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Abstract Direct numerical simulations of turbulent flow over regular arrays of
urban-like, cubical obstacles are reported. Results are analysed in terms of a for-
mal spatial averaging procedure to enable interpretation of the flow within the arrays
as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages
of the mean velocity, turbulent stresses and pressure drag are computed. The statis-
tics compare very well with data from wind-tunnel experiments. Within the arrays
the time-averaged flow structure gives rise to significant ‘dispersive stress’ whereas
above the Reynolds stress dominates. The mean flow structure and turbulence statis-
tics depend significantly on the layout of the cubes. Unsteady effects are important,
especially in the lower canopy layer where turbulent fluctuations dominate over the
mean flow.

Keywords Direct numerical simulation · Three-dimensional roughness · Urban
Meteorology

1 Introduction

Our understanding of the structure and dynamics of turbulent boundary layers on
aerodynamically smooth walls has been clarified over the last ten years or so (see
Hamilton et al. 1995; Jimenez and Pinelli 1999). However, the dynamics of turbu-
lent boundary layers over rough surfaces is much less well known, as emphasised
in the recent review by Jimenez (2004). Nevertheless there are many applications
that require understanding of the mean flow and turbulence both above and within
a canopy of roughness elements, for example atmospheric boundary-layer flows over
surfaces that are vegetated or covered with buildings (Britter and Hanna 2003;
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Coceal and Belcher 2004). In these cases, it is important to understand the mix-
ing and transport processes in the boundary layer above the canopy of roughness
elements, within the canopy and also the coupling between these parts of the flow.

Here we begin to address these questions by performing direct numerical simula-
tions of boundary-layer flow over surfaces covered with regular arrays of cubes. There
exist both laboratory and direct numerical simulations for two-dimensional roughness
consisting of square bars (Djenidi et al. 1999; Leonardi et al. 2003). Cheng and Castro
(2002) and Castro et al. (2006) recently performed careful wind-tunnel measurements
over three-dimensional, cubical obstacles. However, well-resolved numerical simula-
tions over this geometry have not been performed before with demonstrated credibil-
ity. In the present work the Navier–Stokes equations are integrated without any tuning
or modelling assumptions, for conditions when the boundary-layer flow is in the high
Reynolds number turbulent regime. The flow around individual cubes is well resolved.

The first aim of the present paper then is to establish the fidelity of the simulations
through numerical tests and comparisons with wind-tunnel measurements. The sec-
ond aim of this paper is to analyse the results within the canopy framework (Belcher
et al. 2003): the flow is analysed by taking time and spatial (volume) averages of flow
quantities (Raupach and Shaw 1982; Raupach et al. 1991; Finnigan 2000). Here we
are specifically interested in the terms of the spatially-averaged momentum budget.
A third aim is to investigate how the mean flow structure and the turbulence statistics
depend on the layout of the roughness array. Such information is important in helping
modellers decide how best to model urban areas.

2 Background

The spatial averaging formalism has been exploited in the literature on plant canopy
flows (Raupach and Shaw 1982; Finnigan 1985, 2000). It is a natural way to treat
flows over rough surfaces that are spatially inhomogeneous. The averaging volume
is taken to be very thin in the vertical, and large enough in the horizontal directions
to eliminate flow variations due to individual obstacles. Prognostic variables, such as
velocity component ui, may then be decomposed into three components

ui = Ui + ũi + u′
i, (1)

where Ui = 〈ui〉 is the time and space averaged velocity, referred to here as the mean
velocity, ũi = ui −Ui is the spatial variation of the time mean flow and u′

i = ui −Ui − ũi
is the turbulent fluctuation; the overbar denotes a time average and angle brackets
denote a spatial average. Applying time and spatial averaging to the momentum equa-
tions then yields the spatially-averaged momentum equation, valid at each height z
(Finnigan 2000)
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Here V is the volume occupied by the fluid, S is the surface area of the obstacles within
the averaging volume, ni is the unit normal pointing from S into V, and ν is the kine-
matic viscosity. We use units in which the density of air ρ = 1. The spatially-averaged
stress tensor τij consists of the usual Reynolds stress and viscous stress as well as the
dispersive stress 〈ũiũj〉. The dispersive stress represents transport of momentum by
spatial variations in the horizontal plane. Within the canopy volume, the drag term
Di consists of the sum of the form drag and the viscous drag (which is found to be
negligibly small in the present computations). Under conditions of stationarity and
homogeneity, the terms on the left-hand side of Eq. (2) vanish, and hence the sum of
the stress gradient and drag force must balance any applied pressure gradient. The
objective is then to quantify the contributions of the various terms to the stress and
drag in Eq. (3) and to investigate their dependence on the roughness geometry.

3 Numerical approach

3.1 Model description and domain set-up

The Navier–Stokes equations are discretised using second-order central finite differ-
ences in space and a second–order Adams–Bashforth scheme in time, based on the
pressure correction method. The code is parallelized in a highly efficient manner and
a flexible multi-block mapping strategy is developed to deal with the flow domain
containing the complex geometry. Based on these, the Poisson equation for pressure
p is solved by a multigrid method. For further details of numerical methods see Yao
et al. (2001).

Figure 1 shows a plan view of the computational domains in the different runs. A to-
tal of seven runs were performed, as summarised in Table 1. The runs are code-named
in the form LWH-R, where L, W and H are the streamwise, lateral and vertical dimen-
sions of the domain as a multiple of the cube height h, and R denotes the resolution in
terms of number of grid points per cube. A Cartesian constant spacing and isotropic
grid is used throughout the domain, with grid size �. As a test of grid resolution
three runs 444-16, 444-32 and 444-64 were performed with a staggered array and
had � = h/16, h/32, h/64, respectively. Two further runs 446-32 and 884-32, again
in staggered configuration, were compared with 444-32 to investigate any possible
influence of domain height and horizontal extent on computed statistics. Finally, two
runs 444A-32 and 444S-32 were done with arrays in aligned and square configurations,
respectively (see Fig. 1 for definitions of ‘staggered’, ‘aligned’ and ‘square’ arrays).
The notational convention adopted is that x, y and z denote the streamwise, lateral and
vertical coordinates, and that u, v and w denote the streamwise, lateral and vertical
components of velocity, respectively.

Periodic boundary conditions are imposed both laterally and streamwise to sim-
ulate an infinite array. The boundary condition at the top of the domain is free slip.
No-slip and impermeability boundary conditions are applied at the bottom and on all
obstacle surfaces. The flow is maintained by a height-independent streamwise pressure
gradient of magnitude u2

τ /H, where uτ is the total wall friction velocity. The Reynolds
number of the flow, based on the velocity at the top of the domain and the cube
height, is Re = 5, 000. The roughness Reynolds number Rτ ≡ uτ h/ν = 500, which is
in the fully rough regime. Cheng and Castro (2002) performed wind-tunnel measure-
ments over the same geometries at a Reynolds number of Re = 5000, based on the
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Fig. 1 Plan view of computational domains. (a) to (c): staggered, aligned and square arrays of dimen-
sions 4h×4h×4h, where h is the cube height. (d) wider domain in staggered arrangement (8h×8h×4h),
also indicating a ‘repeating unit’ (bold lines). An additional run was performed with taller domain
4h×4h×6h for the staggered configuration. The streamwise direction in all cases is left to right

Table 1 Summary of runs performed. For definitions of ‘staggered’, ‘aligned’ and ‘square’ arrays,
see Fig. (1). Here L, W and H are the streamwise, lateral and vertical dimensions of the domain,
respectively, and h is the height of the cube

Run Layout L W H Gridpoints per cube Gridpoints total

444-16 Staggered 4h 4h 4h 16 × 16 × 16 64 × 64 × 64
444-32 Staggered 4h 4h 4h 32 × 32 × 32 128 × 128 × 128
444-64 Staggered 4h 4h 4h 64 × 64 × 64 256 × 256 × 256
446-32 Staggered 4h 4h 6h 32 × 32 × 32 128 × 128 × 192
884-32 Staggered 8h 8h 4h 32 × 32 × 32 256 × 256 × 128
444A-32 Aligned 4h 4h 4h 32 × 32 × 32 128 × 128 × 128
444S-32 Square 4h 4h 4h 32 × 32 × 32 128 × 128 × 128

free-stream velocity and the cube height and with a boundary-layer height δ ≈ 7.5h.
Their roughness Reynolds number was Rτ ≡ uτ h/ν = 343. For sharp-edged obstacles,
the dependence of the flow on Reynolds number is weak (Castro and Robins 1977;
Snyder and Castro 2002) and indeed Cheng and Castro (2002) found that there was
very little variation in the drag coefficient between Re ≈ 5000 and Re ≈ 12000.

3.2 Integration times

To ensure temporal convergence to a statistically steady state, all the simulations were
run for an initial duration of about 200T, where T = h/uτ is an eddy turnover time
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for the largest eddies shed by the cubes. Statistics were then collected and averaged
over a further duration of 400T to ensure statistical convergence. The timestep used
in the simulations was 0.00025T at the resolution � = h/32 and 0.000125T at the
resolution � = h/64. Therefore, statistics were summed over a total number of 1.6
million timesteps for � = h/32 and 3.2 million timesteps for � = h/64 sampling
every 20 timesteps in either case. The importance of using such a long averaging time
is explained in Section 4.3.

The large number of grid points (16.8 million for run 444-64), small timestep and
long integration time required substantial supercomputing resources even with the
highly efficient code used. Each of the runs was performed on 30 or 60 processors
on an SGI Altix supercomputer. The highest run 444-64 alone took about 800 hours
per processor running on 60 processors on an SGI Altix 3700 supercomputer, or an
equivalent total of 48000 single processor cpu hours.

3.3 Numerical tests

3.3.1 Grid resolution requirements

A well-resolved simulation needs to capture all the dynamically relevant turbulence
scales down to dissipation scales. These dissipation scales may be estimated as follows.
Assuming that production is approximately equal to dissipation, the dissipation rate
may be estimated as ε ≈ u2∗∂u/∂z, where u2∗ is here defined as the value of the Reynolds
stress at z = h. In the canopy flow, the numerical results give ∂u/∂z ≈ 2.5u∗/h, hence
ε ≈ 2.5u3∗/h, giving a Kolmogorov length scale η ≡ (ν3/ε)1/4 ≈ 0.0075h. This gives
η ≈ 0.5� for � = h/64 and η ≈ 0.25� for � = h/32. In the shear layer at the top of
the array the maximum values of ε ≈ 34u3∗/h (as implied by the numerical results),
giving η ≈ 0.0039h, which is ≈ 0.25� for � = h/64 and ≈ 0.125� for � = h/32.
Hence, the grid size � lies between 2η and 4η for the highest resolution run 444-64
and between 4η and 8η for the standard resolution runs. As pointed out by Moin and
Mahesh (1998), the smallest length scale that must be resolved depends on the energy
spectrum and is typically greater than the Kolmogorov length scale η. For example in
curved channel flow most of the dissipation occurs at scales greater than 15η (Moin
and Mahesh 1998), whereas a computation based on the Pao spectrum (Pao 1965)
gives a threshold of 11η. Hence, the present simulations capture the major part of the
dissipation spectrum and are therefore well-resolved based on this criterion.

3.3.2 Grid resolution tests

The sensitivity of the spatially averaged results to grid resolution is shown in Figs. 2a
and b, which plot vertical profiles of the spatially averaged total stress component
τ13(z) and of the mean wind speed U(z) computed for runs 444-64, 444-32 and 444-16.
There is close agreement between the results for runs 444-32 and 444-64. Figure 2a
shows that the computed stress is almost identical at these two resolutions. The mean
velocity computed in the two runs also agrees very well especially within and just
above the array; the maximum difference occurs at the top of the domain, and is
about 6% there. A direct test of convergence of the finest grid used in run 444-64
could not be performed but in terms of the statistics of interest in this paper, a dou-
bling of the highest grid resolution would give an estimated agreement with 444-64 to
within about 1% (based on a Richardson extrapolation). The run 444-64 took about
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Fig. 2 (a) and (b): Effect of grid resolution on computed statistics (results normalised using uτ ). (c)
and (d): Effect of domain size on computed statistics (results normalised using u∗)

48000 single processor cpu hours on an SGI Altix 3700 supercomputer. Clearly there
is little to gain from the enormous extra computational time that a further doubling of
the grid resolution would require. The results of the 444-64 run are compared against
wind-tunnel data in the following sections, and they show very good agreement.

The lowest resolution run 444-16 gives rather large errors. Hanna et al. (2002) and
very recently Kanda et al. (2004) performed large-eddy simulation (LES) over groups
of cubes with a resolution of only 10 gridpoints per cube. There were discrepancies
of up to 40% in the comparisons of the LES of Hanna et al. (2002) with wind-tunnel
data, whereas Kanda et al. (2004) showed little quantitative comparison with data.
Stoesser et al. (2003) also recently performed LES of flow over multiple cubes but
at a better resolution of 25 gridpoints per cube. Although they had only one cube in
the domain (applying periodic boundary conditions), they showed that mean velocity
and stress profiles agreed very well with observations. They also found that switching
off the subgrid-scale model had virtually no effect on the results. We conclude that
simulations over this type of geometry are generally well resolved by � ≈ h/32, at
least at the present Reynolds number.
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3.3.3 Domain size tests

Figures 2c and d show the effect of changing the domain size by plotting pro-
files from runs 444-32, 884-32 and 446-32. In Fig. 2c, the stress profiles have been
non-dimensionalised by u∗ because the stress profile differs in the taller domain of
run 446-32. The profiles for 884-32 and 444-32 collapse onto each other, indicating
that the smaller domain in run 444-32 is adequate. For run 446-32 the stress profile
within the array also collapses onto the other two. Similarly, the mean wind profile is
in excellent agreement up to about z = 3.5h, and indicates that the limited domain
height for the runs with domain height 4h does not constrain the flow below z = 3.5h.

These results demonstrate that the mean flow and turbulence statistics can be cap-
tured accurately with even a relatively small domain size, by exploiting the regularity
of the geometry with the application of periodic boundary conditions in the horizontal
directions. Larger domains would inevitably be necessary if one were interested in
capturing unsteady large-scale organised structures such as those reported recently
in the LES work of Kanda et al. (2004). However, since the present study focuses
on the mean flow, horizontally-averaged turbulent statistics and small-scale turbulent
structures, the domain size limitations pose no problems here.

4 Results and discussion

4.1 Unsteady flow visualisation

Whilst the main interest of this paper is in the statistics of the flow integrated over
a long time, it is instructive to begin by looking at instantaneous snapshots of the
flow. Such information is difficult to obtain by other means and provides valuable
insights into the nature of fully developed turbulent flow over complex urban-type
geometry.

4.1.1 The velocity field

Figure 3 shows an instantaneous snapshot of the velocity field for the staggered array
over part of the domain for the highest resolution run 444−64. The very fine grid used
here, wherein each unit cube is resolved by 643 gridpoints, reveals flow features in
unprecedented detail. Wind vectors (v, w) are plotted in a vertical y−z plane through
the middle of the cubes shown. The mean flow is out of the page. The instantaneous
flow pattern is much more complex than that of the mean flow (compare with Fig. 18).
The wind field is strongly inhomogeneous, especially below about z = 2h, and vortical
structures are present throughout the flow. Fig. 4 shows in greater detail the region
around the top of the cubes and Fig. 5 shows the region between the cubes. Vortical
structures can distinctly be seen with associated streamwise circulation in both clock-
wise and anticlockwise sense. Such features of the unsteady flow have not been seen
before at this level of detail in either numerical or wind-tunnel simulations.

A snapshot of the velocity field in a streamwise-vertical (x − z) plane is shown in
Fig. 6. Wind vectors (u, w) are plotted in a slice through the middle of the cube shown.
The mean flow is to the right. The plot is shown at half resolution for greater clarity.
Organised features are evident here also. The most obvious ones are the darker regions
lying approximately between z = h and z = 2h. Most of these are associated with
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Fig. 3 An instantaneous snapshot of the velocity field over the staggered array shown in unprec-
edented detail. Wind vectors (v, w) are plotted in a vertical y − z plane through the middle of the
cubes shown. In this and subsequent velocity vector plots, the inserted arrow indicates the scale of
the velocity vectors (given value is velocity magnitude normalised by uτ ). The mean flow is out of the
page. Note the complexity of the instantaneous flow pattern
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Fig. 4 As in Fig. 3 showing in greater detail the region around the top of the cubes. Note the presence
of vortical structures rotating in both a clockwise and anticlockwise sense

large streamwise velocity components and downward vertical velocity components.
Such motions are known as ‘sweeps’ and, together with ‘ejections’, are effective means
of downward momentum transport.



Boundary-Layer Meteorol (2006) 121:491–519 499

2 2.2 2.4 2.6 2.8 3
0

0.2

0.4

0.6

0.8

1

y/h

z/
h

0.05

Fig. 5 As in Fig. 3 showing in greater detail the region between the cubes. The very fine grid (each
unit cube is resolved by 643 gridpoints) allows flow features to be resolved within the roughness array
to an extent not seen before in either numerical or laboratory simulations

4.1.2 The vorticity field

Figure 7 shows contours of streamwise vorticity ωx corresponding to the snapshot
shown in Fig. 3 and plotted in the same plane (y − z) around the middle cube (the
mean flow is out of the paper). Several regions of positive and negative vorticity
appear in pairs, and correspond to the counter rotating wind vector patterns identi-
fied in Figs. 4 and 5. Many of these vortical structures are the legs of so-called hairpin
vortices. These vortices are responsible for generating the strong sweeps and ejections
mentioned above and hence most of the Reynolds shear stress (Coceal et al., submit-
ted). The present simulations are able to explicitly resolve actual turbulent structures
like these at all dynamically relevant scales. Hence, it is important to realise that the
computed flow statistics are not modelled as in other numerical approaches such as
RANS, but result from explicit computation of directly resolved turbulence.

Figure 8 shows contours of spanwise vorticity ωy corresponding to the snapshot
shown in Fig. 6 and plotted in the same vertical x − z plane through the middle of
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Fig. 6 Instantaneous snapshot of the velocity field over the staggered array showing wind vectors
(u, w) plotted in a vertical x − z plane through the middle of the cube shown. The mean flow is to the
right. The plot is shown at half resolution for greater clarity
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Fig. 7 Contours of streamwise vorticity ωx corresponding to the snapshot shown in Fig. 3 and plot-
ted in the same plane (y − z) around the middle cube. Values of vorticity shown on colour bar are
normalised by uτ /h. Several regions of positive and negative vorticity appear in pairs
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Fig. 8 Contours of spanwise vorticity ωy corresponding to the snapshot shown in Fig. 6 and plotted
in the same vertical x − z plane through the middle of the cube shown. Values of vorticity shown on
the colour bar are normalised by uτ /h. This shows the presence of a strong shear layer over the top
of the cubes

the cube shown (but to a different scale). A region of concentrated spanwise vorticity
can be seen just over the top of the cube and stretching out to the next cube (which is
just outside the bottom right of the domain, from x/h = 4 to x/h = 5). This region of
high vorticity corresponds to the presence of a strong shear layer, with high values of
wind shear ∂u/∂z. A sequence of such snapshots (not shown) reveals that this strong
shear layer is persistent over extended periods of time. Hence, it is very likely to play
an important part in the coupling of turbulent motions within the canopy with larger
scale boundary-layer eddies.

The coherent aspects of the unsteady flow and their statistical properties are stud-
ied in detail elsewhere (Coceal et al., submitted). The rest of the present paper looks
at the mean flow structure and statistics over a large integration time, and the spatial
average over the flow domain of these long time mean statistics.

4.2 Time-mean flow

4.2.1 Mean flow structure

A sequence of snapshots of the flow field such as those shown in the last section
shows that the flow at the simulated Reynolds number is highly unsteady and departs
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Fig. 9 (a) Mean flow structure in a vertical x−z plane through the middle of the cube in the staggered
array showing (u, w) wind vectors. (b) Similar plot in a vertical x − z plane parallel to the one above
and at distance of 0.25h away. Note that the wind vectors are plotted every four grid points for greater
clarity

significantly from the mean flow. Yet, the structure of the time-mean flow is important
because it determines the pressure drag and the dispersive stress.

Figure 9a shows (u, w) wind vectors in a vertical x − z plane through the middle
of the cube in the staggered array, and is the long time-mean version of Fig. 6. In
this and subsequent plots, wind vectors are plotted at reduced resolution for greater
clarity. The most obvious feature in 9a is a recirculation in front of the cube, in the
bottom right-hand corner. Associated with this vortex is a strong downdraft down the
front face of the cube. This vortex is a robust feature of the flow; it is seen to be quite
persistent in a long time sequence of snapshots such as Fig. 6.

A less obvious feature of Fig. 9a is the absence of a recirculation behind the cube.
There is reverse flow near the bottom surface between x/h = 1 and x/h = 2, but
nothing resembling a vortex that one might have expected to see based on experience
with two-dimensional flows in street canyons (see for example Cui et al. 2004). There
is a strong updraft adjacent to the back face of the cube. Figure 9b shows how the
picture changes in a vertical x − z plane parallel to the one above and at distance of
0.25h away, so that it is off the axis of symmetry. There is now a recirculating vortex
in the lower part of the canopy between x = 1.5h and x = 2h. These two plots taken
together illustrate the strong three-dimensionality of the flow.

Additional insight is gained by looking at the mean flow pattern in a horizontal
plane. Figure 10 shows a wind vector plot of the mean wind field (u, v) in an x−y plane
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Fig. 10 Wind vector plot of the mean wind field (u, v) in a horizontal x − y plane close to the bottom
surface at z = 0.05h in the staggered array

close to the bottom surface at z = 0.05h in the staggered array. Here we see strong
reverse flow from the front faces of the cubes. In this plane, there is also a lateral
convergence of wind vectors behind the cubes onto their centrelines such as y = 2.5h.
Because this plane is close to the bottom surface, continuity dictates that there should
be an updraft in the vertical planes through those centrelines, and this can be seen in
Figure 9a. The picture changes further up in the canopy. Figure 11 shows the (u, v)

wind vector pattern in the x − y plane at z = 0.5h (half the cube height). At this
height there is no reverse flow from the front faces of the cube. Note the clear effect
of flow separation on the side walls of the cubes in diverting high momentum fluid
towards the middle of the gap between cubes. One can also see a recirculating vortex
pair behind the cube, similar to the pattern behind an isolated cube (Martinuzzi and
Tropea 1993).

Figures 12–14 show the mean flow structure for the square array corresponding to
the same planes as in Figures 9, 10 and 11 respectively. The alignment of the cubes
and the fact that cubes in each row are now much closer together (being separated
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Fig. 11 Similar to Fig. 10 in a horizontal x − y plane at z = 0.5h (half the cube height)

by a gap of length h as compared to 3h in the staggered case) result in a completely
different mean flow pattern. Figure 12 shows that the mean flow behind the cubes
is now dominated by a large recirculation, and this is true even in vertical x − z
planes off the axis of symmetry. This flow pattern is qualitatively similar to that over
a two-dimensional street canyon (Cui et al. 2004). Figure 13, in the x − y plane at
z = 0.05h, shows a much simpler flow structure than the corresponding plot for the
staggered array, Fig. 9. There is basically fast flow in the unobstructed region between
rows of cubes and strong reverse flow in the region between successive cubes within
the rows. Figure 14 shows that the counter-rotating vortex pair in the x − y plane at
z = 0.5h is now larger and spans the whole region between successive cubes.

In conclusion the results of this section illustrate important differences between
three-dimensional flows and flows through cube layouts that are more closely two
dimensional. They illustrate the risks of thinking based upon typically two-dimensional
street canyon-type flows in situations where building arrangements may be more
three-dimensional. The flow topology in the two cases is very different (Tobak and
Peake 1982) and, as Delery (2001) points out, even the vocabulary used to describe



Boundary-Layer Meteorol (2006) 121:491–519 505

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

z/
h

z/
h

(a)

0.2

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1.2

x/h

x/h

(b)

0.2

Fig. 12 (a) Mean flow structure in a vertical x−z plane through the middle of the cube in the aligned
array showing (u, w) wind vectors. (b) Similar plot in a vertical x − z plane parallel to the one above
and at distance of 0.25h away

two-dimensional flows may not be appropriate for more complex three-dimensional
flows. Belcher (2005) discusses the effect of street intersections such as four-way junc-
tions and T-junctions on dispersion. A careful study of the flow topology in such cases
would help to understand the patterns of mixing and transport.

4.2.2 Mean flow statistics

Computed mean flow statistics are now compared with the wind-tunnel measure-
ments of Cheng and Castro (2002). Figure 15a shows the vertical profile of laterally
integrated pressure difference between front and back faces of a cube in the staggered
array, normalised by the pressure difference in the middle,

∫
(pf − pb) dy/�pm. The

experimental data were obtained from an array of 42 pressure tappings placed on
both front and back faces of a cube (Cheng and Castro 2002). The computed profile
is in excellent agreement with the measurements.

Figure 15b shows a wind vector plot of mean u, v at z = 0.1h in a ‘repeating
unit’ of the staggered array. Figures 15c–f plot the vertical profiles of mean stream-
wise velocity u over four locations corresponding to respective coordinate positions
(0.5, 1.5), (0.5, 0.5), (1.5, 1.5) and (1.5, 0.5) in Figure 15b. The circles in those plots are
data points from the measurements of Cheng and Castro (2002). Note the negative
velocities near the bottom in Figures 15e and f, as also reflected in the wind vectors at
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Fig. 13 Wind vector plot of the mean wind field (u, v) in a horizontal x − y plane close to the bottom
surface at z = 0.05h in the aligned array

the corresponding locations (1.5, 1.5) and (1.5, 0.5). The computed profiles agree very
well with the data both within the array and above.

Further statistics are presented in the next section as spatial averages over the flow
domain.

4.3 Spatially-averaged mean flow

4.3.1 Reynolds and dispersive stresses

Figure 16 shows the computed spatially-averaged Reynolds and dispersive stresses,
compared with wind-tunnel measurements made above the staggered and aligned
arrays by Cheng and Castro (2002). Figure 16a plots the r.m.s. values 〈u′w′〉1/2, 〈u′2〉1/2

and 〈w′2〉1/2 for the staggered array and Figure 16b plots the same quantities for the
aligned array. Cheng and Castro (2002) made 25 profile measurements above the
aligned array, and this allowed them to compute reliable values for the dispersive
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Fig. 14 Similar to Fig. 13 in a horizontal x − y plane at z = 0.5h (half the cube height)

stresses. Figure 16c compares the computed r.m.s. values 〈ũw̃〉1/2, 〈ũ2〉1/2 and 〈w̃2〉1/2

with the measurements. In these plots, the stresses have been normalised by u2∗ while
distances have been scaled by (z − d)/D, where D has been chosen as the domain
height H in the simulations and as the measured boundary-layer depth δ in the wind-
tunnel experiment (defined as the height at which the velocity is 99% of the free
stream velocity). The displacement height d has a value 0.835h for the aligned array
and 0.83h for the staggered array in both the simulations and the wind-tunnel mea-
surements (see Section 4.4.3). In the wind tunnel, the lowest measurement point is
at z = 1.31h for the staggered array and at z = 1.2h for the aligned array. The
computed values of 〈u′w′〉1/2 are almost identical with the experimental values. The
computed values of 〈u′2〉1/2 and 〈w′2〉1/2 are very close to the measured values for the
staggered array. For the aligned array, 〈u′2〉1/2 is slightly overestimated and 〈w′2〉1/2

is slighly underestimated. The dispersive stresses, plotted in Fig. 16c for the aligned
array, decrease rapidly with height above the array, reflecting the fact that the mean
flow structure imposed by the geometry does not extend very far vertically. Note that
the dispersive stresses are much smaller than the Reynolds stresses above the array
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Fig. 15 (a) Computed vertical profile of laterally-integrated pressure difference between front and
back faces of a cube in the staggered array, normalised by the pressure difference in the middle,∫
(pf − pb) dy/�pm. (b) Wind vector plot of the mean wind field (u, v) in a horizontal x − y plane at

z = 0.1h within a repeating unit in the staggered array. Vertical profiles of streamwise mean velocity
u over four locations: (c) in gap (0.5h, 1.5h), (d) on cube (0.5h, 0.5h), (e) in front of cube (1.5h, 1.5h),
(f) behind cube (1.5h, 0.5h). Solid lines: computations from run 444-64. Circles: Wind-tunnel data of
Cheng and Castro (2002)

(being about 1% of the total stress, or 10% r.m.s). The agreement between the com-
puted and measured dispersive stresses is impressive given how small they are. The
scatter in the wind-tunnel data, and to some extent in the computations, reflects the
difficulties in obtaining statistically converged estimates of dispersive stresses above
the array given their small magnitudes, the need for sampling at an adequate number
of locations and also for a long enough duration (see Section 4.3.2 below).

4.3.2 Spatially-averaged momentum budget and dispersive stresses

Figure 17a shows spatially-averaged stress contributions to τ13 computed for the stag-
gered array. At this high Reynolds number the viscous term ν∂〈u〉/∂z is negligible
except at the top of the cubes, where it contributes about 3% of the total stress.
Above the array, practically all the stress is carried by the Reynolds term 〈u′w′〉. The
dispersive stress 〈ũw̃〉 is negligibly small above the array.
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Fig. 16 Comparison of computed Reynolds and dispersive stresses with wind-tunnel data. (a) r.m.s.
values of Reynolds stresses for staggered array, (b) r.m.s. values of Reynolds stresses for aligned
array, (c) r.m.s. values of dispersive stresses for aligned array. Dot-dashed lines: 〈u′w′〉1/2 and 〈ũw̃〉1/2.

Dashed lines: 〈u′2〉1/2 and 〈ũ2〉1/2. Solid lines: 〈w′2〉1/2 and 〈w̃2〉1/2. Symbols: Wind-tunnel data from
Cheng and Castro (2002)

Figure 17b shows the computed dispersive stress above the array when a shorter
averaging time is used (50T). Clearly the dispersive stress is then much larger. The
reason for the large dispersive stress obtained with a smaller averaging time is the
following. Figure 18a shows the (v, w) wind vectors in the y−z plane corresponding to
this averaging time. The large dispersive stress above the array is due to the presence
of slow evolving mean streamwise circulations, which are very evident in Fig. 18a but
which are averaged out over the much longer averaging time of 400T (Fig. 18b). The
maximum dispersive stress occurs at about z/h = 2, the same height as the cores of
the circulations. Such low frequency structures are commonly observed over smooth
as well as rough walls (Kendall 1985; Reynolds et al. 2006), and, since they evolve
slowly, they give rise to significant dispersive stresses over an interval of 50T. Over
much longer time intervals they move around and hence cease to appear as a mean
spatial structure; so they do not contribute to the dispersive stresses over a very long
averaging time. An averaging time substantially longer than the time scale over which
they evolve is therefore necessary to achieve statistically converged results above the
array; in all the runs a very long averaging time of 400T is therefore used. Recent
experimental investigations have concluded that dispersive stresses are small above



510 Boundary-Layer Meteorol (2006) 121:491–519

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

stresses

z/
h

z/
h

(a)

0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

3

3.5

4

dispersive stresses

(b)

Fig. 17 (a) Profiles of horizontally-averaged Reynolds shear stress 〈u′w′〉 (dashed line), dispersive
stress 〈ũw̃〉 (dot-dashed line), viscous stress ν∂〈u〉/∂z (faint solid line) and their sum (solid line) for the
staggered array, computed using an averaging time of 400T. (b) Dispersive stress computed using an
averaging time of 400T (dot-dashed line) and 50T (dotted line). Note the large values of the dispersive
stress obtained above the array if a shorter averaging time is used

the canopy layer (Cheng and Castro 2002; Poggi et al. 2004), and the present numerical
simulations confirm this.

A less well-known fact is that the magnitude of the dispersive stresses within the
canopy is significant, and is especially so in the lower half of the canopy. Figure 17a
shows that 〈ũw̃〉 is comparable to or even exceeds the magnitude of the Reynolds
shear stress 〈u′w′〉 below z = 0.5h. This information is important for modelling the
turbulence within the lower canopy. Large dispersive stresses were also found within
vegetation canopies by Bohm et al. (2000) and Poggi et al. (2004).

4.3.3 Velocity fluctuations and turbulent kinetic energy

In the last section it was shown that the dispersive stress is significant in the lower
half of the canopy, which means that spatial fluctuations of the mean velocity field are
important there. What about temporal fluctuations from the mean? Figure 19a shows
the magnitude of the computed horizontally-averaged streamwise velocity fluctuation
(u′) as a fraction of the horizontally-averaged mean streamwise velocity, |〈u′2〉1/2/U|.
The solid line is for the staggered array and the dashed line is for the aligned array.
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Fig. 18 (a) Mean velocity wind vectors of (v, w) in a y − z plane through the middle of the cubes
shown for a staggered array for an averaging time of 50T. Note the presence of counter-rotating mean
circulations above the cubes. (b) As in (a) but for an averaging time of 400T. Here the streamwise
circulations seen in (a) have been averaged out to zero

Note how this ratio increases rapidly near the bottom of the canopy. Figure 19b shows
an enlarged view of the plot for the lower part of the canopy z = 0.25h, with the
plots showing how extreme the velocity fluctuations are. For the aligned array the
spatially averaged fluctuating velocity urms is up to 2.5 times the spatially averaged
mean velocity U whereas it goes up to 16 times for the staggered array. Figures 19c
and d plot the turbulent kinetic energy (TKE) as a fraction of the energy in the
spatially-averaged mean flow, (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/(U2 + V2 + W2). Here the ratio
becomes even more significant because of the contributions of the lateral and verti-
cal fluctuations 〈v′2〉 and 〈w′2〉, whereas their mean counterparts V2 and W2 are of
course zero. The TKE for the aligned array is up to 10 times the kinetic energy of
the spatially-averaged mean flow, and for the staggered array it is up to 33 times! It is
perhaps more instructive to compute the TKE as a fraction of the total energy in the
mean flow, including that due to the dispersive component. Figures 19e and 19f plot
the ratio (〈u′2〉+ 〈v′2〉+ 〈w′2〉)/(〈u2〉+ 〈v2〉+ 〈w2〉), where now the local mean velocity
components ui = Ui + ũi are used in computing the mean kinetic energy. The plots
show that the TKE can be up to about 1.5 times the total energy in the mean flow in
the lower canopy.

Based on these results it appears that close to the bottom of the canopy the spa-
tially-averaged mean velocity Ui does not have much significance on its own, and
that even the local mean velocity ui can be less significant that the temporal velocity
fluctuations u′

i. Therefore, when making urban measurements it is not sufficient to cal-
culate only the mean wind speed; it is important to compute from the measurements
fluctuating velocity components such as 〈u′2〉1/2.

4.3.4 Influence of layout on spatially-averaged statistics

Figure 20 summarises the influence of layout on computed statistics. The solid lines are
for the staggered array, dashed lines are for the aligned array and dot-dashed lines are



512 Boundary-Layer Meteorol (2006) 121:491–519

0 1 2 3
0

1

2

3

4

|u
rms

/U|

z/
h

z/
h

z/
h

z/
h

z/
h

z/
h

(a) (b)

(d)(c)

(f)(e)

0 5 10 15 20
0

0.1

0.2

|u
rms

/U|

0 0.5 1 1.5 2
0

1

2

3

4

TKE/MKE
2

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

TKE/MKE
2

0 1 2 3
0

1

2

3

4

TKE/MKE
1

0 10 20 30
0

0.1

0.2

0.3

0.4

TKE/MKE
1

Fig. 19 (a) Magnitude of horizontally-averaged streamwise velocity fluctuation as a fraction of hor-
izontally-averaged mean streamwise velocity, |〈u′2〉1/2/U|. (b) as in (a) for lower part of canopy. (c)
Fraction of turbulent kinetic energy to energy in the spatially-averaged mean flow, (〈u′2〉 + 〈v′2〉 +
〈w′2〉)/(U2 + V2 + W2). (d) as in (c) for lower part of canopy. (e) Fraction of turbulent kinetic energy
to energy in the mean flow, (〈u′2〉 + 〈v′2〉 + 〈w′2〉)/(〈u2〉 + 〈v2〉 + 〈w2〉). (f) as in (e) for lower part of
canopy. Solid line: staggered array; Dashed line: aligned array. (c) as in (a) for lower part of canopy

for the square array. The first point to note is that the plots for the aligned and square
arrays are almost indistinguishable except for the streamwise turbulence intensity
〈u′2〉. The spanwise and vertical turbulence intensities 〈v′2〉 and 〈w′2〉 for the staggered
array are very similar to those for the aligned array, but the streamwise turbulence
intensity 〈u′2〉 is much lower within the canopy layer. Recall that the r.m.s. streamwise
turbulence intensity normalised by the mean velocity is higher in the staggered array
(Fig. 19). The reason that 〈u′2〉 is lower here is because of the enhanced drag of the
staggered array (see Fig. 20i), which leads to a much reduced mean velocity within
the staggered array (Fig. 20g).

Figure 20d–f compare the Reynolds shear stress 〈u′w′〉, dispersive stress 〈ũw̃〉 and
total stress 〈u′w′〉 + 〈ũw̃〉 + ν∂〈u〉/∂z for the three layouts. The main differences occur
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Fig. 20 Dependence of computed statistics on layout of roughness array. Solid lines: staggered array.
Dashed lines: aligned array. Dot-dashed line: square array. Dotted line: spatial average of mean
streamwise velocity in staggered array using only four sampling points per repeating unit. Circles:
wind tunnel data from Cheng and Castro (2002) for staggered array. (a) 〈u′2〉 (b) 〈v′2〉 (c) 〈w′2〉 (d)
shear stress 〈u′w′〉 (e) dispersive stress 〈ũw̃〉 (f) total stress 〈u′w′〉 + 〈ũw̃〉 + ν∂〈u〉/∂z (g) horizon-
tally-averaged mean streamwise velocity U ≡ 〈u〉 (h) drag force Fd(z) (i) sectional drag coefficient
cd(z)

in the lower half of the canopy, where the Reynolds stress in the staggered array is
lower and the dispersive stress is higher. The profile of dispersive stress for the aligned
and square arrays is qualitatively different; it changes sign at about z = 0.6h, due to
the existence of a strong mean recirculation in these cases. Poggi et al. (2004) recently
reported similar findings in wind-tunnel measurements within model plant canopies
in an aligned arrangement. Note also that the dispersive stress above the staggered
array is practically negligible.

The spatially-averaged mean velocity U ≡ 〈u〉 computed for the staggered array is
compared with wind-tunnel data from Cheng and Castro (2002) in Fig. 20g; the data
were obtained as the average of four profiles. Therefore, a four-profile spatial average
is also computed from the simulation data (shown as the dotted line), as well as the full
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average obtained from all the computed profiles (the solid line). The 4-point average
is remarkably close to the full average, and also agrees very well with the wind-tunnel
data. Compared to the staggered array, the velocities in the aligned and square arrays
are higher by about 50% above the array and 100% within, due to greater sheltering.

The fact that the three-dimensional flow structure in the staggered array is very
different from that in the square or aligned arrays (see Sect. 4.2.1) leads to important
differences in the profiles of pressure drag. The cubes in the staggered configuration
are further apart streamwise, hence there is less sheltering. Moreover, the flow is
diverted laterally because of staggered cubes in adjacent rows and speeds up in the
gap, leading to greater pressure on the front face of the cubes. This happens over
most of the depth of the staggered array. In contrast, the close vicinity of cubes in the
square/aligned arrays and the absence of lateral flow diversion mean that most of the
momentum flux arises from the top. This has the consequence that the pressure-drag
profile for the staggered array is fuller, as shown in Fig. 20h.

4.4 Parameterisations

4.4.1 Drag coefficient

The sectional drag coefficient cd(z), defined by

� p(z) = (1/2)ρ U2(z) cd(z), (4)

(Macdonald 2000) is an important parameter used in distributed canopy drag models
(Martilli et al. 2002; Coceal and Belcher 2004, 2005). It is difficult to obtain experi-
mentally, but is easy to compute from the results of the simulations. Figure 20i shows
the profiles of cd(z) for the three arrays. The computed cd(z) for the staggered array
agrees remarkably well with that computed from the detailed wind-tunnel data of
Cheng and Castro (2002). The value of cd(z) for the staggered array lies between 2
and 3 in the upper half of the canopy, then increases rapidly further down due to the
small values of the mean velocity in the lower canopy. Note that the values of cd(z)

for the aligned and square arrays are much smaller (by an order of magnitude) than
the staggered case, due to the much higher velocities U(z) as well as lower drag within
these arrays, as seen in Figs. 20g and h.

4.4.2 Effective mixing length

In addition to parameterising the drag, modellers are interested in parameterising
the turbulence. The simplest turbulence closure models are formulated in terms of a
mixing length. An effective, spatially-averaged mixing length defined as

lm ≡
√

〈u′w′〉
/

dU/dz, (5)

may be computed from the simulation data. The profile of lm(z) is plotted in Fig. 21
for the staggered array, using data from the run 444-64.

Figure 21 shows that the mixing length increases linearly with distance above the
array between approximately z = 1.2h to 1.8h, and indicates blocking of large, ener-
getic eddies in the boundary layer above the cubes. Figure 21 also shows that the
mixing length increases linearly from a small minimum value of lm/h ≈ 0.02 at the
top of the array to a maximum of lm/h ≈ 0.4 at z/h = 0.5. It then decreases again,
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Fig. 21 Effective mixing length profile computed for run 444-64. Dashed line: lm = κ (z − d). The
mixing length increases linearly from a small value near the top of the array both above and below
the array top. This indicates that, in an average sense, large eddies are blocked by the strong shear
layer over the top of the cubes

approximately linearly, from z/h = 0.5 down to the surface. This variation of the
mixing length contrasts with plant-like canopies consisting of tall thin roughness ele-
ments, where the mixing length is constant with depth inside the canopy (Finnigan
2000). This would again indicate that large eddies within the canopy are blocked by
the top of the array, as well as by the bottom surface.

It is reasonable to suspect that the blocking layer near the top of the cubes cor-
responds to the average position of the strong shear layer visualised in Fig. 8 (Hunt
and Durbin 1999; Belcher et al. 2003). Such a strong shear layer would resist penetra-
tion by large structures from either above or below and would tend to disrupt them
(Thomas et al. 2003), thus providing a natural mechanism for blocking of eddies. There
is need for caution though, since Fig. 21 is obtained from the mean velocity field and
Reynolds stress. Hence, the idea of blocking by the shear layer, and the particularly
small value of the mixing length at z = h, must be taken in a time-averaged sense. The
instantaneous flow deviates significantly from the mean even near the canopy top (see
Fig. 19). From an instantaneous perspective there must be intermittent penetration
of large eddies from above into the canopy. This point again emphasises the risks of
conceptualizing turbulence and turbulent coupling from a time-mean point of view in
a highly unsteady situation.



516 Boundary-Layer Meteorol (2006) 121:491–519

4.4.3 Displacement height and roughness length

We describe how roughness parameters d and z0 are determined from the
spatially-averaged data above the canopy. The issue is complicated by the fact that
the flow is here maintained by a constant pressure gradient.

In canopy flows, the zero-plane displacement height d is the effective height of the
ground due to vertical flow displacement through the canopy (Raupach et al. 1991). A
heuristic model considers d as the average height of the blocking shear layer (Belcher
et al. 2003), and one may then write the linear variation of the mixing length as

lm = κ(z − d). (6)

Using a surface friction velocity uτ (p) derived from form drag measurements, Cheng
and Castro (2002) deduced the value of d/h = 0.83 by a best fit to their measured
mean velocity profile. Using this value of d Eq. (6) gives a close fit to the linear part
of the computed mixing length profile. This is shown as the dashed line in Fig. 21.

To derive a value for the aerodynamic roughness length z0 one first needs to show
that a logarithmic mean velocity profile exists in this pressure-driven flow, otherwise
z0 cannot be defined. This requires integrating the equation

lm dU/dz = uτ

√
1 − z/H, (7)

where the extra factor includes the linear variation of shear stress throughout the
whole flow required to balance the applied streamwise pressure gradient (the disper-
sive and viscous stresses are negligible above the array). The last equation can be
reduced to an ordinary differential equation by using the substitution U = (uτ /κ)√

1 − d/Hf (ζ ), where ζ = (z − d)/(H − d). The resulting equation may then be
integrated and the result expanded as a series to yield

U(z) = uτ

√
1 − d/H
κ

[
ln

(
z − d

z0

)
− 1

2

(
z − d
H − d

)
+ O

(
z − d
H − d

)2
]

, (8)

where the constant of integration has been absorbed into the log term as the parameter
z0. Equation (8) shows that U(z) has a logarithmic profile with zero-plane displace-
ment d and roughness length z0 provided that we use the shear velocity uτ

√
1 − d/H

at the height of the effective origin z = d (the additional terms are small near the top
of the array). This then defines an effective u∗ for a pressure-driven channel flow, and
gives a basis for making a comparison with a constant stress system. A consequence of
the above analysis is that any straight line on the graph of z/h vs. lm corresponds to a
logarithmic velocity profile with the corresponding values of κ and d; hence fitting a log
profile is equivalent to fitting the mixing length. Using the values u∗ = uτ

√
1 − d/H

with d/h = 0.83 gives a best fit roughness length of zo/h = 0.045, close to the value of
0.053 which Cheng and Castro deduced by best-fitting a log profile to their measured
mean velocity data.

Jackson (1981) has proposed a different interpretation of the zero-plane displace-
ment in which d is the effective height at which the form drag acts,

d =
∫ h

0
zD(z) dz

/∫ h

0
D(z) dz. (9)
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This may be evaluated with the present data and results in a smaller value d/h = 0.60.
The semi-empirical expression proposed by Macdonald et al. (1998) relating d/h
for staggered arrays of cubes to the plan area density λp (here = 0.25), d/h = 1 −
4.43−λp(1 − λp) gives d/h = 0.48, which is even smaller. Hence, one should note that
these three ways of obtaining the zero-plane displacement are not consistent with one
another.

5 Conclusions

The good agreement achieved between the present simulations and wind-tunnel data
shows the promise of the method for generating comprehensive datasets that may be
used for validating simpler models, such as urban canopy models (Coceal and Belcher
2004, 2005) or LES at lower resolutions (Xie and Castro submitted). Valuable infor-
mation of use to modellers such as drag coefficients and further statistics such as the
terms of the turbulent kinetic energy budget can be computed.

The results have shown the important influence of building layout, both on the
mean flow structure and on the turbulence statistics. This finding highlights in particu-
lar the need to consider the three dimensionality of the flow. By implication, models of
urban areas based exclusively on two-dimensional street canyon representations may
be missing important aspects of the flow around actual three-dimensional buildings.
Indeed, one would like to take things one step further. The arrays we have inves-
tigated are closely packed and of uniform height, which are both conducive to the
formation of a strong and continuous shear layer; the effect of packing density and
variable height is an important subject for future investigation.

Another important finding is that unsteady effects are significant and cannot be
ignored, especially in the lower canopy. It is common in the literature on urban can-
opy flows for discussions to be based on a mean picture of the flow; this may be
misleading. Applications that depend on the flow dynamics on short time scales, such
as the dispersion of pollutants, may require a much more detailed understanding of
the unsteady flow. Simulations like those presented in this paper allow one to probe
the unsteady dynamics in great detail. Some aspects of this, including an investigation
of organised features of the turbulence over cubical roughness arrays, are reported in
Coceal et al. (submitted).

Finally, this work is able to shed light on turbulence over rough surfaces in general.
Representing a generic rough surface by means of geometrically regular roughness
such as the present cubical arrays makes it possible to perform direct numerical sim-
ulations. The fact that the flow within the actual roughness is resolved in detail can
also reveal a great deal about canopy flows. There are at least two paradigms here.
First, we might consider the roughness elements to be obstacles, so that the flow
within and above the roughness elements is formed by the interacting wakes of the
obstacles. Second, the canopy of roughness elements can be considered as a porous
medium that exerts an aerodynamic drag on the flow. Investigations of atmospheric
boundary-layer flow over vegetation and forest canopies have taken this approach
(Finnigan 2000), and shown that the inflection point in the mean velocity profile at the
top of the canopy leads to a mixing layer instability that produces large eddies that
control the mixing within and immediately above the canopy. A subject of continuing
investigation is whether a similar or a different mechanism operates for urban-like
canopies.
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