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Abstract The knowledge of the concentration probability density function (pdf)
is of importance in a number of practical applications, and a Lagrangian stochas-
tic (LS) pdf model has been developed to predict statistics and concentration pdf
generated by continuous releases of non-reactive and reactive substances in canopy
generated turbulence. Turbulent dispersion is modelled using a LS model including
the effects of wind shear and along-wind turbulence. The dissipation of concentration
fluctuations associated with turbulence and molecular diffusivity is simulated by an
Interaction by Exchange with the Conditional Mean (IECM) micromixing model. A
general procedure to obtain the micromixing time scale needed in the IECM model
useful in non-homogeneous conditions and for single and multiple scalar sources
has been developed. An efficient algorithm based on a nested grid approach with
particle splitting, merging techniques and time averaging has been used, thus allow-
ing the calculation for cases of practical interest. The model has been tested against
wind-tunnel experiments of single line and multiple line releases in a canopy layer.
The approach accounted for chemical reactions in a straightforward manner with no
closure assumptions, but here the validation is limited to non-reacting scalars.

Keywords Chemical reaction · Concentration moments · Lagrangian stochastic
particle model · Micromixing model · Probability density function · Turbulent
dispersion

M. Cassiani (B) · J. D. Albertson
Department of Civil and Environmental Engineering, Duke University, 121 Hudson Hall,
Box 90287, Durham, NC 27708, USA
e-mail: massimo.cassiani@duke.edu

A. Radicchi
Facoltà di Scienze Ambientali, Università di Urbino “Carlo Bo”, 61029 Urbino, Italy



656 Boundary-Layer Meteorol (2007) 122:655–681

1 Introduction

The dispersion in a canopy layer is a very important process since it is of interest for
both urban and agricultural–forest applications. Most of the research in this field has
been devoted to understanding the behaviour of the mean concentration of natural
and anthropogenic substances emitted into or by the canopy (e.g., Baldocchi 1992).
The modelling of the evolution of the mean concentration field of a non-reactive
substance inside and above a homogenous canopy layer is relatively well understood
(e.g., Coppin et al. 1986, Flesch and Wilson 1992), while the prediction of higher con-
centration moments, i.e. the modelling of the fluctuating behaviour of the scalar field,
is an open question. Knowledge of the concentration fluctuations is often required
in many cases of interest in both agricultural–forest meteorology and urban meteo-
rology. This is the case, for example, in olfactory research (Vickers et al. 2001), the
chemistry of naturally emitted volatile organic compounds (VOC), as for example
isoprene, anthropogenic VOC, ozone and NOx (see, e.g., Brown and Bilger 1998a,b,
Meeder and Nieuwstadt 2000, Patton et al. 2001, Brown and Woodfield 2004, Vilà-
Guerau de Arellano et al. 2004, Garmory et al. 2006, Sawford 2006) and the modelling
of accidental or intentional releases of toxic, flammable and explosive materials (e.g.,
Griffith and Megson 1984, Wilson 1995, Hilderman et al. 1999, Yee 2001).

Since its early use (Dopazo and O’Brien 1974) the probability density function
(pdf) approach has been extensively developed and applied to the study of complex
reacting systems in the context of chemical and combustion engineering (see e.g.,
Dopazo et al. 1997, Pope 1985, 2000; Fox 2003). The strength of this approach is in
the ability to deal exactly with chemical reactions and to reproduce the one-point
pdf of the related concentration field. This means that unclosed terms do not arise
in the equations due to chemical reactions. For an incompressible flow the following
equation for the one-point one-time joint pdf of velocity and scalars is derived from
the Navier-Stokes and the scalar transport equations (see e.g., Pope 1985)
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Angle brackets denote the ensemble average and therefore 〈• | •〉 is the conditional
expectation; ν is the viscosity of the fluid, � is the molecular diffusivity of the scalar,
ψ is the sample space variable for scalar concentration φ. If multiple scalars are
involved ψα represents the concentration of the chemical species α. The effect of
different molecular diffusivities will be neglected. Although a differential diffusion
effect can be important this approximation is widely used to simplify the treatment
of the problem and is quite applicable in high Reynolds number turbulence. V is
the sample space variable for the velocity vector U, and fφU = f (V,ψ ; x, t) is the
Eulerian joint pdf of the velocity and concentration. On the right-hand side, the first
term represents the effect of viscous stresses and the fluctuating pressure gradient
and the second term (conditional Laplacian) describes the dissipative effects of tur-
bulence and molecular diffusivity on the concentration fluctuations. The terms on the
left-hand side are closed as discussed in detail in Pope (2000).
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Equation 1 is usually modelled through the use of a system of ordinary and sto-
chastic differential equations. Pope (1994, 2000) and Heinz (2003) reviewed various
closures and modelling techniques for the viscous stresses and pressure gradient terms
in the form of Lagrangian stochastic differential equations for velocity and position of
modelled fluid particles. However, if we assume that the pdf of the velocity is known
(at least approximately) and that chemistry is passive (i.e. does not alter the velocity
field) then the well-mixed condition of Thomson (1987) can be used to close in an
exact, although not in a unique, manner (see Thomson 1987, Wilson and Flesch 1997,
Sawford 1999) the viscous stresses and pressure gradient, and this is the approach we
follow here.

The closure of the second term on the right-hand side of Eq. 1 is the principal
modelling challenge for the transported pdf description of turbulent mixing. This
term defines the shape of the concentration pdf, and its closure is usually referred to
as the micromixing model. In Lagrangian stochastic modelling a micromixing model
describes the evolution of the concentration pdf using an equation for the concen-
tration carried by each modelled particle in the domain. Micromixing models are
heuristic and they are built to ensure the presence of desirable properties as dis-
cussed, e.g., in Cassiani et al. (2005a). We stress here that we are referring to modelled
fluid particles not true fluid particles; the equivalence between the modelled system
and realty is only in a statistical sense and limited to a one-point pdf. Therefore, a pdf
model includes a set of equations for the velocity, position and concentration of each
modelled fluid particle.

The micromixing model considered here is referred to as the Interaction by
Exchange with the Conditional Mean (IECM), and has the desirable property of leav-
ing unaltered the mean concentration field since it ensures that the mixing model and
the velocity field are uncorrelated (see Fox 1996, Pope 1998, Sawford 2004, Cassiani
et al. 2005a). In this model, the concentration relaxes to the local mean concentration
conditioned over the velocity,

〈
�∇2φα

∣∣∣ U = V,φ = ψ
〉
= − 1

tm
(ψα − 〈φα |U = V 〉) , (2)

and reflects the concept that the ultimate action of mixing is to homogenize the con-
centration field, thus dissipating the fluctuations. In general, the relaxation towards a
conditional mean allows us to better respect the desirable properties of localness (see
Pope 1998, Subramaniam and Pope 1998), i.e. particles that interact with each other
should have similar position, velocity and concentration. Apart from the model itself
one of the main problems dealing with the pdf approach is the specification of an
appropriate micromixing time scale tm. As can be seen, tm defines the rate of relaxa-
tion of the concentration towards the local mean and it can be shown to be related to
the dissipation time scale of concentration variance, i.e. tm ≈ τφ ≡ 2σ 2

φ/εφ , where σ 2
φ

is the scalar concentration variance and εφ ≡ 2�
〈
∂φ
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〉
is the scalar dissipation rate

(see e.g., Cassiani et al. 2005a).
Micromixing models, coupled with the LS approach, are relatively easy to apply

and have been proven to be a valuable tool in evaluating concentration fluctuations
for atmospheric application in non-homogeneous conditions. Recently the IECM
approach has been applied to dispersion from a point source in the neutral boundary
layer (Cassiani et al. 2005a), to dispersion from point and line sources in the convec-
tive boundary layer (CBL) (Cassiani et al. 2005b, Luhar and Sawford 2005a) and to
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dispersion from an extensive continuous area source both in a canopy layer (Cassiani
et al. 2005c) and in a CBL (Luhar and Sawford 2005b). Luhar and Sawford (2005a, b)
used a pre-computed mean concentration field thus inhibiting the direct treatment of
the chemistry by the model, while the approach of Cassiani et al. (2005a, b, c) allows
the direct treatment of chemistry.

However, all these models are limited to single sources and are based on the use
of Taylor’s frozen turbulence hypothesis to reduce the dimensionality of the problem
and, therefore, the computational requirements. Here, we relax these restrictions to
allow the use of IECM for situations where the mean shear and along-wind turbulence
are fundamental, as in the case of dispersion from localized sources in a canopy layer.
We also extend the model for the micromixing time scale proposed in Cassiani et al.
(2005a) to allow for the consideration of multiple sources.

In Sect. 2 the set of modelling equations are presented, and in Sect. 3 the numer-
ical methods are discussed. In Sect. 4 the model for the micromixing time scale is
presented, and in Sect. 5 the simulation results are compared with experimental data.

2 Model formulation

Starting with the modelling hypothesis of the joint Markovian velocity and position
of fluid particles (see Monin and Yaglom 1975, p. 369; Thomson 1987), we solve the
following system of stochastic and deterministic differential equations,

du∗
i = ai(X∗, u∗, t)dt + bij(X∗, t)dζj, (3)

dX∗
i = (

u∗
i + 〈

U∗
i
〉)

dt, (4)
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∗
α , X∗, u∗, t)dt + Sα(φ∗, X∗, t)dt. (5)

From here we follow the notation of Pope (1985, 1998) indicating modelled quan-
tities with the asterisk. The velocity field is decomposed as U = 〈U〉 + u, so that
u∗ and 〈U∗〉 are the modelled fluctuating and mean particle velocities, respectively
and X∗ is the position vector. We note that the form of Eqs. 3 and 4 for the particle
velocity and position is that proposed by Wilson and Flesch (1997). Further, c∗ is the
concentration associated with the particle, and dζj indicates a vector of independent
Wiener processes with zero mean and variance dt (see Gardiner 1983).

The term ϕα is the micromixing model, Eq. 2, of the chemical species α. With the
notation introduced in this paragraph we have,

ϕα = − 1
tm

(
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〉)

. (6)

The parameterization for the micromixing time scale will be explained in Sect. 4.
The source term includes both chemical reaction and emission from the source.
Because the scalar is passive, the velocity is independent of the concentration field.
The deterministic form of Eq. 5 simplifies the treatment but introduces some short-
comings as discussed in Cassiani et al. (2005a). A general discussion of this equation
can be found in Pope (1985) and Fox (2003).

As is customary the diffusion coefficient bij is obtained by imposing consistency
with the Kolmogorov similarity theory for the Lagrangian structure function (Monin
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and Yaglom 1975) in the inertial sub range, i.e. bij = δij (C0ε)
1/2, where δij is the

Kronecker delta, C0 is the Kolmogorov constant and ε is the mean dissipation rate of
turbulent kinetic energy. The drift coefficient ai is obtained by ensuring the fulfilment
of the well-mixed condition (Thomson 1987), namely the consistency of Eqs. 3 and 4
with an assumed pdf of the Eulerian fluctuating velocity f ∗

u (v; x, t). Here we assume a
Gaussian inhomogeneous turbulent field inside and above the canopy, a choice that
has proven adequate in simulating dispersion in a canopy layer (Flesch and Wilson
1992, Cassiani et al. 2005c). With this choice, and assuming the principal axis aligned
with the mean wind and the third axis oriented in the vertical direction, we have the
following formulation for the pdf f ∗

u = gu1u3 gu2 with
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A comment on the notation used in Eq. 7: in general the moments needed to define
the velocity pdf could come from parameterization schemes or from a second-order
turbulence closure model, and should be interpreted as moments of the modelled
variables, for example we could use

〈
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〉
instead of 〈u1u3〉. However, when the

velocity moments are taken directly from the interpolation of the experimental data
that we are simulating, they can be interpreted as true fluid velocity moments, i.e.〈
u∗

1u∗
3

〉 = 〈u1u3〉 (given the uncertainty in the experiments and interpolation). Since
this is our case we use this simpler notation.

Therefore in stationary conditions the drift coefficients for each component of the
velocity vector can be obtained as discussed extensively in Thomson (1987), Wilson
and Flesch (1997) and Rodean (1996) and here reported in the Appendix.

We briefly note that the ensemble of solutions of the system (3), (4), (5) corre-
spond to that of a system containing stochastic equations for the full particle velocity
instead of the fluctuating component if the Thomson’s (1987) solution for Gaussian
turbulence is used. In fact the following equivalence,
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exactly what we miss comparing �i/fu to the corresponding coefficient obtained for
the full particle velocity, as discussed in Sawford (1999). This shows the equivalence
of the two formulations once the mean velocity field is known.

Re-writing the system of Eqs. 3–5, in the form of a Fokker–Planck equation for the
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and comparing Eqs. 1 and 9 we see that the coefficients ai and bij jointly model the
conditional viscous stress and fluctuating pressure gradients. Since in this approach
the mean velocity field is known we avoid the need to solve a Poisson equation for
the mean pressure field.

3 Numerical algorithm

We will now briefly explain the methods used to extract meaningful concentration
statistics from the solution of Eqs. 3–5. Full details of the algorithm, including the
analysis of the convergence to a significant solution and the analysis of the statistical
and discretization errors, can be found in Cassiani et al. (2006).

We recall that a significant ensemble of solutions of Eqs. 3–5 corresponds to a
Monte Carlo solution of the Fokker–Plank Equation (9). In general, pdf modelling
requires intensive computations both in terms of CPU time and memory requirement
because the equations of motion of a sample of all fluid particles, i.e. particles uni-
formly distributed over the domain, have to be solved (see e.g., Fox 2003); chemical
reactions can be included in closed-form only if the equations are solved in parallel.
Considering a computational domain of a given size the computation is longer the
smaller the source size because the grid should be refined in order to provide details
of the concentration field around the source, and as a consequence a large number of
particles needs to be simulated in order to have meaningful statistics at each grid point.
This is a significant problem in atmospheric dispersion applications because usually
the source size is very small compared to the domain relevant to the dispersion.

In this section we describe an efficient and original computational method based on
a block structured (nested) grid approach coupled with a technique of particle splitting
and erasing as needed to maintain a statistically constant mean particle number in the
smaller and larger cells. This approach coupled with different particle masses (greater
in the larger cells and smaller in the smaller cells) is able to maintain a statistically
constant mass density in the domain, and this is the actual prerequisite for meaningful
calculations in an incompressible flow. Therefore for the density ρj of every cell we
have,

ρj =
∑Nj

n=1 µn

�x1�x2�x3
≈ const (10)

for j = 1, . . . , Ncell. Here Ncell is the total number of cell in the physical domain, Nj is
the number of particles in the jth cell, �x1�x2�x3 represents the cell volume and µn
is the mass of the nth particle. We point out that in incompressible calculations the
particle mass can be simply interpreted as a computational weight.

We also make use of time averaging to further reduce the statistical error and
ensure a meaningful solution with a reduced number of particles. The use of all
these techniques has been recently explored in the context of combustion engi-
neering (Jenny et al. 2001, Li and Modest 2001) and the algorithm used here is an
adaptation–optimization of their results for atmospheric application fully exploiting
the use of the well-mixed condition of Thomson (1987). This optimization allows the
use of the IECM micromixing modelling technique for cases of atmospheric disper-
sion of practical interest, even involving three-dimensional inhomogeneous flows and
scalar configurations.
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3.1 The grid

Knowing a priori the pdf of the velocity field the grid refinement can be related mainly
to the scalar configuration, thus allowing an optimal treatment of the properties of the
scalar around the source. To achieve a satisfactory resolution of the scalar field around
the source while maintaining reasonable computational time and memory require-
ment, we adopted a block structured grid with a constant ratio of refinement between
the different blocks. Figure 1 shows an example of a two-dimensional grid structure
that will be used, as explained in Sect. 5, to simulate the line source experiment of
Legg et al. (1986). The source spans the crosswind direction (i.e. direction 2) and is
located in the middle of the most refined cells. We note that the scalar field in this
experiment has only two dimensions of non-homogeneity such that we can reduce the
problem to a two-dimensional one. We give full details of the experiment in Sect. 5.

We indicate with l = 1, . . . , Ng the levels of the block structure, with Ng character-
izing the most refined block. The ratio between the cell sizes (line, area, volume) of
two adjacent levels is Rd with R being the ratio between the size of one side of a cell
at level l and the side of a cell at level l + 1, i.e.

R = �x1|l/�x1|l+1 (11)

with d being the dimensionality of the grid. For example in Fig. 1 the ratio is R = 2
and the dimensionality is d = 2.

The IECM model requires the localization of particles even in velocity space, and
therefore the grid must also cover the velocity space. For example in this work we
show results in two dimensions, and this means that the grid is actually four dimen-
sional. The velocity space has been discretized with nine velocity classes for each
velocity component, where each class covers approximately the same area under the
velocity pdf. Extensive tests have been conducted to evaluate the effect of the number
of velocity classes on the simulation results and a full explanation is given in Cassiani
et al. (2006).

Fig. 1 Example of the block-structure grid used to simulate the single-line source experiment of
Legg et al. (1986). Here x1 is the along-wind coordinate in the computational domain and x3 is the
elevation above ground, both in metres. The source is located at x1 = 0.14 m and x3 = 0.051 m, within
the most refined grid resolution
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3.2 Particle splitting–erasing

To maintain a constant statistical error particle splitting–erasing (SE) is adopted to
ensure that we have approximately the same number of particles in each cell irre-
spective of the cell size. To maintain a constant density each particle has a mass µn
that depends on the size of the cell within which it is located: the smaller the cell the
smaller is µn. Therefore the mass is a function of the block level l in which the particle
is located,

µn =
(

1
Rd

)l−1

. (12)

The SE algorithm is composed of two parts:
Particle splitting: when a particle of mass µn starting from a cell at the grid level

l − 1 arrives in a cell at the grid level l, it is split into Rd “children” particles each of
mass µi = 1

Rdµn, with i = n, Np + 1, . . . , Np + Rd − 1. Here Np is the total number
of particles before the splitting. These “children” particles inherit all the properties
of the “mother” particle (u∗, X∗, φ∗) except clearly the mass. For successive timesteps
these particles move independently. Figure 2 shows a sketch of the particle splitting
for the two-dimensional grid previously shown in Fig. 1.

Particle erasing: when a particle of mass µn arising from a cell at grid level l arrives
in a cell at grid level l − 1 it has a probability P = 1/Rd of surviving and probability
q = 1 − P of being erased. The mass of any surviving particle becomes Rd times the
mass of an original particle.

We point out that the SE procedure is executed at the time of crossing the bor-
der of adjacent blocks; the influence of the SE procedure on the model results has
been investigated in Cassiani et al. (2006). It is worth noting that with this structured
approach we avoid any computationally expensive a posteriori treatments of the par-
ticle mass. For example there is no need for any mass sorting algorithm, which is

Fig. 2 Sketch of the particle erasing and splitting for a two-dimensional grid with refinement factor
R = 2. Particle erasing procedure (left) with probability 3/4 when entering a coarser grid block:
the surviving particle retains its characteristics while the computational weight is increased. Particle
splitting (right) when entering a refined grid block: the new particles have a computational weight of
1/4 of the original particle
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Fig. 3 Wind-tunnel configuration in Raupach et al. (1986). Here x = x1 and z = x3

usually used to ensure constant density in unstructured grid (see e.g., Li and Modest
2001).

3.3 Computation of statistics and numerical integration of the equations

The initial particle velocity is extracted from the local velocity pdf, and the parti-
cle positions are initially distributed in the physical domain with a uniform random
distribution. The scalar value in each particle position depends on the source scalar
distribution. Once the particle properties are initialized the computation starts.

The system of Eqs. 3–5 is discretized with a simple Euler scheme. The effects of the
micromixing model, sources and chemical reactions on particle composition are sep-
arated following the method of the fractional step. This decoupling of chemistry and
mixing allows the use of optimal methods for the solution of the system of differential
equations for chemical reactions (see e.g., Fox 2003).

Particles are subject to a global timestep and to an individual smaller timestep.
The global timestep�tg is the result of a sum of many individual timesteps, and is the
same for all the particles in the domain and therefore synchronizes the particles. The
conditional mean field used in the IECM model is updated at the end of each global
timestep. The individual timestep is used to update the particle position velocity and
concentration. The constraint in the choice of the global timestep is

�tg max (〈u1〉)
�x1|l=1

< 1 (13)

to ensure that the mean field cannot vary in a significant manner between two different
timesteps. We recall that l = 1 refers to the first level of the grid structure.

The individual timestep is more restricting and is limited by the following conditions

max

(
�t 〈u1〉
�x1|l

,
�tσui

�xi|l ,
�t
TL

,
�t
tm

)
<< 1 (14)

implying that the timestep is chosen to ensure that the greatest of these ratios is much
less than unity; typically we chose the greatest ratio to be 0.03. Here each quantity is
evaluated at the particle position. �xi|l and tm are cell dependent while 〈u1〉, σui and
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Fig. 4 Sketch of the source configuration in the experiment of Coppin et al. (1986). The along-
wind direction corresponds to x1 while the crosswind coordinate (spanned by the heated wires)
corresponds to x2

Table 1 Flow and source details of the wind-tunnel experiments

Flow details, Raupach et al. (1986)

Canopy height hc = 60 mm
Friction velocity u∗ = 1.03 m s−1

Roughness length z0 = 8.7 mm
Boundary Layer depth δ = 540 mm
Single line source details, Legg et al. (1986)
Source height hs = 51 mm
Wire diameter 0.9 mm
Source strength Qs = 60–350 W m−1

Temperature scale θ∗ = Qs/(ρaCphsus)

Multiple line sources details, Coppin et al. (1986)
Source height hs = 48 mm
Wire diameter 0.25 mm
Spacing between wires 22 mm
Sources downwind extension 2.12 m
Source strength Qs = 275 W m−2

Temperature scale Q∗ = Qs/(ρaCpu∗)

TL (Lagrangian integral time scale) depend continuously on the particle position. For
a full explanation of the effect of the timestep size on the results see Cassiani et al.
(2006).

The grid is used to compute cell-averaged quantities, which are estimators of ensem-
ble-averaged quantities (see Pope 1985; 2000 and references therein), although each
quantity is also time averaged over the duration of a global timestep. Thus, for exam-
ple, the cell-averaged mean concentration for the jth cell is defined,
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Fig. 5 Stationary vertical profile obtained from a polynomial interpolation of the data reported in
Raupach et al. (1986), Legg et al. (1986) and Raupach et al. (1987). Variance of the along-wind com-
ponent of velocity fluctuation,

〈
u2

1
〉
; variance of the vertical component of velocity fluctuation,

〈
u2

3
〉
;

covariance,
〈
u1u3

〉
; mean wind, 〈U〉; Lagrangian time scale, TL

Fig. 6 Mean dissipation profile resulting from the relation, TL = 2〈u2
3〉/C0ε (line) and the values

estimated using three different methods by Raupach et al. (1986). The estimates from Poggi et al.
(2006) in a similar canopy are included for comparison
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Fig. 7 Close-to-the-source vertical standard deviation of the absolute dispersion (σz) computed by
the model for two different source sizes; 0.9 mm, dashed line; 4.5 mm continuous line. The opens
symbols are the measurements from Legg et al. (1986)

〈
φ∗〉

j =
∑Np

n=1

(
k̂j(X∗)φ∗µ�t

)

n
∑Np

n=1

(
k̂j(X∗)µ�t

)

n

(15)

where Np is the total number of particles and the subscript n refers to the properties
of the nth particle. Here the kernel estimator k̂ is simply

k̂j(X∗) = 1 if xj ≤ X∗ < xj +�xj, (16a)

k̂j(X∗) = 0 otherwise. (16b)

Here xj and xj+�xj represent the boundaries of the jth cell in the three-dimensional
physical space and should not be confused with the indicial notation for the coordinate
system. Equation 16 means simply that particles contribute to the averaged values in
a cell if they are inside the cell. However, other kernel definitions are possible (see
e.g., Fox 2003).

Equation 15 can be formally extended to represent velocity conditioned averages.
For example the jth cell mean concentration conditioned on the kth velocity class is,

〈
φ∗〉

j,k =
∑Np

n=1

( ˆ̂kj,k(X∗, u∗)φ∗µ�t
)

n
∑Np

n=1

( ˆ̂kj,k(X∗, u∗)µ�t
)

n

(17)
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Fig. 8 Comparison of the micromixing time scale (tm) computed by the model for a single-line source
(a) and multiple-line sources (b); x1 is the along-wind coordinate of the computational domain, cor-
responding here to the distance from the canopy boundary (see Fig. 3). x3 is the elevation above the
ground

where the kernel extends into the velocity space. It should be clear from this discussion
that 〈φ∗〉j,k is the estimator of 〈φ∗| X∗ = x, u∗ = v〉.

Considering the constraints on the global timestep the above explained mean quan-
tities should be meaningful even in non-stationary conditions, although this has yet
to be tested experimentally. However, once the system reaches a stationary state we
can use long time averaging to reduce the statistical error. For example, the long
time-averaged mean concentration in the jth cell is,

〈φ∗〉j =
∑Nt

n=1

(〈φ∗〉j�tg
)

n∑Nt
n=1 (�tg)n

=
∑Nt

n=1

(〈φ∗〉j
)

n

Nt
, (18)

where Nt is the number of global timesteps involved in the time averaging, which is
represented with the overbar. The right equivalence in Eq. 18 follows since the global
timestep is constant.

All the model results presented here for the scalar field involve this time-averaging
operation; therefore, for simplicity, we will use only 〈•〉 to indicate the double averag-
ing operation when modelled scalar statistics are considered.
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4 The micromixing time scale

We discuss now a semi-empirical formulation for the micromixing time scale to be used
in the micromixing model, and begin with a short discussion of the time-scale param-
eterization for homogeneous isotropic turbulence (see also Cassiani et al. 2005a, for a
comprehensive discussion) and afterward we present the extension to inhomogeneous
turbulence and multiple sources.

Following Sawford (2004) we assume tm = γ tr = γ σr/σur at short and medium
distances from the source, where γ is an empirical constant to be evaluated after
comparison with experiments and dependent on the source geometry, σr is the mean

relative plume spread (i.e. the spread relative to centre of mass) and σur = 〈
u2

r
〉1/2

is the standard deviation of the relative velocity fluctuations where ur indicates the
difference between a turbulent velocity component and the corresponding velocity
component of an instantaneous centre-of-mass of a cluster of particles.
σur is modelled using the following formulation (Franzese 2003, Cassiani et al.

2005a):

σ 2
ur = σ 2

(σr

L

)2/3
(19)

where σ 2 is the variance of each turbulent velocity component and is the same in any
direction because of isotropy, L ≡ (

3σ 2/2
) 3/2

ε−1 = k3/2ε−1 is a characteristic length
scale of the most energetic eddies σr is parameterized as

σ 2
r = d2

r

1 + (d2
r − σ 2

0 )
/
(σ 2

0 + 2σ 2TLt)
, (20)

where

d2
r = Crε(t0 + t)3, (21)

with t0 = [
σ 2

0 /(Crε)
]1/3

being the inertial range formulation for dispersion from a finite
source size (Franzese 2003), Cr is the Richardson–Obukhov constant (see Franzese
and Cassiani 2006, for a comprehensive discussion of the Richardson–Obukhov con-
stant and relative dispersion of a cluster), σ0 is the source size and TL

(= 2σ 2

C0ε

)
is the

Lagrangian integral time scale. The numerical value of the coefficient γ is chosen to
have a satisfactory comparison with the experiments and is given below in the section
of the comparison with experimental data.

4.1 Extension to the inhomogeneous condition and to multiple sources

The definition of tm in inhomogeneous turbulence follows the scheme outlined for
homogeneous isotropic turbulence, although in this case the turbulence statistics are
not isotropic and not homogeneous. We will consider here the case of vertically inho-
mogeneous turbulence but the procedure can be easily extended to a more general
case. We define a local mean velocity variance σ 2 by averaging the variances of the
three components of velocity, i.e. σ 2 = (〈

u2
1

〉 + 〈
u2

2

〉 + 〈
u2

3

〉)
/3, and a space dependent

tm is then evaluated in each cell of the discretized domain.
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The equation for the relative expansion in the inertial subrange, Eq. 21, is
discretized as

d2
r (t +�t) = d2

r (t)+ 3Crε(t0 + t)2�t, (22)

and is then integrated along an ensemble of particle trajectories starting from the
source location. The ensemble is instantaneously released at the source location and
the trajectories are followed as soon as the particles are within the computational
domain. We point out that the use of Eq. (22) in non-homogeneous, non-isotropic
turbulence is an approximation. However, several experiments have provided some
evidence of matching the Richardson–Obukhov law even in atmospheric turbulence
(see Monin and Yaglom 1975, p. 565; Gifford 1977) thus giving some support to the
use of this simple approximation.

Therefore, the dissipation ε= ε(z) is calculated at each particle position and d2
r (0) =

σ 2
0 . Parameterization (20) is then used, with the height-dependent quantities σ 2 and

TL calculated again at the current particle position. In summary, an ensemble of val-
ues of tm is pre-calculated using an ensemble of particles released from the source
location, and a cell-averaged value of tm is then calculated by accounting for the
contribution of each particle in that cell, i.e.

〈tm〉j =
∑Nt

i=1

[∑Np
n=1

(
k̂j(X∗)tm�t

)

n

]

i
∑Nt

i=1

[∑Np
n=1

(
k̂j(X∗)�t

)

n

]

i

. (23)

Here Nt is the number of timesteps needed so that all the particles exit the domain.
This averaged value of tm is then used in the discretized IECM model equation, though
it should be noted that this average is different from the time average shown before.
Here the number of particles contributing to the averaged value is not statistically
constant in each timestep, and so the double summation selects all the particles that
transit through the cell during the Nt timesteps.

An example of the computed micromixing time scale resulting for the line source
experiments of Legg et al. (1986) is reported later in Fig. 8. In cells where no particle
is present, the averaged micromixing time scale is zero. These cells, for example,
are those before the source or more generally those outside of the absolute particle
spread. In these cells the mean concentration of substance arriving from the source is
either zero or close to zero causing a relative unimportance of the tm value. However,
the micromixing model should be applied even in this space, and therefore the usual
equilibrium condition tm = k/(εCφ) (see e.g., Pope 2000) is imposed in these parts of
the domain. Cφ is a proportionality constant, which, following our definition of tm, is
usually set to be approximately one. For clarity, we note that often in the literature a
definition of tm has been used that is one half of our definition, and in such a case Cφ
results to be approximately two. This value of tm can be considered as an equilibrium
value allowed when the scalar field has a characteristic length scale comparable or
greater than that of the velocity field and is often used in reactive calculations in the
context of chemical engineering, see Cassiani et al. (2005a) for a short discussion and
Fox (2003) for a comprehensive discussion. To be consistent with this choice we also
impose the additional constraints that the micromixing time scale is tm = k/(εCφ)
each time the averaged value (23) is larger than this equilibrium value.

The modelling extension for multiple sources of the same scalar is straightforward
since we simply release particles from each source and then proceed to the averaging



670 Boundary-Layer Meteorol (2007) 122:655–681

in Eq. 23. In such a way we obtain a unique micromixing time scale that should
be a representation of the different sources. An alternative approach could be the
use of different micromixing time scales for the same scalar if this has been emitted
by different sources (Luhar and Sawford 2005b). However, this introduces the need
to distinguish the scalars when emitted from different sources, thus causing a great
increase in the computer memory requirement. The micromixing time scale resulting
from a series of 96 line sources in the Coppin et al. (1986) experiments is reported in
Fig. 8 and discussed in Sect. 5.

5 Simulation of single source and multiple line sources

We use the wind-tunnel experiments described in Raupach et al. (1986), Coppin
et al. (1986) and Legg et al. (1986) to test the capability of our model for releases
inside a canopy. These experiments are well documented and present accurate mea-
surements of both velocity statistics and scalar statistics up to the fourth moment.
Moreover, these experiments have investigated both single source (Legg et al. 1986)
and multiple source configurations (Coppin et al. 1986).

A boundary layer was developed initially over a section of roughness constructed
from stones, after which the flow encountered the model canopy that extended for
3.0 m in the streamwise direction and covered the full width of the tunnel—see Fig. 3.
The model canopy was an array of aluminium strips, each 10 mm wide, 1 mm thick,
and 60 mm high, arranged in a regular diamond pattern with 60 mm cross-stream and
44 mm streamwise spacing. The source was a single hot wire in the Legg et al. (1986)
experiment and was composed of a series of hot wires in that of Coppin et al. (1986),
each wire extending across the wind-tunnel width in the crosswind direction as clar-
ified in Fig. 4. We point out that this configuration allows us to treat the problem
as two-dimensional. Some quantitative properties of the wind tunnel including both
flow and source characteristics are reported in Table 1. We note here that in Coppin
et al. (1986) the source was regarded as a plan source but was effectively multiple line
sources as considered here. The heat generated by the sources was non-buoyant and
acted as a passive tracer, as extensively discussed in the original papers, implying that
we can regard the measured variation of temperature as a variation of concentration.

The velocity statistics needed to define the LS model are shown in Fig. 5. Pro-
files have been obtained from a polynomial interpolation of the data reported in
Raupach et al. (1986) (〈U〉 , 〈u1u3〉 ,

〈
u2

3

〉
), Raupach et al. (1987) (

〈
u2

1

〉
) and Legg

et al. (1986) (TL). When needed the value of
〈
u2

2

〉
has been estimated from the relation

〈
u2

2

〉 = (〈
u2

1

〉 〈
u2

3

〉)1/2
as suggested by Brunet et al. (1994). We consider TL = Tu3L, where

Tu3L is the Lagrangian time scale for the vertical velocity, and in agreement with the
literature for dispersion modelling, see e.g., the conclusion of Raupach et al. (1996).
It follows that we can estimate the dissipation from the relation TL = 2

〈
u2

3

〉/
C0ε.

The exact value of the constant C0 is still a matter of study (see e.g., Du et al. 1995;
Du 1997, Reynolds 1998, Lien and D’Asaro 2002, Heinz 2003), with a range between
two and seven. The lowest values are usually reserved for planetary boundary-layer
turbulence and decaying grid turbulence while the upper limit is usually obtained in
direct numerical simulation (DNS) of homogenous isotropic turbulence. In Cassiani
et al. (2005a) a value of C0 = 5 was used to obtain good agreement with mean concen-
tration data obtained by Fackrell and Robins (1982). Here the satisfactory agreement
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Fig. 9 Measured (〈φ〉 , ◦) and modelled (
〈
φ∗〉

, •)mean temperature normalized with the temperature
scale θ∗ (see Table 1); Single-line source experiments of Legg et al. (1986). hc = 0.06 m is the canopy
height; hs = 0.048 m is the source height; xd is the downwind distance from the source

with the mean concentration measured in the experiment of Legg et al. (1986) is ob-
tained using the value of TL reported by the same authors. For this reason the value
of C0 must be selected according to different criteria. We chose the value C0 = 2
(at the lower limit of the commonly accepted values) to obtain a mean dissipation
vertical profile (from the relation ε = 2

〈
u2

3

〉/
C0TL) comparable with that obtained

using different methods in Raupach et al. (1986). A comparison between different
estimates of the mean dissipation is shown in Fig. 6. Due to the smaller value of C0
used here with respect to the value used in Cassiani et al. (2005a) a proportionally
smaller value of Cr must be used; a direct proportionality between the value of C0
and Cr has been recently shown in Franzese and Cassiani (2006).

5.1 Discussion of model results

An important parameter in the definition of the concentration fluctuations is the
source size σ0 (see e.g., Thomson 1990); σ0 = 4.5 mm has been chosen here to ensure
agreement between the measured and modelled absolute spread close to the source
in the single-line source experiment.

The vertical spread (σz) computed by the model for two different source sizes
is shown in Fig. 7; the smaller source size (σ0 = 0.9 mm) is the wire diameter and
the larger source (σ0 = 4.5 mm) has been selected to better fit the measurements
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Fig. 10 Measured (σφ , ◦) and modelled (σφ∗ , •) temperature standard deviation normalized with the
temperature scale θ∗ (see Table 1). Single-line source experiments of Legg et al. (1986). hc = 0.06 m
is the canopy height; hs = 0.048 m is the source height; xd is the downwind distance from the
source

of Legg et al. (1986). This size is larger than the effective wire diameter used in the
single-line source and multiple-line source experiments, respectively, and suggests
that the behaviour around the source cannot be modelled in a simple manner and
this may also be related with the upwind dispersion as discussed in Legg et al. (1986).
Choosing the source size to ensure good agreement with the absolute spread close to
the source is perhaps the simplest way to parameterize these effects. This introduces
a degree of arbitrariness in the comparison since the concentration fluctuations are
influenced by the source size.

In the definition of the micromixing time scale the parameter γ = 0.82 has been
chosen to ensure overall agreement with the temperature variance profiles measured
for the single-line source experiment, and is close to the value used in Cassiani et al.
(2005a) for a neutral boundary layer. However, this agreement could be fortuitous
since it is influenced by the choice of the source size. For example, similar results
could be obtained using the smaller source size but a different value for the empirical
parameter γ = 0.3–0.4.

The micromixing time scale (tm) resulting for single-line source and multiple-line
sources are shown in Fig. 8a and 8b, respectively, with values defined for the fraction
of the domain covered by the absolute (mean) spread according to Eq. 23. Outside of
this region we used the equilibrium relation as explained above. It can be seen that in
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Fig. 11 Measured (〈φ〉 , ◦) and modelled (
〈
φ∗〉

, •) mean temperature normalized with the tempera-
ture scale θ∗ (see Table 1). Multiple-line source experiments of Coppin et al. (1986). hc = 0.06 m is
the canopy height; hs = 0.051 m is the source height; xd is the downwind distance from the first source

both cases the time scale grows with the distance from the source, where the minimum
local value is around the source height release, with a local peak close the ground.
The general behaviour is growth with elevation above the ground although a local
peak can be seen at intermediate elevations relative to the plume vertical spread. The
effect of a series of sources is to shorten the time scale but not upwind to the first
source. Here, in contrast, the time scale is slightly larger and this is due to the upwind
transport. It can be seen that the time scale becomes small close to every source. At
the same time we observe that the time scale increases more rapidly for the sources
at a greater downwind distance from the first source.

The normalized mean temperature vertical profile obtained by our model for the
single source simulation is shown in Fig. 9, together with that for the experiments of
Legg et al. (1986); xd is the downwind distance from the source, where three down-
wind distances are shown. The agreement can be considered good for all distances,
as is to be expected for this class of models. The single source measured, normalized,

temperature standard deviation σφ = 〈
(φ − 〈φ〉)2〉1/2, together with that obtained by

our model, are shown in Fig. 10. The agreement can be considered good for all the
distances. In the first measured profile, xd = 0.023 m, the peak is not shown due its
absence in the measurements reported in Legg et al. (1986), however it seems to be
an underestimation in the model prediction. It can be appreciated that the model is
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Fig. 12 Measured (σφ , ◦) and modelled (σφ∗ , •) temperature standard deviation normalized with
the temperature scale θ∗ (see Table 1). Multiple-line source experiments of Coppin et al. (1986).
hc = 0.06 m is the canopy height; hs = 0.051 m is the source height; xd is the downwind distance from
the first source

able to correctly reproduce the elevation of the peak above the ground. These results
show that the parameterization for tm and the extensions to inhomogeneous condi-
tions, including the wind-shear effect, is effective. Moreover, the good resolution of
the peak shows that the use of the nested grid approach is able to correctly resolve
the concentration field.

The normalized modelled temperature mean and standard deviation for multiple-
line sources are shown in Figs. 11 and 12, respectively, together with the measurements
reported in Coppin et al. (1986); here xd is the downwind distance from the first line
source. The overall source power Qs = 275 W m−2 was converted to an individual
source power of Qs = 6.1 W m−1, considering approximately 45 sources m−1, and
based on the data reported in Table 1. As expected for this class of model, the mean
concentration is well reproduced. The agreement between measured and modelled
profiles of concentration variance is good showing that the simple tm extension to
account for multiple sources is effective and that the block structured grid is able to
correctly capture the concentration field.

The multiple source measured and modelled skewness, S = 〈
(φ − 〈φ〉)3〉 (σ 3

φ

)−1 and
S∗, are shown in Fig. 13. Overall the agreement is good, but the model seems not
to be capable of completely capturing the behaviour close to the source elevation.
However, this level of discrepancy between the model and measurements is probably
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Fig. 13 Measured (S, ◦) and modelled (S∗, •) temperature skewness. Multiple-line source experi-
ments of Coppin et al. (1986). hc = 0.06 m is the canopy height; hs = 0.051 m is the source height; xd
is the downwind distance from the first source

unavoidable considering the approximation in the model inputs (statistics profile)
and the intrinsic limitation of the model itself. The value at the ground is correctly

captured. The measured kurtosis, K =
〈(
φ − 〈φ〉)4

〉 (
σ 4
φ

)−1, and the modelled one, K∗,

are reported in Fig. 14. Again, the overall agreement is good although the model is
incapable of predicting the local behaviour at the source elevation.

The third- and fourth-order moments are shown in Fig. 15 for the last measurement
position xd = 2.03. We include these comparisons since these moments are actually
the most significant for characterizing chemical reactions, i.e. chemical reactions are
functions of the concentration not of the normalized fluctuations of concentration. It
can be seen that the model is able to correctly reproduce these higher moments of
concentration.

The modelled cumulative distribution functions (CDFs) for the single-source
release at two elevations above the ground and several downwind distances are shown
in Fig. 16. The simulated CDF evolves from that related to an exponential-like pdf to
a Gaussian-like form. These results show the model’s potential for predicting all the
one-point statistics, and when complete measurements are lacking could be used as a
useful comparison for other modelling approaches such as large-eddy simulation.
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Fig. 14 Measured (K, ◦) and modelled (K∗, •) temperature kurtosis. Multiple-line source experi-
ments of Coppin et al. (1986). hc = 0.06 m is the canopy height; hs = 0.051 m is the source height; xd
is the downwind distance from the first source

Fig. 15 Measured (◦) and modelled (•) third (〈φ3〉, 〈φ∗3〉) and fourth (〈φ4〉, 〈φ∗4〉) moments of tem-
perature. Multiple-line source experiments of Coppin et al. (1986). The downwind distance from the
first source is xd = 2.03 m
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Fig. 16 Modelled cumulative
distribution function (CDF)
for the single-line source
experiment; sampling at the
source elevation
(x3 = 0.051 m) and close to the
ground (x3 = 0.01 m) at four
different downwind distances.
The Gaussian and exponential
CDF with zero mean and unit
variance are given for
reference

6 Conclusion

A model based on the Lagrangian stochastic particle approach coupled with an IECM
micromixing model has been presented. The model is capable of computing the mean
and fluctuating fields from single- and multiple-line sources in a canopy layer and
includes the effects of wind shear and along-wind turbulence.

A model for the micromixing time scale (tm) needed in the IECM model has been
presented, extending that proposed in Cassiani et al. (2005a), including a mean shear
effect, along-wind turbulence and multiple sources. The results obtained by the model
are promising but the dependence of the results on the values of several constants
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(C0, Cr, Cφ), and on the choice of the scalar source size, requires further comparisons
with experiments to fully validate the model’s generality.

A Monte Carlo algorithm has been developed based on the concept of a block-
structured grid and particle splitting and erasing. This algorithm is able to efficiently
account for small sources and can be easily adapted to complex geometry thus allowing
the application of the proposed model to cases of practical interest.

The inclusion of a simple chemical reaction involving few chemical species is
straightforward and is under investigation while the treatment of complex atmospheric
chemistry in the modelling is a formidable computational challenge. However, it is
possible to show that the intrinsic dimension of a typical tropospheric chemical model
is low (Lowe and Tomlin 2000) and therefore by using a lower-dimensional represen-
tation of the chemistry, saving can be made in terms of the number of equations in
the chemical model. Thus future development of the proposed approach will allow
the use of pdf Monte Carlo methods even for complex atmospheric chemistry.
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Appendix

The equations for the drift coefficient ai are,

a1 = − 1

2
〈
u2

1

〉 〈
u2

3

〉 − 〈u1u3〉2 b2
11

(〈
u2

3

〉
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3

)
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Each component is evaluated at the particle location.
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