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Abstract. The micromixing technique, widely used in engineering calculations of mixing and
chemical reaction, is extended to atmospheric boundary-layer flows. In particular, a model
based on the interaction-by-exchange-with-the-conditional-mean (IECM) micromixing ap-

proach is formulated to calculate concentration fluctuation statistics for a line source and a
point source in inhomogeneous and non-Gaussian turbulence in the convective boundary
layer. The mixing time scale is parameterised as a linear function of time with the intercept

value determined by the source size at small times. Good agreement with laboratory data for
the intensity of concentration fluctuations is obtained with a value of 0.9 for the coefficient of
the linear term in the time-scale parameterisation for a line source, and a value of 0.6 for a

point source. Calculation of higher-order moments of the concentration field for a line source
shows that non-Gaussian effects persist into the vertically well-mixed region. The cumulative
distribution function predicted by the model for a point source agrees reasonably well with
laboratory data, especially in the far field. In the limit of zero mixing time scale, the model

reduces to a meandering plume model, thus enabling the concentration variance to be parti-
tioned into meandering and relative components. The meandering component is shown to be
more persistent for a point source than for a line source.

Keywords: Concentration moments, Concentration probability density function, IECM
model, Lagrangian stochastic modelling, Skewed turbulence, Turbulent diffusion.

1. Introduction

Mixing, dispersion, and chemical reaction of trace species in the atmospheric
boundary layer (ABL) are important factors in understanding and modelling
many features of local, regional and global air pollution. Modelling the mean
concentration field due to localised sources in the ABL is well developed in
both a fundamental and a practical sense, particularly in neutral and unstable
conditions where the turbulence is better characterised. However, many
problems such as odour nuisance, the interaction of mixing and chemistry, the
propagation of flames back to the source, or the way in which animals track a
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chemical signal back to a source of food or a mate (e.g., Yamanaka et al.,
2003) require a knowledge of higher-order statistics of the concentration field.

The daytime convective boundary layer (CBL) is of particular interest
because under convective conditions the ground-level impact of emissions
from tall stacks is greatest and the daytime boundary layer is generally more
chemically active. The nature of the turbulence in the CBL is also very well
understood as a result of laboratory, numerical and field studies, and there are
available laboratory data for concentration statistics due to point and line
sources. Although the flow is complex because it is inhomogeneous and non-
Gaussian, the mean shear is relatively unimportant and can be ignored
throughout most of the CBL. Thus modelling of the concentration field can be
simplified by relating downwind distance x and travel time t through
the Taylor transformation x ¼ Ut, whereU is the mean wind within the CBL.

Despite this simplification, rigorous modelling of even the concentration
variance using two-point marked particle models (e.g., Borgas and Sawford,
1994; Franzese and Borgas, 2002) is still some way off, and the prospect of
modelling higher-order statistics using three, four or more simultaneous
particles even more distant. Recently, Luhar et al. (2000), Cassiani and Gi-
ostra (2002) and Franzese (2003) have used filtering techniques to derive
plume-meandering statistics from single-particle statistics with simple pa-
rameterisation methods for relative dispersion. When coupled with a model
for the in-plume concentration fluctuations (following, for example, Yee et al.,
1994), this approach gives good agreement with laboratory and numerical
estimates of the meandering and relative dispersion, and the ground-level
intensity of concentration fluctuations. However, a major disadvantage of this
approach is that the relative fluctuation intensity, used in the parameterisation
of the in-plume fluctuations of concentration, must be known, but there are no
appropriate measurements that can provide guidance for estimating this
parameter. Also, the relative dispersion needs to be parameterised with proper
asymptotic behaviours for each type of flow being considered.

Here we use an alternative approach, known as the micromixing tech-
nique, explored recently by Sawford (2004) for a line source in wind-tunnel
grid turbulence. This technique is widely used in engineering calculations of
mixing and chemical reaction (e.g., Fox, 1996, 1998; Subramaniam and Pope,
1998; Pope, 1998), and is extended here to ABL flows. A micromixing model
is usually used to close the turbulent molecular mixing term in a transport
equation for the joint probability density function (pdf) of velocity and the
scalar (Fox, 1996; Pope, 1998). The usual method of implementing the mi-
cromixing technique coupled with a pdf model is to simulate the turbulent
flow as independent Lagrangian fluid particles whose trajectories, in terms of
velocity and position, are calculated as a stochastic process. All particles,
including those released at the tracer source with the source concentration
and the others with zero initial concentration, interact through micromixing
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on a time scale that may be a function of the travel time. This interaction or
micromixing� between particles changes the concentration of each particle
with time and, therefore, dissipates concentration fluctuations.

There is a range of micromixing models for describing the evolution of
concentration carried by each particle in the flow domain. Sawford (2004)
used a single-particle Lagrangian stochastic model coupled with two micro-
mixing models to represent the change of concentration along a particle
trajectory due to mixing between the particle and its surroundings. The two
micromixing models were: (1) the interaction of a particle with its sur-
roundings by exchange with the local mean concentration – the IEM model
(which is the simplest possible micromixing model) and (2) the interaction by
exchange with the local mean concentration conditional on velocity – the
IECM model. (Hence, it is clear that either the mean concentration field or
the conditional mean concentration field due to the tracer source needs to be
known for micromixing calculations.) Sawford (2004) focused mainly on the
IECM model, because the IEM model, although easier to formulate than the
IECM model, is known to induce a spurious flux which influences the con-
centration distribution. For example, this spurious flux causes the mean
concentration field predicted by the IEM micromixing method to differ sig-
nificantly from that obtained in the absence of micromixing (see Sawford,
2004). In other words, the IEM model does not fulfil the requirement that
one-point statistics, such as the mean concentration, must remain unaffected
by micromixing. Sawford (2004) showed that the IECM model gives
remarkably good agreement with a range of different wind tunnel data for
line sources as well as for a two-source configuration. In this paper we
consider only the IECM approach.

Because of the simplicity of the grid turbulence, Sawford (2004) was able
to obtain a number of results analytically, including expressions for the mean
concentration field and the mean concentration field conditional on velocity.
These analytical results were then used in the mixing calculation using a
Lagrangian model, which requires a numerical solution. There are three
important elements of Sawford’s results that we want to emphasise here.
Firstly, although he was able to derive many results analytically for grid
turbulence, the key point is that in general one-point statistics such as the
mean concentration and the conditional mean concentration due to a tracer
source can be pre-calculated numerically from a Lagrangian marked particle
model, and they remain unaltered by the micromixing (as mentioned above,
this is true for the IECM model, but not for the IEM model). Secondly,
Sawford showed that the mixing time scale tm for a plume is essentially a
linear function of time, with corrections very close to the source for the finite
size of the source, and if it is relevant, the effect of molecular diffusion.

� The terms ‘micromixing’ and ‘mixing’ are used interchangeably in this paper.
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Finally he showed that in the limit tm ! 0, the IECM model reduces to a
meandering plume model, and is thus physically consistent with the behavi-
our of plumes close to the source.

In this paper, we extend Sawford’s approach to the cases of dispersion
from point and line sources in the CBL. We outline the theory behind this
approach in Section 2, where we discuss issues like the initial conditions, pre-
calculation of the conditional mean and the form of the mixing time scale.
Section 3 describes the numerical calculations of concentration fluctuation
statistics for a line source and a point source. In Section 4, we present results
for these two source types, and compare them with laboratory data. We
summarise our conclusions in Section 5.

2. Theory

2.1. LAGRANGIAN APPROACH

We follow the now standard approach of representing the motion of inde-
pendent fluid particles in a turbulent flow as a continuous Markov process in
velocity-position (u, x) phase space. Thus we can write down stochastic
differential equations representing increments in velocity and position along a
fluid-particle trajectory at time t

dui ¼ aiðu; x; tÞ dtþ ðC0eÞ1=2 dniðtÞ; ð1Þ

dxi ¼ ui dt: ð2Þ

According to Thomson’s (1987) ‘well-mixed’ theory, the deterministic drift
term a in Equation (1) is derived using specified Eulerian velocity statistics
and so is different for different flows. We address the form of a for the CBL
below. The so-called diffusion term in Equation (1) contains dniðtÞ, the
incremental Wiener process with mean zero and variance dt (Gardiner, 1983),
the rate of dissipation of turbulence kinetic energy e, and the Lagrangian
velocity structure function constant C0. The form of this diffusion term is
chosen to be consistent with Kolmogorov’s theory of local isotropy (Monin
and Yaglom, 1975).

In applying Equation (1) to the particular case of tracer dispersion within
the CBL, we follow Luhar and Britter (1989) and subsequent refinements
(Luhar et al., 1996). As indicated above, to do this we need to specify the
Eulerian flow statistics characterising the flow. We assume that the turbu-
lence is stationary, and take the mean wind to be constant throughout the
boundary layer. The latter is correct for laboratory water tank simulations,
where U ¼ 0 and the effect of advection by the mean wind is simulated either
by towing a point source through the tank (Deardorff and Willis, 1984; Weil
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et al., 2002) or by transforming an instantaneous line into a continuous point
using Taylor’s hypothesis (Hibberd, 2000); it is, however, only approximately
true in the atmosphere. We thus neglect the effect of shear-generated tur-
bulence in the CBL, an approximation which can be justified so long as
U=w� � 6 (Willis and Deardorff, 1978), where w� is the convective velocity
scale. We are only concerned with the vertical and lateral velocity fluctua-
tions of a particle when an instantaneous line source is transformed into a
continuous point source. This is also true in the case of a real continuous
point source if we ignore the streamwise diffusion compared to the mean
advection provided U=w� � 1:2. In the absence of shear-generated turbu-
lence, these vertical and lateral velocity fluctuations are decoupled. We take
the lateral (or crosswind) turbulent velocity to be Gaussian and homoge-
neous, but as is well-known, the vertical turbulent velocity fluctuations are
strongly non-Gaussian and height dependent. Writing the Eulerian skewed
probability distribution function (pdf) PE for the vertical turbulent velocity
as the sum of two Gaussian pdfs (loosely representing up-drafts and down-
drafts), we can write the stochastic equation for the velocity along a particle
trajectory (now using v and w to denote the lateral and vertical particle
velocities respectively, and y and z to denote the corresponding positions) as

dv ¼ � C0e
2r2v

� �
v dtþ ðC0eÞ1=2 dnvðtÞ; ð3Þ

and, following Luhar and Britter (1989) and Luhar et al. (1996)

dw ¼ � C0e
2PE

� �
Q0 þ

/
PE

� �
dtþ ðC0eÞ1=2 dnwðtÞ; ð4Þ

where the random forcings dnv and dnw are uncorrelated. As in Luhar et al.
(2002), we use C0 ¼ 3 and the normalised variance of the lateral turbulent
velocity

r2v
w2
�
¼ 0:2: ð5Þ

The expressions for the quantities PEðw; zÞ, Q0ðw; zÞ and /ðw; zÞ in
Equation (4) are given in Appendix A. They are functions of the updraft and
downdraft mean velocities, �wAðzÞ and � �wBðzÞ, standard deviations, rAðzÞ
and rBðzÞ and of the proportions of area occupied by updraft and downdraft,
AðzÞ and BðzÞ. The six unknowns A, �wA, rA, B, �wB, rB are determined from
vertical profiles of the zeroth to fourth moments of the velocity, together with
closure assumptions

�wA ¼ mrA; ð6Þ
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�wB ¼ mrB; ð7Þ
with

m ¼ 2

3
S1=3
w ; ð8Þ

where Swð¼w3=ðw2Þ1:5Þ is the skewness of the vertical turbulent velocity (see
Luhar et al., 1996). This closure ensures that the vertical turbulent velocity
pdf PE is Gaussian (with kurtosis Kw ¼ 3) for Sw ¼ 0. The profiles of the
normalised second and third moments of the vertical turbulent velocity used
are (Luhar, 2002):

w2

w2
�
¼ 1:7

z

zi

� �2=3

1� 0:9
z

zi

� �4=3

; ð9Þ

w3

w3
�
¼ 1:2

z

zi

� �
1� z

zi

� �3=2

; ð10Þ

where zi is the height (or depth) of the CBL. The Lagrangian time scale in the
vertical direction is given as TLwðzÞ ¼ 2r2wðzÞ=½C0eðzÞ�.

The profile of the dissipation rate of turbulent kinetic energy used here,
which approximates the convection tank data of Deardorff and Willis (1985),
is

ezi
w3
�
¼ 1:2� 1:05

z

zi

� �1=3

: ð11Þ

The above parameterisation, which gives smaller values than does the one
suggested by Luhar and Britter (1989) based on field experiments, is selected
because we compare our model results with data from tank experiments.
Because the flow in the lateral direction is assumed to be homogeneous, we
use the vertically averaged value of dissipation rate e ¼ �e ¼ 0:4w3

�=zi in
Equation (3) for the lateral component. The corresponding Lagrangian time
scale is TLv ¼ 2r2v=ðC0�eÞ.

The trajectory model is completed by equations for the displacement of
fluid particles along a trajectory

dx ¼ Udt; ð12Þ

dy ¼ v dt; ð13Þ

dz ¼ wdt: ð14Þ
In modelling data from very small sources in wind tunnel grid turbulence,

Sawford (2004) included a white-noise molecular displacement term in these
equations, but that is not necessary here because molecular diffusion is
negligible for the laboratory data used in this paper.
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The Lagrangian Equation (3) yields the following expression for the lateral
plume variance under homogeneous conditions

r2y ¼ 2r2v ½tTLv � T2
Lvð1� expð�t=TLvÞÞ�: ð15Þ

2.2. MICROMIXING MODEL

The formulation in Section 2.1 describes how to construct particle trajecto-
ries in the CBL. To represent the change in the concentration of a fluid
particle due to micromixing with its surroundings as it moves along its tra-
jectory, we use the IECM model (Fox, 1996; Pope, 1998, 2000; Sawford,
2004). Fox’s (1996) micromixing model is a linear combination of the IEM
and IECM models, which in the limit of high-Reynolds number reduces to
the IECM model. Pope (1998) observes that the IECM model is in accord
with the independence-of-molecular-diffusivity hypothesis, and that, com-
pared to the IEM model, it has the virtue of being local in velocity space and
does not induce a spurious source term in the modelled scalar flux equation.
According to the IECM model, on a mixing time scale tm, the instantaneous
concentration in the particle relaxes back to the local mean concentration
conditioned on the velocity, hc; uðx; tÞi,

dc

dt
¼ � 1

tm
½c� hc; ui�: ð16Þ

Since the horizontal and vertical velocity fluctuations are decoupled, we can
also decouple the horizontal and vertical terms in the expression of the
conditional mean concentration (as shown later in Section 2.4).

In a traditional Lagrangian mean-field calculation (e.g., Luhar and Britter,
1989), marked fluid particles, which conserve their concentration, are released
at the source and counted in a grid of receptor locations. Usually, each
particle carries the same amount of material, and the number of particles
released at any point is proportional to the source concentration at that
point. One of the requirements of a micromixing model is that it should give
the same one-particle statistics (e.g., the mean concentration and the mean
flux) as this traditional marked particle calculation in which particles are
released only at the source. As mentioned earlier, the IECM model satisfies
this requirement.

In the present case, where particles undergo mixing with the given local
conditional mean concentration, particles must be released uniformly across
the flow domain to sample the full flow. Particles released from within the
source initially carry a nonzero concentration, whereas those released outside
the source carry zero initial concentration, but as a result of mixing all
particles eventually carry a nonzero concentration. The number of particles
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released must be such as to ensure that the number of particles initially with
nonzero concentration, i.e., the particles from the source, is large enough to
give reliable statistics near the source. As mixing progresses with time and
more particles carry a non-zero concentration, the statistics improve. Since
the source size is typically much smaller than the flow domain (of order 5m
for a stack in the CBL compared with a boundary-layer height of order
1000m), we must release many more particles in these mixing calculations
than in the traditional mean field calculation using marked particle trajec-
tories.

In engineering applications, where the disparity between the source size
and the flow domain is not so great as in the atmosphere, it is usual to carry
out the trajectory calculations in parallel and so calculate the required con-
ditional mean concentration over all trajectories at each time step and then to
calculate the mixing according to Equation (16). On the other hand, for
homogeneous grid turbulence, Sawford (2004) was able to calculate the
conditional mean concentration analytically as a solution to the traditional
marked particle problem, thus avoiding the need to carry out the trajectory
calculations in parallel. Here we pre-calculate the required conditional mean
concentration numerically using the traditional marked particle calculation
in which particles are released only at the source. This is more efficient (re-
quires fewer particles) than a cumbersome calculation within the trajectory
model with mixing for the inhomogeneous CBL turbulence, and avoids the
need for parallel trajectory calculations.

For a time step much smaller than the Lagrangian time scale, the solution
to Equation (16) is (Sawford, 2004):

cðtÞ ¼ cðt� DtÞ expð�Dt=tmÞ þ hc; ui½1� expð�Dt=tmÞ�: ð17Þ

We use Equation (17) for computing instantaneous concentration.

2.3. THE TIME SCALE tm

The mixing time scale, tm, is an important parameter for fluctuation calcu-
lations in the micromixing model and needs to be specified. Sawford (2004)
notes that tm is associated with the time scale of turbulent eddies that control
the growth of the instantaneous (or relative) plume and that are of similar
size as the instantaneous plume. Hence,

tm � r2r=u
2
r

h i1=2
; ð18Þ

where rr is the size (i.e., standard deviation) of the instantaneous plume and
u2r is the variance of the Lagrangian relative velocity fluctuations due to
eddies of size comparable to the instantaneous plume. There are three
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regimes of the growth of the instantaneous plume in homogeneous isotropic
turbulence that are defined in terms of the travel time: the first regime for
t � ts is dominated by the source characteristics (where ts ¼ r2=30 =e1=3), and
r2r is proportional to t2 while u2r is constant with time; in the second regime
for ts � t � TL in the inertial subrange (where TL is the Lagrangian integral
time scale), the instantaneous plume grows according to the classical Rich-
ardson law, and r2r and u2r are proportional to t3 and t, respectively; in the
final regime for t � TL, the relative dispersion approaches total (or one-
particle) dispersion, and r2r is proportional to t while u2r is constant with time.
Therefore, using Equation (18) in conjunction with the plume characteristics
in the three regimes, it is clear that tm � t for t � TL and tm � t1=2 for
t � TL. As t ! 0, tm � ½r20=u2r �

1=2 � r2=30 =e1=3. In Sawford’s model for line
sources in grid turbulence, a linear form

tm ¼ r2=30

e1=3
þ b0t ð19Þ

with the coefficient b0 ¼ 1:2 worked well. Such a model for tm may prove a
useful basis for empirical applications.

It is found that for a line source in the CBL, a value of b0 ¼ 0:9 describes
water-tank data on scalar variance well (discussed later in Section 4.1.2). This
value is lower than that for grid turbulence, indicating that the mixing in the
CBL turbulence is more vigorous. For a point source in the CBL, a value of
b0 ¼ 0:6 fits scalar variance data well (discussed later in Section 4.2.1). This
value is lower than that for the line-source case, indicating that the mixing of
a point-source plume is quicker or more efficient. This is plausible since only
the vertical component of the turbulent kinetic energy causes mixing in the
line-source case whereas in the point-source case the influence of both vertical
and lateral components causes enhanced mixing. (We explored the use of a
non-linear form for the time scale that satisfies tm � t1=2 for t � TL, but, for
the domain of the plume travel time (or downwind distance) considered here,
the results obtained were not significantly different from those with the
simple linear form (19).)

Some support for the different values of b0 for the two source types
mentioned above comes from the theoretical results obtained by Thomson
(1997) in the inertial subrange for isotropic turbulence using an approximate
Eulerian analysis. It can be deduced from his analysis, which corresponds to
the IEM model, that the mixing time scale is a linear function of time and
that the value of the proportionality constant b0 does indeed depend on the
source type. (The linear time dependence of the mixing time scale is also
indicated by the Eulerian analysis of Csanady, 1967.) According to Thom-
son’s analysis, the value of the constant is 4/3 for an instantaneous area
source (or a continuous crosswind line source) and 4/6 for an instanta-
neous line source (or a continuous point source). Although these values are
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consistent with the respective values of 0.9 and 0.6 used in our semi-empirical
parameterisation of the mixing time scale, the latter are somewhat lower.
This may partly be due to the fact that Thomson’s analysis corresponds to
the IEMmodel with tm representing fluctuations due to both meander and in-
plume perturbations, whereas in our IECM model tm represents only the in-
plume perturbations, which implies a smaller value of tm than that in the
IEM model.

In the limit tm ¼ 0, the mixing is instantaneous, that is the concentration
of a particle at a location instantaneously becomes equal to the conditional
concentration at that point. In this case, the fluctuations are generated solely
by the variation of the conditional concentration in velocity space, and in the
limit of Gaussian homogeneous turbulence, as shown by Sawford (2004), the
expression for the concentration moments is the same as that obtained by the
meandering plume approach (Gifford, 1959; Sawford and Stapountzis, 1986)
in which concentration fluctuations are generated solely by meandering of the
plume.

2.4. CONDITIONAL MEAN CONCENTRATION

The conditional concentration required as an input in the micromixing model
is a one-particle statistic and is, therefore, independent of mixing. It is cal-
culated by releasing marked particles for a given source distribution, and
calculating their trajectories using the stochastic model described above.

For a continuous line source extended along the crosswind direction and
having a finite dimension or distribution in the vertical direction, we have the
one-dimensional case of vertical dispersion (neglecting streamwise diffusion).
It is shown in Appendix B that in this case the concentration conditional on
the vertical velocity is given by

hc;wi ¼ Ql

UPEðw; zÞ

Z zi

0

Pðz;w; t; z0; 0ÞSðz0Þ dz0; ð20Þ

where Ql is the strength of the continuous line source, Sðz0Þ is the source
distribution function (such that

R zi
0 Sðz0Þ dz0 ¼ 1), Pðz;w; t; z0; 0Þ is the for-

ward joint pdf of particle position and velocity at time t given the initial
condition z ¼ z0 at t ¼ 0, and the Eulerian vertical velocity pdf PEðw; zÞ is
specified at height z. We use the one-particle Lagrangian stochastic model
Equations (4) and (14) to determine the conditional concentration hc;wi.

For a point source (with a finite dimension or distribution in the vertical
and crosswind directions), one needs to consider dispersion in both vertical
and lateral directions. Given the assumed independence of the vertical and
lateral components of dispersion, the conditional concentration in this case
can be written as:
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hc; v;wi ¼ Qp

UPEðw; zÞPEðvÞ

Z zi

0

Pðz;w; t; z0; 0ÞSðz0Þ dz0

	
Z 1

�1
Pðy; v; t; y0; 0ÞSðy0Þ dy0; ð21Þ

where Qp is the strength of the continuous point source, and the Eulerian
lateral velocity pdf PEðvÞ is independent of height.

We can use the model Equations (3), (4), (13) and (14) to determine the
two-dimensional conditional concentration hc; v;wi. However, the assump-
tion that the turbulence in the lateral direction is Gaussian and homogeneous
results in the following analytical solution for the lateral term (Sawford, in
press):

Pðy; v; t; y0; 0Þ
PEðvÞ

¼ 1ffiffiffiffiffiffi
2p

p
ryð1� q2vyÞ

1=2
exp �

ðy� y0 � qvyvry=rvÞ2

2r2yð1� q2vyÞ

" #
; ð22Þ

where the correlation qvyðtÞ between the particle velocity and the displace-
ment (y) from the source location is

qvyðtÞ ¼
vy

rvry
¼ 1

rvry

1

2

dr2y
dt

 !
¼ rv

ry
TLvð1� expð�t=TLvÞÞ: ð23Þ

For large times (t � TLv), Equation (23) suggests that vy ¼ KyðtÞ, where
KyðtÞ is the lateral diffusivity. The use of the analytical solution (22) instead
of Equations (3) and (13) reduces the computational time by a large degree
for calculating the conditional concentration.

Assuming that the source distribution is top-hat with a width of r0,
integration of (22) over the source distribution gives

1

PEðvÞ

Z 1

�1
Pðy;v; t;y0;0ÞSðy0Þ dy0 ¼ 1

r0PEðvÞ

Z r0=2

�r0=2
Pðy;v; t;y0;0Þ dy0 ¼ Fy

2r0
;

ð24Þ
where

Fy ¼ erf
r0=2þ y� qvyvry=rvffiffiffi

2
p

ryð1� q2vyÞ
1=2

 !
þ erf

r0=2� yþ qvyvry=rvffiffiffi
2

p
ryð1� q2vyÞ

1=2

 !" #
:

ð25Þ
Hence the conditional concentration due to a point source is

hc; v;wi ¼ Qp

UPEðw; zÞ
Fy

2r0

Z zi

0

Pðz;w; t; z0; 0ÞSðz0Þ dz0: ð26Þ
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3. Numerical Calculations

3.1. CONDITIONAL CONCENTRATION

To calculate hc;wi for a line source, we released N (¼3	 107) marked par-
ticles uniformly between the source extent zs � r0=2 and zs þ r0=2, with their
initial vertical velocities randomly sampled from the skewed Eulerian dis-
tribution at the source height zs. The skewed velocity distribution was for-
mulated as a sum of two Gaussian distributions. We selected r0 ¼ 0:01zi
based on the water tank results that are used in Section 4. The particle
trajectories were computed using simple finite-difference forms of the one-
particle model Equations (4), (12) and (14) with the (variable) time step being
Dt ¼ 0:02TLwðzÞ. Perfect reflection of particle vertical velocity and position
was used at the top and the bottom of the CBL. The velocity and height of
particles were sampled in bins of size Dw ¼ 0:1w� and Dz ¼ 0:02zi. The do-
main of w was taken to be �5w� to 5w�. The mean and conditional mean
concentration fields were extracted at a series of downwind distances with a
spacing of 0:05ziU=w� using the following method.

If there are nij particles in the ith vertical velocity bin and jth height bin,
then the integration of the joint pdf of vertical velocity and height over the
source distribution is approximated numerically byZ zi

0

Pðz;w; t; z0; 0ÞSðz0Þ dz0 ¼ nij
NDwDz

: ð27Þ

Hence the conditional concentration due to a line source is

hc;wi ¼ Ql

UPEðw; zÞ

Z zi

0

Pðz;w; t; z0; 0ÞSðz0Þ dz0 ¼ Ql

U

nij
PEðw; zÞNDwDz

;

ð28Þ
and the unconditional concentration is:

hci ¼ Ql

UNDz

X
i

nij ¼
Qlnj

UNDz
; ð29Þ

where nj is the number of particles in the jth height bin.

Similarly, for a point source, the conditional concentration is

hc; v;wi ¼ Qp

U

nij
PEðw; zÞNDwDz

Fy

2r0
; ð30Þ

and the unconditional concentration is

hci ¼ Qp

UNDz
Fy

2r0

X
i

nij ¼
Qpnj
UNDz

Fy

2r0
; ð31Þ
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where Fy is given by Equation (25). For this source, we selected Dz ¼ 0:05zi,
and the concentration field was extracted at a series of downwind distances
with a spacing of 0:1ziU=w�.

The Eulerian vertical velocity pdf PEðw; zÞ in Equations (28) and (30) was
calculated for the various height bins as the sum of two Gaussian pdfs using
the turbulence parameters (9) and (10) and the closure relationships (6)–(8)
(see Luhar et al., 1996).

3.2. MICROMIXING CALCULATION OF CONCENTRATION FLUCTUATIONS

In the calculation of the conditional tracer concentration, the one-particle
Lagrangian model Equations (4) and (14) were used for the vertical
component while an analytical solution was used in the lateral direction. This
pre-calculated conditional concentration field was used as an input in the
calculation of the instantaneous concentration via the mixing model equation
(17) coupled with the Lagrangian stochastic model.

In the one-dimensional (i.e., line source) case, N (¼2	 106) particles were
released uniformly through the full vertical domain of the flow (i.e. between 0
and zi) with their initial velocities randomly sampled from the skewed
Eulerian distribution at their release heights. Particles that were released
within the source extent zs � r0=2 and zs þ r0=2 were assigned an initial
concentration of Ql=ðUr0Þ (assuming a top-hat source distribution) while the
rest were assigned zero initial concentration. Perfect reflection of particle
vertical velocity and position was used at the top and the bottom of the CBL.
The evolution of particle trajectories was determined using Equations (4) and
(14) with the time step being Dt ¼ 0:02TLwðzÞ. The evolution of concentration
carried by each particle was calculated using (17) with hc; ui ¼ hc;wi given by
Equation (28). In Equation (17), the local conditional concentration hc;wi
given for the bin enclosing the particle position and velocity was used. The
same bin sizes as in Section 3.1 were used for sampling. The instantaneous
concentration field thus obtained was used to derive the concentration mo-
ments:

hcðz; tÞi ¼ 1

nz

Xnz
j¼1

cjðz; tÞ; ð32Þ

hc02ðz; tÞi ¼ r2c ¼
1

nz

Xnz
j¼1

c2j ðz; tÞ � hcðz; tÞi2; ð33Þ

hc03ðz; tÞi ¼ 1

nz

Xnz
j¼1

c3j ðz; tÞ þ 2hcðz; tÞi3 � 3hcðz; tÞi 1
nz

Xnz
j¼1

c2j ðz; tÞ; ð34Þ
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hc04ðz; tÞi ¼ 1

nz

Xnz
j¼1

c4j ðz; tÞ � 3hcðz; tÞi4 þ 6hcðz; tÞi2 1

nz

Xnz
j¼1

c2j ðz; tÞ

� 4hcðz; tÞi 1
nz

Xnz
j¼1

c3j ðz; tÞ; ð35Þ

where nz is the total number of particles in the height bin Dz ð
NDz=ziÞ and
c0 ¼ c� hci. The fluctuation intensity, skewness and kurtosis of concentra-
tion are determined as: ic ¼ rc=hci, Sc ¼ hc03i=r3c and Kc ¼ hc04i=r4c, respec-
tively.

In the two-dimensional (i.e. point source) case, N (¼5	 107) particles were
released uniformly and randomly through the full vertical and lateral domain
of the flow (i.e. 0 � z � zi and�ymax � y � ymax). The initial vertical velocities
of the particles were randomly sampled from the Eulerian skewed distribution
calculated at their release heights. On the other hand, the initial lateral
velocities of the particles were randomly sampled from a Gaussian distribu-
tion with the variance given by Equation (5). To ensure that the plume was
fully within the lateral domain, we selected ymax ¼ 3rymax, where rymax is the
lateral diffusion parameter calculated using Equation (15) for the maximum
plume travel time simulated (¼5zi=w�). Particles that were released within the
source extent zs � r0=2, zs þ r0=2, ys � r0=2 and ys þ r0=2 were assigned an
initial concentration of Qp=ðUr20Þ while the rest were assigned zero initial
concentration. Perfect reflection of particle vertical velocity and height was
used at the top and the bottom of the CBL. In the lateral direction, periodic
boundary conditions, i.e., y ¼ �2ymax þ y when y > ymax and y ¼ 2ymax þ y
when y < �ymax with no change in the lateral particle velocity, were used. The
evolution of particle trajectories was determined using Equations (3), (4), (13)
and (14) with the time step being Dt ¼ 0:02 min½TLwðzÞ;TLv�. The evolution of
concentration carried by each particle was determined using Equation (17)
with hc; ui ¼ hc; v;wi given by Equation (30). The same bin sizes for the point
source as in Section 3.1 were used for sampling. The instantaneous concen-
tration was used to derive the concentration moments using the same ap-
proach as in Equations (32)–(35), but with the concentration now a function of
y also. For example the mean is given as:

hcðy; z; tÞi ¼ 1

nyz

Xnyz
j¼1

cjðy; z; tÞ; ð36Þ

where nyz½
N DzDy=ð2zi ymaxÞ� is the total number of particles in the box
Dy	 Dz, where the bin size Dy ¼ 0:1zi.

As mentioned earlier, in the limit tm ¼ 0, the mixing is instantaneous, that
is the instantaneous concentration cðtÞ of a particle at a given location be-
comes equal to the conditional concentration at that location.
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4. Model Results

4.1. LINE SOURCE

In this section, we present the concentration statistics computed using the
one-dimensional micromixing model for a line source and compare the re-
sults with data from laboratory water-tank experiments. We normalise all
dependent and independent variables using mixed-layer similarity, with the
convective velocity scale w� and the CBL depth zi as the scaling parameters.
Thus, the nondimensional concentration due to a crosswind line source is
C ¼ cUzi=Ql, where c is the dimensional concentration. This concentration is
equivalent to the scaled crosswind-integrated concentration due to a point
source Cyð¼ cyUzi=QpÞ, where cy ¼

R1
�1 c dy is the dimensional crosswind-

integrated concentration.
The plume travel time (t) since its release can be transformed into equiv-

alent dimensionless distance (X) or dimensionless time (T) for the CBL
through

X ¼ T ¼ w�
zi

t ¼ w�
zi

x

U
: ð37Þ

4:1:1: Model Consistency Test

A properly formulated IECM model should fulfil the requirement that the
micromixing governed by Equation (16) does not affect the mean concen-
tration field. To check that this is indeed the case, we consider a line source
release at the dimensionless height zs=zi ¼ 0:25, and compare the mean
concentration hcðz; tÞi computed using Equation (32) via the micromixing
model with that by Equation (29) involving the marked-particle method; they
should be the same. Figure 1a and b shows contours of the dimensionless
mean concentration hCið¼ hciUzi=QlÞ obtained using the two respective
models. It can be seen that both contour plots are virtually the same, indi-
cating a consistent micromixing model formulation. Any differences between
them arise due to numerical errors and differences in the number of particles
released.

Figure 1c and d presents the dimensionless mean crosswind-integrated
concentration ðhCyiÞ contours obtained by Willis and Deardorff (1978) (for
zs=zi ¼ 0:24) and Hibberd (2000) (for zs=zi ¼ 0:25) using a heated convection
tank and a saline convection tank, respectively. In both these experiments,
results from an instantaneous line source were transformed into those from a
continuous point using Taylor’s translation hypothesis. The model results in
Figures 1a and b agree with the observed dispersion patterns, showing that
the concentration maximum descends to the ground and then lifts off;
however, the latter feature is not as pronounced in the model results as in the
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tank results. Subsequently, for about X > 3, the plume becomes almost well
mixed through the depth of the boundary layer. The two laboratory datasets
compare well, and the main difference between them is that the maximum
ground-level concentration in Figure 1d is about 20% lower than in Figure
1c, and is closer to the model value. The results showing plume descent close
to the source and the subsequent lift-off, now well known, are caused by the
large-scale inhomogeneous and skewed convective turbulence within the
CBL, and cannot be satisfactorily described by standard diffusion mod-
els (e.g., the first-order gradient transfer model or the Gaussian plume
model).

4:1:2: Concentration Fluctuation Intensity

Our micromixing model is designed for concentration fluctuation calcula-
tions, and one measure of fluctuations is the concentration fluctuation
intensity. Hibberd (2000) conducted a series of laboratory experiments with
passive releases at four different heights, namely zs=zi ¼ 0:08, 0.25, 0.42 and
0.80, and determined the variation of the fluctuation intensity (ic ¼ rc=hcyi)
of the crosswind-integrated concentration, which, as mentioned earlier, is
equivalent to the fluctuation intensity due to a crosswind line source.

The diamonds in Figures 2a–d represent the variation of the near-surface
ðz=zi ¼ 0:05Þic with X measured in the laboratory experiments for the four

Figure 1. Contours of the dimensionless concentration due to a crosswind line source situated
at the dimensional height zs=zi ¼ 0:25 predicted by (a) the micromixing model, and (b) the

marked-particle model. The equivalent contours of the dimensionless crosswind-integrated
concentration due to a point-source measured by (c) Willis and Deardorff (1978), and (d)
Hibberd (2000) in their water-tank experiments.
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source heights. Except for the one or two points closest to the source in
Figures 2a–c, the observed ic decays with distance as the plume grows. The
experimental data points closest to the source showing a decreasing ic with
decreasing X are probably not representative of the actual behaviour because
the sample size for these points may not be large enough due to the fact that
the plume rarely reaches the ground so close to the source location. As the
source height increases, the fluctuation intensity close to the source becomes
larger because the ground increasingly experiences more of the plume edges
rather than the inner plume.

The solid lines in Figures 2a–d are the micromixing model results obtained
using tm given by Equation (19) (with b0 ¼ 0:9) whereas the dashed lines are
the model curves for tm ¼ 0. The difference between the two types of model
curves is that in the former the concentration fluctuations are generated by
the meandering of the plume as well as by in-plume fluctuations, whereas in
the latter they are generated solely by the meandering. With increasing dis-
tance downstream the plume undergoes progressively less meandering and in-
plume fluctuations contribute increasingly to the total fluctuation intensity.
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Figure 2. Variation of the near-surface (z=zi ¼ 0:05) concentration fluctuation intensity (ic)
with dimensionless distance (X) for the one-dimensional vertical dispersion case. The dia-
monds are the water-tank data of Hibberd (2000) for the tracer release heights (zs=zi) of (a)
0.08, (b) 0.25, (c) 0.42, and (d) 0.80, whereas the solid lines are the corresponding micromixing
model results. The dashed lines are the micromixing model results in the limit tm ¼ 0.
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The solid curves agree very well with the data, which is not too surprising
because the value of b0 has been selected to fit the data. However, what is
interesting is that the simple linear form for tm, with a single b0 value, de-
scribes the data well for all source heights. On the other hand, this obser-
vation may not be true in general. For example, in cases where there is
significant mean wind shear (ignored here in the case of CBL) the mixing time
scale may have spatial dependence as well. The dashed lines indicate that
there are almost no fluctuations due to meandering for X > 1:5.

Figures 3a–d present contour plots of the concentration fluctuation
intensity measured in the laboratory experiments for the four source heights,
whereas Figures 3e–h are the corresponding model plots. It can be seen that,
at a given downwind distance close to the source, the observed ic becomes
larger towards the plume edges and approaches a minimum at the plume
centreline. The distribution of ic is almost uniform across the bulk of the
boundary layer for about X > 2:5. Although the model contours are similar
to the observed ones, a couple of differences are prominent. First, at heights
close to the top of the boundary layer (z=zi 
 1), the vertical gradients of the
observed and modelled ic are opposite for about 0:7 < X < 2:5 for the lowest
three sources heights. This is most probably due to the fact that in the model
both the top and the bottom of the boundary layer are treated as ‘hard’
boundaries with perfect particle reflection there, whereas in the laboratory
tank the top is a ‘soft’ boundary with enhanced plume fluctuations due to
undulations in the boundary-layer top. The porous boundary-condition
scheme suggested by Thomson et al. (1997) may be more appropriate than
that used here. Second, for the source height zs=zi ¼ 0:8 in the tank experi-
ments, there is a well-defined local minimum at the top of the CBL and a
local maximum just below it for X 
 0:7 (Figure 3d). Also, there is a weak
local maximum represented by a slanted contour of value 2 below the release
height. These features are not simulated by the model because in the tank
some tracer was trapped in the weakly dispersive entrainment zone with less
fluctuations while those parts of the plume that were not trapped follow the
behaviour represented by the model. The model does not explicitly account
for the entrainment zone.

4:1:3: Higher-Order Moments

Figures 4a and b present contours of the skewness (Sc) and kurtosis (Kc),
respectively, of the concentration distribution computed from the model.
There are no data to compare these plots with. It can be seen that the
skewness is always positive, and the kurtosis value is always greater than the
Gaussian value of 3. This implies that the pdf of concentration at a particular
point has a tail towards the higher values of concentration, and is more
peaked than the Gaussian distribution. In the region close to the source
where the influence of the boundaries on the plume is minimal (about X < 1),
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both the skewness and kurtosis values are greater in the plume edges than in
the inner parts of the plume, suggesting that the concentration pdf at the
plume edges has a longer tail and is more peaked (i.e., fluctuations are more
intermittent). In the region where the plume is nearly well mixed in the
vertical (about X > 3), Sc 
 3 and Kc 
 18. The Sc and Kc values in Figure 4
are high, and arise because the pdfs (not shown here) have ‘fat’ tails that
almost follow a power-law relationship. However, we do not have any data
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Figure 3. Contours of the concentration fluctuation intensity for the one-dimensional vertical
dispersion case for tracer release heights (zs=zi) of (a) 0.08, (b) 0.25, (c) 0.42, and (d) 0.80,
obtained by Hibberd (2000) in water-tank experiments. The contour plots e–h are the cor-
responding micromixing model results.
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with which to compare these higher-order model moments. We might have
expected mixing to produce statistics closer to Gaussian and at this stage it is
not clear whether these strong non-Gaussian effects are real or an artefact of
the IECM mixing model.

4.2. POINT SOURCE

In this section, we present results from the two-dimensional mixing model for
a point source.

4:2:1: Concentration Fluctuation Intensity

We compare the concentration fluctuation intensity computed using the
model with the data of Deardorff and Willis (1984) and Weil et al. (2002) who
conducted experiments on concentration fluctuations from buoyant and
non-buoyant point sources using water tanks heated from the bottom. We
only considered the data from their non-buoyant source experiments because
our model is applicable only to passive releases. In both experiments, the
effect of advection by the mean wind was simulated by towing the point
source through the tank. In the former, the source height zs ¼ 0:13zi and the
nondimensional initial momentum flux Fm� ¼ 0:001, whereas in the latter
zs ¼ 0:15zi and Fm� ¼ 0:004. There was not much difference between the
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Figure 4. Contours of the (a) skewness and (b) kurtosis for the one-dimensional vertical
dispersion case for the tracer release height (zs=zi) of 0.25 predicted by the micromixing model.
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arrangements of the two experiments, and we simulated them using a single
model run with r0 ¼ 0:01zi. To approximately account for the initial
momentum effect, we assumed (as in Luhar et al., 2000) that the initial
momentum only causes an increase in the near-source mean plume height
without affecting the diffusion around it. Therefore, the virtual source height,
estimated to be zs 
 0:22zi, to represent the momentum effects, was used in
the model calculations instead of the physical source height.

Figure 5 compares the downwind variation of the near-surface
(z=zi ¼ 0:08) ic obtained by the model with the data of Deardorff and Willis
(1984). The measurements denoted by open triangles represent an average
over jyj < 0:5ry and those denoted by open circles represent an average over
0:5ry < jyj < ry. The solid and the dashed lines are the corresponding model
predictions (with b0 ¼ 0:6 in Equation (19)), which show that the selected
form of the mixing time scale leads to good agreement with the data. The
noise in the model curves is largely statistical, and would reduce if an even
higher number of particles was released. The model results suggest that ic is
somewhat lower in the inner region of the plume, an expected behaviour not
clearly discernible in the data. Also plotted as solid squares in Figure 5 are
the centreline (y ¼ 0) fluctuation intensity data of Weil et al. (2002) near the
surface (z=zi ¼ 0:05). The model curve for jyj < 0:5ry is in good agreement
with the Weil et al. data, with a slight overprediction for X � 3. (The model
curve for y ¼ 0, not shown here, is little different from that for jyj < 0:5ry.)
The dashed-dot line in Figure 5 is the model centreline ic in the limit tm ¼ 0,
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Figure 5. Variation of the near-surface concentration fluctuation intensity (ic) with the di-

mensionless distance X for the (two-dimensional) point-source case for zs=zi ¼ 0:22. The
measurements of Deardorff and Willis (1984) averaged over jyj < 0:5ry and 0:5ry < jyj < ry
are represented by triangles and circles, respectively. The lines are the corresponding micro-

mixing model predictions. The water tank data of Weil et al. (2002) taken at the plume
centreline (y ¼ 0) are shown as solid squares. The dashed-dot line is the model centreline ic in
the limit tm ¼ 0, which corresponds to fluctuations due to meander only.
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which corresponds to fluctuation due to plume meander only. It is clear that
plume meandering is negligible for X > 3.

Figure 6 presents model contours of the fluctuation intensity along the
plume centreline. Although the contours are somewhat noisy, the trends are
clear. As in the line source case shown in Figure 3f for a source at similar
height, the fluctuation intensity becomes larger towards the plume edges and
approaches a minimum at the plume centreline. However, ic is roughly twice
a large as that in the case of a line source.

The variation of the near-surface ic along the crosswind (y) direction at
dimensionless distances X ¼ 0:5, 1.5, 2.5 and 3.5 is presented in Figure 7. The
circles are the data of Weil et al. (2002) and the lines are the model results. It is
apparent that overall the model simulates both the width and the magnitude
of the crosswind distribution of the observed ic very well. The fluctuation
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Figure 6. Contours of the concentration fluctuation intensity (ic) along plume centreline

(y ¼ 0) predicted by the micromixing model for the point-source case for zs=zi ¼ 0:22.
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intensity increases in the plume edges and decreases with X. At X ¼ 3:5, the
model intensities are somewhat higher than the data, and at X ¼ 0:5 the width
of the ic variation predicted by the model is slightly narrower than the
observations.

4:2:2: Cumulative Distribution Function

In Figure 8, the shape of the cumulative distribution function (CDF) of the
normalised concentration ðc� hciÞ=rc at y=zi ¼ 0, X ¼ 4 and z=zi ¼ 0:5
predicted by the micromixing model (solid line) closely resembles the labo-
ratory data (open circles) reported by Weil et al. (2002), including the
extreme tail of the concentration distribution. These researchers show that at
this X value, where the mean plume is nearly well mixed in the vertical, the
laboratory CDF does not vary much with height, a result also indicated by
the model predictions (not shown here).

The dashed line in Figure 8 shows the centreline CDF predicted by the
model at X ¼ 0:5 and z=zi ¼ 0:4 whereas the open triangles are data extracted
from a narrow band of observed centreline values corresponding to the same
distance and z=zi ¼ 0:075� 0:5 presented by Weil et al. Although the qual-
itative shape of the observed CDF is captured reasonably well by the model,
there are significant differences. For example, the model does not appear to
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Figure 8. Cumulative distribution function (CDF) of the normalised concentration at the

plume centreline (y ¼ 0) predicted by the micromixing model (for source height zs ¼ 0:22zi) at
X ¼ 4 and z=zi ¼ 0:5 (solid line), and at X ¼ 0:5 and z=zi ¼ 0:4 (dashed line). The open circles
and open triangles are the laboratory data of Weil et al. (2002) at X ¼ 4 and X ¼ 0:5, re-
spectively, at similar heights as the model results (see Section 4.2.2 for more details).
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capture adequately the observed long-tail of the concentration distribution.
At ðc� hciÞ=rc ¼ 3, the model CDF value is about 0.99, whereas the ob-
served CDF value is about 0.96. This results in a factor of 4 difference in the
probability of occurrence of the c ¼ hci þ 3rc value.

Weil et al. (2002) observe that overall the gamma CDF is a reasonable fit
to the measured CDFs, and is a significantly better fit than the clipped-
normal CDF when ic � 1 (i.e., in the near field). For ic 
 0:4 (i.e., in the far
field), the clipped-normal CDF is in better agreement with the data, but the
gamma CDF is a slightly better fit in the tails.

4:2:3: Lateral Plume Dispersion

In our model, we have assumed that the turbulence in the lateral direction is
homogeneous and Gaussian and does not vary with height. Sawford (2004)
shows that for such a turbulent flow, the standard deviation of the plume
meander implied by the IECM micromixing model is

rym ¼ ryqvy; ð38Þ

where the mean plume spread ry due to turbulence is given by Equation (15),
and qvy is given by Equation (23). The relative standard deviation is

ryr ¼ ðr20 þ r2y � r2ymÞ
1=2 ¼ ½r20 þ r2yð1� q2vyÞ�

1=2: ð39Þ

The solid line in Figure 9a represents the variation of the normalised total
plume spread in the lateral direction, ðr20 þ r2yÞ

1=2=zi, where the velocity
variance (5) and the depth-averaged kinetic energy dissipation rate
ð�e ¼ 0:4w3

�=ziÞ were used to calculate ry. The laboratory data of Willis and
Deardorff (1976, 1978, 1981) and the large-eddy simulation (LES) results of
Nieuwstadt (1992) for various source heights are also shown. Since the lateral
turbulence is assumed to be horizontally and vertically homogeneous, the
analytical variation does not depend on the source height; however, it rep-
resents the overall data points well.

The variation of the normalised lateral relative spread ryr=zi calculated
using Equation (39) with qvy given by Equation (23) is shown in Figure 9b as
a solid line, which is supported by the LES results. The dashed line represents
the interpolative parameterisation of ryr=zi developed by Luhar et al. (2000)
(their Equation (22)) based on the relative dispersion theory. It is remarkable
that the present curve based on the simple analytical result obtained within
the micromixing framework agrees so well with the dashed line.

The variation of the normalised meander spread, rym=zi, determined using
Equation (38) is shown as a solid line in Figure 9c, together with the LES
results. The meander spread calculated by Luhar et al. (2000) is also shown as
a dashed line. It is evident that the LES results show a higher peak spread. At
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large times, the solid line levels off whereas the dashed line reaches a (wide)
peak and then gradually decreases. This difference may not, however, be
significant in terms of fluctuations because the total spread is dominated by
relative dispersion at such times.

In the vertical direction, because the turbulence is inhomogeneous and
skewed, and the plume is affected by the boundaries, the vertical meander or

Figure 9. Variation with X of (a) the normalised total lateral spread calculated using Equation
(15) (solid line), (b) the normalised lateral relative spread calculated from using Equation (39)
(solid line), (c) the normalised lateral meander spread calculated using Equation (38) (solid

line). The tank data of Willis and Deardorff (1976, 1978, 1981) are for the scaled source
heights zs=zi ¼ 0:067 (open squares), 0.24 (crosses), and 0.49 (pluses); The LES results of
Nieuwstadt (1992) are for zs=zi ¼ 0:15 (open circles), 0.25 (open triangles), and 0.50 (open

diamonds). The dashed lines are the parameterisations of Luhar et al. (2000).
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relative plume spread cannot be determined explicitly, either analytically or
numerically, using the present IECM model.

5. Conclusions

We have extended the use of the interaction-by-exchange-with-the-condi-
tional-mean (IECM) mixing model to calculate concentration statistics with
good results in the strongly inhomogeneous, skewed turbulence of the CBL.
The model is in good agreement with laboratory convection tank data for the
intensity of concentration fluctuations for both point and line sources. The
point-source cumulative distribution functions predicted by the model also
agree reasonably well with laboratory measurements.

The two critical aspects of the model are the conditional mean concen-
tration and the mixing time scale. Since the horizontal and vertical velocity
fluctuations are independent when neglecting the mean shear, the conditional
mean concentration can be factored into the product of terms conditioned
separately on each velocity component. Furthermore, since the conditional
mean concentration is a one-point statistic, it is independent of micromixing
and so can be pre-calculated from a one-point marked particle model. The
horizontal velocity fluctuations are approximately homogeneous and
Gaussian so we were able to write down an analytical expression for the term
conditional on the lateral velocity. We calculated the term conditional on the
vertical velocity numerically with a marked particle model for the vertical
velocity in the CBL.

We followed Sawford (2004) in basing the mixing time scale on the time
scale of the instantaneous plume and so modelling it as a linear function of
travel time with a constant value determined by the source size for small
times. For a line source, best agreement with the data was obtained with a
value of 0.9 for the coefficient of the linear term, close to the value of 1.2 used
by Sawford for a line source in grid turbulence. For a point source, a lower
value of 0.6 gave the best agreement, reflecting the increased mixing efficiency
in a two-dimensional plume.

Using these representations of the mixing time scale, we also calculated the
skewness and kurtosis of the concentration field and the concentration pdf.
We found that non-Gaussian features persist into the vertical well-mixed
region (X > 3).

As shown by Sawford (2004), in the limit of vanishing mixing time scale
the IECM model reduces to a meandering plume model. Thus we were able
to calculate the contribution of plume meandering to the concentration
fluctuation intensity in the CBL, finding that for a line source meandering is
negligible for the nondimensional downwind distance X > 1:5 whereas for a
point source that is true for about X > 3.

ASHOK K. LUHAR AND BRIAN L. SAWFORD26



For the horizontal motions, we also were able to calculate the meandering
and relative dispersion contributions to the total plume dispersion using the
micromixing framework, showing that all three quantities are in excellent
agreement with Luhar et al.’s (2000) model based on filtering techniques and
in good overall agreement with large-eddy simulation data.

A major advantage of the micromixing approach is that it is more general
than, for example, the meandering plume approach, with only the mixing
time left to be specified. However, it is computationally much more intensive
than the latter, but this problem could be overcome to some extent by using
better sampling methods than the basic bin-counting method used in this
paper. A potential extension of the micromixing approach is in the area of
turbulent dispersion of chemically reactive species in the atmosphere.

In this paper, we have not carried out any quantitative analysis of possible
numerical errors caused by factors such as the finite number of samples (i.e.
particles), discretisation of the model equations, the number of cells used for
the flow domain discretisation, and the quality of random numbers, espe-
cially in the predictions of higher-order moments of concentration (e.g.
skewness and kurtosis). In our computations, the properties of these factors
were selected so as to obtain a reasonable degree of smoothness and con-
vergence of results.
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Appendix A: Expressions for PEðw; zÞ, Q0ðw; zÞ and /ðw; zÞ

The expressions for the quantities PEðw; zÞ, Q0ðw; zÞ and /ðw; zÞ used in the
model are given below (Luhar et al., 1996):

PEðw; zÞ ¼ AðzÞPAðw; zÞ þ BðzÞPBðw; zÞ; ðA1Þ
where

PAðw;zÞ¼
1ffiffiffiffiffiffi
2p

p
rA

exp �ðw� �wAÞ2

2r2A

( )
; PBðw;zÞ¼

1ffiffiffiffiffiffi
2p

p
rB

exp �ðwþ �wBÞ2

2r2B

( )
;

rA ¼ðw2Þ1=2 B

Að1þm2Þ

� �1=2

; rB ¼ðw2Þ1=2 A

Bð1þm2Þ

� �1=2

; B¼ 1�A;

A¼ 1

2
1� r

4þ r

� �1=2
( )

; and r¼ ð1þm2Þ3S2
w

ð3þm2Þ2m2
:
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Q0 ¼
Aðw� �wAÞ

r2A
PA þ Bðwþ �wBÞ

r2B
PB; ðA2Þ

and

/ ¼� 1

2
A
@ �wA

@z
þ �wA

@A

@z

� �
erf

w� �wAffiffiffi
2

p
rA
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@rA
@z

w2
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þ Aw
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@ �wA

@z
� �wA

@rA
@z

� �
þ rA

@A

@z

� �
PA

þ 1

2
B
@ �wB

@z
þ �wB

@B

@z

� �
erf

wþ �wBffiffiffi
2

p
rB

� �

þ rB B
@rB
@z

w2

r2B
þ 1

� �
� Bw

r2B
rB

@ �wB

@z
� �wB

@rB
@z

� �
þ rB

@B

@z

� �
PB:

ðA3Þ

Appendix B: Derivation of Concentration Conditional on Velocity

We consider the example of one-dimensional dispersion in the vertical di-
rection. In order to calculate the conditional mean concentration due to an
instantaneous area source distribution QlSðz0Þ=U, we consider the
backward trajectories starting at the receptor location z at time t with ve-
locity w. Then

hc;wi ¼ Ql

U

Z 1

�1
Pðz0; 0; z;w; tÞSðz0Þ dz0: ðB1Þ

Neglecting streamwise diffusion, the above is equivalent to the conditional
mean concentration due a continuous line source of strength Ql.

Now, by Bayes theorem

Pðz0; 0; z;w; tÞ ¼ Pðz0; 0;w; t; z; tÞ=Pðw; t; z; tÞ;
¼ Pðz0; 0;w; t; z; tÞ=PEðw; zÞ;
¼ Pðw; t; z; t; z0; 0Þ � Pðz0; 0; z; tÞ=PEðw; zÞ;
¼ Pðw; t; z; t; z0; 0Þ � Pðz; t; z0; 0Þ=PEðw; zÞ;
¼ Pðz;w; t; z0; 0Þ=PEðw; zÞ;

ðB2Þ

where PEðw; zÞ is the Eulerian vertical velocity pdf at height z, Pðz;w; t; z0; 0Þ
is the forward joint pdf of particle position and velocity at time t given
the initial condition z ¼ z0 at t ¼ 0, and we have used the
equivalence between backwards and forwards displacement probabilities,
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Pðz; t; z0; 0Þ ¼ Pðz0; 0; z; tÞ. Hence, Equation (20) follows from Equations (B1)
and (B2).

We emphasise that in inhomogeneous turbulence Pðz0; 0; z;w; tÞ 6¼
Pðz; t; z0; 0;w; tÞ, although these pdfs are equal in homogeneous Gaussian
turbulence (e.g., in the lateral direction) for which Pðw; t; z0; 0Þ ¼
Pðw; t; z; tÞ ¼ PEðwÞ.
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