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Abstract Blood and urine acylcarnitine profiles are common-
ly used to diagnose long-chain fatty acid oxidation disorders
(FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase
[LCHAD] and carnitine palmitoyltransferase 2 [CPT2] defi-
ciency), but the global metabolic impact of long-chain FAOD
has not been reported. We utilized untargeted metabolomics to
characterize plasma metabolites in 12 overnight-fasted indi-
viduals with FAOD (10 LCHAD, two CPT2) and 11 healthy
age-, sex-, and body mass index (BMI)-matched controls,
with the caveat that individuals with FAOD consume a low-
fat diet supplemented with medium-chain triglycerides (MCT)
while matched controls consume a typical American diet. In
plasma 832 metabolites were identified, and partial least
squared-discriminant analysis (PLS-DA) identified 114 non-

acylcarnitine variables that discriminated FAOD subjects and
controls. FAOD individuals had significantly higher triglycer-
ides and lower specific phosphatidylethanolamines,
ceramides, and sphingomyelins. Differences in phosphatidyl-
cholines were also found but the directionality differed by
metabolite species. Further, there were few differences in
non-lipid metabolites, indicating the metabolic impact of
FAOD specifically on lipid pathways. This analysis provides
evidence that LCHAD/CPT2 deficiency significantly alters
complex lipid pathway flux. This metabolic signature may
provide new clinical tools capable of confirming or diagnos-
ing FAOD, even in subjects with a mild phenotype, and may
provide clues regarding the biochemical and metabolic impact
of FAOD that is relevant to the etiology of FAOD symptoms.
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Introduction

Mitochondrial fatty acid oxidation disorders (FAOD) are a fam-
ily of inherited autosomal recessive disorders (Wanders et al
1999) whose patients suffer from a metabolic defect in fatty
acid catabolism, with an estimated incidence of one in every
5000–10,000 births (Watson et al 2006). Diagnosis is made
through tandem mass spectrometry profiling of blood or urine
lipid metabolites, acylcarnitines, since unique patterns of
acylcarnitines track acyl-CoA metabolite pools upstream and
downstream of specific enzymatic lesions (Wilcken et al 2003).
The inability to efficiently or completely combust fatty acids
leads to a number of symptoms and complications affecting
multiple tissue systems with a wide range of severity (Rinaldo
et al 2002). Symptoms can include fatigue, muscle weakness,
hypoketotic hypoglycemia, hepatic steatosis, cardiomyopathy,
peripheral neuropathy, rhabdomyolysis and, if not recognized
and treated, sudden unexpected death (Rinaldo et al 2002). For
FAODs involving enzymes that participate in the catabolism of
long-chain fatty acids (LCFAs), treatment can include de-
creased consumption of fats containing LCFAs, increased in-
take of medium-chain triglycerides (MCT) that provide fatty
acid fuel downstream of the enzyme lesions, carnitine supple-
mentation to maintain carnitine status in light of higher tissue
acylcarnitine generation and loss, and avoidance of fasting or
strenuous exercise that can trigger lipolysis and thus increase
tissue LCFA load (Bach and Babayan 1982; Roe et al 2002).

Examples of FAODs affecting LCFA β-oxidation at its
earliest stages include impairments of the long-chain
3-hydroxyacyl-CoA dehydrogenase (LCHAD), part of themi-
tochondrial trifunctional protein (TFP) complex required for
β-oxidation of LCFAwith carbon chain length >12, and car-
nitine palmitoyltransferase 2 (CPT2). Once LCFA are
transported into the mitochondrion as a LCFA-carnitine,
CPT2 exchanges the carnitine moiety for a CoA molecule,
providing the LCFA-CoA substrate for subsequent β-oxida-
tion. Dysfunction of either of these proteins leads to increases
in tissue, plasma, and urine long-chain acylcarnitine deriva-
tives of saturated, unsaturated, and hydroxy-LCFA-CoA me-
tabolites (Rinaldo et al 2008).

While plasma acylcarnitine profiles have been well-
characterized as diagnostic for specific FAODs, little is known
regarding the broad-scale impact of human long-chain FAOD
on the fates of other metabolite and lipid classes, especially in
the asymptomatic condition. In the case of LCHAD or CPT2
deficiency, such an effort could reveal how attenuation of
mitochondrial LCFA oxidative catabolism impacts intermedi-
ary metabolism of other fuels and LCFA trafficking in cells
and tissues. To address these outstanding questions, we ana-
lyzed the fasting plasma lipidome and metabolome of 12 in-
dividuals with FAOD (10 LCHAD and two CPT2) and 11
healthy control age-, sex-, and body mass index (BMI)-
matched subjects. Using both univariate and multivariate

statistical methods, novel lipid and metabolic signatures were
identified that readily differentiate asymptomatic individuals
with FAOD compared to age-, sex- and BMI-matched
controls.

Results

Participant characteristics Twenty-three participants were
included in the final study analysis, including 11 control and
12 FAOD (10 LCHAD, two CPT2) (Table S3) subjects. We
preserved our small sample size by assessing LCHAD and
CPT2 subjects together and focusing our investigation on
identifying metabolites that can distinguish overnight-fasted
asymptomatic long-chain FAOD subjects relative to healthy
age-, sex-, and BMI-matched controls. Furthermore, although
it is well-known that patients with LCHAD and CPT2 defects
display disparate acylcarnitine profiles (i.e., patients with
LHCAD deficiency have elevations in long-chain hydroxyl-
ated acylcarnitines not observed in patients with CPT2), the
global changes in the metabolome have not been assessed for
the family of long-chain FAODs. As previously described for
the LCHAD subjects (Gillingham et al 2013), there were no
significant differences in age or body mass index (BMI) be-
tween controls and long-chain FAOD subjects; however, there
were modest differences in total and high-density lipoproteins
cholesterol (Table 1).

Metabolomics resultsA total of 822 metabolites were detected
by metabolomics assessment of complex lipids and primary me-
tabolism and used in statistical analyses (Table S1): 481 complex
lipids were detected in the untargeted lipidomics platform and
341 small molecules in the untargeted metabolomics analysis of
primary metabolism. Of all of the metabolites detected between
both platforms, 349 metabolites were structurally identified and
annotated. The remaining as-yet non-annotated metabolites are
identified by either a BinBase (BB) number (Fiehn et al 2005) or
similar LipidBlast identifying number (Kind et al 2013) andwere
included in all statistical analyses. Univariate assessment of all
metabolites revealed 167 metabolites that statistically differed
between FAOD and control subjects; after correction for multiple
comparisons, only 74 metabolites remained statistically signifi-
cant (Table S1). The vast majority of metabolites differing be-
tween FAODand control subjects were of lipid origin (Table S1).
In fact, only five unknown primary metabolites were statistically
different after correction for multiple comparisons (BB223548,
BB223521, BB223597, BB943961, and BB223675).

Multivariate statistical analysis of plasma metabolites dis-
criminate individuals with FAOD from controls Our goal
was to identify novel markers of FAOD, independent
of acylcarnitines, using two analytical metabolomics
platforms. We first modeled results from the metabolomics
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assessment of primary metabolism and found only 10 me-
tabol i tes (γ - tocopherol , mal ic acid, BB223597,
BB223548 , BB223521 , BB267805 , BB223675 ,
BB944107, and BB214533) that accurately discriminated
FAOD subjects from matched controls (Model 1), illustrat-
ed by a subjects scores plot showing separation of the
groups (Fig. 1a). The small number of metabolites includ-
ed in Model 1 mirrored the results in the univariate analysis
where very few non-lipid metabolites were found to be
significantly different between FAOD and control subjects.
Interestingly, γ-tocopherol and malic acid were found to be
significant before adjustment for multiple comparisons in
univariate analyses (Table S1).

We then modeled results from the metabolomics assess-
ment of complex lipids (Model 2). Projection of subjects in
the PLS-DA scores plot illustrates that metabolites selected in
Model 2 successfully discriminated controls from individuals
with FAOD (Fig. 1b). Contrary to the small number of metab-
olites identified in Model 1, 117 variables were featured in
Model 2 (Table S2). Model 2 featured multiple complex lipids
derived from triglycerides, phosphatidylcholines,
sphingomyelins, ceramides, unknowns, and a single represen-
tative glycerophospholipid and phosphatidylethanolamine (1-
hex-2-8-eicos-sn-glycero-3-phos and PE36:3ox).

We further filtered features obtained from multivariate
analyses, based on univariate results adjusted for multiple
comparisons, thus identifying only the most robust discrimi-
nating variables. A total of 36 annotated metabolites in six
distinct classes met these criteria (Fig. 2), all derived from
the lipidomics platform. An additional 36 unknown metabo-
lites also met these criteria (Fig. 2). Examining the FAOD fold
changes in these metabolites revealed a FAOD-associated in-
crease in seven TG species, two PC metabolites, and 12 non-

annotated metabolites indicated by orange shading in Fig. 2.
All TG species but TG14:0/14:0/14:0 had total carbon lengths
between 44 and 58, and a wide range of double bonds (1–9).
Both PC species increased in FAOD were 40 carbons long
with five double bonds. All other metabolites were decreased
in FAOD subjects relative to controls. These included the
remaining PCs and unknown lipids, ceramides, a PE, a
glycerophospholipid, and all of the unknown metabolites as
indicated by blue shading (Fig. 2). These results strongly sup-
port the notion that FAOD involving LCFA enzymes can af-
fect complex lipid metabolism.

Correlation of long-chain acylcarnitines and other lipid
species We then asked the question, BHow do non-
acylcarnitine markers of FAOD disorders associate with
more traditionally-used acylcarnitine clinical markers?^
Correlations among plasma long-chain acylcarnitines that
were significantly different between FAOD and controls
(Table S4), and annotated lipid species identified in univariate
and multivariate statistical analyses were determined (Fig. 3).
FAOD and control subjects were analyzed separately to deter-
mine if metabolite correlation patterns are altered by FAOD
status, and this revealed differences. First, 10 lipids correlated
with acylcarnitines in the individuals with FAOD, in contrast
to 18 in the controls. Second, FAOD subjects displayed neg-
ative associations among several acylcarnitines and three TGs
(TG46:2, TG42:0, and TG44:1), while three other TGs
(TG52:6, TG52:6.1, and TG46:3) mainly lost their negative
association with acylcarnitines. Third, a small sub-set of asso-
ciations were shared by both controls and individuals with
FAOD, including (correlation directionality in parentheses):
C12:1-OH-AC and PC35_3 (negative); C12-OH-AC and
PC40:5B (positive); C18:1-AC and TG44:1 (negative); C14-

Table 1 Subject and biochemical
characteristics in plasma samples
derived from 10 h fasted
long-chain FAOD and healthy
control subjects. CPT2, carnitine
palmitoyltransferase 2 deficiency;
LCHAD, long-chain
hydroxyl-acyl-CoA
dehydrogenase deficiency

Parameters LCHAD n CPT2 n Control n

Age, years 12.3 (1.3) 10 26.5 (10.5) 2 15.7 (2.3) 11

Weight, kg 55.9 (5.2) 10 73.4 (12.4) 2 61 (6.4) 11

BMI_kg/m2 22.8 (1.3) 10 26.3 (3.6) 2 23.1 (1.4) 11

BMI, Z-score 1.1 (0.2) 10 0.5 (NA) 1 0.7 (0.3) 9

BMI, percentile 84.6 (4.5) 10 70 (NA) 1 72.3 (6.7) 9

Triglycerides, mg/dL 74.9 (6.7) 7 85.5 (5.5) 2 68.9 (10.6) 10

Total cholesterol, mg/dL 143.4 (6) 7 134 (12) 2 167.4 (9.7)* 10

LDL cholesterol, mg/dL 92.3 (6.5) 7 79.5 (15.5) 2 95.8 (8.5) 10

HDL cholesterol, mg/dL 36.3 (0.7) 7 37.5 (2.5) 2 57.8 (5.4)* 10

Fasting glucose, mg/dL 96.9 (4.1) 10 103 (16) 2 100.9 (3.8) 11

Fasting insulin, uU/mL 17.4 (3.1) 10 18.7 (3.4) 2 14.8 (1.6) 11

HOMA-IR 4.1 (0.7) 10 4.9 (1.6) 2 3.7 (0.4) 11

Subcutaneous adipose tissue, cm2 20.4 (3.1) 9 43.5 (NA) 1 23.3 (4) 9

Visceral adipose tissue, cm2 2.9 (0.4) 9 8.5 (NA) 1 4.4 (0.9) 9

Data are mean (SEM). Control values denoted with an ‘*’ are statistically different (independent t-test). Statistical
significance was set at P< 0.05.
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AC, C18:1-AC and TG46:2 (negative); C18:1-AC, C18:2-AC
and TG14:0/14:0/14:0 (negative). Finally, there was one cor-
relation that differed in direction comparing controls to
FAOD: C16-OH-AC was positively correlated with TG52:6
in individuals with FAOD, but this relationship was negative
in controls. In controls, there was also a consistent negative
correlation of PE36:3Ox with acylcarnitines >C12.
Interestingly, the triglycerides overwhelmingly had negative
correlations with many acylcarnitines in the control subjects.

Discussion

Elevated plasma and blood spot acylcarnitines are a hallmark
of FAOD (Rinaldo et al 2008; Gillingham et al 2013), but
comprehensive assessments of other metabolites are rarely
considered. Thorough examination of metabolomics patterns
may yield additional FAOD diagnostic markers and provide
further insight into disease pathology. Thus, we leveraged
metabolomics technologies to compare plasma from a cohort
of overnight-fasted asymptomatic long-chain FAOD subjects
relative to age-, sex-, and BMI-matched control subjects
(Gillingham et al 2013). While it was anticipated that defects
in mitochondrial long-chain fatty acid combustion would im-
pact lipid homeostasis, it is not known which lipid classes are
impacted and whether non-lipid pathways are concomitantly
distressed. The data from the current study support the idea
that LCFA partitioning into complex lipids in FAOD is dra-
matically altered, with much more limited effects seen on
plasma non-lipid metabolites.

To our knowledge, the current study represents the first
metabolomics evaluation of an inborn error of long chain fatty
acid oxidation metabolism. A recent manuscript by Najdekr
et al showed elevated oxidized phosphatidylcholines in pa-
tients with medium-chain acyl-CoA dehydrogenase deficien-
cy (Najdekr et al 2015), a result not seen in this study.
Nevertheless, our findings and those of Najdekr et al indicate
that compromised mitochondrial fatty acid oxidation clearly
impacts complex lipid homeostasis.

A number of distinct lipid classes were altered during
the fasting FAOD condition, which we hypothesize is due
to differential flux of fatty acids through complex lipid
pathways. Specifically, a number of triglyceride (TG) spe-
cies were significantly elevated in fasting FAOD plasma
compared to controls. Previously, plasma clinical measure-
ments identified only a modest difference in total TG be-
tween groups (Table 1); however, we can conclude from
our metabolomics data that increases occur in TG contain-
ing fatty acid chains with a sum of 44 carbons or more
(e.g., TG46:3, Fig. 2), which would be expected given
the specific genetic blockades in enzymes associated with
LCFA metabolism in these subjects. It remains to be deter-
mined which lipoprotein class or classes drive the plasma
TG phenotype in FAOD.

Fig. 1 Results from partial least squares-discriminant analysis (PLS-DA)
scores plot displaying discrimination between control and fatty acid ox-
idation disorder (FAOD) subjects due to differences in plasma metabolite
patterns after a 10 h fast. Scores plot allowing visualization of individual
subjects’ clustering due to differential metabolite-based PLS-DAmodels;
Illustrated are the healthy control (blue-triangles, n= 8) and FAOD (or-
ange circles and square, n = 9) cohorts. PLS-DA analysis was developed
with training samples; therefore, subjects in the test set (3 from each
group) are not included in the current analysis and figure. Each triangle/
circle/square represents an individual subject. Ellipses surrounding each
cluster are 95% confidence ellipses based onHotelling’s T2 statistic. Each
plot represents a different statistical model, i.e., only including untargeted
metabolomics assessment of primary metabolism (a, Model 1) and
untargeted metabolomics of complex lipids (b, Model 2). CPT2, carnitine
palmitoyltransferase 2 deficiency; LCHAD, long-chain hydroxyl-acyl-
CoA dehydrogenase deficiency

�Fig. 2 Comparison of individuals with FAOD relative to controls in
discriminant metabolites. Metabolites were featured in heatmap if
selected in multivariate models and if also significantly different
between FAOD and control subjects after adjusting for multiple
comparisons (Benjamini and Hochberg). Heatmap represents data from
all individuals with FAOD (i.e., no training/test set split) and is separated
by metabolite classes. Colors depict changes relative to the mean of con-
trol subjects’ concentrations for each metabolite. CPT2, carnitine
palmitoyltransferase 2 deficiency; LCHAD, long-chain hydroxyl-acyl-
CoA dehydrogenase deficiency
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Individuals with long-chain FAOD also showed a signifi-
cant reduction in many specific sphingomyelins (SMs),

critical sphingolipids produced from de novo synthesis of cer-
amide (Cer) in the endoplasmic reticulum (Gault et al 2010).

C
P

T
2

C
P

T
2

L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D

TG58:9
TG52:6.1
TG52:6
TG46:3
TG46:2
TG44:1
TG14:0/14:0/14:0

PE36:3Ox

plasmenylPC34:2

PC40:5B
PC40:5

PC36:2Ox
PC35:3
PC35:2B
PC35:2A
PC35:1
PC34:3Ox
PC34:2OxA
PC34:1Ox
PC34:0Ox
PC33:2

SM43:2A
SM43:1
SM41:2
SM40:2B
SM38:1B
SM38:1
SM33:1.1
SM33:1
SM18:2/23:0
SM18:1/21:0
SM18:1/14:0

Cer42:1:Cer42:1
Cer40:1
Cer18:1/23:0

1−hex−2−8−eicos−
sn−glycero−3−phos

Triglycerides

Phosphat dyl-cholines

Sphingomyelins

Ceramides

Phosphat dyl-
ethanolamine

Glycerophospholipid

BB943961
BB223675
BB223597
BB223548
BB223521

7.23_823.67
6.64_821.65
6.55_795.63
6.29_807.63
5.77_1595.18
5.76_1594.17
5.76_1572.19
5.39_764.56
5.17_794.06
5.15_1172.84
5.11_760.91
5.11_1539.12
5.11_1538.11
4.86_766.55
4.5_711.54
4.2_697.52
CSH_negESI_091
CSH_284
CSH_261
10.85_973.76
9.85_941.7
9.78_894.74
9.47_923.73
9.16_785.6
9.15_769.63
9.08_759.59
9.08_743.62
5.04_798.56
4.46_774.56
CSH_293
CSH_057

Unknown Lipid Metabolites

Unknown Primary Metabolites

C
P

T
2

C
P

T
2

L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D
L
C

H
A

D

log2 fold difference

Color Key

401- 12- 324- 3-

J Inherit Metab Dis (2016) 39:399–408 403



Considering the close relationship between SM and Cer
biochemistry, it is perhaps not surprising that both types
of metabolites were concurrently decreased in FAOD.
Therefore, it seems plausible that there could be an
FAOD-associated alteration in enzymology affecting either
Cer production or degradation. Importantly, the SM and
Cer are being measured in the plasma lipid fraction which
almost certainly stems from lipoproteins (Kontush and
Chapman 2010) and it remains possible that Cer and SM
are sequestered in membranes in the FAOD condition and
are not reaching the plasma as components of lipoproteins.
Although subjects were tested in the overnight-fasted state,
an important consideration is that there were dietary differ-
ences between controls and FAOD subjects (i.e., high car-
bohydrate, low fat diet in FAOD); this might have impact-
ed lipoprotein dynamics and hence contributed to differ-
ences in blood complex lipid profiles.

There were also significant changes in metabolites from
another membrane lipid class, phosphatidylcholines (PC),
that contain two fatty acid chains esterified to glycerol and
a phosphodiester linkage to choline (Cole et al 2012). PCs
are one of the most abundant lipid classes in cell mem-
branes (Domingues et al 2008) and comprise between 60
and 80 % of lipoprotein shells (Cole et al 2012).
Interestingly, different classes of PC had opposing direc-
tionality in plasma concentrations in FAOD subjects. PC
species with 33–36 carbons (two acyl chains whose car-
bons added together equal 33–36, i.e., PC33=C16+C17)
were decreased or unchanged, and two with 40 carbons
were increased in the FAOD plasma. These differences in
odd long-chain fatty acids (i.e., C17) could be due to likely
greater intake of dairy fat in the control subjects (Jenkins
et al 2015) or differences in gut microbial metabolism

(Lahti et al 2013). The totality of these findings again point
to the potential impact of FAOD on lipid enzymology and
fatty acid partitioning.

One hypothesis regarding FAOD-associated increase in
PC40 metabolites and several species of TGs, suggests a re-
flection of enhanced LCFA elongation, somehow channeled
toward incorporation into PCs and TGs. In contrast, SM40
and Cer40 metabolite concentrations were generally reduced,
further suggestive of a preferential incorporation of products
of LCFA elongation into PCs and TG. It is possible that only
certain classes of fatty acids are more robustly utilized (via
trafficking/channeling, differential enzymatic regulation,
etc.) by the FAOD liver for incorporation into very low-
density and HDL (Jacobs et al 2008). Future analysis into
specific lipoprotein pools would prove fruitful in identifying
such alterations in the FAOD condition.

We had anticipated much more broad shifts in intermediary
metabolism of non-lipid pathways in individuals with FAOD
(Houten et al 2013), i.e., carbohydrates and amino acids.
Changes in alanine have been noted in fed CPT2 patients vs.
healthy controls post-exercise, although no differences were
seen at rest (Orngreen et al 2005). Although only plasma, and
not tissue, concentrations of alanine were lower in overnight
fasted and post-absorptive murine LCAD knockout mice,
Houten et al postulated that systemic amino acid metabolism
was altered due to a dysregulation in tissue alanine amino-
transferase activity (Houten et al 2013). Further, cardiac glu-
cose uptake was increased in cardiac tissue of VLCAD KO
mice compared to wild-type animals (Tucci et al 2014). Yet,
our novel global metabolomics data support the idea that in
well-controlled overnight fasted FAOD individuals, there is
only a limited effect on non-lipid pathways. Notably, although
our results for organic acids (citrate, isocitrate, aconitate, and
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malate) involved in TCA function did not meet stringent sta-
tistical significance in an omics-based study, differential ef-
fects of FAOD on TCA metabolites have been previously
observed in cardiac tissue of fasted LCAD knockout mice
(Bakermans et al 2013). A form of vitamin E that is found
predominantly in seeds, ϒ-tocopherol, was also reduced in the
individuals with FAOD but did not achieve statistical signifi-
cance in this study. The FAOD-associated reduction might be
due to low dietary intake.

These data have been assessed with a few limitations
that may impact interpretation. FAOD subjects were fed a
low-fat diet compared to controls and had been taking
MCTs prior to study participation, which may have an im-
pact on plasma lipids. We obtained plasma samples after a
10 h overnight fast in order to minimize post-prandial dif-
ference in the diet; however, this period of fasting may not
completely remove the effect of diet. Interestingly, Tucci et
al observed elevated cardiac concentrations of ketone bod-
ies in post-prandial VLCAD KO and wild-type mice fed
12 % of total energy from MCT (Tucci et al 2014). They
did not measure plasma concentrations of ketone bodies,
but it would suggest that post-prandial production of ke-
tone bodies would have been substantially increased fol-
lowing MCT feeding. In contrast, we found no differences
in plasma 3-hydroxybutanoic acid between post-absorptive
FAOD subjects and controls, even though FAOD subjects
consumed supplemental MCT at 9–12 % of total energy
intake. This would suggest that plasma concentrations of
ketone bodies normalize after an overnight fast, and, per-
haps tissue concentrations could serve as a more sensitive
marker of MCT consumption. Regardless, it is likely that a
combination of genetic and nutritional factors are driving
nutrient partitioning in patients with long-chain FAOD, but
future studies controlling for dietary intake will be required
to de-convolute genetic-specific differences.

In summary, we have for the first time applied meta-
bolomics tools to determine broad metabolic shifts that
accompany long-chain FAOD (LCHAD or CPT2
deficiency). The results clearly indicate that limited
mitochondrial LCFA oxidation triggers selective re-
partitioning of LCFA into specific complex lipids, espe-
cially TGs and PCs, in liver and possibly other tissues,
with a reduced partitioning toward the SM/Cer pathways.
The specific mechanisms by which this takes place re-
main unknown, but may involve altered metabolite
channeling or enzyme activities associated with complex
lipid flux (i.e., in pathways associated with ceramide and
sphingolipid metabolism). Prospective studies that con-
trol for the potential confounder of diet and that assess
enzyme flux should help better define the origins of
FAOD-associated metabolite patterns. It remains to be
seen if under more challenged conditions in which lipol-
ysis is triggered (i.e., illness, heavy exercise, poor

nutritional control or prolonged fasting), metabolomics
patterns would be even more dramatically altered
in FAOD, with the possibility of local long-chain
acylcarnitines impacting membrane-associated enzyme
systems leading to changes in blood SM, Cer, PC, and
TG signatures (McCoin et al 2015). The specific metab-
olites altered in FAOD, described herein, might enable
development of new diagnostic tools (complementary to
traditional acylcarnitine profiling) with the potential to
identify disease risk, FAOD sub-types or severity.

Methods

SubjectsDetailed information regarding the study and subject
recruitment has been published previously (Gillingham et al
2013). Briefly, age-, sex-, and BMI-matched FAOD and con-
trol subjects were recruited to Oregon Health & Science
University (OHSU) for a study approved by the OHSU
Institutional Review Board (IRB no. 817). There were 11
subjects (six male, five female) in the control group and 12
subjects in the FAOD (seven male, five female) with average
ages of 15.7 and 14.7 years, respectively. FAOD was con-
firmed via medical record reviews and diagnostic evidence,
except for one subject who did not present clinically with
metabolic disease by traditional measures, but was diagnosed
via genotype following diagnosis of a sibling’s disease. All
subjects were admitted to the OHSU Clinical and
Translational Research Center for completion of the study
procedures. FAOD subjects were all following a low-fat diet
upon admission for 1.5 days prior to fast (10–20 % total en-
ergy from long-chain triglycerides – LCT, 9–13 % medium-
chain triglycerides (MCT), 56–76 % carbohydrate, 8–15 %
protein); 11 subjects regularly consumed oil supplements con-
taining MCT (9–12 % of total energy fromMCT), 10 subjects
were on prescribed carnitine supplementation (0.9 to 4 g per
day), and no subjects were consuming triheptanoin. The con-
trol subjects were consuming their regular diet (approximately
31 % total energy from lipids, 10 % from protein, and 59 %
from carbohydrates). The participants were subjected to a 10 h
overnight fast after which plasma was collected in EDTA,
frozen at −80 °C, and subjected to one to two freeze-thaw
cycles prior to metabolomics and lipidomics analysis. Blood
samples were stored in a study-specific data repository and
released with prior subject consent for this analysis (OHSU
IRB 817).

Plasma metabolomics and lipidomics analyses Plasma
acylcarnitines were determined by electrospray tandem
mass spectrometry at the Mayo Clinic Biochemical
Genetics Laboratory as described previously (Gillingham
et al 2013; Smith and Matern 2010). An exemption for a
full board review was obtained from the UC Davis IRB
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(625805–1) for the plasma metabolomics analysis portion
of the study, as de-identified samples were used. Plasma
samples were thawed on ice, aliquoted and submitted to the
West Coast Metabolomics Center at the University of
California Davis for an untargeted metabolomics analysis.
Plasma samples (15 μL) were extracted using 1 mL of
degassed acetonitrile:isopropanol: water (3:3:2; v/v/v) at
−20 °C, centrifuged, decanted, and dried. Membrane lipids
and triglycerides were removed by adding 500 μL of
acetonitrile/water (1:1; v/v), followed by evaporation to
dryness. Internal standards were added (13 C8–C30 fatty
acid methyl esters) and samples were derivatized by 10 μL
methoxyamine hydrochloride in pyridine followed by
90 μL MSTFA for trimethylsilylation of acidic protons.
Samples were injected into an Agilent 6890 gas chromato-
graph and separated using a 30 m long, 0.25 mm i.d.
Rtx5Sil-MS column at a constant flow of 1 mL/min while
ramping the oven temperature from 50 °C to 330 °C with
22 min total run time. Mass spectrometry was conducted
on a Leco Pegasus IV time of flight mass spectrometer with
a 280 °C transfer line temperature, electron ionization at
−70 eV and an ion source temperature of 250 °C. Mass
spectrometer operated between m/z 85 and 500 at 17 spec-
tra s−1. The resulting data were annotated using the
BinBase method using an automated database at the West
Coast Metabolomics Center (Fiehn et al 2005). The
BinBase database matches the sample mass spectrum in-
formation and retention index against the Fiehn lab mass
spectral library of over 1200 authentic standards spectra
and NIST05 commercial library. Metabolites were reported
if they met the following criteria: they must be present in
greater than 25 % of all of the samples and true peak de-
tection must have occurred in at least 50 % of a given
condition (i.e., FAOD or control) (Scholz and Fiehn
2007). Reliably measured peaks found in some samples,
but not of the quality matching others, were replaced by
searching the raw data for the highest signal with 2 s of the
target retention time minus the lowest signal within 5 s of
the target retention time. Individual metabolites were nor-
malized by the sum of identified metabolite quantifier ion
peak heights (QIPH) present in each sample. These relative
abundances were used for all subsequent statistical analy-
ses. In depth details of the protocol can be found elsewhere
(Fiehn and Kind 2007).

Plasma lipidomics were also analyzed at the West Coast
Metabolomics Center by charged-surface hybrid column-
electrospray ionization quadrupole time of flight tandemmass
spectrometry (CSH-ESI QTOF MS/MS) in both positive and
negative modes using methods described previously (Cajka
and Fiehn 2014). Samples were extracted using the Matyash
protocol using methyl tert-butyl ether (MTBE) (Matyash et al
2008). Briefly, 20 μL of plasma was mixed with 225 μL of ice
cold degassed MeOH and vortexed for 10 s, 750 μL of ice-

cold degassed MTBE was then added followed by 10s vortex
and shaking (6 m at 4 °C). MilliQ water was added (188 μL)
followed by vortexing (20 s) and centrifugation (2 min; 14,
000 g). The resulting upper phase is then transferred (350 μL)
to a separate tube, dried, and reconstituted with 65 μL
MeOH:toluene+CUDA (9:1, v/v). Aliquots of 30 μL were
transferred to two separate vials with micro-inserts for
UHPLC-QTOF-MS analysis. Samples (3 μL) were injected
at 65 °C and separated using a Waters Acquity UPLC CSH
C18 column (100mm×2.1 mm)with a particle size of 1.9 μm
and a flow rate of 0.6 mL/min. Mass spectrometry was con-
ducted for positively charged ions (PC, lysoPC, PE, and PS)
with an Agilent 6530 QTOF MS (resolution: 10,000) and
for negatively charged ions (free fatty acids and
phosphatidylinositols) with an Agilent 6550 QTOF MS (res-
olution: 20,000). Both mass spectrometers operated at full
scan range m/z 65–1,700. Peak identification was processed
in MassHunter Qual (Agilent) using the MS/MS information
and Fiehn laboratory LipidBlast spectral library (Kind et al
2013) and then imported to MassProfilerProfessional for peak
alignment. Results are provided as quantifier ion peak heights
and normalized to the sum of all peak heights for all identified
metabolites for each sample. In-depth details of the protocol
can be found through the Metabolomics Workbench under
protocol number 163 (http://www.metabolomicsworkbench.
org/protocols/protocoldetails.php?file_id=163).

Statistical analysesAll statistical analyses were performed in
R version 3.0.2 (Development Core Team 2005). Group dif-
ferences among clinical characteristics were assessed previ-
ously (Gillingham et al 2013). Clinically-relevant
acylcarnitines were assessed for normality using Anderson-
Darling tests. Acylcarnitines that were not normally distribut-
ed were log transformed and again assessed for normality
using Anderson-Darling tests. If normality was still not
achieved after log transformation, then non-parametric tests
were used on un-transformed data. Group differences in
acylcarnitine data were assessed with independent t-tests for
normally distributed data (including log-transformed data)
and Mann Whitney U tests for non-normally distributed data.
Metabolomic and lipidomic data were assessed for group dif-
ferences byMannWhitney U tests. P-values from group com-
parisons were corrected for false discovery rate (Benjamini
and Hochberg 1995) at Q = 0.05. Associations among
acylcarnitines and lipidomics/metabolomics data were
assessed with Spearman’s correlations. All statistical tests
were significant at α=0.05.

Data used in multivariate analyses were first assessed
for univariate outliers with Grubbs’ test for outliers at
α = 0.01. Outliers were removed from analysis and all
missing data (including removed outliers) were imputed
via Indirect Least Squares (Kim et al 2005; Troyanskaya
et al 2001). Outlier assessment and removal effected
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<0.4 % of the data from the lipidomics data and <0.6% of the
untargeted metabolomics data. Data were log transformed,
mean-centered, and scaled to unit variance before all multi-
variate analyses. Partial least squares-discriminant analysis
(PLS-DA) was used to determine variables that discriminate
individuals with FAOD from controls (Mevik and Wehrens
2007). An external cross-validation scheme was used to de-
termine PLS-DA model validity, where 2/3 of the subjects
were randomly selected to develop the model (Btraining set^)
and the remaining 1/3 was used to measure the predictive
performance (Btest set^). Feature selection was assessed with
variable importance in projection (VIP) scores (Mehmood et
al 2012; Wold et al 2001) from bootstrapped PLS-DA models
(Piccolo et al 2015). No data from the test set was utilized in
model development or feature selection. An iterative back-
ward elimination strategy was utilized to determine final
PLS-DA models. In short, variables with bootstrapped VIP
scores ≥1 were ranked and PLS-DA models were iteratively
fit with each successive model removing the highest ranked
variable. Elimination of variables terminated when a PLS-DA
model failed to predict at least 67 % of test subjects within the
first three latent variables. Remaining variables were consid-
ered non-important and the variables removed during the
elimination strategy were chosen to fit the final PLS-DA from
bootstrapped PLS-DA models.
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