars for the non-stationary class are not shown for clarity reasons

For example, in the case of stationary data, the mean time fraction for quadrant 2
decreases from 0.295 at the 0.5-min scale to 0.287 at the 60-min scale and for the
non-stationary case the corresponding mean values are 0.292 and 0.273, respectively.

The absolute value of the mean exuberance (E) for the flux and time fractions
as a function of the averaging scale is presented in Fig. 13, for both the stationary
and non-stationary classes. It is apparent that the exuberance increases for increas-
ing time scales in all cases, but slightly more rapidly for the non-stationary cases.
This behaviour indicates that for large time scales the inclusion of wave-like mo-
tions in the analysis produces a more balanced contribution of the four quadrants
to the total stress and time, while for small time scales, which correspond to turbu-
lence, the contribution of quadrants 2 and 4 becomes more evident. The quite large
data scatter, indicated by the standard deviations, is associated with the inclusion
of all the stable marine cases in the analysis, which exhibit a wide range of correla-
tion coefficient values. Since the exuberance is driven by the correlation coefficient
(Fig. 5) this scatter is predictable. The same applies for the standard deviations of
the stress and time fractions, because these quantities mainly depend on the corre-
lation coefficient (but also on the skewness and diffusion factors), as was shown at
Sect. 5.2.

6 Conclusions

The quadrant analysis for momentum and scalar fluxes was applied to stable MABL
data from the CBLAST-Low, Nantucket experiment.

The theoretical stress and time contributions of each quadrant to the total stress
was calculated by making use (integrating) of (a) the Gaussian probability distribu-
tion, and (b) the conditional Gram–Charlier expansion of the Gaussian distribution
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Fig. 13 Absolute value of the flux and time mean exuberance as a function of the Reynolds averag-
ing scale, for a stationary and a non-stationary dataset. The error bars represent the corresponding
standard deviations (±σ). Error bars for the non-stationary class are not shown for clarity reasons

up to the third-order terms. Comparison with the experimental data showed that the
third-order Gram–Charlier series was necessary and even sufficient in most of the
cases, in describing the time and flux contributions of each quadrant, for both scalar
and momentum transport, while the ability of the Gaussian distribution is limited
to outlining the general pattern of these quantities. In fact the Gaussian distribution
exhibited good reliability in describing the averaged values of stress and time fractions
of all quadrants, as a function of the correlation coefficient. This property was very
useful, since it enabled predictions based on a single parameter. However, the Gauss-
ian distribution by predicting a symmetrical pattern between the diagonal quadrants
becomes incapable of describing the intermittent turbulent diffusion process. This
process is related to the third-order terms of the Gram–Charlier series.

The sensitivity of the Gaussian stress and time fractions of each quadrant on the
choice of the threshold value, which separates the most important events from the
less significant ones, was evident not only qualitatively, but in some cases also quan-
titatively. More specifically, the dependence of the time fraction on the correlation
coefficient reverses sign when the threshold value crosses 0.5. This fact affects the
ability of the ‘Gaussian’ predictions in efficiently describing the ‘Experimental’ data
for threshold values around 0.5.

Finally, the sensitivity of the u′w′ covariance for zero threshold value on the atmo-
spheric stability and the Reynolds averaging scales showed that correlated and un-
correlated motions tend to balance for increasingly stable conditions or for large
time scales, due to the inclusion of wave-like motions in the analysis, while to-
wards neutral conditions or for small time scales corresponding to turbulence, the
prevalence of the correlated motions is evident in terms of both time and stress
contributions.
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Appendix A: The probability distribution of the Gram–Charlier type

In order to quantify the departures of the joint probability density distributions of
turbulent velocities from Gaussianity, we consider the joint probability distribution
of the Gram–Charlier type, which involves the following Hermite polynomials of two
variables (Frenkiel and Klebanoff 1967):

Hj,k(x, y) = (−1)j+k e
1
2 �(x,y) ∂ j+k

∂xj∂yk
e− 1

2 �(x,y), (26)

Gj,k(x, y) = (−1)j+k e
1
2 �(x,y) ∂ j+k

∂xj∂yk
e− 1

2 �(x,y), (27)

where

�(û, ŵ) = û2 − 2Rûŵ + ŵ2

1 − R2 , (28)

�(ξ , ζ ) = ξ2 + 2Rξζ + ζ 2 (29)

with

ξ = û − Rŵ
1 − R2 , (30a)

ζ = ŵ − Rû
1 − R2 , (30b)

In the above-mentioned equations R is the correlation coefficient, defined as:

R = u′w′
σuσw

, (31)

and

û = u′

σu
, (32a)

ŵ = w′

σw
, (32b)

are the velocity fluctuations normalized by the corresponding standard deviation.
Then the joint probability density distribution is given by

P(û, ŵ) = P0(û, ŵ)

j+k=n∑
j+k=0

Aj,kHj,k(û, ŵ) (33)

with

Aj,k = 1
j!k!Gj,k

(
û, ŵ

)
, (34)

and

P0(û, ŵ) = 1

2π(1 − R2)
1
2

exp

(
− û2 − 2Rûŵ + ŵ2

2(1 − R2)

)
, (35)

where P0 is the Gaussian distribution for two variables. Thus, Eq. 33 represents
the expansion of the probability P around the Gaussian probability. By making use
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of Eqs. 27 and 34 we obtain the first 10 coefficients Gj,k and Aj,k that correspond
to a third-order expansion of the distribution (for j + k < 4): G00 = 1, G01 =
ŵ, G10 = û, G11 = −R + ûŵ, G02 = −1 + ŵ2, G20 = −1 + û2, G30 =
û

(−3 + û2) , G03 = ŵ
(−3 + ŵ2) , G21 = −2Rû + (−1 + û2) ŵ, G12 = −2Rŵ +(−1 + ŵ2) û and A00 = 1, A01 = A10 = A11 = A02 = A20 = 0, A30 = M30/6,

A03 = M03/6, A21 = M21/2, A12 = M12/2, where Mj,k = ûjŵk is the (j, k) moment of
the distribution. The third-order expansion is sufficient in describing the time and flux
contributions of each quadrant, for both scalar and momentum transport, so higher
order terms are ignored. Moreover, for the fourth-order expansion some parts of
the probability density distribution exhibit negative values and thus make the use of
this expansion limited (Frenkiel and Klebanoff 1967). The third-order Gram–Charlier
distribution can be written as:

P(û, ŵ) = P0(û, ŵ)

⎡
⎣1 +

3∑
j+k=3

Mjk

j!k! Hjk(û, ŵ)

⎤
⎦ . (36)

If all the third-order moments are equal to zero, Eq. 36 provides the Gaussian distri-
bution. Nakagawa and Nezu (1977) obtained this special form of the Gram–Charlier
distribution by making use of the cumulant expansion method, for the two variables
u′ and w′. Then, by using a conditional calculation the contribution to the Reynolds
stress from each quadrant of the quadrant analysis can be predicted. Defining the
normalized Reynolds stress as:

ω = û, ŵ

u′, w′ (37)

the probability distributions of each quadrant can be described by the following rela-
tions (by considering a negative sign for the correlation coefficient:R = − u′w′

σuσw
):

P1(ω) = R
2π

eRt K0(|t|)
(1 − R2)

1
2

+ R
2π

eRtK 1
2
(|t|) |t| 1

2

(1 + R)2

[
(1 + R)

(
S+

3
+ D+

)
|t| −

(
2 − R

3
S+ + D+

)]
, (38)

P2(ω) = R
2π

eRt K0(|t|)
(1 − R2)

1
2

+ R
2π

eRtK 1
2
(t)

t
1
2

(1 + R)2

[
(1 − R)

(
S−

3
+ D−

)
t −

(
2 + R

3
S− + D−

)]
, (39)

P3(ω) = R
2π

eRt K0(|t|)
(1 − R2)

1
2

− R
2π

eRtK 1
2
(|t|) |t| 1

2

(1 + R)2

[
(1 + R)

(
S+

3
+ D+

)
|t| −

(
2 − R

3
S+ + D+

)]
, (40)

P4(ω) = R
2π

eRt K0(|t|)
(1 − R2)

1
2

− R
2π

eRtK 1
2
(t)

t
1
2

(1 + R)2

[
(1 − R)

(
S−

3
+ D−

)
t −

(
2 + R

3
S− + D−

)]
, (41)
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where

S+ = 1
2
(Sw + Su) = 1

2
(Q03 + Q30) = 1

2

(
ŵ3 + û3

)
, (42)

S− = 1
2
(Sw − Su) = 1

2
(Q03 − Q30) = 1

2

(
ŵ3 − û3

)
, (43)

D+ = 1
2
(Du + Dw) = 1

2
(Q21 + Q12) = 1

2

(
ŵû2 + ûŵ2

)
, (44)

D− = 1
2
(Du − Dw) = 1

2
(Q21 − Q12) = 1

2

(
ŵû2 − ûŵ2

)
, (45)

t ≡ Rω

(1 − R2)
. (46)

Here, Su and Sw are the skewness factors of u and w respectively, Du and Dw cor-
respond to turbulent diffusion in the x and z directions respectively, and Kv is the
V-order modified Bessel function of the second kind. The following relations describe
the time fraction Ti, H and the flux or stress fraction Si, H of each quadrant:

Ti, H =
∞∫

H

Pi(ω) dω, (47)

for i = 2, 4,

Ti, H =
−H∫

−∞
Pi(ω) dω, (48)

for i = 1, 3,

Si, H =
∞∫

H

ωPi(ω) dω, (49)

for i = 2, 4,

Si, H =
−H∫

−∞
ωPi(ω) dω, (50)

for i = 1, 3.
The total probability density function is given by

P(ω) = P1(ω) + P2(ω) + P3(ω) + P4(ω) =
(

R
π

)
eRt K0(|t|)

(1 − R2)
1
2

. (51)

Figure 14a gives P (ω) for different correlation coefficient values, while the probability
distribution of the Reynolds stress (ωP (ω)) is shown in Fig. 14b. The total probability
is independent of the skewness and diffusion factors due to cancellation of the terms
that include the third-order cumulants. The positive tails of P (ω) are larger than the
negative ones since:

ω =
∞∫

−∞
ωP(ω)dω = 1. (52)
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Fig. 14 (a) The total probability density function of the Reynolds stress P (ω), for 3 different corre-
lation coefficient values. (b) The probability distribution of the Reynolds stress (ωP (ω))
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