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Abstract Peroxisomes and mitochondria are ubiquitous,
highly dynamic organelles with an oxidative type of me-
tabolism in eukaryotic cells. Over the years, substantial
evidence has been provided that peroxisomes and mito-
chondria exhibit a close functional interplay which im-
pacts on human health and development. The so-called
Bperoxisome-mitochondria connection^ includes metabol-
ic cooperation in the degradation of fatty acids, a redox-
sensitive relationship, an overlap in key components of
the membrane fission machineries and cooperation in
anti-viral signalling and defence. Furthermore, combined
peroxisome-mitochondria disorders with defects in organ-
elle division have been revealed. In this review, we pres-
ent the latest progress in the emerging field of peroxisom-
al and mitochondrial interplay in mammals with a partic-
ular emphasis on cooperative fatty acid β-oxidation, re-
dox interplay, organelle dynamics, cooperation in anti-
viral signalling and the resulting implications for disease.

Introduction

Peroxisomes represent a class of ubiquitous and dynamic sin-
gle membrane-bound organelles in eukaryotic cells. They are
devoid of DNA, but are similar to mitochondria in that they
show an oxidative type of metabolism. Peroxisomes fulfil
important functions in hydrogen peroxide and lipid metabo-
lism, which renders them essential for human health and de-
velopment (Wanders and Waterham 2006). In addition, per-
oxisomes can act as important intracellular signalling plat-
forms in redox-, lipid-, inflammatory-, and innate immunity
signalling (Odendall and Kagan 2013; Nordgren and Fransen
2014). In order to perform their multiple functions, peroxi-
somes are supposed to closely cooperate and interact with
other cellular organelles, including mitochondria (Fig. 1), the
endoplasmic reticulum (ER), and lipid droplets (Schrader et al
2013). In this review we will mainly focus on findings obtain-
ed in mammals and mammalian cells.

Over the years, substantial evidence has been provided that
peroxisomes and mitochondria exhibit a close functional in-
terplay (Schrader and Yoon 2007; Schrader et al 2013)
(Fig. 2). This is perhaps best illustrated by the metabolic co-
operation of mitochondria and peroxisomes in theβ-oxidation
of fatty acids to maintain lipid homeostasis (Fig. 3) (Wanders
2013) (see Metabolic cooperation of peroxisomes and
mitochondria section). More recently it has become evident
that peroxisomes and mitochondria contribute to cellular ROS
homeostasis and share a redox-sensitive relationship (Fig. 4a)
(Fransen et al 2012) (see Peroxisomal and mitochondrial
redox relationship section). Remarkably, both organelles also
share key proteins of their division machinery which high-
lights a coordinated biogenesis under certain conditions and
demands organised targeting and recruitment of those proteins
(Fig. 5) (Delille et al 2009; Schrader et al 2012) (see
Peroxisomal and mitochondrial membrane dynamics
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section). Furthermore, peroxisomes and mitochondria co-
operate in anti-viral signalling and defence (Fig. 4b) (Dixit
et al 2010; Kagan 2012) (see Cooperative roles of
peroxisomes and mitochondria in viral combat section).
The mechanisms of communication between the two organ-
elles are still elusive, but diffusion processes (e.g. via
PXMP2, a channel-forming peroxisomal membrane pro-
tein), physical contact sites (Fig. 1) and vesicular transport
have all been implicated (Antonenkov and Hiltunen 2012;
Horner et al 2011; Neuspiel et al 2008). The latter mecha-
nism is based on the observation that a class of
mitochondria-derived vesicles (MDVs) interact and fuse
with peroxisomes (Sugiura et al 2014). However, the phys-
iological role of this process is still unclear, and evidence
for a vesicular transport route from peroxisomes to mito-
chondria is missing.

Based on the above findings, we proposed the medical-
ly relevant concept of the Bperoxisome-mitochondrion
connection^ suggesting that peroxisomal alterations in
metabolism, biogenesis, dynamics and proliferation can
potentially influence mitochondrial functions, and vice
versa (Camoes et al 2009; Schrader et al 2013). In early
studies, morphological and biochemical alterations of mi-
tochondria were already reported in parallel with the ab-
sence of peroxisomes in the livers and kidneys of patients
suffering from Zellweger syndrome (Goldfischer et al
1973). Consequently, it was initially considered that
Zellweger patients were suffering from either a peroxi-
somal or a mitochondrial defect (Kelley 1983) before
the loss of peroxisome integrity and function was identi-
fied as the primary cause of this severe peroxisomal bio-
genesis disorder (Borst 1983, 1986; Singh et al 1984).
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Fig. 1 Mitochondria and
peroxisomes in mammalian cells.
(a) Immunofluorescence
microscopy showing the
distribution and morphology of
mitochondria (red) and
peroxisomes (green) in human
skin fibroblasts. Cells were
stained with antibodies to Pex14,
a peroxisomal membrane protein,
and to mitochondrial Tom20. (b-
c) Electron micrographs showing
intimate physical interactions of
peroxisomes (P) (black) and
mitochondria in the myocardium
of rodents and primates. (b)
Rabbit Heart, Mag. 57,000 ×; (c)
Elongated peroxisome; Heart of
Macaca java, Mag.
52,500×(from Hicks and Fahimi
1977). Peroxisomes were stained
by catalase cytochemistry using
the alkaline diamino-benzidine
technique
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Moreover, ultrastructural (e.g. swollen mitochondria, al-
terations at the inner mitochondrial membrane) and func-
tional alterations of mitochondria (e.g. impaired activity
of respiratory chain complexes) were reported in knock-
out mouse models for peroxisomal disorders (Baumgart
et al 2001; McGuinness et al 2003; Dirkx et al 2005;
Ferrer et al 2005). In a recent study loss of peroxisomal
metabolism in hepatocytes by liver-specific knockdown of
PEX5 revealed perturbation of the mitochondrial inner
membrane, depletion of mitochondrial DNA, increased
oxidative stress and promotion of mitochondrial biogene-
sis independent of PGC-1α (Peeters et al 2014). Acute
deletion of PEX5 in vivo using adeno-Cre virus mimicked
these effects, suggesting that mitochondrial perturbations
rapidly occur following loss of functional peroxisomes
(Peeters et al 2014). In line with this, features of a con-
comitant mitochondrial myopathy were reported in
Zellweger patients underscoring the role of secondary mi-
tochondrial dysfunction in Zellweger syndrome, potential-
ly contributing to the clinical phenotype (Salpietro et al
2014). These findings are in support of a tight interplay
between peroxisomes and mitochondria and highlight po-
tential compensatory roles between both organelles.

Metabolic cooperation of peroxisomes and mitochondria

The cooperation of peroxisomes and mitochondria in the β-
oxidation of fatty acids is perhaps the best known example for
peroxisome-mitochondria crosstalk (Figs. 2 and 3). Below we
will address the fatty acid β-oxidation pathways in mammals
in detail (Fatty acid β-oxidation — the principal pathways in
mammals), highlight their regulation (PPARα and beyond—
regulators for peroxisomal and mitochondrial fatty acid β-ox-
idation), and discuss functional aspects of peroxisomal and
mitochondrial β-oxidation (Functional aspects of β-
oxidation in peroxisomes and mitochondria). Furthermore,
we will address organelle interplay and fatty acid metabolism
disorders (The fatty acid metabolism disorders — incidence
for a mitochondrial-peroxisomal interplay?). It should be not-
ed that crosstalk between both organelles is not restricted to
fatty acid β-oxidation and that other metabolic pathways in
peroxisomes also depend on mitochondria for subsequent me-
tabolism. Examples include the detoxification of glyoxylate,
which in humans requires the enzyme alanine-glyoxylate ami-
notransferase (AGT) that converts glyoxylate and alanine into
glycine and pyruvate in peroxisomes. Glycine is then routed to
mitochondria for oxidation by the glycine cleavage pathway
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Organelle Division:
Key fission components DLP1, Mff, Fis1, GDAP1are shared by 
both organelles
(Koch et al. 2003, Koch et al. 2005, Gandre-Babbe et al. 2008, 
Otera et al. 2010, Huber et al. 2013)

Antiviral Signalling:
MAVS on peroxisomes and mitochondria transduce 
interferon-dependent and independent anti-viral signaling
(Dixit et al. 2010, Horner et al. 2011, Odendall et al. 2014) 

Vesicular trafficking pathway:
Vps35-dependent trafficking of MAPL-enriched MDVs to 
peroxisomes
(Neuspiel et al. 2008, Braschi et al. 2010)

Metabolic cooperation:
Fatty acid beta-oxidation (animals & fungi)
Glyoxylate/Citrate Cycle (plants)

ROS-metabolism
Peroxisome-derived ROS modulate mitochondrial REDOX 
potential and can trigger apoptosis
(Ivashchenko et al. 2011, Wang et al. 2013, Salcher et al. 2014)
Shared proteins: SOD1, Peroxiredoxin 5, DEPP

Combined Po-Mito disorders:
DLP1-deficiency (Waterham et al. 2007)
Mff-deficiency (Shamseldin et al. 2012)

DEPP

Fig. 2 Overview of the interconnections between peroxisomes (left) and
mitochondria (right) in mammals. β-Ox, fatty acid β-oxidation; Cat, per-
oxisomal catalase; RC, respiratory chain; VLCFA, LCFA, MCFA, very

long-chain, long-chain and medium chain fatty acids (adapted from
Islinger et al 2012)
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(Wanders et al 2011). In addition, peroxisomal α-oxidation of
phytanic acid relies on mitochondria. The peroxisomal en-
zyme phytanoyl-CoA hydroxylase catalyses the hydroxyl-
ation of phytanoyl-CoA into 2-hydroxyphytanoyl-CoA using
2-oxoglutarate as co-substrate with succinate and CO2 as
products. The 2-oxoglutarate can be regenerated from succi-
nate via part of the citric acid cycle in mitochondria further
highlighting the crosstalk between both organelles (Wanders
et al 2011). Furthermore, continued peroxisomal fatty acid α-
oxidation requires ATP which is most likely generated by the
mitochondrial oxidative phosphorylation system (Wanders
et al 2011).

Fatty acid β-oxidation— the principal pathways in mammals

The identification of a peroxisomal fatty acidβ-oxidation sys-
tem in mammals (Lazarow and De Duve 1976) may be
regarded as an initiating discovery for the functional intercon-
nection between peroxisomes and mitochondria. Indeed, both

organelles possess an astonishingly similar enzyme inventory
for the catabolism of fatty acids (Fig. 3). During the subse-
quent decade research on peroxisomes was primarily focused
on deciphering the functional differences between the perox-
isomal and mitochondrial pathways, which show differential
but overlapping substrate spectra. Generally, the terminology
for fatty acids with different chain length varies among litera-
ture, especially ifβ-oxidation is viewed from a Bperoxisomal^
or Bmitochondrial^ perspective. In this review we will refer to
Bvery long-chain^ for fatty acids with a backbone>C20,
Blong-chain^ between C20 and C16, Bmedium-chain^ be-
tween C14 and C8 and Bshort-chain^<C8. Prior to degrada-
tion by β-oxidation, fatty acids have to enter the organelles.
Short- and medium-chain fatty acids are comparably water-
soluble and may enter organelles by diffusion through unse-
lective pores (Antonenkov and Hiltunen 2012). The hydro-
phobic long- and very long-chain fatty acids (VLCFAs), how-
ever, require special transporters to cross cellular membranes
(Fig. 3). In both organelles this transport requires a previous

Fig. 3 Comparison of peroxisomal and mitochondrial fatty acid β-
oxidation pathways. As long-chain fatty acids cannot pass the organelle
membranes by mere diffusion, fatty acids have to be actively transported
across both peroxisomal and mitochondrial membranes. Prior to
transport, fatty acids are activated outside the organelle by conjugation
to either coenzyme A (peroxisomes) or carnitine (mitochondria). The
activated long-chain fatty acids are imported into the organelles by
specific import systems, whereas short- and medium chain fatty acids
are supposed to enter mitochondria by diffusion prior to activation.
Subsequently, fatty acids are degraded by β-oxidation in peroxisomes
and mitochondria in four consecutive reactions (① - ④). Concerning
substrate specificity, peroxisomes degrade long- to very long-chain fatty

acids (> C16) down to a chain length of 6–8 carbon atoms. The chain-
shortened fatty acids are subsequently exported to mitochondria, which
preferentially metabolize long- to short chain fatty acids. Mechanistic
differences in fatty acid import and the catabolic reactions carried out in
peroxisomes and mitochondria are marked in red; note that the enzyme
sets required for steps② to ④ show a phylogenetic relationship in both
organelles, whereas ACOX appear to be a peroxisomal invention. Steps
② and ③ are combined in bifunctional enzymes (D-BP, L-BP) in
peroxisomes. Mitochondria possess both, individual enzymes for each
step of the pathway as well as a trifunctional enzyme consisting of two
polypeptide chains (HadhA, HadhB) combining steps ② to ④ (from
Camoes et al 2014)
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activation step producing acyl-CoA. To this end peroxisomes
and mitochondria in mammals possess various acyl-CoA syn-
thetases associated to the protein families of long-chain acyl-
CoA synthetases (ACSL) and fatty acid transport proteins
(FATP). However, there is still some uncertainty as to which
proteins reside on peroxisomes and mitochondria. Originally,
palmitoyl-CoA synthetase (ACSL1) was described as a pro-
tein shared by peroxisomes, mitochondria and the ER
(Bronfman et al 1984). Following the identification of several
ACSL isoforms, two subsequent studies, using ACSL-

specific antibodies, suggested that ACSL5 localizes to mito-
chondria, ACSL4 to peroxisomes and ACSL1 to microsomes
(Lewin et al 2001, 2002). In contrast, recent quantitative pro-
teomic studies showed an enrichment of ACSL1 and ACSL5
in peroxisomal fractions (Wiese et al 2007; Islinger et al 2010;
Gronemeyer et al 2013), but failed to identify ACSL4. More-
over, ACSL3 was recently described as a constituent of mito-
chondria and the endoplasmic reticulum (Wu et al 2011). Be-
sides ACSL, mitochondria and peroxisomes appear to contain
acyl-CoA synthetases of the FATP-class: FATP1 and FATP2,
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A - Interplay in ROS metabolism
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Fig. 4 (a) Redox-sensitive relationship between peroxisomes and
mitochondria. Oxidative stress generated in peroxisomes by the
genetically-encoded photosensitizer KillerRed induces mitochondria-
mediated cell death. KillerRed is supposed to generate superoxide
radicals in peroxisomes and to result in lipid peroxidation. Peroxisomal
KillerRed results in the generation of H2O2 in mitochondria which
initiates cell death, partially mediated by Bax, Bak, cytochrome c and
caspase-3 activation. This process can be counteracted by targeted
overexpression of peroxisomal glutathione-S-transferase kappa 1
(GSTK1), superoxide dismutase 1 (SOD1) and mitochondrial (but not
peroxisomal) catalase (CAT). See text for details (from Wang et al

2013). (b) Cooperation of mitochondria and peroxisomes in cellular
antiviral innate immune response. Upon viral infection, viral RNA is
recognized by the RNA helicase RIG-I (retinoic acid-inducible gene 1
protein) or LSm14A, a processing body-associated protein, in the cytosol.
Active RIG-I interacts with MAVS (mitochondrial antiviral-signalling
protein), a membrane adaptor protein which localizes to mitochondria,
peroxisomes and mitochondria-associated membranes (MAM). Viral
DNA can be recognized by LSm14A, which interacts with MITA
(mediator of IRF3 activation) at peroxisomes. Each recognition
pathway mediates an anti-viral response with different kinetics and
downstream effectors. See text for details
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respectively (Sebastian et al 2009; Falcon et al 2010). FATP2
was earlier described as a very long-chain synthetase
(VLACS) localized to peroxisomes and microsomes (Uchida
et al 1996). In knockdown experiments, Falcon et al (2010)
demonstrated that FATP2 is involved in the cellular uptake of
long- and VLCFAs at the plasmamembrane and peroxisomes,
where it contributes to approximately 50 % of fatty acid im-
port. Besides these findings, the mechanistic contribution of
FATP2 to peroxisomal fatty acid import remains mysterious.
At the plasma membrane FATP2 was reported to be directly
involved in the transport of fatty acids prior to CoA coupling
(Melton et al 2013). In line with this, acyl-CoA synthetase
activity of VLACS was localized inside peroxisomes (Lazo
et al 1990). Thus, it remains to be clarified if peroxisomal
FATP2 is more than just a VLACS and also involved in fatty
acid transport. In addition, other shuttle systems for acyl-CoA
exist in peroxisomes and mitochondria and differ substantially
between both organelles. The relatively small and medium
chain-fatty acids are supposed to be able to enter the mito-
chondria by diffusion, whereas long chain fatty acids (C14–
C20) require a transport system. In mitochondrial fatty acid
import, acyl-groups are first transferred fromCoA to carnitine,
translocated across the inner mitochondrial membrane as
carnitine-esters and finally the carnitine-group is re-
exchanged to CoA for further processing (Fig. 3). For this
process, mitochondria in mammals contain a single carnitine
palmitoyl-transferase – CPT2 – and a single carnitine acyl-
carnitine translocase (CACT) at the inner mitochondrial mem-
brane. For the initial conversion of acyl-CoA to acyl-carnitine,
however, they possess three CPT1 isoforms (a-c), which are

encoded by individual genes (Bonnefont et al 2004). Peroxi-
somes also likely inhabit a carnitine shuttle. However, in con-
trast to mitochondria, the peroxisomal CPTs have a preference
for acetyl- and medium-chain acyl-CoAs and are supposed to
contribute to the export of the respective fatty acids
(Antonenkov and Hiltunen 2012). For fatty acid import, per-
oxisomes utilize three membrane proteins of the ABC trans-
porter class (ABCD1-3) (Morita and Imanaka 2012) (Fig. 3).
In plants, peroxisomal ABC transporters appear to cleave the
CoA-group from the fatty acyl-chain prior to transport across
the membrane. Once inside the organelle the fatty acids are
reactivated by intrinsic peroxisomal acyl-CoA synthetases
(VLACS) physically interacting with the transporters (De
Marcos Lousa et al 2013). By contrast, mammalian peroxi-
somal ABC transporters were reported to directly import the
acyl-CoAwithout the requirement of further enzymatic activ-
ities (Wiesinger et al 2013). All three mammalian transporters
were recently functionally characterized by heterologous ex-
pression in a yeast strain where the endogenous orthologues
have been deleted (van Roermund et al 2008, 2011, 2014).
Indeed, all three are half transporters and act as dimers, which
are able to transport fatty acyl-CoA across the peroxisomal
membrane with a distinct but overlapping substrate spectrum.
ABCD1 exhibited highest affinities to the very hydrophobic
saturated VLCFAs (C24:0–C26;0), ABCD2 to slightly more
hydrophilic very long-chain to long chain-fatty acids (C22:0–
C24:0, C22:6) and ABCD3 to the most hydrophilic fatty acid
species (C20:5) as well as dicarboxylic acids (C16:0DCA).
The data for ABCD1 and ABCD2 are corroborated by the
elevated levels of VLCFAs found in the respective knockout
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Fig. 5 Schematic view of the key fission proteins and interaction partners
on peroxisomes and mitochondria in mammals. Shared key components
of the mitochondrial and peroxisomal fission machineries include DLP1,
a large dynamin-like GTPase involved in final membrane scission of
constricted membranes, and the DLP1-membrane adaptor proteins Mff
and Fis1. Mff is supposed to be the major DLP1 receptor for organelle
fission. GDAP1 can regulate both mitochondrial and peroxisomal mor-
phology and division in an Mff and DLP1-dependent manner. The
peroxin Pex11pβ is an exclusively peroxisomal membrane protein

involved in the regulation of peroxisome abundance and in membrane
deformation/elongation prior to fission. Pex11pβ can oligomerize and
interacts with both Fis1 and Mff, which can homodimerize as well.
Mid51 and Mid49 are mitochondrial membrane adaptors which can
sequester DLP1 and inhibit its function. This process may be regulated
by mitochondrial Fis1, which interacts with TBC1D15, a Rab GTPase
activating protein. Upregulation of Mid49 on mitochondria can deplete
DLP1 from peroxisomes resulting in peroxisome elongation due to
reduced division (red arrow). See text for details
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mouse models (Lu et al 1997; Ferrer et al 2005). The re-
cently generated ABCD3 knockout extended the spectrum
of transported substrates, as the mice also showed elevated
levels of bile acids (Ferdinandusse et al 2014). Thus, the
individual fatty acid transporter systems function as initial
filters, which according to their substrate spectrum, prefer-
entially direct peroxisomal β-oxidation towards VLCFAs
whereas mitochondria are specialized for fatty acids with
shorter chain length. After import the activated fatty acyl-
CoAs are degraded in both organelles in mechanistically
quite similar pathways (Fig. 3). Generally, peroxisomes
and mitochondria chain-shorten fatty acids stepwise by
two C-atoms producing acetyl-CoA in four consecutive re-
actions: (1) the CoA-activated fatty acid chain is oxidized
by introduction of a double bond between C2 and C3, (2)
the 2-enoyl-CoA generated is hydrated forming 3-
hydroxyacyl-CoA, (3) a subsequent dehydrogenation reac-
tion produces 3-oxoacyl-CoA, which is (4) finally
thiolytically cleaved into acetyl-CoA and the shortened
acyl-CoA chain to be further degraded in subsequent reac-
tion cycles. While the enzymatic reactions for steps 2–4 are
comparable in both organelles, step 1 is catalyzed by an
acyl-CoA oxidase (ACOX) in peroxisomes but an acyl-
CoA dehydrogenase (ACAD) in mitochondria. Both pro-
teins belong to the superfamily of flavoenzymes and share
distant sequence homologies, but are mechanistically dis-
tinct. ACOXs transfer the electrons accepted during the
oxidation of acyl-CoA directly to molecular oxygen there-
by producing heat and the cytotoxic H2O2, whereas
ACADs deliver the electrons to the electron transfer protein
ETF1 for further integration into the ATP generating mito-
chondrial electron transfer chain of the inner membrane
(Figs. 2 and 3). Thus, mitochondrial β-oxidation is able to
generate an additional two ATP molecules per cleavage
cycle if compared to the peroxisomal system. With regard
to the enzyme inventory responsible for the pathway, both
organelles contain several enzymes for each reaction step,
which have different affinities for individual fatty acid spe-
cies. Mammalian peroxisomes possess three ACOXs: (1)
ACOX1 — with a substrate spectrum of saturated and un-
saturated straight chain as well as dicarboxylic acids, (2)
ACOX2 — acting on 2-methylacyl-CoAs, and (3) ACOX3
which is able to process both methyl-branched and straight
chain fatty acids (Van Veldhoven 2010). Furthermore, the
animal genome is predicted to contain a fourth ACOX gene
(ACOXL) with different splice variants with and without a
peroxisomal targeting signal (PTS1). However, no experi-
mental data on the localization and enzymatic properties of
this ACOX exist to date. Mammalian mitochondria contain
up to eight ACADs for the first step in β-oxidation (Shen
et al 2009). According to their substrate specificity the most
prominent ones are named very long-chain (ACADV),
long-chain (ACADL), medium-chain (ACADM), short-

chain (ACADS) and short branched-chain (ACDSB) acyl-
CoA dehydrogenase. More recently, three additional
ACADs (ACAD9-11) have been identified. All three were
reported to possess enzymatic activities to very long- and
long-chain fatty acids (Zhang, Zhang et al 2002; He et al
2007; He et al 2011). Interestingly, ACAD11 has been
shown to also be targeted to peroxisomes in mammals and
fungi (Islinger et al 2007; Wiese et al 2007; Camoes et al
2014) and resides predominantly in peroxisomes of rodent
liver (Camoes et al 2014) which suggests that ACAD11 is
an ancient peroxisomal protein. The second and third steps
of the pathway are catalyzed by a single enzyme in both
subcellular compartments (Fig. 3). In peroxisomes there are
two bi func t iona l enzymes (PBE) wi th di ffe ren t
stereoselectivity — the L- and the D-PBE combining
enoyl-CoA hydratase and 3-hydoxyacly CoA dehydroge-
nase functions. Interestingly, both proteins are not phylo-
genetically linked, since the two L-PBE domains are true
members of the crotonase and 3-hydoxyacly CoA dehydro-
genase protein families whereas the D-PBE is a fusion of a
short chain dehydrogenase and a hot dog superfamily mem-
ber. In this respect, the L-PBE shares more similarities with
the respective mitochondrial enzymes. With regard to their
function, the D-PBE seems to be majorly involved in the
processing of very long-chain and branched-chain fatty
acids, whereas the physiological role of the L-PBE is not
fully understood (Wanders et al 2010), but appears to be
involved in the degradation of long- to medium-chain di-
carboxylic acids produced during microsomal fatty acidω-
oxidation (Houten et al 2012; Ding et al 2013). In mito-
chondria the respective reactions for long- to medium-
chain fatty acids are performed by a similar fusion protein,
the α-subunit of the trifunctional enzyme (TFP), which is
acting in a multi-enzyme complex with the 3-ketoacyl-CoA
thiolase β-subunit (Fig. 3). Medium– to short-chain fatty
acids, however, are processed by individual hydratases, de-
hydrogenases and thiolases (Bartlett and Eaton 2004). The
last step of peroxisomal β-oxidation is again performed by
two enzymes: the classic peroxisomal 3-ketoacyl-COA
thiolase (ACAA1) and SCP-X, a fusion between a sterol
carrier protein and a thiolase domain (Fig. 3). Whereas the
ACAA1 metabolizes only straight-chain fatty acids, SCP-X
shows a broader substrate range and is able to also process
branched-chain fatty acids and bile acid precursors (Wan-
ders et al 2010). In addition to these inventories for the
principle steps of β-oxidation in peroxisomes and mito-
chondria, both organelles house several auxiliary enzymes
for the degradation of mono- and polyunsaturated fatty
acids including enoyl-CoA isomerase and di-enoyl-CoA
reductase enzymes as well as racemases. A detailed de-
scription of these enzymes is beyond the scope of this re-
view (see Houten and Wanders 2010; Van Veldhoven 2010)
for further details).
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PPARα and beyond — regulators for peroxisomal
and mitochondrial fatty acid β-oxidation

Mitochondrial and peroxisomalβ-oxidation is under metabol-
ic control of intermediates of this pathwaywhich are described
in closer detail in recent reviews (Saggerson 2008; Hunt et al
2014). However, lipid metabolism in both organelles is also
coordinated at the level of gene expression. Indeed, in parallel
with the initial biochemical characterization of peroxisomes
by Christian de Duve in 1965 (de Duve 1965) the effect of
fibrates on peroxisome numbers and lipid metabolism was
detected (Hess et al 1965; Svoboda and Azarnoff 1966). How-
ever, the mechanistic explanation for this phenomenon
remained undiscovered for another 25 years, when Issemann
and Green (1990) discovered the peroxisome proliferation ac-
tivating nuclear receptor (PPAR) α and its impact on cellular
peroxisome abundance. Since then three members of this nu-
clear receptor subfamily have been characterized in humans
(PPARα, γ, δ) and all have been shown to be involved in the
transcriptional control of lipid homeostasis but show distinct
ligand affinities, tissue specific expression patterns and target
different genes (Menendez-Gutierrez et al 2012). With respect
to their individual function, PPARα, which ismost prominent-
ly expressed in liver and kidney, is focused on the activation of
lipid catabolic processes. Correspondingly, PPARα induces
the transcription of genes regulating peroxisome biogenesis
in response to saturated and unsaturated long-chain fatty acids
and associated intermediates in lipid metabolism, which are
presumably its natural ligands, but also more specifically up-
regulates protein expression of peroxisomal β-oxidation and
auxiliary enzymes (Pyper et al 2010; Reddy and Hashimoto
2001). Likewise, genes of the mitochondrial β-oxidation sys-
tems are induced by PPARα, guaranteeing a concerted regu-
lation of both organellar systems (Cook et al 2000; Mandard
et al 2004). Compared to peroxisomes, however, up-
regulation of β-oxidation in response to peroxisome
proliferators is preferentially at the enzyme expression level,
whereas a mitochondrial proliferation is much less prominent
(Paget 1963; Eggens et al 1980). The functional significance
of PPARα activity is most obvious during fasting. PPARα-
null mice fed a standard chow develop normally, are fertile but
show an increase in adipose tissue if compared to controls in
later life stages (Costet et al 1998). During fasting, however,
the knockout animals develop severe hypoglycemia, hypo-
thermia, hypoketonemia and hepatic steatosis (Kersten et al
1999; Hashimoto et al 2000), emphasizing the importance of
PPARα for a parallel control of both β-oxidation pathways.
According to its tissue abundance, PPARα-induced activation
of peroxisomal and mitochondrial β-oxidation is most prom-
inent in the liver (Cook et al 2000). However, weak but sig-
nificant activation of β-oxidation as well as peroxisome pro-
liferation has been reported in the liver of PPARα-null mice
after application of PPARγ and PPARδ agonists. Thus, it is

tempting to ask, whether these transcription factors coordinate
peroxisomal and mitochondrial β-oxidation in tissues, where
they show higher expression rates. Indeed, PPARδ, which
shows a broader tissue distribution than its two relatives, has
been reported to control expression of mitochondrial and per-
oxisomal β-oxidation enzymes in mouse adipocytes and
cardiomyocytes, resembling PPARα activation in liver (Wang
et al 2003; Cheng et al 2004).

PPARγ is required for adipocyte and cardiocyte differenti-
ation during development (Barak et al 1999). In adults acti-
vated PPARγ was reported to stimulate the expression of
genes involved in fatty acid catabolism in the liver of diabetic
mice (Suzuki et al 2000) but anabolic lipid pathways in adi-
pocytes opposing PPARδ (Roberts et al 2011). Interestingly,
in neurons and astrocytes PPARγ ligands seem to induce per-
oxisomal biogenesis (Diano et al 2011; Zanardelli et al 2014).
Moreover, results from differentiated neuroblastoma cells sug-
gest that PPARγ activation could in parallel induce mitochon-
drial proliferation (Corona et al 2014). However, PPARγ-
mediated peroxisome and mitochondria proliferation does
not include a specific activation of β-oxidation capacities be-
sides activating biogenesis induces genes involved in the deg-
radation of ROS (e.g. mitochondrial SOD1 or peroxisomal
catalase) (Gray et al 2012; Corona et al 2014).

Peroxisome proliferator activating receptor γ co-activators
(PGC) interact with PPARs in order to modulate the tissue
specificity of nuclear receptor-controlled gene expression
(Handschin and Spiegelman 2006). However, PGCs, which
include PGC-1α, PGC-1β and PRC (PGC-1-related co-acti-
vator), interact with a variety of other nuclear receptors such
as the estrogen receptor-related receptors (ERRα), hepatocyte
nuclear factors (HNF4α) or muscle enhancer factors (MEF2)
(Puigserver 2005). Overall, PGCs are thereby involved in the
stimulation of mitochondrial oxidative metabolism and bio-
genesis and are abundant in tissues with high energy demands.
Interestingly, PGC-1α has been recently shown to promote
peroxisomal proliferation independent from PPARα in brown
adipose tissue (Bagattin et al 2010). Also other transcription
factors known to interact with PGC-1α like ERRα, NRF2 and
Foxo1 could not be identified as factors mediating the perox-
isomal PGC-response. Nevertheless, this report implies that
mitochondria and peroxisomes share further transcriptional
regulation systems, which are controlled by yet unknown tran-
scription factors. In this respect, future research will likely
identify additional regulative networks, which are involved
in a synchronized coordination of peroxisomal and mitochon-
drial metabolic functions.

Functional aspects of β-oxidation in peroxisomes
and mitochondria

As outlined above, peroxisomes and mitochondria metabolize
an overlapping, but nevertheless substantially different fatty
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acid spectrum. Under conditions of unrestricted access to fatty
acids, peroxisomes metabolize preferentially long-chain fatty
acids (C14–C18) (Lazarow 1978; Osmundsen et al 1979),
substantially overlapping with mitochondrial capacities. In
this respect, peroxisomal β-oxidation capacities mirror the
enzymatic substrate specificities of the ACOXs, which have
highest affinities towards long-chain fatty acids (Van
Veldhoven et al 1992). In vivo, however, cellular fatty acids
are majorly bound to fatty acid binding proteins and free fatty
acid concentrations are low. Under such conditions, mitochon-
drial β-oxidation is the dominating pathway for the degrada-
tion of long-chain fatty acids, which are the most frequent
fatty acids in fat deposits (Mannaerts et al 1979; Foerster
et al 1981). In contrast, under such conditions peroxisomes
are specialized on degradation of very long-chain and
branched-chain fatty acids, which accumulate in inherited per-
oxisomal disorders (see below). Thus the physiological role of
peroxisomal β-oxidation is not determined by the enzymatic
capacities of their ACOXs but by the transport systems across
their membrane. In this respect, the peroxisomal ABC-trans-
porters, according to their transport capacities, ensure that per-
oxisomes receive preferentially the less frequent but toxic
VLCFAs for degradation (van Roermund et al 2011, 2014).
Nevertheless, the estimations for the actual contribution of
peroxisomes to the total cellular β-oxidation vary substantial-
ly, depending on experimental conditions, ranging from<5 %
to up to 30 % for rodent hepatocytes (Thomas et al 1980;
Kondrup and Lazarow 1985). After import, peroxisomes de-
grade fatty acids not to completion, and according to the sub-
strate affinities of their respective enzymes only chain-shorten
fatty acids to chain length of approx. C8-C6. These medium-
chain fatty acids appear to be exported to mitochondria for
subsequent degradation. For this reason, peroxisomes likely
contain a carnitine shuttle system, as they possess medium-
chain and short-chain specific acylcarnitine transferases
(Markwell et al 1973; Farrell and Bieber 1983). However,
until now the existence of a respective membrane translocase
could not be convincingly proven (Antonenkov and Hiltunen
2012). Moreover, as an export alternative, peroxisomal
thioesterases produce internal medium-chain fatty acids which
are able to freely diffuse through peroxisomal membrane
pores into the surrounding cytosol (Westin et al 2008).

Taken together, the contribution of mitochondria and per-
oxisomes to β-oxidation in animals appears to be adapted
towards most efficient energy production, as mitochondria
produce two additional ATP molecules in the first reaction
step per degradation cycle. In this scenario, peroxisomes pref-
erentially metabolize those fatty acids, which do not meet the
substrate range of the mitochondria. Indeed, as revealed by
fatty acid metabolizing deficiencies, mitochondrial and perox-
isomal β-oxidation systems are not able to complement each
other, since an up-regulation of the remaining β-oxidation
system by intrinsic or pharmacological induction of PPARα

does not compensate for the loss of function in the other path-
way (Hashimoto et al 1999; Djouadi and Bastin 2008). From
an evolutionary stand point it may appear slightly puzzling
why mitochondria have not acquired the ability to also metab-
olize VLCFAs. In plants, which do not utilize fatty acids for
energy production but to generate acetyl-CoA required in an-
abolic reactions, β-oxidation is entirely peroxisomal. Yeast
species do also rely exclusively on peroxisomal β-oxidation
but use fatty acids for energy production (Tanaka et al 1982;
Kurihara et al 1992). Like in animals, in most fungi β-
oxidation is shared by both compartments and has similar
substrate preferences (Maggio-Hall and Keller 2004; Klose
and Kronstad 2006; Freitag et al 2012; Kretschmer et al
2012a, b; Camoes et al 2014). These fungi are able to use
peroxisomal β-oxidation for energy production and growth
(Kretschmer et al 2012a, b). Theoretically, the energy gain
from mitochondrial β-oxidation if compared to the peroxi-
somal system in animal cells is less than anticipated at a first
glance. Provided that acetyl-CoA generated in peroxisomes
can be integrated into the mitochondrial citric acid cycle, the
degradation of palmitate could produce 122 ATP when per-
formed in peroxisomes (considering octanoate is exported to
mitochondria) compared to 130 ATP when entirely performed
in mitochondria (Tolbert 1981). Thus the net ATP gain of an
exclusively mitochondrial β-oxidation of palmitate in mam-
malian cells is roughly 10 %. For lignocerate (C24) the differ-
ence is already nearly 20 % as more ATP is lost during the
peroxisomal β-oxidation cycles. Thus, the β-oxidation of
VLCFAs has to have an advantage over the mitochondrial
system which can compete with the waste of ATP. Recently
it was hypothesized that mitochondrial fatty acid β-oxidation
increases radical formation by an elevation of the FADH2/
NADH ratio if compared to carbohydrate metabolism (Speijer
2011). As FADH2 enters the mitochondrial electron transport
chain at complex II and NADH at complex I, high FADH2

concentrations result in higher reduction rates of ubiquinone,
which is then not able to accept enough electrons delivered
fromNADH via complex I. In the absence of its physiological
electron acceptor, those electrons are surpassed to O2 forming
highly reactive superoxide radicals. As peroxisomal ACOXs
do not produce FADH2, which is accessible for the mitochon-
drial electron transport chain, but instead reduce O2 to H2O2,
peroxisomalβ-oxidation is able to reduce the cellular FADH2/
NADH ratio. As the FADH2/NADH ratio increases with fatty
acid chain length, peroxisomal β-oxidation gets more favor-
able the longer the fatty acids are. Thus, the disadvantages in
energy production would be compensated by the reduced pro-
duction of superoxide radicals in mitochondria thus favoring
peroxisomal VLCFA oxidation. In a subsequent publication
the author (Speijer 2014) claimed that the radical formation in
mitochondrial β-oxidation induced the evolution of peroxi-
somes from the ER, since key components of peroxisomal
β-oxidation show significant similarities to α-proteobacterial
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proteins. Indeed, enzymes for the last three steps of peroxi-
somal β-oxidation appear to be direct mitochondrial descen-
dants and entered peroxisomes already in the last eukaryotic
common ancestor (LECA) (Bolte et al 2014). Others, like the
L-PBE, have mitochondrial paralogs but are only found in
animals indicating that transitions of enzymes frommitochon-
dria to peroxisomes also occurred at different evolutionary
time points (Gabaldon and Capella-Gutierrez 2010; Camoes
et al 2014). In contrast, the ACOX genes have no α-
proteobacterial counterparts and their evolutionary origin
and original function remains unknown (Shen et al 2009;
Bolte et al 2014; Gabaldon 2014). Strikingly, the members
of the ACAD11 family have α-proteobacterial relatives and
are ancient peroxisomal constituents presumably already
found in the LECA (Camoes et al 2014). They may have
therefore been involved in early peroxisomal β-oxidation.
Currently, there is no compelling evidence, that peroxisome
evolution preceded mitochondrial endosymbiosis or that mi-
tochondria induced the formation of peroxisomes from the ER
by retargeting mitochondrial β-oxidation enzymes. Neverthe-
less, phylogenetic protein comparisons undoubtedly show that
the β-oxidation pathways of both organelles co-evolved dur-
ing eukaryotic evolution influencing each other’s functions.
Indeed, enzymatic systems of both pathways have to deal with
the reactive molecular oxygen, however, at different enzymat-
ic stages. Both organelles have developed different enzymatic
strategies for the first step of β-oxidation: mitochondria pro-
duce oxygen radicals in the electron transport chain, and per-
oxisomes generate H2O2 by direct reduction of molecular ox-
ygen. As both organelles have to handle and control the gen-
eration of reactive oxygen species they have evolved
intertwined signaling systems which link peroxisomal with
mitochondrial physiology (Fig. 4a).

The fatty acid metabolism disorders — incidence for a
mitochondrial-peroxisomal interplay?

Mutations in β-oxidation enzymes of both the mitochondrial
and the peroxisomal pathways lead to severe inherited meta-
bolic disorders with differing phenotypes. Mitochondrial de-
ficiencies in β-oxidation target tissues with high energy de-
mands, such as liver, skeletal muscle and heart. Typically, the
patients present with episodic symptoms during phases of gly-
cogen depletion like fasting, stress and prolonged exercise
(Kompare and Rizzo 2008). The individual disorders manifest
according to the gene disrupted and quality of the mutation
with differing severity but if undiagnosed can lead to severe
developmental defects and even mortality. However, if the
disease is diagnosed in early childhood and phases of energy
depletion are avoided, symptoms can often be significantly
ameliorated (Saudubray et al 1999; Spiekerkoetter et al
2009). The phenotypes differ substantially between individ-
uals and can be classified into an early onset form with

hypoketotic hypoglycemia and Reye-like syndrome, another
infant form with cardiomyopathy and arrhythmias and a
milder adult onset disease characterized by exercise-induced
myopathy and rhabdomyolysis (Houten and Wanders 2010).
Defects in more than 20 of the proteins involved in or associ-
ated with mitochondrial β-oxidation are known to be respon-
sible for mitochondrial fatty acid oxidation disorders and in-
clude fatty acid transporters, enzymes of all four steps of the
pathway and the electron acceptor proteins of the pathway’s
first step (Rinaldo et al 2002; Vockley and Whiteman 2002;
Kompare and Rizzo 2008). Thus, according to the substrate
specificity of the disrupted gene and the severity of the muta-
tion, the phenotypes of the disorders vary significantly. How-
ever, there is no clear correlation between genotypes and phe-
notypes of single gene defects and the reasons for this signif-
icant variability are currently not completely understood.

As for mitochondrial β-oxidation, multiple gene defects
have also been described for peroxisomal β-oxidation disor-
ders. Affected genes code for the fatty acyl-CoA transporters
ABCD1 and ABCD3 as well as ACOX1, D-PBE, SCPX and
AMACR (2-methylacyl-CoA racemase), an auxiliary enzyme
required for the degradation of 2-methyl-branched fatty acids
and bile acids (Van Veldhoven 2010; Ferdinandusse et al
2014). Although exhibiting broad phenotype variability, per-
oxisomal gene defects show a pathology which is quite differ-
ent from mitochondrial disorders and which cannot be ame-
liorated by avoiding periods of fasting. Peroxisomal β-
oxidation deficiencies most commonly lead to neurological
abnormalities and/or hepatomegaly and exhibit elevated levels
of VLCFA and/or bile acid intermediates in line with a disrup-
tion of peroxisomal β-oxidation. Consequently, disruption of
individual genes required for peroxisomal β-oxidation can
result in similar pathologies. For example, deficiencies in
ACBD1, ACOX1 and MFP2 can cause (among other more
gene-specific phenotypes) different forms of adrenoleukodys-
trophy (X-ALD, pseudo-neonatal, neonatal ALD), which ex-
hibit a very severe etiopathology and usually lead to death
during childhood.

While a detailed description of the cell biological and clin-
ical aspects of the numerous mitochondrial and peroxisomal
gene defects is beyond the scope of this article (see Wanders
andWaterham 2006; Kompare and Rizzo 2008), a closer look
at the potential reciprocal changes induced in the organelle
unaffected by the gene defect may shed light on the functional
interplay of peroxisomes and mitochondria. X-linked adreno-
leukodystrophy is the most frequent peroxisomal disorder. It is
caused by disruption of the peroxisomal ABC transporter
ABCD1 (Bezman et al 2001), which is involved in the import
of VLCFAs into peroxisomes (van Roermund et al 2011).
Indeed, mitochondrial structural alterations in adrenal gland
cells were reported in 12 month-old X-ALD mice
(McGuinness et al 2003). Although these findings were not
corroborated for skeletal muscle mitochondria (Oezen et al
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2005), more recent studies suggested that mitochondria may
be compromised in neuronal tissues of ACBD1 knockout
mice and X-ALD patients due to elevated levels in VLCFAs
(Hein et al 2008; Galino et al 2011; Lopez-Erauskin et al
2013 ) . I n pa r t i cu l a r , t h e au tho r s showed tha t
supraphysiological levels of VLCFAs (40–100 μM) lead to
impaired membrane potential across the inner mitochondrial
membrane, increased production of ROS and impairment of
mitochondrial oxidative phosphorylation in neuronal and glial
cell culture systems. At VLCFA levels of 1–5 μM, which
correspond to concentrations found in the plasma of X-ALD
patients, no such abnormalities were observed in wild-type
cultured oligodendrocytes (Baarine et al 2012a), whereas in-
creased production of superoxide and hydrogen peroxide
could be measured after knockdown of ACBD1 and ACOX1,
respectively (Baarine et al 2012b). Additionally, glial cell lines
showed an altered expression of mitochondrial genes and a
decreased mitochondrial biogenesis after knockdown of
ABCD1 (Baarine et al 2014). Interestingly, a knockout of
ABCD2, the paralog of ABCD1 with overlapping substrate
spectrum, leads to a similar mitochondrial phenotype (Ferrer
et al 2005). Mechanistically, the oxidative damage found in
mitochondrial respiratory complex V may be explained by
increasing amounts of VLCFAs incorporated into the mito-
chondrial inner membrane (Lopez-Erauskin et al 2013). The
altered membrane lipid composition could consequently lead
to electron leakage and elevated ROS production thus initiat-
ing cellular degeneration (Fourcade et al 2014). According to
the pathology of X-ALD, mitochondrial alterations have been
largely investigated in brain associated tissue or cells. Elevat-
ed VLCFA plasma concentrations, however, should also tar-
get mitochondria in other tissues if VLCFA-induced ROS
generation is a primary cause of the disease. Ultrastructural
mitochondrial alterations have been reported in the adrenal
cortex of ABCD1 knockout mice (McGuinness et al 2003),
and fibroblasts from patients with an X-ALD phenotype were
reported to exhibit reduced mitochondrial respiration rates
(Singh and Giri 2014). Enhanced protein oxidation, which
could point to a disturbed mitochondrial respiratory chain,
has been described in adrenal cortex and periadrenal fat tissue
as well as fibroblasts from X-ALD patients (Powers et al
2005; Fourcade et al 2008). Nevertheless, there is no informa-
tion on mitochondrial abnormalities in other tissues with high
peroxisomal β-oxidation rates such as liver or kidney. In this
respect, future work has to clarify, if mitochondrial disruption
and associated ROS production is crucial for the etiology of
the disease or why this is only the case in selected cell types.
Strikingly, X-ALD knockout mice almost totally retain their
capacity to degrade VLCFAs (McGuinness et al 2003). On the
one hand this may be explained by the remaining ABC-
transporters ABCD2 and ABCD3 which could compensate
the ABCD1 deficiency. However, ACOX1 deficient fibro-
blasts also show reduced but still significant residual

straight-chain β-oxidation activity (Ferdinandusse et al
2007). Likely, ACOX2 is responsible for a great part of the
residual activity; however, a minor portion of VLCFAs may
also enter the mitochondrial β-oxidation pathway under ele-
vated cellular concentrations. Since ROS production during
mitochondrial β-oxidation was supposed to increase with fat-
ty acid chain length (Speijer 2011), a misguided degradation
of VLCFAs in mitochondria under condition when the perox-
isomal β-oxidation system is compromised may also directly
damage the mitochondrial respiratory complexes and thus
contribute to the pathology of peroxisomal β-oxidation disor-
ders. According to the current knowledge it remains to be
determined if VLCFA-induced mitochondrial disruption is a
primary cause in X-ALD or if mitochondrial alterations estab-
lish under physiological VLCFA concentrations only second-
ary after ongoing demyelination of neurons leads to an inflam-
matory response in nervous tissue. Nevertheless, the
intermingled disturbance of peroxisomal and mitochondrial
physiology found in X-ALD underlines the close interconnec-
tion between both organelles, even if they may not be caused
by a direct elevation of VLFA concentrations.

With respect to the peroxisomal potential for long-chain
fatty acid degradation it may be pertinent to ask if a disruption
of the mitochondrial β-oxidation pathway is influencing the
peroxisomal physiology. Currently, information on peroxi-
somes in mitochondrial β-oxidation deficiencies remains
scarce. Studies on the correction of β-oxidation activities in
fibroblasts with VLCAD and CPTII deficiencies using
PPARα agonists were only able to significantly restore fatty
acid catabolism when the mutant proteins retained partial en-
zyme activities (Djouadi et al 2005; Djouadi and Bastin 2008).
Thus, the peroxisomal β-oxidation system appears to be un-
able to compensate for the loss of mitochondrial β-oxidation
activities. Nevertheless, a recent publication reports that per-
oxisomes sequester lauric acid (C12) in CPTII- and CACT-
deficient human fibroblasts (Violante et al 2013). To this end,
the inability of peroxisomes to compensate for the loss in
mitochondrial β-oxidation may be in part attributed to the
low abundance and induction rates of peroxisomes in extra-
hepatic tissues (Cook et al 2000). Consequently, increased
long-chain fatty acid concentrations in patients with mito-
chondrialβ-oxidation disorders may influence the peroxisom-
al metabolism and may lead to the activation of signaling
systems coordinating the interplay between both organelles.
In this respect, peroxisomes may contribute to the pathology
of mitochondrial disorders (Camoes et al 2009) and may be a
reasonable target of future research.

Peroxisomal and mitochondrial redox relationship

Reactive oxygen species (ROS) are generated as a side prod-
uct of mitochondrial respiration as well as being produced in a
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variety of reactions in peroxisomes (Schrader and Fahimi
2006a, b; Antonenkov et al 2010; Fransen et al 2012). If left
unchecked these highly reactive molecules can accumulate
and cause extensive cellular damage. Excess ROS, predomi-
nantly in the form of superoxide radicals or H2O2, is removed
in a number of different ways, principally using catalase in
peroxisomes and via the SOD and peroxiredoxin pathways in
the mitochondria (Murphy 2009). It is now widely recognized
that ROS are not only a toxic side-product of metabolic reac-
tions but also an important signalling molecule (D’Autreaux
and Toledano 2007). Reversible oxidation and reduction of
proteins with exposed reactive groups, generally cysteine res-
idues, is directly coordinated by the levels of ROS in the local
environment. This redox system leads to a myriad of effects
on the cell with the extent and context of the modification
determining a particular proteins reactivity to ROS (Go and
Jones 2013). Throughout the cell, including the mitochondria,
there are a variety of redox-sensitive factors whose activity
varies depending on redox balance and thus many essential
processes are redox sensitive (Brandes and Kreuzer 2005;
Mesecke et al 2005). This balance is finely tuned and it has
been estimated that just a twofold difference in steady-state
H2O2 levels is enough to switch the cellular mode from pro-
liferative to apoptotic (Boveris and Cadenas 2000).

There is a growing body of evidence demonstrating that
alterations to ROS levels in peroxisomes rapidly lead to alter-
ations in ROS activity in mitochondria. The best characterized
link is that mediated by peroxisomal catalase. Reduction in
peroxisomal catalase levels or activity, either through chemi-
cal treatment (Koepke et al 2008; Walton and Pizzitelli 2012),
or loss of peroxisomal import competency (Legakis et al
2002; Terlecky et al 2006), results in elevated ROS levels in
the mitochondria with a subsequent decrease in redox-
sensitive mitochondrial enzyme activity. H2O2 is able to freely
diffuse across membranes but under normal conditions it is
estimated that very little H2O2 would be released from perox-
isomes to the cytosol (Boveris and Cadenas 2000). Therefore
it makes sense that uncoupling catalase from one of the major
sites of H2O2 production, i.e. peroxisomes, would impact
levels in the rest of the cell.

The significance of this observation becomes more appar-
ent if one considers the role of both peroxisomes and mito-
chondria during ageing (Giordano and Terlecky 2012;
Fransen et al 2013). It has been observed that in mid to late
passage cells significant cytosolic mis-localization of catalase
occurs due to a reduction in peroxisomal import capacity. This
results in peroxisomes switching from being a site of ROS
degradation to a potent source of ROS and causes redox sen-
sitive enzymes in the mitochondria to become oxidized and
inactivated, compromising mitochondrial function. At this
point the hallmarks of cell ageing, such as loss of mitochon-
drial inner membrane potential become apparent. Significant-
ly this scenario can be partially rescued by expression of

ectopic catalase carrying a more efficient C-terminal peroxi-
somal targeting signal (SKL) (Legakis et al 2002; Terlecky
et al 2006; Koepke et al 2007). It should, however, be noted
that a weak peroxisomal targeting signal (which, strikingly, is
a common feature of catalase enzymes from different organ-
isms) may be required to allow proper folding of catalase prior
to import into peroxisomes and to avoid aggregation and sub-
sequent loss of function (Williams et al 2012).

A potential clinical aspect of this phenomenon was
highlighted by the observation that targeting catalase to mito-
chondria increases the lifespan of mice (Schriner et al 2005)
perhaps in part due to reduced ROS levels leading to delays in
cellular senescence (Baker et al 2011). Furthermore catalase
expression in mitochondria has been shown to enhance exer-
cise performance and increase radio-resistance in mice
(Epperly et al 2009; Li et al 2009). However mitochondrial
targeting of catalase may disrupt the normal redox-balance in
the organelle, presumably the reason that cells generally lack
mitochondrial catalase, resulting in secondary effects (Bai et al
1999). A different approach could be to address peroxisomal
protein import (e.g. of catalase) which decreases with age
(Williams et al 2012). Interestingly, Pex5, the cycling import
receptor for peroxisomal matrix proteins, is a redox-sensitive
protein whose activity can be affected by the redox state of the
cytosol (Apanasets et al 2014).

Recent experiments using genetically-encoded redox sen-
sors and modulators have provided evidence for a more or-
chestrated redox relationship between peroxisomes and mito-
chondria (Fransen et al 2013) (Fig. 4a). Fransen and co-
workers employed a peroxisomal variant of KillerRed, a red
fluorescent photosensitizer that efficiently generates ROS up-
on green light illumination (Bulina et al 2006), to study the
downstream effects of peroxisome-derived ROS. They re-
vealed that generation of excess ROS inside peroxisomes
perturbs the mitochondrial redox balance and leads to mito-
chondrial fragmentation and cell death (Ivashchenko et al
2011; Wang et al 2013) (Fig. 4a). These findings support pre-
vious observations that the production of excess H2O2 inside
peroxisomes can cause pancreatic β-cell dysfunction and ul-
timately cell death (Elsner et al 2011). It was further demon-
strated that apoptotic signal pathways were induced only
when KillerRed was activated in peroxisomes or mitochon-
dria, but not in the cytoplasm (Ivashchenko et al 2011; Wang
et al 2013). The authors provide evidence that the main reac-
tive oxygen species involved in the propagation of KillerRed-
mediated cell death is most likely superoxide, and not H2O2.
The superoxide-radicals produced by KillerRed are suggested
to trigger chain reactions in polyunsaturated fatty acids, which
lead to membrane lipid peroxidation. As overexpression of
mitochondrially-targeted catalase (but not peroxisomal cata-
lase) was able to counteract the cytotoxic effects of peroxi-
somal KillerRed, the initial mitochondrial damage resulting
from excess peroxisomal ROS is supposed to be caused by
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intra-mitochondrial H2O2 (Wang et al 2013) (Fig. 4a). Taken
together these experiments provide evidence for a more com-
plex signalling system as opposed to simple diffusion of ex-
cess ROS from peroxisomes spreading to the cytoplasm and
into the mitochondria. In this context, it should be noted that a
disturbance in the peroxisomal oxidative balance by inhibition
of catalase activity results in a decrease of the mitochondrial
inner membrane potential and increase in the mitochondrial
redox state (Walton and Pizzitelli 2012). Furthermore, dys-
functional peroxisomes in X-linked adrenoleukodystrophy
cells impair mitochondrial oxidative phosphorylation and
generate mitochondrial ROS (Lopez-Erauskin et al 2013).

Two recent studies have identified two more proteins
which may play a role in the redox-link. One of these is the
starvation-induced protein DEPP (Fig. 2). Salcher et al (2014)
found DEPP present on both peroxisomes and mitochondria
and suggested that DEPP may act as a sensitizer for ROS-
induced apoptosis. As part of the cellular stress response the
transcription factor FOXO3 is activated, leading to an induc-
tion of apoptosis (Calnan and Brunet 2008). DEPP is a key
target of FOXO3 and induction of DEPP expression leads to
reduced catalase activity and an increase in the cellular levels
of ROS. Depletion of DEPP leads to an increase in catalase
activity, a subsequent reduction in ROS levels and increased
resistance to H2O2. In yeast a potential role for Opt2 as a
peroxisome-specific glutathione transporter was recently
demonstrated (Elbaz-Alon et al 2014). Deletion of Opt2 not
only led to alterations in peroxisomal glutathione balance but
also had an impact on mitochondria. As there is no known
Opt2 homologue in mammals, it remains to be elucidated if
there is a similar system in higher eukaryotes.

How redox communication between peroxisomes and mi-
tochondria is mediated is currently unclear (Fig. 4a) but so far
simple diffusion (e.g. via PXMP2, a non-selective pore-
forming peroxisomal membrane protein) (Antonenkov and
Hiltunen 2012), potential contact sites (Horner et al 2011) or
vesicular transport (e.g. via mitochondria-derived vesicles)
(Neuspiel et al 2008) have been suggested as possible mech-
anisms. Further work in this area should help to decipher the
significance such processes play in peroxisome andmitochon-
dria interplay.

Peroxisomal and mitochondrial membrane dynamics

Peroxisomes and mitochondria are dynamic organelles with
high membrane plasticity which undergo constant changes in
membrane shape and morphology (Fig. 1). Whereas mito-
chondrial morphology is regulated by constant fusion and
fission events (Westermann 2010, 2012), only peroxisomal
fission (division) has been demonstrated so far (Bonekamp
et al 2012; Schrader et al 2012). Mitochondrial dynamics have
been linked to changes in metabolism, cell development and

cell death and facilitate apoptosis, organelle transport, distri-
bution, inheritance, quality control and turnover. Even mild
defects in mitochondrial dynamics can affect normal develop-
ment and have been implicated in neurodegenerative diseases
(Chen and Chan 2009).

Peroxisome division is a well-coordinated multistep matura-
tion process, which consecutively involves membrane elonga-
tion, constriction and final fission (Schrader et al 2012). Initial-
ly, spherical peroxisomes deform their membranes and generate
small membrane extensions. Those further grow and elongate
before adapting a typical Bbeads on a string^ morphology
which indicates constriction. The Bbeads^ are finally separated
by membrane fission and new peroxisomes are distributed
within the cytoplasm in a microtubule-dependent manner. As
the growing membrane protrusions are initially devoid of per-
oxisomal matrix proteins, which are subsequently imported,
peroxisome division also represents a maturation process which
contributes to the formation of new peroxisomes and to perox-
isome multiplication (Delille et al 2010; Schrader et al 2012).
Furthermore, peroxisomes may change their morphology to
meet the requirements for enhanced metabolite transport, mem-
brane signaling or protection against ROS. Tubular protrusions
of peroxisomes may also facilitate interorganellar communica-
tion (Schrader et al 2000; Sinclair et al 2009).

Over the years, it was discovered that peroxisomes and
mitochondria share key components of their division machin-
ery (Schrader and Fahimi 2006a, b; Schrader and Yoon 2007)
(Figs. 2 and 5). Sharing these components is an evolutionary
conserved strategy among mammals, fungi and plants
(Schrader and Fahimi 2006a, b; Delille et al 2009). Shared
key components include the large dynamin-like/related
GTPase DLP1/Drp1 and its membrane adaptor proteins Fis1
(fission factor 1) andMff (mitochondrial fission factor), which
recruit the cytosolic DLP1 to both peroxisomal and mitochon-
drial constriction sites (Fig. 5). Another shared protein is
ganglioside-induced differentiation-associated protein 1
(GDAP1), a putative glutathione-S transferase, which has
been linked to Charcot-Marie-Tooth neuropathy (Huber et al
2013). DLP1 belongs to the dynamin superfamily and is sup-
posed to self-oligomerize forming ring- or spiral like struc-
tures around constricted membranes in a GTP-dependent
manner and to mediate final membrane fission through GTP
hydrolysis. New insights into DLP1 structure, oligomerization
and organelle remodeling have recently been revealed
(Frohlich et al 2013). In contrast to classical dynamins, cyto-
solic DLP1 lacks a lipid–binding PH domain and depends on
adaptor proteins for membrane recruitment. Furthermore, ER-
mitochondria contacts contribute to mitochondrial fission. ER
tubules have been found to wrap aroundmitochondria in yeast
and mammalian cells, thus marking fission sites and driving
mitochondrial constriction (Friedman et al 2011; Korobova
et al 2013). If peroxisomal division is also ER-assisted is cur-
rently unknown.
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Clinical features of the first patient reported with a defect in
DLP1 include microcephaly, abnormal brain development,
optic atrophy and hypoplasia (Waterham et al 2007). An ab-
errant elongated morphology of peroxisomes and mitochon-
dria was revealed in the patient’s skin fibroblasts. Similar
elongated peroxisomes had previously been reported after loss
of DLP1 function in cultured cells (Koch et al 2003, 2004; Li
and Gould 2003). Indeed, genetic analysis of the patient re-
vealed a heterozygous, dominant-negative missense mutation
(A395D) in the DLP1 middle domain (Waterham et al 2007),
which inhibits its oligomerization and thus function in mem-
brane scission (Chang et al 2010). The female patient, who
died only a few weeks after birth, combined features of mito-
chondrial (e.g. autosomal dominant optic atrophy, neuropa-
thy) and peroxisomal (dysmyelination, severity) disorders. In
line with this, elevated plasma levels of lactate (indicative of
defects in mitochondrial respiration) and slightly elevated
levels of VLCFA (indicative of mild defects in peroxisomal
ß-oxidation) were reported. However, in contrast to the clas-
sical peroxisome biogenesis disorders (PBDs) (e.g. Zellweger
syndrome), metabolic biomarkers were not grossly altered.
This complicates the diagnosis of this novel group of
peroxisome-mitochondria based disorders beyond the mere
analysis of classical biomarkers such as VLCFA and under-
lines the importance of organelle morphology in diagnostics.
Meanwhile, DLP1 knockout mice have been generated
(Ishihara et al 2009; Wakabayashi et al 2009), which display
similar defects, e.g. in synapse formation and brain develop-
ment resulting in embryonic lethality. Recent findings indicate
that DLP1 fulfils additional functions, e.g. in apical sorting at
the trans-Golgi network (Bonekamp et al 2010) or in the reg-
ulation of synaptic vesicle morphology and membrane dy-
namics during endocytosis in hippocampal neurons (Li et al
2013), which may contribute to the severity of DLP1
deficiency.

Whereas no patients with a defect in Fis1 are known, two
patients with a mutation in Mff were recently reported
(Shamseldin et al 2012). A homozygous truncating mutation
(Q64X) in the MFF gene of two Saudi Arabian brothers was
identified which is supposed to remove the C-terminal trans-
membrane domain. This would result in a cytosolic localiza-
tion of Mff and diminish recruitment of DLP1 to the peroxi-
somal and mitochondrial fission complex. Mff appears to rep-
resent the major receptor for DLP1 on peroxisomes and mito-
chondria in mammals (Otera et al 2010; Itoyama et al 2013).
Whereas its C-terminus contains a single transmembrane do-
main, its N-terminus, which exhibits two short repeat motifs
and a central coiled-coil domain, is exposed to the cytosol and
binds DLP1 (Gandre-Babbe and van der Bliek 2008). Human
MFF contains nine coding exons, and at least eight Mff splice
variants are predicted. Similar to DLP1 deficiency, abnormal-
ly elongated mitochondria and peroxisomes were detected in
skin fibroblasts from Mff patients. This is in line with

observations in cell culture after silencing of MFF (Gandre-
Babbe and van der Bliek 2008; Otera et al 2010). Clinical
features of one of the patients, a 4.5-year-old boy, included
delayed psychomotor development, abnormal intensity of the
globus pallidus (by MRI), microcephaly, pale optic discs, and
mild hypertonia. The younger brother showed similar devel-
opmental delay with initial diagnosis of mitochondrial en-
cephalopathy. Biochemical parameters (e.g. lactate and
VLCFA levels, mitochondrial respiratory chain complex pro-
files) of skin fibroblasts from the Mff patient were normal.
This is similar to the reported DLP1 patient indicating that
metabolic parameters of the organelles are not or only slightly
affected.

Recently, the glutathione S-transferase GDAP1 was found
to localize to both peroxisomes and mitochondria and to in-
fluence their dynamics and division (Huber et al 2013)
(Fig. 5). Mutations in GDAP1 have been associated with
Charcot-Marie-Tooth disease, the most common inherited pe-
ripheral neuropathy (Niemann et al 2005, 2006, 2009). Loss
of GDAP1 function results in peroxisomal (and mitochondri-
al) elongation, which with respect to peroxisomes is less
prominent than that observed after loss of DLP1 or Mff.
GDAP1 overexpression on the other hand induces peroxisom-
al (and mitochondrial) division in a Mff and DLP1 dependent
manner. Whereas C-terminal alterations in a hydrophobic do-
main of GDAP1 or at the C-terminal tail affect both peroxi-
somal and mitochondrial fission, N-terminal autosomal reces-
sively inherited disease mutations are still able to promote
peroxisomal but not mitochondrial fission (Niemann et al
2009; Huber et al 2013). These findings suggest that the path-
ophysiological alterations of the corresponding patients are
likely caused by changes in mitochondrial and not peroxisom-
al dynamics. However, peroxisomal functions have not yet
been investigated in detail in patients, and peroxisomes may
contribute to some degree to the clinical features of Charcot-
Marie-Tooth disease.

Whereas key division components are shared by peroxi-
somes and mitochondria, the key proteins for mitochondrial
fusion (e.g. the dynamin-related GTPases Mfn1, Mfn2 or
OPA1) are not present on peroxisomes. In contrast to mito-
chondria, mature peroxisomes have not been observed to fuse
(Huybrechts et al 2009; Bonekamp et al 2012). However, live
cell imaging studies provided evidence for peroxisome-
peroxisome interactions with transient and long-term contacts,
but without exchange of matrix or membrane markers
(Bonekamp et al 2012). In combination with microtubule-
dependent transport these interactions are supposed to contrib-
ute to the equilibration of the peroxisomal compartment in
mammalian cells.

Furthermore, the mitochondrial membrane proteinsMiD49
and MID51 which are involved in the sequestration of DLP1
(Palmer et al 2013), as well as the mitochondrial Rab GTPase-
activating protein TBC1D15, a binding partner of Fis1 at
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mitochondria (Onoue et al 2013; Yamano et al 2014), do not
localize to peroxisomes indicating organelle-specific differ-
ences in the regulation of division (Fig. 5). In line with this,
increased expression of MiD51 leads to enhanced recruitment
of DLP1 tomitochondria. Interestingly, this renders DLP1 less
available for peroxisomal division causing peroxisome elon-
gation (Palmer et al 2013) and highlights how alterations in
the recruitment of division components at one organelle can
influence the dynamics of the other (Fig. 5).

Peroxisome-specific division factors include members of
the Pex11 family of peroxisomal membrane proteins. Pex11
proteins regulate and promote peroxisomal membrane defor-
mation and elongation as well as fission and proliferation pro-
cesses (Fig. 5). Loss of Pex11 function is associated with
reduced peroxisome number and the formation of enlarged
peroxisomes, whereas overexpression promotes peroxisome
elongation and proliferation (Thoms and Erdmann 2005;
Schrader et al 2012). Of the three Pex11 proteins identified
in humans, Pex11β has recently been linked to disease
(Ebberink et al 2012; Thoms and Gartner 2012). Human
Pex11β is a peroxisome-specific integral membrane protein
with the N- and C-termini exposed to the cytosol (Schrader
et al 1998; Bonekamp et al 2013). This widely expressed
division factor combines interesting properties: Pex11β forms
homo-oligomers, interacts with Fis1 and Mff, and likely with
membrane lipids to deform and shape the peroxisomal mem-
brane; furthermore, the N-terminus contains amphipathic he-
lices required for membrane elongation in vitro and in vivo as
well as for dimerization (Fig. 5) (Kobayashi et al 2007;
Opalinski et al 2011; Koch and Brocard 2012; Bonekamp
et al 2013; Itoyama et al 2013).

The first patient identified displayed a homozygous non-
sense mutation in the PEX11β gene leading to a truncation of
the protein after 21 amino acids (Q22X) (Ebberink et al 2012).
Meanwhile, seven additional patients have been identified
(Ebberink et al 2014) with null mutations in the PEX11β
gene. All patients presented with congenital cataracts. The
older patients all had mild intellectual disability, ataxia and
sensorineural deafness. In addition, most of them presented
with short stature and convulsions. Similar to the DLP1 and
Mff patients, biochemical parameters of peroxisomes were
normal. However, analysis of patient skin fibroblasts often
revealed enlarged and elongated peroxisomes indicative of a
defect in peroxisome division or proliferation. In contrast to
the patients, PEX11β knockout in mice is neonatal lethal and
causes severe, Zellweger-like abnormalities (Li et al 2002a,
b). Peroxisome numbers in cultured mouse fibroblasts were
reduced, but similar to the patients peroxisomal metabolism
was normal or only slightly affected. Knockout of PEX11α in
mice on the other hand did not result in a severe disease-
phenotype under standard housing conditions (Li et al
2002a, b). Currently, no patient with a defect in human
PEX11α is known. In addition, Pex11α was not able to

complement the peroxisomal alterations in fibroblasts from
PEX11β patients (Ebberink et al 2012).

Cooperative roles of peroxisomes and mitochondria
in viral combat

Despite the vast knowledge acquired thus far concerning per-
oxisome functions, a new role for these organelles has
emerged recently in which they, either alone or in concert with
mitochondria, play an important role in the innate immune
response of the host cell to combat viral and bacterial infec-
tions (Figs. 2 and 4b). The innate immune response, which
provides the first line of defence against pathogen invasion,
depends on pattern recognition receptors (PRRs) which rec-
ognize pathogen components such as bacterial lipopolysac-
charides, flagellin, lipoproteins and double stranded RNA
(dsRNA), among others. Activated PRRs deliver signals to
specific adaptor proteins that, in turn, orchestrate complex
host defence mechanisms. This includes the activation of sev-
eral transcription factors (e.g. NF-κB, interferon regulatory
factors (IRFs)) which lead to the production of pro-
inflammatory and immune-modulatory factors (e.g. type 1
interferons and inflammatory cytokines) by the host
(Medzhitov and Horng 2009; Dixit et al 2010; Chen and Jiang
2013). PRRs such as RIG-I-like receptors (RLRs) are present
in the cytosol of mammalian cells. RLRs are RNA helicases
that function in virtually all mammalian cells to detect viral
and bacterial nucleic acids in the cytosol (Odendall and Kagan
2013). The mitochondrial antiviral signalling protein (MAVS)
functions as an adaptor protein for retinoic acid-inducible
gene 1 protein (RIG-I) (Fig. 4b). Remarkably, MAVS was
recently found to localize to both mitochondria and peroxi-
somes (Medzhitov and Horng 2009; Dixit et al 2010). The
authors showed that peroxisomes undergo morphological
changes upon viral infection and that RNA viruses can acti-
vate MAVS-dependent signalling from peroxisomes. MAVS
responses from both peroxisomes and mitochondria were re-
quired for maximal antiviral activity. Initially it was reported
that peroxisomal MAVS elicits a rapid but transient, type I
IFN-independent innate immune responses, whereas the mi-
tochondrial MAVS induces a type I interferon-dependent,
sustained response with delayed kinetics (Medzhitov and
Horng 2009; Dixit et al 2010). These findings were extended
by Horner et al (2011) who demonstrated that peroxisomal
MAVS was able to induce an interferon-dependent response.
Furthermore, MAVS was localized to mitochondria-
associated ER membranes (MAMs) and it was reported that
dynamic MAM tethering to mitochondria and peroxisomes
coordinates MAVS localization to form a signalling synapse
between membranes (Horner et al 2011). Remarkably, the
hepatitis C virus NS3-4A protease specifically targets these
sites for MAVS proteolysis to ablate RIG-I signalling of
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immune defences (Horner et al 2011). Moreover, LSm14A, a
processing body-associated sensor of viral RNA and DNA of
the LSm family, translocates to peroxisomes upon viral infec-
tion (Fig. 4b). Interestingly, after binding to viral RNA,
LSm14A requires RIG-I and MAVS for IRF-3 activation but
its translocation to peroxisomes is RIG-I or MAVS indepen-
dent (Li et al 2012). On the other hand, when LSm14A binds
to viral DNA, it requires the adaptor protein MITA (Mediator
of IRF3 activation; also known as STING/TMEM173/ERIS),
which was found on peroxisomes, for IFN-β induction in the
early phase of viral infection (Fig. 4b) (Li et al 2012).

Recent studies have also highlighted the role of peroxi-
somes in the innate immune responses to genomic HIV
RNA (Berg et al 2012) and as signalling platforms for the
induction of type III interferon response upon cellular infec-
tion by several other viruses (e.g. Sendai virus and Dengue
virus) as well as cytosolic bacteria (Odendall et al 2014). This
response is thought to complement the actions of the type I
interferon responses induced from mitochondria. Overall,
both mitochondria and peroxisomes are capable of inducing
RLR-mediated interferon responses, allowing the cell to me-
diate its antiviral response according to the type and possibly
the stage of pathogen infection.

In addition to inducing an antiviral immune response, vi-
ruses such as rotavirus, HIV and influenza, were shown to
exploit peroxisomes and mitochondria for intracellular repli-
cation in mammalian cells (Lazarow 2011; Ruggieri et al
2014). Peroxisomes can be targeted by viral proteins directly
or through peroxisomal proteins and are also used as assembly
points for viral replication (Lazarow 2011). The rotavirus VP4
protein has a peroxisomal targeting signal (PTS1) at its C-
terminus and targets peroxisomes when cultured cells are in-
fected with rotavirus (Mohan et al 2002). The Nef protein
from HIV and the NS1 protein from influenza virus were
found to indirectly target peroxisomes via interaction with a
peroxisomal thioesterase and the multifunctional β-oxidation
protein type 2 (MFP-2), respectively (Wolff et al 1996; Cohen
et al 2000). Several other viral proteins with putative peroxi-
somal targeting sequences were identified by bioinformatics,
though additional studies are required to verify their peroxi-
somal localization and function (Mohan and Atreya 2003).
Despite the clear link between peroxisomes and viral proteins,
it is still unclear how viruses benefit from this relationship.
Besides using peroxisomes and other organelles as scaffolds
for replication and assembly, pathogens might exploit perox-
isomes as a source of lipids (Boncompain et al 2014; Tanner
et al 2014). Furthermore, viruses may attempt to interfere with
the anti-viral signalling pathways associated with peroxi-
somes and mitochondria. In line with this, the pestivirus N
terminal protease N(pro) (e.g. from swine fever virus or bo-
vine viral diarrhea virus) was found to redistribute to mito-
chondria and peroxisomes (Jefferson et al 2014). Mitochon-
drial and peroxisomal N(pro) was shown to inactivate IRF3, a

central regulator of interferon production. N(pro) inhibited the
stress-induced intrinsic mitochondrial apoptotic pathway
through inhibition of IRF-3-dependent Bax activation. These
results implicate mitochondria and peroxisomes as new sites
for IRF-3 regulation by N(pro), and highlight the role of these
organelles in the anti-viral pathway.

Recent studies on the hepatitis B virus X protein (hBx), a
viral protein that also binds to MAVS (Kumar et al 2011),
revealed that its function is influenced by its subcellular local-
ization. Predominantly found in the cytoplasm, hBx was also
reported to localize to the membranes of both mitochondria
and peroxisomes (Ma et al 2011; Han et al 2014). Association
of hBx with mitochondria altered the organellar membrane
potential increasing cellular ROS generation, NFκB-
activation and apoptosis (Ma et al 2011). Peroxisome-
associated hBx triggered even stronger production of ROS
and NFκB-activation (Han et al 2014), which increased the
expression of matrix-metalloproteinases. This scenario is sup-
posed to contribute to hepatitis B induced progression of he-
patocellular carcinoma.

Finally, peroxisomes may also modulate inflammatory im-
mune responses. In line with this, it has been shown that a
peroxisome deficiency in Drosophila larvae causes an in-
crease in the expression of genes involved in innate immunity
and humoral responses (Mast et al 2011). Furthermore, the
immune system is activated in nestin-PEX5 knockout mice
(Bottelbergs et al 2012). The molecular mechanisms underly-
ing these alterations are currently unclear. However, it is pos-
sible that the upregulation of innate immunity genes reflects a
response to increased levels of accumulating peroxisomal me-
tabolites (Mast et al 2011).

Although our information on the role of peroxisomes and
mitochondria in viral pathogenesis as well as host-defense still
remains very limited, our current knowledge already points to
an important role of both organelles in both health-related
processes. Further work in this research area will help to clar-
ify the molecular mechanisms by which peroxisomes and mi-
tochondria cooperate in order to combat pathogen infections
but also how both organelles are exploited from the invading
organisms. Increasing knowledge for both processes may lead
to novel strategies for treating viral and bacterial infections.

Perspectives

There is emerging evidence that the functional relationship
between peroxisomes and mitochondria is the result of an
organellar co-evolution originating in the early ancestors of
all eukaryotes. This fundamental interconnection between per-
oxisomes and mitochondria is reflected by an increasing num-
ber of cooperative functions, such as fatty acid β-oxidation,
innate immune response, maintenance of ROS homeostasis or
even regulation of apoptosis and cell survival (Fig. 2). In this
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respect both organelles have to coordinate their biogenesis and
abundance as reflected by the utilization of shared compo-
nents of their division machineries (Fig. 5). Furthermore, both
organelles share a significant number of proteins linked to the
cellular processes listed above or contain an enzymatic inven-
tory, which descended from common precursors. According
to this phylogenetic relationship, reaction pathways originally
located in mitochondria may have hitchhiked peroxisomal
precursor organelles to outsource detrimental metabolic pro-
cesses to a more specialized compartment. This hypothesis,
however, does not shed light on the primary role of peroxi-
somes in ancient eukaryotes and thus cannot explain why
peroxisomes presumably descended from the ER as semi-
autonomous compartments. In this respect, future research
on the phylogeny of the peroxisomal proteome may help to
decipher their ancient protein inventory and attributed func-
tions, which will certainly help to understand why mitochon-
dria and peroxisomes gained such intensive interconnections.
Furthermore, there is a growing body of evidence demonstrat-
ing that alterations to ROS levels in peroxisomes rapidly lead
to alterations in ROS activity in mitochondria (Fig. 4a). How
redox communication between peroxisomes and mitochon-
dria is mediated is currently unclear but so far simple diffu-
sion, potential contact sites or vesicular transport have been
suggested as possible mechanisms. The importance of this
redox relationship in health and disease is highlighted by stud-
ies demonstrating an imbalance in mitochondrial ROS in per-
oxisomal disorders as well as other conditions, such as ageing,
where peroxisomal function is reduced. Additionally, peroxi-
somes and mitochondria have an essential role in the response
of the host cell to combat pathogens (Fig. 4b). Their cooper-
ation provides the first line of defence against pathogen infec-
tion, which also renders them important targets for the invad-
ing organisms. Deciphering how organelle dynamics and
peroxisome-mitochondria interactions influence the antiviral
signalling pathways operating from both organelles remains a
future challenge. A better understanding of these processes
will help to develop novel therapies to combat invading
pathogens.
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