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Abstract
Microfluidics has wide applications in different technologies such as biomedical engineering, chemistry engineering, and
medicine. Generating droplets with desired size for special applications needs costly and time-consuming iterations due to the
nonlinear behavior of multiphase flow in a microfluidic device and the effect of several parameters on it. Hence, designing a
flexible way to predict the droplet size is necessary. In this paper, we use the Adaptive Neural Fuzzy Inference System (ANFIS),
by mixing the artificial neural network (ANN) and fuzzy inference system (FIS), to study the parameters which have effects on
droplet size. The four main dimensionless parameters, i.e. the Capillary number, the Reynolds number, the flow ratio and the
viscosity ratio are regarded as the inputs and the droplet diameter as the output of the ANFIS. Using dimensionless groups cause
to extract more comprehensive results and avoiding more experimental tests. With the ANFIS, droplet sizes could be predicted
with the coefficient of determination of 0.92.
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1 Introduction

Currently, microfluidic and micro-droplets have wide applica-
tions in various areas such as biomedical engineering, chem-
ical engineering, andmedicine (Lashkaripour et al. 2018; Jung
and Oh 2014; Song et al. 2003). Micro-droplets provide a
large advantage for not only the engineers but also for the
pharmacists and therapists because of its high precision, accu-
racy, sensitivity and fast reaction time and its small size (Ray
et al. 2017). Droplets have a confined space which can be used
as an ideal reactor for biochemical and chemical processes
(Nguyen et al. 2010). However, the field of microfluidics
has not been deployed in the life sciences due to the costly
and time-consuming process of manufacturing and the com-
plex and nonlinear dynamics of the two phase flow (i.e. two
immiscible fluids such as oil and water inside the microfluidic
channel). Hence, presenting models which can investigate the
role of different effective parameters on the droplet size is very

attractive. Thesemodels can save time andmoney by avoiding
experimental tests.

The first concept that exists here is the way of generating
droplets. A large variety of methods with some advantages
and drawbacks has been presented so far for this purpose
(Park et al. 2011; Mastiani et al. 2019; Murshed et al. 2009).
It can be said that electricity has had the most use in this field
(Chong et al. 2016). Link et al. used a DC voltage in order to
control the formation of droplet in a microfluidic setup. They
used electrical field generated by some electrodes on bottom
of the channels to provide an individual droplet controlling
system/model (Link et al. 2006). Kim et al. described a flex-
ible emulsification method which used an electric field to
create droplets in a flow focusing micro-channels (Kim et al.
2007). Malloggi et al. demonstrated improved control and
flexibility of the flow of two immiscible liquids on the basis
of electro-wetting (EW) (Malloggi et al. 2008). As thermal
methods, Nguyen et al. used a temperature sensor and an
integrated micro-heater to control the process in which the
droplets are formed. This method exploits whether interfacial
tension and viscosities depend on temperature (Nguyen et al.
2007). Park et al. used a pulse laser-driven droplet generation
(PLDG) mechanism, their PLDG device consisted of two mi-
cro-channels, water and oil, which were connected using a
nozzle shaped opening. The actuation mechanism of PLDG
was based on laser pulse induced rapidly expanding cavitation
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vapor bubbles (Park et al. 2011). The other methods are me-
chanical, creating perturbation (Willaime et al. 2006), chop-
ping the flow (Chen and Lee 2006), manipulating the flow
with membrane valves (Lin and Su 2008) and utilizing piezo-
electric feature (Bransky et al. 2009). After the electrical
methods, the most important category is the magneto-
fluidics (Aboutalebi et al. 2018), because of its simple crea-
tion, being contactless and the fact that variables such as pH,
temperature, surface charges and ionic concentrations does
not have any impact on magnetic interactions, while they play
a role in the electrical method (Pamme 2006). Nguyen et al.
reported a way to magnetically manipulate ferrofluid droplets
and the dynamic behavior of them. An array of planar coils
was fabricated on a double-sided printed circuit board (PCB)
to create the magnetic field (Nguyen et al. 2006). In his other
work, he used a core with coils to generate magnetic field
around the PDMS chip to have a uniform magnetic field.
350 turns of coil were spiraled round a ‘U’ shape core made
of steel with a little air gap, and the strength of the magnetic
field was changed using a DC power source.

Making the magnetic field stronger, increased the size of
the droplet. The size of droplet increased with increasing mag-
netic field strength. The flow rates of both continuous and
dispersed fluids determine how much the droplet size changes
by altering the magnetic field (Liu et al. 2011). Tan et al. used
a small permanent magnet to affect the flow for droplet gen-
eration. In their experiment, small circular magnet made of
neodymium iron boron (NdFeB) with the diameter of 3-mm
and thickness of 2-mm generated the external magnetic field.
They located the magnet in various distances of 2.3 mm to
3.8 mm from the center of the microchannel to vary the impact
of the magnetic force on the ferrofluid. The magnet was
placed either downstream or upstream relative to the dispersed
phase channel to change the direction of the attractive mag-
netic force (Tan et al. 2010). The important point in the dif-
ferent techniques on droplet generation is the process control.
For this goal, a suitable detection method is needed. In mag-
netic cases, we can refer to GMR sensors (Rife et al. 2003),
using spin-valves (Graham et al. 2005). In electrical cases, we
can refer to resistive sensors (Cole and Kenis 2009) which
have some limitations (Srivastava and Burns 2006), and ca-
pacitive sensors which are very useful and simply designed. In
this case, we can detect the microscale droplet size and speed
without contact (Elbuken et al. 2011). In addition to these
methods, there is a common approach that is an optical tech-
nique. In this way, a high-speed camera is used and its outputs
are processed in an image processing algorithm.

After a quick look at these methods, the first topic that
seems necessary is preparing the precise equipment to study
the effects of parameters. The syringe pumps are commonly
used for controlling the flow rate of the two fluids, but due to
the mechanical oscillations of the pump motor, the droplets
size undergoes some periodic changes such as noises (Zeng

et al. 2015). In addition to the pumps, method of image pro-
cessing needs sensitive and expensive microscopes and high-
speed cameras for size detection. In order to avoid these dif-
ficulties, designing a system to predict the droplet size is
necessary.

Soft computing methods such as fuzzy based neural net-
work prepare ways to present a precise mathematical model
(Lashkaripour et al. 2018; Zadeh 1997). By using these
methods, the qualitative facets of human knowledges are
modeled without using quantitative calculation. However,
there are no standard methods to transform knowledge into
the rule-base of a fuzzy system (Jang 1993). There are many
applications of these networks in the literature. For instance,
the multi-layer perceptron (MLP) or radial basis function
(RBF) are used as an observer for different systems
(Pourrahim et al. 2016; Chen et al. 2016; Liu et al. 2008;
Lin et al. 2014; Ruifu et al. 1997; Hua et al. 2014;
Theocharis and Petridis 1994; Bayat et al. 2019). Also,
Adaptive Neuro Fuzzy Inference system (ANFIS) is used as
an observer (Bayat et al. 2019; Guzinski et al. 2011; Giribabu
et al. 2015; Ismail 2011; Singh and Chandra 2010). With
ANFIS, we can train a virtual system to predict the effects of
different parameters. In ANFIS, two characteristics exist, i.e.
the capability of learning from neural networks and the capa-
bility of deduction from fuzzy systems. A fuzzy system can
group and cluster data to several categories. Moreover, it can
use linguistic variables for describing complex systems.
However, fuzzy systems, despite artificial neural networks
(ANNs), are unable to learn (Goharimanesh et al. 2015). The
ANNs are able to extract the nonlinear relations between out-
puts and inputs and create a mathematical model. However,
the accuracy of the ANN will lose in dealing with systems
which behaves differently depending on the states of the sys-
tem (Lashkaripour et al. 2018). To avoid this limitation and
using the clustering power of fuzzy systems and learning ca-
pabilities of ANN, ANFIS is used (Jang 1993). Because of
nonlinear dynamics of the two phase flow in a micro-channel,
ANFIS structure has better results than the standard linear
regression method and ANN. In other words, ANFIS has a
better coefficient of determination relative to linear regression
method and ANN [38, 47–49]. ANFIS prediction has better
result in comparison with the linear regression method due to
its nonlinear dynamics.

In this paper, we created an accurate ANFISmodel to study
the effective parameters in microfluidics droplet generation
and droplet diameter. Important non-dimensional parameters
which describe the flow regime in a microfluidic device are a.
Capillary number, b. Reynolds number, c. flow ratio and d.
viscosity ratio which are considered as the inputs of the pro-
posed ANFIS. The droplet size is considered as the output of
the ANFIS. The analysis is done for the first time for the flow-
focusing device. Working with non-dimensional groups has
comprehensiveness instead of dimensional ones. It causes to
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extendable results instead of changing dimensional parame-
ters such as width of the channel, viscosity of each fluid, flow
rate of each fluid and etc., which can be generalized to other
experiments.

In this multidisciplinary article, three difficult areas of sci-
entific research meet: complex mathematical modeling of
flows, advanced experimental work on drop generation and
the use of ANFIS as a surrogate for computation or
experiment.

At first, we obtain some input-output dataset from numer-
ical simulations and experimental verifications. These re-
quired data sets for ANFIS training and testing are obtained
by changing the non-dimensional numbers in some levels.
Moreover, in this work, Taguchi method (Roy n.d.) is used
to decrease the unnecessary experiments with the goal of de-
creasing the wasted costs and time.

The structure of the paper is as follows. In the next section,
the process of droplet generation in a micro-channel is exam-
ined. The experimental setup and numerical simulation are
explained in this section. At the end of this section the data
set is extracted. The ANFIS model is built in section 3 using
hybrid learning algorithm. Finally, the evaluation of model
and conclusion are presented.

2 Microfluidic droplet generation

Microfluidic droplet generation can commonly occur in two
configurations, T-junction and flow-focusing junction (Chong
et al. 2016; Peng et al. 2011). In this work, we use the flow-
focusing junction model which its geometry is shown in
Fig. 1. In Fig. 1a, w1 is the width of the continuous phase
channel and w2 is the width of the discrete phase channel.
The length of the continuous phase channel is h and h1 ¼ h

2.

The length of the discrete phase channel is L and L1 ¼ L
2. The

flow rate of the continuous and discrete phases are Qc and Qd,
respectively. The flow is assumed isothermal and incompress-
ible. The gravity force is neglected.

In Fig. 1b, the dynamics of the droplet generation is shown
in COMSOL multi-physics environment. The discrete phase,
DI water, is flown (i.e. uniform velocity boundary condition)
from the one channel and the continuous phase, mineral oil, is
injected from two other channels that are perpendicular to the
continuous phase flow. Zero pressure boundary condition
(gauge pressure) is assumed at the outlet of the channel. At
the first stage, the discrete phase flow is extended in both axial
and radial directions such that the tip of the flow has a dome
shape. In the second stage, the continuous phase narrows the
discrete phase in the radial direction and extends it in the axial
direction. This stage continues up to create the throat. In the
third stage, the throat is created and becomes narrower up to
droplet separation. In fact, the discrete phase flow is narrowed

by the continuous phase flow until the droplet is generated
after the orifice. The time duration of this process is called
separation time and the length between the beginnings of the
channel up to droplet separation location is called separation
length. Reducing the separation time cause to shorter separa-
tion length.

Formation of a droplet in a microchannel can be specified
by many numbers such as the inlet volumetric flow rates (Qd

and Qc), the interfacial tension (σ), fluid densities (ρc and ρd)
and fluid viscosities (μd and μc). In the aforementioned vari-
ables, subscripts ‘d’ and ‘c’ indicate the dispersed and the
continuous phase.

The dynamics of the droplet size in a microchannel can be
specified by many dimensionless numbers. The Capillary
number (Ca) of the continuous phase is one of the key dimen-
sionless numbers, which is the ratio of the viscous force and
surface tension force. The Capillary number is defined as fol-
lows:

Ca ¼ μcuc
σ

ð1Þ

Where, uc is the average inlet velocity, μc is the dynamic
viscosity of the continuous phase, and σ is the interfacial ten-
sion. The Reynolds number (Re) describes the ratio of inertia
to viscous stresses.

Re ¼ ρcucwc

μc
ð2Þ

Where wc is the width of the microchannel at the continuous
phase.

The ratio of flow rates and the viscosity ratio of the two
immiscible fluids are other important dimensionless variables,
defined as follows:

α ¼ Qc

Qd
ð3Þ

μr ¼
μc

μd
ð4Þ

Since the difference in the density of the two liquids is
small in typical microfluidic systems, the Bond number is also
small.

The ranges of the parameters considered in this research are
shown in Table 1. Different values for each parameter are
considered to generate the input-output dataset by using the
verified numerical model and experimental tests.

2.1 Experimental setup

The DI-water and the mineral oil were chosen as dispersed
and continuous phase, respectively. The characteristics of the
two fluids are given in the Table 2. The flow rates of the fluids
are controlled by two syringe pumps. For generating the flow
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rates a LAMBDA-VIT-FIT-HP syringe-pump was used for
oil injection and a Zistrad ISP94–1 pump for DI-water injec-
tion. The PDMS micro-channel is fabricated by soft lithogra-
phy (in visualization and tracking Lab.) and is bonded on a
glass. For droplet size detection, a high speed digital micro-
scope was used.

For droplet size detection an image processing algorithm is
used. In this algorithm, the captured image is cut in the width
of the channel. Then, the image becomes binary to recognize

the boundary of the droplet, and then the droplet is detected.
This process is shown in Fig. 2.

The images are captured by the Meros high speed digital
microscope with the framerate of 150 frames per second and
the high resolution of 1280 * 1024. A schematic of the exper-
imental setup is represented in Fig. 3.

2.2 Numerical simulation

Modeling two phase flows is usually done by using the
Volume of Fluid (VOF) method and the Level-Set method
(LS). The volume fraction equation is adopted and the geo-
metric construction is considered by VOF method. The VOF
method completely conserves the mass but since the interface
of fluids is not calculated precisely, it produces error in the
calculation of interfacial forces. In a microfluidic device
which has a micro scale orifice, if the creation of droplets
was modeled by the VOF method, the inaccurately captured
interface could lead to large errors. The LS method, however,
utilizes a smooth function to capture the interface which

(a)

(b)

h
=
2
0
0
0
0
μ
m

Qd

h1=10000μm

w1=400μm

w2=400μm

Vout
L=23000μm

L1=7800μm

DI water

Mineral oil

Mineral oil

t = 0.1 t = 0.22 t = 0.24

t = 0.26 t = 0.27 t = 0.28

Fig. 1 Droplet generation in a
micro-channel by flowing DI wa-
ter and mineral oil. a The geome-
try of the micro-channel and the
entrance of the fluids, b a numer-
ical simulation in COMSOL
multi-physics environment with
Ca = 0.194, Qc/Qd = 8 and μc/
μd = 17.6

Table 1 Rang of varying parameters

Parameter Lower range Upper range

Ca 0.097 0.194

μr 1 17.6

α 4 10

Re 0.076
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calculates surface tension forces and the curvature convenient-
ly. As a result, the LS method is more beneficial in modeling
the process in which the droplet is generated inside a
microfluidic device. The governing equations of the flow in-
clude continuity (Eq. (5)) and the incompressible Navier-
Stokes equation (Eq. (6)):

∂ρ
∂t

þ ∇: ρ u!
� �

¼ 0 ð5Þ

∂
�
ρ u

��!

∂t
þ ∇: ρ u! u!

� �
¼ −∇P þ ∇: μ ∇ u!þ ∇ u!

T
� �� �

þ F
! ð6Þ

Where, ρ is the fluid density, u! is the velocity field and F
!

is
the volume body force. Since the density difference between
the two phases is small and also velocities and masses are
small, the gravitational force is neglected; therefore, F

!
only

consists of the interfacial tension force. The LS equation is
given in Eq. (7):

∂ϕ
∂t

þ u!:∇ϕ ¼ γ∇: ϵ∇ϕ−ϕ 1−ϕð Þ ∇ϕ
∇ϕj j

� �
ð7Þ

The viscosity and the thermo-physical properties of each
phase were considered in the numerical model. In other words,
the viscosity of each phase was calculated by the level set
function. The level set function (ϕ) ranges from 0 to 1, and
it varies smoothly from 0 to 1 at the interface. ϵ and γ are the
parameters of stabilization. ϕ varies smoothly from 0 to 1 and
ϵ sets the thickness of the interface. The parameter ϵ must be
selected in a way to ensure its order is the same as the inter-
facial mesh size order. Consequently, the interfacial parame-
ters like the unit normal to the interface bn and the curvature κ,
can be calculated by using the Eqs. (8) and (9), respectively:

bn ¼ ∇ϕ
∇ϕj j ð8Þ

κ ¼ −∇:njϕ¼0:5 ð9Þ

The relation given in Eq. (10) is used to calculate the sur-
face tension force applied on the interface of the two phases.

Fsf
�! ¼ σκδbn ð10Þ

In this equation, σ is the interfacial tension coefficient,
whose unit is (mN/m). In this study, this variable has a con-
stant value of 1.5 mN/m (based on the measurements of sur-
face tension in the Lab. by Datis Energy device with 0.1%
accuracy). Equation (10) is used to calculate the “surface ten-
sion force” applied on the interface of the two phases. In other
words, the interfacial force which is necessary in Eq. 6 (force
term in the momentum equation) was calculated in each iter-

ation from Eq. (10). F (= Fsf
�! ¼ σ κ ∅ð Þ δ ∅ð Þ bn ) is the inter-

facial force in the present two phase problem. δ is a Dirac delta
function focused on the interface of two phases. δ is a smooth
function approximation which can be calculated from Eq.
(11).

(1) (2)

(4)(3)

Cr
os

s o
f c

ha
nn

el

Fig. 2 The four steps of image
processing: 1 Capturing the
picture, 2 Cropping 3
Binarization, and 4 Circle
recognition

Table 2 The characteristics of the two fluids

Fluid Phases Interfacial tension
between two
immiscible phases (mN/
m)

Density
(kg/m3)

Viscosity
(mPa. s)

DI water Discrete 1.5 1100 2

Mineral
oil

Continuous 1.5 838 35.2
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δ ¼ 6 ∇ϕj j ϕ 1−ϕð Þj j ð11Þ

The Dirac function (δ) is a sharp function and it may lead to
a divergence in the numerical solution. Therefore, a “smooth
form” of this function was suitably used for numerical solu-
tion. In other words, in numerical simulations, the abrupt jump
in the fields will cause instabilities in the numerical method.
Therefore, a “smeared out” function is used instead. Also,
viscosity μ and the density ρ are smoothed by ϕ across the
interface as shown in Eqs. (12) and (13), respectively:

μ ¼ μ1 þ μ2−μ1ð Þϕ ð12Þ
ρ ¼ ρ1 þ ρ2−ρ1ð Þϕ ð13Þ

The Initial condition is as follows. At t = 0, the intermediate
injection channel completely contains the discrete phase fluid
(ϕ = 0) and the rest of the computational domain, including
the side injection channels, orifice, and the channel down-
stream of the orifice Contains a continuous phase (ϕ = 1).

The initial interface between two phases at t = 0 is shown
with dashed line in the Fig. 1. In addition, the flow is assumed
isothermal and incompressible. The gravity force is neglected.

Also, variation of physical properties such as viscosity and
surface tension is neglected. It is assumed that the surface
tension at the common boundary between the two phases is
constant and does not change with time. The wetting of the
channel surfaces relative to the fluid depends on the contact
angle.

2.2.1 Grid generation and grid independence verification

The first step for solving equations appropriately is gridding
the computational domain. In the created domain, orifice areas
and the middle area of the channel, where the droplets are
created and moving have a higher importance. As a result,
the middle area must have a finer grid. In this area, firstly
based on Table 3, four triangular grids sized 5, 10, 15, and
20μmwere examined. Finer grid leads to a higher accuracy in

ISP94-1 Zistrad
Syringe Pump for 

oil injec�on

LAMBDA-VIT-FIT-
HP-syringe-

pump-manual
For Water 
injec�on

Digital Meros 
Microscope

Microchannel

(1)

(1)

(2)

(3)

(4)

(1) Syringe pump
(2) Microchannel
(3) Digital Microscope
(4) PC
(5) Droplet container 

(5)

Fig. 3 The experimental setup
and its schematic diagram that
consist of two syringe pumps and
a digital microscope for size
detection and a PDMS
microchannel
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the calculation, more computational cost and a slower speed
of calculation. As a result, the length of the droplet during time
is measured based on these four grids (Fig. 4). The grids be-
come finer until there is an acceptable difference between the
results. As it can be seen in Fig. 4, the difference between the
time response of droplet length up to separation in grid 1 and 2
is very similar.

Based on Table 3, grid 1 is about a triangular grid sized
5 μm with 624,488 elements and grid 2 is about a triangular
grid sized 10 μm with 167,412 elements. Since there is no
difference between the results of the 2 grids, grid 2 is selected
to reduce the computational cost.

As a result, based on Figs. 3 and 4, to have an accurate
answer in a shorter time, in less important areas the bigger
mesh size, 50 μm, was chosen and in more important areas
such as orifice areas and middle part of the channel where
droplets are made and are moving, the finer mesh size of
10 μm was chosen.

2.2.2 Validation of the numerical results

In this section, to verify the accuracy of the used numerical
method, the results were compared to the experimental results
(Fig. 5). It is demonstrated that the diameters of the droplets

were in good agreement with the experimental test (Max.
Error = 5%). The differences between the COMSOL data
and the experiments (i.e. exact error) are not the same for
different flow rate ratios as depicted in Fig. 5. The differences
may be related to the numerical solution and the iterative
methods which were used for solving the discretized equa-
tions. Please note that the “grid size” of the numerical solution
was verified in Fig. 4. Moreover, in the experiments, we try to
fabricate a channel by PDMS, nonetheless, there are some
small deviations between numerical and experimental setup
(i.e. size of channel, shape of the corners,…). However, the
maximum differences between the numerical data and the
experimental values were less the 5% (at the worst case).

In Fig. 5, the verification of numerical data was shown
(comparing to the experimental data) by using Ca = 0.194
andμc/μd = 17.6. Please note that the viscosity ratio was fixed
in Fig. 5 (i.e. =17.6) because our experimental data was ob-
tained for a specific oil and water (with properties mentioned
in Table 2). In this condition, we only changed the “flow rate
ratios” and a comparison was made between the numerical
and experimental data (see Fig. 5).

2.3 Dataset generation

For the best and more effective dataset which demonstrates
the most effective parameters in the droplet size, we used the
Taguchi analysis (Roy n.d.). To find the relevance between
parameters of a process and its output the design of experi-
ments (DOE) methods is used. Taguchi method is one of the
DOE methods for robust design of experiments. To set an
experiment, the Orthogonal arrays (OA) are used. By using
this statistical method, one can plan and conduct experiments
to obtain adequate data which show the dynamics of the

Fig. 5 Verification of numerical data using the experimentla data, with
Ca = 0.194 and μc/μd = 17.6

Fig. 4 The droplet length (between the beginnings of the channel up to
droplet separation) versus time for different grid sizes based on Table 1,
with Ca = 0.194, Qc/Qd = 8 and μc/μd = 17.6

Table 3 The number of elements for different grids in the
computational model

Mesh type Dimension of triangular mesh (µm) Number of elements

No. 1 5 624,488

No. 2 10 167,412

No. 3 15 80,321

No. 4 20 50,328
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process. In the experiments, we have to know which parame-
ters have the most effect on the droplet size. So, varying these
parameters can omit the unnecessary examinations. With the
three parameters, if we consider 5 levels for each of them at least,
we should test 243 (35) experiments. Through the Taguchi meth-
od, mixed level design is used. Two levels are considered for one
parameter and four levels for others. Totally, thirty-two experi-
ments are needed. Thirty-six datasets from experimental tests and
numerical simulations are regarded.

Almost 20% of the datasets are considered as test datasets
and others are used for training. For cross validation, these
datasets are separated randomly from different levels of each
parameter.

3 ANFIS modeling using hybrid learning

ANFIS is a fuzzy based neural network which combines two
characteristics of learning and clustering of data simultaneous-
ly (Chen et al. 2016). After generating the input-output dataset
for analysis in ANFIS, the next step is to create the ANFIS
structure (Fig. 6). The ANFIS structure in this study has three
inputs, five layers, and one output. The flow ratio, Capillary
number and viscosity ratio are the three inputs. The droplet
size is the output of the ANFIS model.

ANFIS creates a black-box model from an input-output
dataset. There are five layers in ANFIS structure, each layer
of which shows a step in the Takagi-Sugeno-Kang (TSK)
fuzzy inference steps. In other words, ANFIS is a TSK fuzzy
system in the form of ANN.

Hybrid learning method is the combination of back propa-
gation method and least square (LS) method.

3.1 Fuzzification layer

For each input three bell-shaped membership functions are
regarded. In the Fuzzification step, each input enters the

corresponding membership function and the fuzzy input is
generated. The membership functions were generated by con-
sidering the range and levels of the dataset corresponding to
each parameter. A Gaussian bell-shaped membership function
is in the following form:

g x; n; pð Þ ¼ 1

1þ x−p
1

	 
2n ð14Þ

n and p in Eq. (14) are two parameters should be updated
and adapted to predict the best results. The trained member-
ship functions of each input are demonstrated in Fig. 7.

3.2 Accounting the firing strength

There are 27 “IF-THEN” rules in the rule base. The rules are
as follows

Rl : IF Ca is mf lca and μr is mf lμr
and α is mf lα THEN d

¼ piCaþ qiμr þ riαþ vi; l ¼ 1…27:

Where X = [Ca, μr,α] ∈ℝ3 is the input and d ∈ℝ is the output

of the fuzzy system.mf lca is the fuzzy set of Capillary number,

mf lμr
is the fuzzy set of viscosity ratio andmf lα is the fuzzy set

of flow ratio. The parameters pi, qi, ri and vi are adjusted and
adopted during the learning process.

The “product” is used as the t-norm in the inference engine.
The firing strength is generated in each layer as wi, i = 1, 2, 3.
The firing strength wi shows the dependency of each input to
the i-th rule. For every input three membership functions are
regarded (Fig. 7).

3.3 Normalization

Each weight is normalized according to the following equa-
tion:

Fig. 6 The schematic structure of
ANFIS. It has three inputs and
one output. The dimensionless
numbers Capillary, viscosity ratio
and flow ratio are the inputs and
the diameter of the droplet is the
output. It creates a black-box
model to predict the diameter of
the droplet in a flow focusing
channel
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w*
i ¼

wi

∑wi
; i ¼ 1; 2; 3 ð15Þ

Where i shows the number of each rule.

3.4 Output of each layer

According to the Takagi-Sugeno-Kang (TSK) model, the an-
tecedent of each layer is a linear equation with the order of one
or zero. In this study, the first-order Takagi-Sugeno-Kang
(TSK) model is regarded. In other words, the antecedent of
each rule is a linear combination of the inputs:

yi ¼ piaþ qibþ ricþ vi ð16Þ
Where, yi is the antecedent of each rule, a is the input 1, b is
the input 2 and c is the input 3. The parameters pi, qi, ri and vi
are adjusted and adopted during the learning process. The
final output of each layer is calculated by multiplication of
the normalized weight to yi, i.e. y*i ¼ w*

i yi.

3.5 Output of the ANFIS

Finally, the summation of the output of each layer is the output
of the ANFIS, i.e.:

Y ¼ ∑y*i ¼ ∑w*
i yi ð17Þ

3.6 Learning algorithm

There are different learning algorithms for the ANFISmethod,
but the most commonly used algorithm is the hybrid learning,
combining two methods of the least squares estimate (LSE)
and the gradient method for identifying the parameters (Jang
1993). Forward pass and backward pass are two passes in
hybrid learning algorithm. In forward pass the node outputs
go forward and the consequent parameters (parameters in the
consequent of the fuzzy rules) are identified by the LS meth-
od. In backward pass the error signals propagate backward
and the premise parameters (parameters in the membership
functions) are updated by gradient descent.

4 Results and discussion

After creating the ANFIS model, it should be evaluated by the
test dataset and train dataset. This evaluation can be achieved
by computing the determination coefficient (R2). This value is
determined as follows (Lashkaripour et al. 2018):

SStot ¼ ∑
i

yi−y
� �2

ð18Þ

SSres ¼ ∑
i

yi− f ið Þ2 ð19Þ

Fig. 7 The membership functions for viscosity ratio, Flow rate ratio and
Capillary number. For each input three overlapping bell-shaped member-
ship function are regarded. These membership functions capture the non-
linear dynamics of the two phase flow in a micro-channel
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R2 ¼ 1−
SSres
SStot

ð20Þ

Where y is the output column of the dataset that generated
with the verified numerical simulation and f are the outputs

of ANFIS which are the predicted outputs and y is mean of
yi, i = 1…n as follows:

y ¼ 1

n
∑
i
yi ð21Þ

Case 1 Case 2

Case 3 Case 4
Fig. 8 The location of the predicted droplet sizes in related to R2 = 1 for four cases, which shows the ability of the ANFISmodel in droplet size prediction
in a micro-channel

Table 4 The values of R2 and RMSE for the test, train, and total data for the four cases in Fig. 8

R2 for test data R2 for train data R2 for all data RMSE for test data RMSE for train data RMSE for all data

Case 1 0.87 0.963 0.945 12.35 6.8 8.17

Case 2 0.910 0.965 0.948 13.05 6.06 7.92

Case 3 0.95 0.962 0.959 9.85 6.15 7.02

Case 4 0.925 0.948 0.943 10.46 7.69 8.3
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The largest amount of R2 is one. Therefore, the closer R2

gets to one, the more precise prediction we have.
Another criterion used to evaluate the goodness of the re-

sults is the root mean square of the errors. The error is as
follow:

ei ¼ yi− f i ð22Þ

Therefore, the root mean square of errors is as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffi
∑
i
e2i

n

vuut ð23Þ

Four different random sets of test and train data are selected
for evaluating the ANFISmodel. For each case, the location of
the predicted droplet sizes in relation to R2 = 1 is shown in
Fig. 8.

For each case, the values of R2 and RMSE are shown in
Table 4. The values of R2 for the train and all data is approx-
imately 0.95. This difference can be because of the nonlinear-
ity of the real droplet generating system.However, this prediction
can prove the effect of some parameters which are very difficult
to be compared to each other. The ANFIS predictions in the field
of droplet generation will create new insights that can be studied
to simplify the complexity and nonlinearity of that.

The worst result for the test data is in case 1 due to one
point. In this case, the number of the train data around this
point is less. However, in the application observer for a micro-
channel, the value of R2 for all data is important. Moreover, in
(Lashkaripour et al. 2018), the value of R2 for all data was
presented.

Because of nonlinear dynamics of the two phase flow in a
micro-channel, ANFIS structure has better results than the
standard linear regression method and ANN. In other words,
ANFIS has a better coefficient of determination relative to
linear regression method and ANN (Bayat et al. 2019; Guha
Roy and Singh 2020; Amanollahi and Ausati 2020; Khazaee
Poul et al. 2019). ANFIS prediction has better result in com-
parison with the linear regression method due to its nonlinear
dynamics. Moreover, ANN has accuracy lost in dealing with
systems with highly nonlinear dynamics (Lashkaripour et al.
2018).

The Gaussian bell-shaped membership function is used in
ANFIS structure. Other types of membership functions such
as triangular membership function, trapezoidal membership
function can be chosen in ANFIS structure. The results are
sensitive to the shape of the membership functions. The
Gaussian bell-shaped membership function has better results.

The variation in the shape and the center of the Capillary
number’s membership function are more than two other pa-
rameters. This shows that the dynamics of the droplet size is
more sensitive to Capillary number.

It has to be noted that regarding dimensionless numbers in
describing droplet size dynamics in a micro channel not only
gives comprehensiveness in analyzing the dynamics of the
system, but a lso decreases the input of ANFIS.
Computational cost decreases by reducing the input of
ANFIS. It is so beneficial in using ANFIS as an observer.

5 Conclusion

In this paper, we proposed a predictive model which can be
utilized to investigate the effect of parameters in generation of
droplet in a flow focusing micro-channel which can be very
expensive and difficult in fact. Our predictive model can be
trusted with a tolerable error. This predictive model is de-
signed as an ANFIS model trained with a set of input and
output data that was generated with experimental tests and a
simulation method based on the governing equations in
microfluidics which is validated with the experimental data.
The inputs are flow rate ratio, capillary number and viscosity
ratio. Finally, we demonstrated the validity of the predictive
model with the coefficient of determination equals 0.92 that
can be accepted with respect to the high nonlinearity of the
real system. There are two main advantages obtained, first this
experiment was performed with just three dimensionless num-
bers which compared to most other works has used fewer
parameters and more importantly, they are dimensionless
which has made a more generalized model compared to other
models.
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