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Abstract
Metabolomics is one of the newer omics fields, and has enabled researchers to complement genomic and protein level analysis of
disease with both semi-quantitative and quantitative metabolite levels, which are the chemical mediators that constitute a given
phenotype. Over more than a decade, methodologies have advanced for both targeted (quantification of specific analytes) as well
as untargeted metabolomics (biomarker discovery and global metabolite profiling). Untargeted metabolomics is especially useful
when there is no a priori metabolic hypothesis. Liquid chromatography coupled to mass spectrometry (LC-MS) has been the
preferred choice for untargeted metabolomics, given the versatility in metabolite coverage and sensitivity of these instruments.
Resolving and profiling many hundreds to thousands of metabolites with varying chemical properties in a biological sample
presents unique challenges, or pitfalls. In this review, we address the various obstacles and corrective measures available in four
major aspects associated with an untargeted metabolomics experiment: (1) experimental design, (2) pre-analytical (sample
collection and preparation), (3) analytical (chromatography and detection), and (4) post-analytical (data processing).

Introduction

In the ideal, a metabolomic study provides a picture of every
metabolite in the organism and provides insight into metabolic
response to a biological situation or experimental manipula-
tion. The assumptions are that every metabolite will be mea-
sured, and that the measurements will be biologically infor-
mative. In reality, there are problems with these assumptions
and experimental design and methodology are required to
overcome them (partially, at least). The bases of the potential
problems and approaches to address these issues are discussed
below, first in the most general sense which applies to all
experimental systems (issues inherent in drawing inference
from metabolic pool measurements), and then in specific as-
pects of mass spectrometric (MS)measurements (pre-analytic,
analytic and post-analytic processes).

At the present time, metabolomics experiments are per-
formed with either mass spectrometry (Want et al 2007;
Dunn et al 2011; Reaves and Rabinowitz 2011) or nuclear

magnetic resonance (Fan and Lane 2016; Dietz et al 2017).
Nuclear magnetic resonance (NMR) has the potential to mea-
sure metabolite levels in intact tissues, but sensitivity is limit-
ed (Tognarelli et al 2015; Fan and Lane 2016), and even with
increased field strength (Righi et al 2012; Dietz et al 2017), it
is not possible to detect low abundance compounds with cur-
rently available technology. This manuscript only discusses
liquid chromatography (LC) based mass spectrometry (MS)
approaches to untargeted metabolomics, with emphasis on
inborn errors of metabolism (IEM).

Targeted versus untargeted metabolomics

There is some confusion and ambiguity in the application of
the terms Btargeted^ and Buntargeted^ in metabolomics. In
targeted studies, specific compounds are quantified and com-
pared to established reference ranges. In practice, this corre-
sponds to setting the mass spectrometer to monitor selected
transitions reflecting individual target analytes (and their in-
ternal standards) through the time course of the chromatogra-
phy. This is not different from what Biochemical Genetics
laboratories have traditionally done in performing amino acid,
organic acid, acylcarnitine analysis, etc. Using modern day
instrumentation and stable isotope dilution, target analytes
can be fully quantified to clinical laboratory standards, using
formal calibration, validation, and quality control (FDA
2001), though in cases where absolute quantification is not
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necessary, a semi-quantitative approach may be useful, and is
often used instead. On the other hand, untargeted metabolo-
mics (Want et al 2005) seeks to analyze all detectable metab-
olites, known and unknown, to determine if one or more is or
are significantly perturbed, and then to perform identification.
Untargeted metabolomics is a Bdiscovery mode^ process and
it relies on differential comparison between groups (Dudzik
et al 2017) of samples (for example cases versus controls); it is
not applicable to individual samples. In its strictest form,
untargeted metabolomics is agnostic, comparing peaks as
chromatographic Bfeatures^, and then seeking to identify the
compounds. The settings of the mass spectrometer would re-
flect that (i.e., acquisition would be in scan mode), but identi-
fication is made on review and extraction of the data collected
during the chromatography. Naturally, with experience, a lab-
oratory will accrue a library of identities of chromatographic
features and spectra, so that many peaks can be immediately
identified. Untargeted metabolomics however is truly
intended for discovery, and is not limited to a pre-
determined list of metabolites or class of compounds, with
the aim to span the breadth of the metabolome.

Challenges/pitfalls
and solutions/workarounds

Discussion of issues, pitfalls, and workarounds is organized
into the phases of a metabolomics experiment: experimental
planning/conceptualization, pre-analytical, analytical, and
post-analytical.

Experimental planning/conceptualization

There are realities which raise challenges to the basic assump-
tions of metabolomics; in some cases, there is nothing that the
experimentalist can do to overcome the challenges, but in
others there are solutions or at least methods to minimize the
problem. LC-MS methodology involves extraction of body
fluids or tissues. The source of the material will determine
which analytes are present, so in any given sample there
may be groups of compounds which will never be seen at
more than trace amounts. For example, certain sugar phos-
phates and nucleotides will not be expected in extracellular
fluids, and hydrophobic compounds such as fatty acids may
be seen in blood, but not in urine or CSF. The metabolomic
picture will differ greatly depending upon the fluid studied
and so it is imperative to choose the most relevant sample type
that will demonstrate the metabolic perturbation.

It is possible that the key event and most informative bio-
logical event in metabolism will take place as a trigger or
nucleation event and will not be evident at any time later.
That may be the case in transient niacin deficiency which
could cause defects in embryogenesis (Shi et al 2017) but

might not be evident in the mother at a later time. It also
may be true that through cascade effects or biochemical am-
plification, a widespread change may result from a small per-
turbation in a key regulator, creating a sort of Bbutterfly
effect,^ as for example with microRNA species (Dorn 2013)
or the trace concentration of cAMP initiating the cascade of
glycogenolysis (Fischer 2013). That regulator may either be
inaccessible in the study, or present at such a low concentra-
tion that it would never be measured when the experiment is
performed. Instrumental dynamic range or interference from
much more abundant analytes may make it impossible to
monitor changes on both the regulatory and the bulk sub-
strates. Performing longitudinal studies when possible can
help detect transient changes which might not be observed
in a static timepoint. In other scenarios, the levels of observed
intermediates may not reveal a regulatory change, particularly
when metabolite pools are defended by side reactions (such as
anaplerosis), but measurement of flux could be mechanistical-
ly informative. In the last decade, initially pioneered through
microbial metabolism studies (Blank et al 2005; Kummel et al
2006), researchers have used 13C (and/or 15N) labeled nutri-
ents to follow the utilization of substrates such as glucose or
amino acids, not only in cell culture, but in live mammals as
well (Fan et al 2009). A bolus of stable iostopically labeled
material can reveal altered ratios of labeled to unlabeled inter-
mediates and isotopologues (containing both labeled an unla-
beled atoms), and MS/MS fragmentation patterns can reveal
changes in isotopomers (varying in the location of labeled
atoms). This can provide insight into changes in metabolic
flux in disease and allow construction of metabolic network
models, revealing linkage among pathways otherwise not ob-
viously related.

Sample size

A bad outcome for a metabolomics experiment would be find-
ing no meaningful associations, and worse would be reaching
spurious conclusions. Since untargeted metabolomics de-
pends inherently on statistical comparison between or among
experimental groups (controls vs. cases, treatment A vs. treat-
ment B, etc.), meaningful results require an adequate number
of samples in each group. In general, the objective is to predict
the number of samples needed to generate a given power (e.g.,
0.8) and a given degree of confidence (e.g., an adjusted p-
value ≤0.05), given the experimental variability between rep-
licate runs. One approach is to use data sets from pilot studies
or from related samples in public data repositories. The power
for a given false discovery rate (FDR) may be estimated for a
given set of pilot data by a number of methods, including a
module of the publically-available MetaboAnalyst package
(Xia and Wishart 2016). The larger the number of samples,
the less work in the post-analytical phase and the more defin-
itive the results. As a rule of thumb, it is not practical to
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perform untargeted analysis with groups of less than 5–10
individual samples per group, and it is not realistic to consider
running single samples for untargeted metabolomics. The
metabolomics standards initiative (MSI) recommends a mini-
mum of five biological replicates in their minimum reporting
standards (Sumner et al 2007), but of course the true number
required depends heavily on the intrinsic variation in the bio-
logical samples as well as the magnitude of the observed per-
turbation, all factors incorporated into power analysis. It is
possible that a pathognomonic metabolite will by chance be
seen in a single sample from a patient with a given disease,
and Miller et al (Miller et al 2015) recently demonstrated the
ability to identify such elevations in metabolomic studies of
various inborn errors of metabolism by comparison to previ-
ously established reference ranges. However, only known me-
tabolites were evaluated in this single sample fashion, while
for biomarker search, multiple patient samples were processed
in cohorts, a key aspect of untargeted metabolomics. Novel
biomarker search poses a specific challenge with low sample
numbers, as various analytical, environmental, and even die-
tary factors may result in aberrant levels of certain features
from any single sample/run, normally evaluated by rigorous
false discovery analysis in untargeted experiments. The vari-
ation posed by these factors are discussed in detail throughout
this review, but it is worth considering that colleagues’ re-
quests to Brun untargeted metabolomics on a single sample^
or small sample cohorts should be handled with discussion
about experimental design, and redirected to either run ex-
haustive targeted analysis (similar to extended Biochemical
Genetics assays) or to extend the study population to provide
appropriate statistical power.

Pre-analytical

Sample preparation

When blood is sampled, there are advantages to using plasma
over serum, since the specimen can be immediately placed on
ice prior to separation. It is possible to use dried blood spot
(and urine) cards for some applications (Barri and Dragsted
2013), but there is some uncertainty about extraction efficien-
cy, depending upon the compound’s polarity. There is contro-
versy regarding the choice of anticoagulant for plasma prepa-
ration. There may be interferences and serious matrix effects
depending on the particular experimental setup, the specific
anticoagulant (EDTA or heparin), the counter-ion (Na, K2,
K3, Li), and the type (glass versus polypropylene) or brand
of the tube. Some investigators favor heparin for plasma sam-
ples and state that EDTA should be avoided (Barri and
Dragsted 2013), whereas others favor EDTA (Yin et al 2015;
Metabolon 2017). Citrate should be avoided when studying
central metabolism. There may also be artefactual features
from surfactants and detergents used to treat the subject’s skin

(Denery et al 2011). The best advice is to perform pretesting,
and above all, to be consistent throughout the sample acquisi-
tion phase of the experiment, so that all samples are handled
identically. Urine samples, which do not require special col-
lection tubes (and should generally not include additives),
must also be considered carefully. Metabolite concentrations
may vary significantly in an individual throughout the course
of the day based on hydration and diet. Often this is managed
by normalization to creatinine levels, but that process may be
compromised in kidney dysfunction. Alternative methods for
normalization that have been used include use of osmolality
and Btotal useful signal^ from MS-data (MSTUS), a process
by which many (hundreds or thousands) of common ions
among all samples are used for scaling (Warrack et al 2009).
Other factors to take into account when acquiring any animal
or human samples include control of diet (or fasting time) to
prevent exogenous metabolite interferences and to minimize
variation, in addition to variables associated with sample stor-
age and repeated freeze/thawing (Alvarez-Sanchez et al
2010).

Tissue/cell harvesting, metabolite extraction, and quenching
of metabolism

Extracting and quenching metabolism is a critical factor for
any metabolomics experiment. The need to effectively
deproteinize the biological sample while solubilizing the me-
tabolome is of course important, but if additional metabolism
or compound degradation occurs during this process, the read-
out by LC-MS may no longer be biologically valid. Certain
compound classes are especially labile and are represented in
many of the primary energy pathways. These include sugar
phosphates (glycolysis and pentose phosphate pathways), nu-
cleotides (ATP, GTP, etc.), coenzymes and cofactors whose
stability, especially in terms of phosphorylation state, are
greatly influenced by factors such as pH and temperature
(Sellick et al 2011; Vuckovic 2012; Leon et al 2013). These
are intracellular metabolites for the most part and are rarely
considered when extracting extracellular material such as
plasma (or serum), CSF, or urine. Researchers interested in
bacterial metabolism and flux analysis have increasingly con-
sidered such issues, often employing filtration systems that
avoid perturbation from centrifugation allowing for quick
washing and sampling (Aragon et al 2006; McCloskey et al
2014). There may be advantages to bloodspots in limiting
ex vivo metabolism (Hill et al 2017), but that approach may
entail differences in recovery and stability of different classes
of metabolites (Koulman et al 2014). Adherent cell lines face a
unique set of challenges in order to limit artifactual metabolic
perturbation. In general practice, adherent mammalian cell
cultures are washed with PBS, trypsinized, harvested, and
centrifuged for further media washing, a process that has been
implicated to be poorly compatible with preservation of the
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metabolome (Teng et al 2009). This has recently led to alter-
native, creative strategies to allow for quick harvesting and
quenching of cellular material (Lorenz et al 2011; Martano
et al 2015), where the intracellular energy metabolites men-
tioned above may be critical to the study. The commonality
among the methods is that trypsinization and centrifugation
steps are avoided, and cells are quenched quickly directly on
the surface that they are grown on. They are then scraped off
manually, often after freezing, before final preparation for LC-
MS analysis. Validation of proper quenching can be per-
formed by calculating ratios of the intact to degraded forms
of labile metabolites such as nucleotides. For example, con-
centrations of ATP, ADP, and AMP can be incorporated in the
equation for energy charge (([ATP] + 0.5[ADP])/([ATP] +
[ADP] + [AMP)), and then compared to established ranges
in various cell types, generally centered near 0.9 in normal
conditions (Chapman et al 1976).

A variety of extraction/quenching methodologies have
been compared for tissue that has been excised or biopsied
from animals. Issues that have warranted extensive investiga-
tion include the need to cryo-freeze tissue, the use of freeze
clamping, as well as variables associated with animal anesthe-
sia and euthanasia methods (Belanger et al 2002; Want et al
2013; Overmyer et al 2015). In addition, the extraction solu-
tion used can have a major influence on the scope of the
metabolome observed. For an untargeted metabolomics ex-
periment that assumes many compound classes will be repre-
sented, it is critical to test the extraction efficiency of both
highly polar metabolites, such as organic and amino acids,
as well as various lipid classes with varying hydrophobicity.
For extraction methods that solubilize both polar and hydro-
phobic compounds, biphasic strategies, such as the Bligh
Dyer (Bligh and Dyer 1959) or Folch (Folch et al 1957) meth-
od or several variations (Rose and Oklander 1965; Jensen
2008), are commonly used. These primarily use a combination
of chloroform, methanol, water, and in some cases acid,
resulting in a separation of the aqueous and organic layers of
solvent with a protein/DNA layer in between.More recently, a
new method that utilizes methyl-tert-butyl-ether (MTBE) in-
stead of chloroform has improved two important aspects of
biphasic extraction (Chen et al 2013): 1) MTBE is less toxic
than chloroform and safer to handle, and 2) the DNA/protein
pellet from extraction is localized to the bottom of the tube
following centrifugation. This allows for a simple removal of
the two phases without contaminating the lower phase with
the insoluble material. A variety of monophasic methods are
also widely used and include solvents such as methanol, ace-
tonitrile, ethanol, perchloric acid, as well as others, either in
cold or boiling conditions, and are preferred for certain classes
of compounds (Kolarovic and Fournier 1986; Canelas et al
2009; Dietmair et al 2010; Yanes et al 2011). It is important
to note that there are significant differences in the coverage of
the metabolome when comparing the various extraction

methods, muddying the true definition of Buntargeted^
metabolomics.

Analytical

Once sample acquisition and extraction has been achieved, the
analytical aspects associatedwith LC-MS analysis are the next
key part of a successful experiment, and though seemingly
straightforward, it contains a number of permutations that
the experimenter must choose. As with the extraction steps
described above, none of these will be perfect for all subsets
of metabolites. The analytical choices, which include sample
resuspension, chromatography and instrumentation, will de-
termine the breadth of the metabolome covered and the degree
of reliability in the collected data. The following section will
highlight some of the major areas where major consideration
must be applied.

Importance of chromatography

Though several groups have published methods that utilize
direct injection into mass spectrometers for analysis of metab-
olites (Madalinski et al 2008; Fuhrer et al 2011), the vast
number of researchers utilize inline chromatography in their
platforms to minimize ionic suppression and increase both
sensitivity and specificity of the analytes they report. Added
complexity, be it in the form of non-volatile salts, buffers, or
even metabolites can greatly influence the ionization efficien-
cy of any given compound and cause interfering compounds
that will convolute the accurate reporting of data, issues that
can be greatly alleviated with successful chromatographic
methods. From the early days of untargeted LC-MS based
metabolomics dating back a little over a decade ago, C18
reverse phase columns have been a stalwart of many plat-
forms. There are many iterations of C18 columns and nearly
every manufacturer sells a version of these, thoughwith some-
times distinguishing features that result in varying degrees of
performance. Differences in particle technology, particle size,
uniformity, column dimensions, and other factors will affect
binding, separation, and elution properties, as well as back
pressure. Smaller particle sizes result in increased column ef-
ficiency but cause an increase of back pressure that necessi-
tates ultra high performance LC (UHPLC) systems and fast
acquisition mass spectrometers to match narrow elution pro-
files (Guillarme et al 2010). Ultimately though, their frequent
use throughout the LC-metabolomics era is based on their
high reproducibility, which is a necessity for accurate run-to-
run alignment, their versatility in retaining many non-polar
and hydrophobic compound classes, and the simple mobile
phase compositions (often acetonitrile/water or methanol/
water gradients with small amounts of additives such as
formic acid) required for their use. The latter factor ensures
ideal compatibility with electrospray (ESI) and atmospheric
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pressure chemical ionization, the two primary LC-MS ioniza-
tion techniques. The weakness of these columns is in the polar
regime of the metabolome, and many such compounds will
have poor retention, eluting near the solvent front of a run
where the greatest amount of ionic suppression and potential
interferences reside. Unfortunately, many of the metabolites of
interest, especially in the realm of primary energy metabolism
(e.g., organic acids and amino acids) related to both human
disease as well as intracellular studies are highly polar. An
example of this was an early study involving our group to
demonstrate the utility of untargeted metabolomics to detect
known biomarkers of IEM (Wikoff et al 2007). In this study of
a small group of patients with propionic acidemia,
methylmalonic acidemia and controls, the controls were of
course distinguished from propionic and methylmalonic
acidemia by an elevation of propionyl-carnitine and related
acylcarnitines. The distinction between methylmalonic and
propionic acidemia, however, was less clear, because
methylmalonyl-carnitine was not detected (presumably attrib-
utable to a lack of suitable stationary phase ideal for such a
highly polar compound). That study demonstrated feasibility,
but also limitations: no single chromatography will permit
Bglobal^ untargeted metabolomics.

Normal phase and HILIC columns, with stationary phases
containing polar groups, such as amino, cyano and silica
among others, are now frequently employed for additional
runs to analyze the polar chemical realm (Jandera and Janas
2017; McCalley 2017). In the past, these columns were more
difficult to use reproducibly, as they generally required longer
re-equilibration times and more complex mobile phases that
also incorporated buffers and higher ionic strength for effi-
cient metabolite elution. A more recent alternative to using
normal phase is the use of reverse phase stationary phases
containing polar groups such as pentafluorophenyl (PFP) col-
umns (Csató et al 1990), which we have previously validated
for use in a combined targeted/untargeted metabolomics plat-
form (Gertsman et al 2014). Various versions of these exist,
including with a propyl (PFPP) linker (manufacturers include
Phenomenex, Resetek, ES industries, and UCT) or even com-
bined with a C18 stationary phase for a mixed mode effect
(Mac-Mode). Mixed mode columns, which generally utilize
both non-polar and polar stationary phases to extend versatil-
ity in metabolite selection, can often be used in standard re-
verse phase conditions and have been a preferred choice in
some untargeted studies (Yanes et al 2011; Gertsman et al
2015). This is not to say that drawbacks do not exist in these
columns as well, and weaknesses can include poor elution of
polar lipids or other compound classes that carry both polar
and hydrophobic moieties.

Yet another important aspect of chromatography lies in the
ability to separate isomers, isobaric compounds, and other
interferences. An example of an unexpected interference often
ignored is a co-eluting compound that actually has a different

parent mass, but undergoes an in-source fragmentation that
contributes to the signal of the other. This can occur for the
organic acids fumarate and malate for example, where a water
loss frommalate (m/z 133.014) during electrospray ionization
in negative ion mode will cause a m/z 115.004 ion to appear
that is indistinguishable inMS and evenMS/MS profiles from
fumarate (Fig. 1a). If chromatography cannot distinguish
these two, fumarate, a very critical TCA cycle intermediate,
will be falsely reported. An example of necessitating chro-
matographic distinction of isomers can be seen in Fig. 1c,
where a certain C18 column was unable to resolve 2- and 3-
hydroxybuturate under a typical reverse phase gradient, while
a C18-PFP column successfully could (Fig. 1b). Though it
will be nearly impossible to qualify the separation all such
possible pairs or isomers from each other, it is worthwhile to
qualify a platform for the critical metabolites that are routinely
measured and reported (e.g., major energy pathways). In the
above example, 2- and 3-hydroxybutyrate stem from
completely different metabolic pathways (threonine/methio-
nine metabolism and fatty acid metabolism respectively),
and their combined signal will obscure potentially significant
results from either of these.

Analytical variation: the case for internal standards and/or
QCs

An obstacle in comparing peak area differences from one run
to another is that signal variation occurs for any given com-
pound of interest. Some of this is likely due to small but
noticeable differences in signal intensity that may vary during
the course of a batch, while other factors include slight differ-
ences in the matrix of one sample compared to another,
resulting in differences in ionic suppression (especially with
different sample types, e.g., plasma vs. urine). A clear exam-
ple of variation in Fig. 2 (unpublished data from one of our
own studies) shows the difference between comparing non-
normalized (no stable isotope) palmitoylcarnitine (C16-carni-
tine) to peak areas normalized to a deuterated version of the
compound that was spiked during extraction. The figure
shows that one of the lower values in the un-normalized esti-
mate (peak area) was actually one of the higher measurements
for that group when normalized appropriately (Fig. 2b).
Overall, omitting a stable isotope for comparison would not
have changed the mean value of the metabolite in this cohort,
but the concentration would have been underestimated if the
single sample were studied individually. Appropriate stable
isotopes can be especially useful in instances where sample
numbers are low, or where compounds fall in chromatograph-
ic regions with known ionic suppression. Many groups are
more commonly making use of stable isotope dilution in
untargeted experiments, which not only comes in handy for
the potential normalization of endogenous compounds, but
can be used for assessing drift in both signal intensity and
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retention time (Sysi-Aho et al 2007; Miller et al 2015). Stable
isotope dilution is especially helpful in longitudinal studies
acquired over years, where there may be large differences in
instrument performance, different column batches, or even
different operators. However, care must be taken to ensure
standards are adequately assessed for stability and degradation
during storage times relevant to the breadth of the study. Also,
if one is to use internal standards for untargeted studies, it is
necessary to match the chemically diversity of the run with the

standards selected, also making sure to cover the width of the
chromatographic run, as intensity drift may not affect all com-
pounds or sections of the run equally. As this can be cost
prohibitive or otherwise burdensome, alternatives to internal
standards are used to compensate for analytical errors. These
include the use of replicate samples or QCs that can be run
throughout different intervals of a batch (Dunn et al 2011;
Wehrens et al 2016), and in one method, used in a serially
dilute form throughout to test for signal linearity of different
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compounds (Kouassi Nzoughet et al 2017). A variety of pro-
cessing tools have also been developed to deal with issues of
signal and retention time drift, as well as batch effects and
outliers that can plague data analysis, as discussed in the
post-analytical section of the review (Salerno et al 2017;
Thonusin et al 2017).

Post-analytical

Pre-processing

Following the completion of the mass spectrometry runs, a
number of pre-processing and post-processing tools are avail-
able for identifying analytes of interest from untargeted data
sets. Though many researchers incorporate specific target com-
pounds in such runs that are always integrated and compared,
the general processing strategy in untargeted workflows is to
focus on compounds that are statistically altered. The runs must
be first properly aligned, either with the aid of several freely
available software packages (Lommen 2009; Tautenhahn et al
2012a, b; Li et al 2017) or the many propriety software pack-
ages often distributed by MS vendors. Non-linear alignment is
preferred in pre-processing as chromatographic shifts are often
non-uniform throughout the run, and improved alignment en-
ables more accurate peak selection and integration when unique
analytes with similar m/z have small deviations in elution time.
Metabolomics software packages often allow signal normaliza-
tion as a pre-processing tool, either with the use of internal
standards, or by other methods. Other pre-processing options
prior to thorough statistical analysis include the removal of
outliers and other batch effects. The following section high-
lights some of the intricacies and bottlenecks associated with
the processing and analysis of pre-processed data.

Compound identification

Identification of unknown compounds in untargeted metabo-
lomics is considered the greatest bottleneck of data interpreta-
tion and requires a number of tools and proper instrumentation
to successfully overcome. A high resolution mass spectrome-
ter (Q-TOF, Orbitrap, or FT-ICR instruments) using a standard
reverse phase platform may lead to the observation of many
thousands of peaks from a single run, the number depending
on instrument sensitivity, solvent composition and purity, ma-
trix complexity, and in-source fragmentation as possible fac-
tors. Each peak does not necessarily represent a unique me-
tabolite though, and a single feature may be represented in a
dozen or more forms that include adducts (salt or solvent
complexes), dimeric or even trimeric states, and even frag-
ments produced during ionization or transmission of ions.
For compounds of interest, it is therefore important to identify
the elemental composition of the ion, and some useful guide-
lines have been published to narrow down the possibilities for

any given ion (Kind and Fiehn 2007; Watson 2013). Common
considerations to reduce the number of possibilities include:
1) the nitrogen rule (better suited for masses <500 Da), which
dictates that a compoundwith an even nominal mass will have
an even number of nitrogen atoms, and with an odd mass will
have an odd number of nitrogens, 2) likely hydrogen/carbon
ratios and elemental probability analysis, and 3) isotopic dis-
tributions of the analyte, as atoms have different isotopic
abundances. In addition, since atoms have unique mass de-
fects due to differences in nuclear binding energy (e.g., com-
mon isotopic form of sulfur, 32S, has mass of 31.972, while
12C Carbon is 12.000), high resolution mass spectrometry can
use such properties to narrow down the possibilities. In Fig.3,
we show the parent mass of oxidized glutathione analyzed on
an Orbitrap Lumos instrument collected at three different res-
olution: 30,000, 120,000, and 500,000. Most current Q-TOF
instruments have ~30,000 resolution, and at this resolution
(along with accurate mass) we demonstrate that the third peak
(M + 2) for oxidized glutathione (GSSG) has a lower non-
integer mass than its previous two isotopic forms due to the
mass defect of 34S, which is the next most prominent form of
sulfur after 32S. This shift to the left can be identified by Q-
TOF, but the distribution of the atoms with isotopic forms in
this peak are not clear.When increasing the resolution to 120K,
one can see a bump next to that peak that distinguishes the
carbon and nitrogen isotopes from the sulfur, the latter being
more predominant. When one uses ultra high resolution of
500,000 the two forms are very clearly separated and can actu-
ally be integrated accurately, enabling one to both implicate and
rule out various combinations of atoms present in the analyte.
In addition to resolution, highmass accuracy can help to further
narrow down possible elemental compositions, a common at-
tribute found in most instruments used for untargeted metabo-
lomics (<~2–3 ppm mass accuracy). A number of chemical
libraries can be searched for annotated compounds that match
a possible elemental composition, and include: METLIN
(Tautenhahn et al 2012a, b), HMDB (Wishart et al 2009),
Chemspider (Williams and Tkachenko 2014), Pubchem
(Wang et al 2009)), GnPS (Wang et al 2016)), Lipidmaps
(Sud et al 2012), Massbank (Horai et al 2010), Metabolomics
Workbench (Sud et al 2016), and MetaCyc (Caspi et al 2014).

An important experiment for identification of unknown
compounds involves the fragmentation of isolated ions of in-
terest. Depending on the instrument, either collision induced
dissociation (CID), electron transfer (ETD) or electron capture
dissociation (ECD) is used to facilitate this experiment. Many
workflows allow for an automatic selection of a number of
ions during each scan cycle for fragmentation (data dependent
acquisition) to provide a library of MS/MS spectra that can
later be used for compound identification. For trap instru-
ments, MSn can be useful for more thorough fragmentation
and improved structure elucidation, where daughter ions are
isolated and further fragmented (Rojas-Cherto et al 2012;
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Vaniya and Fiehn 2015). Several of the repositories mentioned
above, including METLIN, HMDB, Lipid Maps, and GnPS
have libraries of MS/MS data for matching unknown spectra.
XCMS2, an updated version of the very widely used XCMS
metabolomics software package, enables fragments fromMS/
MS spectra to be searched against the METLIN library during
data processing, and scored for their similarities to known
product ion spectra to enable compound identification
(Benton et al 2008), while an online version can also be used
for both analysis and spectral library searches (Tautenhahn
et al 2012a, b). GnPS, a recently established repository for
natural products, allows the metabolomics community to up-
load data acquisition files online, which can be searched
against already identified product ion spectra from previous
data collections, and scored for possible matches (Wang et al
2016). The MS community can update the annotations and
grade the quality of spectra submitted in this database. These
automated search tools greatly help to reduce the time required
to manually compare new data to existing spectral libraries.
The future of quick compound identification and thorough
untargeted metabolomics analysis will in large part be tied to
the advancement of such spectral libraries and how they add,
share, and search spectral data with fellow researchers, as this
bottleneck is much too large to tackle independently.

If an unknown can be matched by some of the methods
listed above, such as accurate mass, isotopic distribution, and
fragmentation pattern, other factors should also be considered
as well, such as: whether the elution time of the unknown
likely correlates with the chemical class of the candidate com-
pound, and whether the sample type is likely one to have such
a metabolite present. At this stage purchasing an internal stan-
dard is the best way to fully confirm identity, which is often
difficult or cost prohibitive if custom synthesis is required.
Nonetheless, such an investment is often necessary for
targeted quantitation or further study of the compound of in-
terest. Misidentification is obviously a major pitfall for data
interpretation and though compound matching using the tools
described above can be very helpful, issues like isobaric or
even isomeric species will often cause an additional hurdle to
overcome. Having effective chromatography for the com-
pound class of interest that can distinguish potential isomers
is critical for final confirmation. Standards and guidelines for
reporting identification or annotation of compounds have been
authored by the metabolomics standard initiative (MSI),
which have outlined criteria for reporting new compound
identities in the literature (Fiehn et al 2007; Salek et al
2013). Within these reports, the MSI outlines the recommend-
ed levels of compound identification, ranging from the highest

615.0 615.1 615.2 615.3 615.14 615.16 615.18 615.20 615.15 615.20
0

10

20

30

40

50

60

70

80

90

100100

90

70

80

40

50

60

0

10

20

30

100

90

70

80

40

50

60

0

10

20

30

100

90

70

80

40

50

60

0

10

20

30

611 612 613 614 615 616 617 618

Fig. 3 High resolution for
elemental composition
reconstruction. Oxidized
glutathione (GSSG) was collected
on Orbitrap Fusion Lumos
(Thermo-Fisher) mass
spectrometer. The M + 2 isotope
is shown to have a lower non-
integer mass than the previous
isotope, potentially indicative of
one or more sulfurs present, since
34S isotope has a smaller
fractional mass than 32S. GSSG
was collected at 30 K, 120 K, and
500 K resolution to demonstrate
how ultra high resolution allows
one two separate the M + 2 peak
of GSSG into separate peaks, one
reflective of 34S, and the other
reflective of 13C and 15N
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(level 1) where properties of an authentic standard are com-
pared to experimental data, down through putatively annotat-
ed and characterized compounds (levels 2 and 3), and finally
unknown (level 4). De novo identification of a compound that
does not have an accessible fragmentation pattern is especially
difficult, but is unfortunately the case for most analytes from a
typical metabolomics study. In addition to elemental structure
identification, a mass spectrometrist can also use tools to per-
form mock fragmentations of candidate structures, focusing
especially on functional groups that are likely to fragment and
ionize well, and then match these to the acquired MS/MS
spectra.

Statistical analysis

Untargeted metabolomics experiments generally use a combi-
nation of univariate and multivariate analysis to help identify
compounds and pathways that are altered between cohorts.
There are many different commercial as well as freely avail-
able statistical packages that can perform these functions, but
in recent years several freely available online tools have been
made available that carry a wide range of analysis features
geared specifically toward metabolomics analysis. Two wide-
ly used online platforms include Metaboanalyst and the
Metabolomics Workbench mentioned above. Data can be
uploaded to these sites, normalized and scaled as necessary,
and then analyzed by tools such as: T-tests, ANOVA, principal
component analysis (PCA), as well as partial least squares
(PLSDA), and orthogonal projections to latent structures
(OPLSDA) determinant analysis, heatmaps, dendograms, vol-
cano plots, and correlation analysis among other useful tools
for data reduction and chemometrics.

Both univariate and multivariate analyses require special
considerations to limit false interpretation from metabolomics
data. Multivariate analysis is often a useful strategy for differ-
entiating cohorts based on the covariances, or correlations of
the many independent variables. Prior to using such methods,
the signals of the analytes are often scaled so that high inten-
sity ions do not overly bias the modeling. Several common
scaling methods such as mean centering or Pareto scaling
(Tugizimana et al 2016) are often used, depending on whether
one favors treating all analytes equally, regardless of intensity
(mean centering), or if one believes that high intensity
analytes (compounds that either have high concentrations
and/or high ionization efficiencies by ESI-LC-MS) should still
have greater weight due to a higher confidence measurement
(Pareto). An unbiased, or unsupervised method that is usually
used as a first pass in evaluating metabolomics data is princi-
pal component analysis (PCA), which reduces the dimension-
ality of the many variables into primary eigenvectors that cap-
ture variance (Jolliffe and Cadima 2016). In PCA, the process-
ing is blind to any classification in the data, and since it con-
siders the relationships of all the independent variables

simultaneously, it is generally not useful as a modeling tool
in comprehensive metabolomics studies, where most of the
variables are irrelevant. For generating models that are more
apt to finding the independent variables that best discriminate
the classifiers (dependent variables), researchers most often
use partial PLSDA or OPLSDA. These are termed supervised
methods, as the user inputs the classifiers (Y) along with the
independent variables (X) that are projected in multi-
dimensional space to enhance the variation in Y (Barker and
Rayens 2003). OPLSDA differs from PLSDA in that it sepa-
rates the uncorrelated variation in X from the predictive,
whereas in PLSDA, variation not correlated with the Y-
classifiers is still present in the data (Trygg and Wold 2002).
The predictive power of both methods is thought to be the
same, though (Bylesjö et al 2006).

The pitfall in these supervised methods though are gener-
ally associated with overfitting. These methods will often
show distinction of cohorts from just randomly generated da-
ta, as these tools are designed to accentuate any co-variances
that differentiate the response (Y) variables, and with multi-
component testing using large numbers of independent vari-
ables with relatively low numbers of replicates, false positives
are a given. From PLSDA plots for example, a variable im-
portance parameter (VIP) describes the loadings that fit the
model, and help researchers determine which analytes should
be left in further iterations, and those that should be removed
(not related to variation of cohorts). This process can lead to
further overfitting of a model. It is therefore critical to perform
validation analysis when generating these models to better
ensure that false relationships between metabolites are not
causing misinterpretation of the data. Permutation tests can
analyze whether the assigned classes from the experiment
are any more significant than randomly assigned class distinc-
tions applied to the different samples (Golland and Fischl
2003). Cross-validation is an important process for model de-
velopment and refinement, where the cohorts are split up into
smaller subsets, and the model is further fitted with exclusion
of various subjects (Westerhuis et al 2008; Wheelock and
Wheelock 2013). Ideally, the samples can be randomly divid-
ed into a training set, validation set, and test set, where indi-
vidual models can be tested and evaluated on unique sample
subsets, and then applied to both other samples groups as well
as the entire sample set. A cross-validated correlation (Q2)
after subsequent iterations of such modeling can be assessed
and compared to the R2 of the total model fitting (Wheelock
andWheelock 2013). One point often not discussed in model-
ing from untargeted metabolomics is the use of unidentified
metabolites in the model. Though one can try to eliminate
contaminants, adducts, and other multiply represented fea-
tures during pre-processing, a number of unknown features
may persist, many of which are not biologically relevant,
and which are thought to comprise the majority of features
from an untargeted metabolomics run (Benton et al 2015).
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Some of these may be critical to the findings and are often part
of the reason for choosing untargeted metabolomics in the first
place. True unknowns that are significant to a data set should
be attempted to be identified, but as mentioned previously, this
is often a difficult task. If the unknowns cannot be identified,
one is left to wonder how they should be considered in a
published multivariate model.

Univariate analysis is one of the most common approaches
to identify specific analytes that are significantly altered be-
tween cohorts. Assessment of normal distribution (parametric
vs. non parametric) can be done prior to choosing the univar-
iate method, most often with either student t-tests or ANOVA.
Assessment of the statistical significances (i.e., p-values) of
these tests are harder to interpret in untargeted metabolomics
data, where thousands of individual features (or hypotheses)
are being tested with comparably few unique samples tested.
This multiple component problem has led to various ap-
proaches to correction in univariate testing, not just in the field
of metabolomics, but in other OMICS disciplines like
genomics/transcriptomics and proteomics. The most conser-
vative correction approach has been Bonferroni correction,
where the significance level of an analyte is divided by the
number of total hypotheses (Dunn 1961). Such a procedure
can limit false positives in analyses (type I error), but unfor-
tunately results in higher numbers of false negatives (type II
errors) (Perneger 1998). False discovery rate (FDR) ap-
proaches have been developed to apply corrections that are
more careful in limiting false negatives (Benjamini and
Hochberg 1995; Genovese and Wasserman 2002). One such
approach, which was made popular in genome wide studies,
but is also used in metabolomics is the Q-value correction, an
FDR approach that compares distributions of p-values from a
data set and compares it to a distribution where all features are
null (e.g., no differential between control and disease) in order
to calculate the correction (q-value from a p-value) most ap-
plicable for a given dataset (Storey and Tibshirani 2003).
Though there is no perfect method to remove false positives,
an appropriate correction of multiple testing is nonetheless
required in untargeted metabolomics reporting and
interpretation.

Conclusion

Untargeted metabolomics is an exciting technology to search
for novel metabolic perturbations in various biological sys-
tems. As LC-MSmetabolomics methods have developed over
the last decade or two, sophisticated targeted methods have
greatly expanded the breadth of metabolome that can be ac-
curately quantified (Zhou et al 2016). Still, though, the allure
of discovering novel biomarkers in disease states makes the
untargeted approach remain valuable, and allows the investi-
gator to evaluate a diverse swath of the metabolome, with less

chance of missing an association, as when a particular analyte
is targeted based on a single hypothesis. Unfortunately, a mul-
titude of caveats are included when choosing untargeted meta-
bolomics. We have attempted to address various aspects of
untargeted metabolomics, including pre-analytical, analytical,
and analysis aspects, all which have associated pitfalls that can
jeopardize the usefulness of the data. From sample acquisi-
tion, to sample extraction and chromatographic selection, one
can heavily bias the metabolites resolved, necessitating careful
scrutiny and validation of each facet of the experiment. In
addition, identification of novel compounds of interest pre-
sents another obstacle, but fortunately as the field grows, bet-
ter tools have become available to address such issues. As
these platforms further develop, we believe future untargeted
studies will help to fill in the many gaps of uncharacterized
metabolic perturbation in biological systems, and further ben-
efit the clinical community by discovering novel diagnostic
and therapeutic markers in disease.
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