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Abstract
This paper is devoted to explore the convolution quadrature based on a class of
two-point Hermite collocation methods. Incorporating derivatives into the numeri-
cal scheme enhances the accuracy while preserving stability, which is confirmed by
the convergence analysis for the discretization of the initial value problem. Moreover,
we employ the resulting quadrature to evaluate a class of highly oscillatory integrals.
The frequency-explicit convergence analysis demonstrates that the proposed convo-
lution quadrature surpasses existing convolution quadratures, achieving the highest
convergence rate with respect to the oscillation among them. Numerical experiments
involving convolution integrals with smooth, weakly singular, and highly oscillatory
Bessel kernels illustrate the reliability and efficiency of the proposed convolution
quadrature.

Keywords Convolution quadrature · Hermite collocation · Highly oscillatory
integral · Numerical integration

Mathematics Subject Classification 65D32 · 65R10

1 Introduction

We are concerned with the calculation of the convolution integral (CI)

( f ∗ g)(t) :=
∫ t

0
f (t − τ)g(τ )dτ, t ∈ [0, T ], (1.1)
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where T is a positive real number, g(t) is a given function, and f (t) represents the
convolution kernel. CI (1.1) frequently arises in the time-domain boundary integral
equation, fractional differential equation and Volterra integral equation. Its numeri-
cal evaluation has attracted a number of attentions during the past several decades.
When the kernel function is given, conventional quadrature rules, such as Gauss and
Clenshaw-Curtis quadratures, can be employed (see [23] and references therein). In
order to make use of the convolution structure, orthogonal polynomial convolution
matrices were developed using the convolution of Chebyshev polynomials in [27].
This led to a class of spectral approximations to convolution integrals. However, if the
Laplace transform of the kernel function is known analytically, then the convolution
quadrature (CQ) becomes a prevalent approach, as evidenced by Lubich’s pioneer
work in [14, 15] and the recent successful applications of CQ in the computational
practice (see [2, 3, 12, 21] and references therein).

Let F(λ) denote the Laplace transform of f (t). Then F(λ) and f (t) satisfy

f (t) = 1

2π i

∫
Γ

F(λ)eλt dλ. (1.2)

We further suppose that F(λ) is analytic in the half-plane Re(λ) ≥ σ and is bounded
by M |λ|−μ for all λ ∈ Γ , where M is a constant and μ > 0, and Γ := σ + iR.

Substituting Eq. (1.2) into CI (1.1) results in

∫ t

0
f (t − τ)g(τ )dτ = 1

2π i

∫
Γ

F(λ)

∫ t

0
eλτ g(t − τ)dτdλ. (1.3)

It is easy to get that y(t) = ∫ t
0 e

λτ g(t − τ)dτ satisfies the following initial value
problem (IVP) for the ordinary differential equation (ODE)

{
y′(t) = λy(t) + g(t), t ∈ [0, T ],
y(0) = 0.

(1.4)

In [14], the linear multistep formula was employed to solve IVP (1.4). With the help
of the fast Fourier transform, quadrature weights were efficiently computed, which
led to the well-known linear multistep convolution quadrature (LMCQ). Incorpo-
rating correction terms allows LMCQ to compute CI (1.1) with a convergence rate
matching that of the underlying linear multistep formula. As the stability of the ODE
solver for IVP (1.4) significantly affects the convergence of the corresponding CQ, the
prevalent LMCQ is founded on low-order backward difference formulae (BDFCQ).
In order to obtain a stable and high-order CQ, Runge–Kutta method was employed
in the discretization of IVP (1.4), which led to the Runge–Kutta convolution quadra-
ture (RKCQ) (see [17]). Theoretical and numerical evidences indicated RKCQs with
Radau IIA points outperformed LMCQ due to their A-stable properties [22]. Building
upon LMCQ and RKCQ, extensive research on CQ has been conducted, encompass-
ing techniques such as variable time stepping, locally supported basis functions, and
correction techniques for nonsmooth initial data (see [6, 8, 13]).
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CQ also demonstrates the ability to efficiently solve highly oscillatory problems, a
property first identified byLubich in [16], where a system of highly oscillatoryVolterra
integral equations arising in the time-dependent Schrödinger equation was solved by
LMCQ. In addition, in [18], BDFCQ for CI (1.1) with a highly oscillatory Bessel
function f (t) = Jm(ωt) was studied. It was observed that BDFCQ exhibited the
remarkable property that the larger the oscillation parameter ω, the better the approx-
imation. The theoretical analysis indicated errors computed by BDFCQ decayed in
terms of the inverse power of ω. However, it should be noted that BDFCQ’s asymp-

totic convergence order with respect to ω was limited to O(ω− 3
2 ) (see [18, Figures

1-3]). In fact, in Sect. 4, we find that RKCQ also converges as quickly as ω− 3
2 when

f (t) = Jm(ωt).
The current paper aims to study an extension of CQs for CI (1.1). The proposed

approach is developed by incorporating the two-point Hermite interpolation into the
design of the ODE solver, which is motivated by the research on Filon-type quadrature
for highly oscillatory integrals (see [7, 25]). We find the application of derivatives of
g(t) significantly enhances the convergence order of the resulting CQ with respect to
both the stepsize and oscillation. When faced with the computation of highly oscil-

latory integrals, the proposed CQ can surpass the convergence order of O(ω− 3
2 ),

a limitation observed in existing CQs. The remaining part is organized as follows.
Section2 introduces the construction of the modified CQ, while Sect. 3 presents its
convergence analysis with respect to the stepsize. The proposed CQ’s application to
calculation of a class of highly oscillatory integrals is evaluated in Sect. 4, along with
its convergence analysis with respect to the oscillation parameter. Some remarks are
concluded in Sect. 5.

2 Formulation

In this section we construct CQ that uses the two-point k-order Hermite collocation
method (TPHC-k) for solving IVP (1.4). Let us commence with the development of
this class of ODE solvers. In fact, differentiating both sides of IVP (1.4) k times yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y′(t) = λy(t) + g(t),
y′′(t) = λy′(t) + g′(t),

...

y(k+1)(t) = λy(k)(t) + g(k)(t),
y(0) = 0,

(2.1)

where t ∈ [0, T ]. It is obvious that y(l)(0) with 1 ≤ l ≤ k + 1 is determined by
y(l)(0) = ∑l−1

j=0 λ j g(l−1− j)(0). We then evenly divide the interval [0, T ] into N
subintervals, resulting in an equispaced grid XN := {tn := nh, n = 0, 1, . . . , N }
with the stepsize h = T /N . Next, we define the piecewise polynomial space by

Sk(XN ) := {v ∈ Ck([0, T ]) : v|[tn ,tn+1] ∈ π2k+1, n = 0, 1, . . . , N − 1},
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where Ck([0, T ]) comprises functions with k−order continuous derivatives over the
interval [0, T ], and v|[tn ,tn+1] ∈ π2k+1 indicates v is a polynomial with its degree not
exceeding 2k + 1 over the subinterval [tn, tn+1]. Let H2k+1(t) belong to Sk(XN ) and
satisfy IVP (2.1) at nodes t1, t2, . . . , tN . Straightforward computation yields

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H ′
2k+1(tn+1) = λH2k+1(tn+1) + g(tn+1),

H ′′
2k+1(tn+1) = λH ′

2k+1(tn+1) + g′(tn+1),
...

H (k+1)
2k+1 (tn+1) = λH (k)

2k+1(tn+1) + g(k)(tn+1),

H2k+1(0) = 0,

(2.2)

where n = 0, 1, . . . , N − 1. Let us now proceed to define the Hermite fundamental
polynomials ai (τ ) and b j (τ ) with i, j = 0, 1, . . . , k over [0, 1] as follows:

– ai (τ ) and b j (τ ) are polynomials of degree 2k + 1;
– a(l)

i (0) = δi,l , a(l)
i (1) = 0, i, l = 0, 1, . . . , k;

– b(m)
j (0) = 0, b(m)

j (1) = δ j,m, j, m = 0, 1, . . . , k.

Here δi, j denotes the Kronecker delta function. Employing the local Hermite funda-
mental polynomials, we rewrite H2k+1(t) over the subinterval [tn, tn+1] by

H2k+1(t) = H2k+1(tn + τh) =
k∑

j=0

(
y j

n h j a j (τ ) + y j
n+1h j b j (τ )

)
, τ ∈ [0, 1],

(2.3)

where y j
n = H ( j)

2k+1(tn) for j = 0, 1, . . . , k. Inserting Eq. (2.3) into Eq. (2.2) gives the
following collocation equation

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1n+1 = λy0n+1 + g0
n+1,

y2n+1 = λy1n+1 + g1
n+1,

...

yk
n+1 = λyk−1

n+1 + gk−1
n+1,

k∑
j=0

(
y j

n α j + y j
n+1β j

)
h−(k+1− j) = λyk

n+1 + gk
n+1,

y00 = 0,

(2.4)

where α j = a(k+1)
j (1), β j = b(k+1)

j (1) and g j
n+1 = g( j)(tn+1) for j = 0, 1, . . . , k.

Define
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Table 1 The first associated
polynomials Δ1,k (z) for
TPHC-k

Δ1,k (z)

k = 1 −z2 + 4z − 6

k = 2 −z3 + 9z2 − 36z + 60

k = 3 −z4 + 16z3 − 120z2 + 480z − 840

k = 4 −z5 + 25z4 − 300z3 + 2100z2 − 8400z + 15120

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1
β0h−k−1 β1h−k β2h−k+1 · · · βkh−1

⎞
⎟⎟⎟⎟⎟⎠

,Yn =

⎛
⎜⎜⎜⎜⎜⎝

y0n
y1n
...

yk−1
n
yk

n

⎞
⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

...

0 0 0 · · · 0
α0h−k−1 α1h−k α2h−k+1 · · · αkh−1

⎞
⎟⎟⎟⎟⎟⎠

,Gn =

⎛
⎜⎜⎜⎜⎜⎝

g0
n

g1
n
...

gk−1
n
gk

n

⎞
⎟⎟⎟⎟⎟⎠

.

Then the TPHC-k solution for IVP (2.1) can be obtained through the following iterative
procedure:

AYn+1 + BYn = λYn+1 + Gn+1, n = 0, 1, . . . , N − 1, (2.5)

once the matrix A − λEk+1 is invertible. Actually, the determinant of A − λEk+1 is
calculated by

det(A − λEk+1) = (−1)k+2h−k−1(β0 + β1(hλ) + · · · + βk(hλ)k − (hλ)k+1).

Define the first associated polynomial for TPHC-k by Δ1,k(z) = ∑k
j=0 β j z j − zk+1.

For real parts of hλ sufficiently close to zero, the following condition guarantees the
invertibility of A − λEk+1.

Condition 1 The real parts of the roots of TPHC-k’s first associated polynomials are
all positive.

Through direct computation, we present the first associated polynomials for TPHC-
ks with k = 1, 2, 3, 4 in Table 1. Furthermore, roots of these first associated
polynomials, computed directly in Matlab, are presented in Table 2, which indi-
cates that TPHC-ks with k = 1, 2, 3, 4 satisfy Condition 1.
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Table 2 The roots of the first associated polynomials Δ1,k (z) for TPHC-k

Roots

k = 1 2.000+1.414i, 2.000-1.414i

k = 2 2.681+3.050i, 2.618-3.050i, 3.638

k = 3 3.213+4.773i, 3.213-4.773i, 4.787+1.568i, 4.787-1.568i

k = 4 3.656+6.544i, 3.656-6.544i, 6.287, 5.701+3.210i, 5.701-3.210i

Table 3 The second associated
polynomials for TPHC-k

Δ2,k (z)

k = 1 2z + 6

k = 2 −3z2 − 24z − 60

k = 3 4z3 + 60z2 + 360z + 840

k = 4 −5z4 − 120z3 − 1260z2 − 6720z − 15120

Conversely, let’s establish the recurrence of y0n and y0n+1 by examining the last

equation in Eq. (2.4). Noting that y j
n = λ j y0n + ∑ j−1

i=0 λi g j−1−i
n , we have

⎛
⎝ k∑

j=0

(

⎛
⎝λ j y0n +

j−1∑
i=0

λi g j−1−i
n

⎞
⎠ α j +

⎛
⎝λ j y0n+1 +

j−1∑
i=0

λi g j−1−i
n+1

⎞
⎠ β j

⎞
⎠ h−(k+1− j)

= λk+1y0n+1 +
k−1∑
i=0

λi+1gk−1−i
n+1 + gk

n+1,

or equivalently,

⎛
⎝ k∑

j=0

(hλ) jβ j − (hλ)k+1

⎞
⎠ y0n+1

= −
⎛
⎝ k∑

j=0

(hλ) jα j

⎞
⎠ y0n +

(
k−1∑
i=0

λi+1gk−1−i
n+1 + gk

n+1

)
hk+1

−
k∑

j=0

j−1∑
i=0

λi g j−1−i
n α j h

j −
j−1∑
i=0

λi g j−1−i
n+1 β j h

j . (2.6)

Denote the second associated polynomial for TPHC-k by Δ2,k(z) = ∑k
j=0 α j z j . In

Table 3, we list the second associated polynomials for TPHC-ks with k = 1, 2, 3, 4.

TPHC-k is said to be stable at hλ if the inequality
∣∣∣Δ2,k (hλ)

Δ1,k (hλ)

∣∣∣ < 1 is satisfied. In order

to enable the resulting CQ to solve hyperbolic-type problems, the following condition
must be satisfied to ensure the A-stability of TPHC-k.
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Fig. 1 Stability domains of TPHC-k

Condition 2 For Re(z) ≤ 0, the absolute value of the ratio Δ2,k (z)
Δ1,k (z)

is strictly less than

1, except when
∣∣∣Δ2,k (z)
Δ1,k (z)

∣∣∣ = 1 for z = 1.

In Fig. 1, we plot the stability domains of TPHC-ks with k = 1, 2, 3, 4.We compute
Δ2,k (z)
Δ1,k (z)

with Re(z) ∈ [−4, 0] and Im(z) ∈ [−3, 3]. If
∣∣∣Δ2,k (z)
Δ1,k (z)

∣∣∣ < 1, a black dot is

placed at z. It can be shown that this inequality is satisfied for all values of z except

for z = 0. Actually, a direct calculation results in
∣∣∣Δ2,k (0)
Δ1,k (0)

∣∣∣ = 1 for k = 1, 2, 3, 4. On

the other hand, it can be easily seen that Δ2,k (z)
Δ1,k (z)

decays as |z| → ∞. We can therefore
conclude TPHC-ks with k = 1, 2, 3, 4 are A-stable.

Prior to constructing the convolution quadrature, we introduce the following func-
tion class:

Definition 2.1 Suppose the function g is m−times differentiable over [0, T ]. Then it
is in the class A (m) if it satisfies g(0) = g′(0) = · · · = g(m)(0) = 0. Particularly, g
is in A (−1) if g(0) 	= 0.
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Table 4 Eigenvalues of hA for TPHC-k

k = 1 2.0 + 1.4i, 2.0 − 1.4i

k = 2 3.6, 2.7 + 3.1i, 2.7 − 3.1i

k = 3 3.2 + 4.8i, 3.2 − 4.8i, 4.8 + 1.6i, 4.8 − 1.6i

k = 4 6.3, 3.7 + 6.5i, 3.7 − 6.5i, 5.7 + 3.2i, 5.7 − 3.2i

Assuming g ∈ A (2k + 1), we multiply both sides of Eq. (2.5) by ζ n for n ≥ 0,
following the methodology in [14], and obtain by summation

AY(ζ ) + ζBY(ζ ) = λY(ζ ) + G(ζ ), (2.7)

where

Y(ζ ) =
∞∑

n=0

Ynζ n, G(ζ ) =
∞∑

n=0

Gnζ n .

Letting δ(ζ ) = (A + Bζ ), we can compute

(δ(ζ ) − λEk+1)Y(ζ ) = G(ζ ). (2.8)

Then we investigate the invertibility of δ(ζ ) − λEk+1 in the case of |ζ | < 1 and
Re(hλ) ≤ 0. To proceed, in addition to satisfying Conditions 1 and 2, we will assume
the following condition holds.

Condition 3 The real parts of the eigenvalues of the matrix hA arising from TPHC-k
are all positive.

This condition can also be verified by a series of calculations. The eigenvalues of
hA with an arbitrary h for the first TPHC-ks are presented in Table 4, where we can
see TPHC-ks with k = 1, 2, 3, 4 satisfy Condition 3. It is also noteworthy that the real
parts of the eigenvalues of the matrix A are all positive and grow as quickly as h−1

when h approaches zero.
Direct calculation results in

δ(ζ ) − λEk+1 = A + ζB − λEk+1 = (A − λEk+1)(Ek+1 + ζ(A − λEk+1)
−1B).

LetΛ denote the last row ofB and ek+1 denote the (k+1)×1 vector (0 , . . . , 0 , 1)T .

Then we have B = ek+1Λ. As a result, it follows that

((A − λEk+1)
−1B) j = (A − λEk+1)

−1ek+1Λ(A − λEk+1)
−1ek+1 · · · Λ.

Direct computation leads to Λ(A−λEk+1)
−1ek+1 = Δ2,k (hλ)

Δ1,k (hλ)
. Therefore, under Con-

dition 2, for sufficiently large j and small h, we obtain ‖((A − λEk+1)
−1B) j‖ < 1

for Re(λ) ≤ 0 and λ 	= 0. On the other hand, since the non-zero eigenvalue of A−1B
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is −1, we conclude that δ(ζ ) is invertible when |ζ | < 1. Subsequently, δ(ζ ) − λEk+1
is invertible for any λ with a non-positive real part, given that |ζ | < 1. This implies
that all the real parts of the eigenvalues of δ(ζ ) are positive when |ζ | < 1. With the
help of Cauchy’s integral formula [9], we have

1

2π i

∫
Γ

F(λ)Y(ζ )dλ = 1

2π i

∫
Γ

F(λ)(δ(ζ ) − λEk+1)
−1G(ζ )dλ = F(δ(ζ ))G(ζ ).

(2.9)

Suppose that F(δ(ζ )) = ∑∞
j=0 W j (h)ζ j ,where the expansion coefficientsW j (h)

can be computed by

W j (h) = ρ− j

2π

∫ 2π

0
F(δ(ρeiθ ))e−i jθdθ (2.10)

for some positive number ρ satisfying ρ < 1. By exploiting the 2π -periodicity of the
integrand and utilizing the composite trapezoidal rule, we obtain the following:

∫ 2π

0
F(δ(ρeiθ ))e−i jθdθ =

L−1∑
l=0

∫ (l+1) 2πL

l 2πL

F(δ(ρeiθ ))e−i jθdθ

≈ π

L

L−1∑
l=0

(
F(δ(ρeil

2π
L ))e−i jl 2πL

+F(δ(ρei(l+1) 2πL ))e−i j(l+1) 2πL
)

= 2π

L

L−1∑
l=0

F(δ(ρeil
2π
L ))e−i jl 2πL .

In this paper, we utilize a tolerance ε = 10−16, ρ = ε
1
L , L = 10N , and the sum-

mations are implemented using the fast Fourier transform (see [15]). Evaluating these
quadrature weights incurs a computational cost comparable to that of classical RKCQs
and BDFCQs. In summary, the k-order Hermite convolution quadrature (HCQ-k)
I [ f , g]n+1

h,k for CQ (1.1) is defined by

( f ∗ g)(tn+1) ≈ I [ f , g]n+1
h,k := e1

n+1∑
j=0

W j (h)Gn+1− j (2.11)

with the 1 × (k + 1) vector e1 = (
1, 0, · · · , 0

)
.
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3 Convergence Analysis

In this section, we present the error analysis as h → 0 for HCQ-k by assuming that
g ∈ A (2k + 1) in CI (1.1) and quadrature weights are accurate.

Let us rewrite IVP (2.1) with the help of two-point k-order Hermite interpolation
of y(t). For t ∈ [tn, tn+1], we compute

y(t) = y(tn + τh) =
k∑

j=0

(y( j)(tn)h j a j (τ ) + y( j)(tn+1)h
j b j (τ )) + Rk,n(tn + τh),

(3.1)

where the remainder equals

Rk,n(tn + τh) = y(2k+2)(ξ̂n(τ ))

(2k + 2)! τ k+1(τ − 1)k+1h2k+2,

ξ̂n(τ ) ∈ [tn, tn+1], τ ∈ [0, 1]. Inserting Eq. (3.1) into IVP (2.1) results in

AYre f
n+1 + BYre f

n + Rn = λYre f
n+1 + Gn+1 (3.2)

with ξn = ξ̂n(1),

Yre f
n =

⎛
⎜⎜⎜⎜⎜⎝

y(tn)

y′(tn)
...

y(k−1)(tn)
y(k)(tn)

⎞
⎟⎟⎟⎟⎟⎠

, Rn =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
...

0
(k+1)!y(2k+2)(ξn)

(2k+2)! hk+1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Let ε j
n := y( j)(tn) − y j

n . It follows from Eqs. (2.5) and (3.2) that

ε1n+1 = λε0n+1, ε2n+1 = λε1n+1, · · · , εk
n+1 = λεk−1

n+1,

k∑
j=0

(
ε

j
n+1β j + ε

j
n α j

)
h−(k+1− j) + (k + 1)!y(2k+2)(ξn)

(2k + 2)! hk+1 = λεk
n+1.

Direct computation yields

⎛
⎝ k∑

j=0

β j (hλ) j − (hλ)k+1

⎞
⎠ ε0n+1 +

⎛
⎝ k∑

j=0

α j (hλ) j

⎞
⎠ ε0n

+ (k + 1)!y(2k+2)(ξn)

(2k + 2)! h2k+2 = 0,
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or equivalently,

ε0n+1 = −Δ2,k(hλ)

Δ1,k(hλ)
ε0n − 1

Δ1,k(hλ)

(k + 1)!y(2k+2)(ξn)

(2k + 2)! h2k+2, n = 0, 1 . . . , N − 1.

The above equation holds under Condition 1 and for sufficiently small values of h.

Letting

Q(z) = −Δ2,k(z)

Δ1,k(z)
, Mn = − (k + 1)!y(2k+2)(ξn)

(2k + 2)! ,

we have by a series of calculations

ε0n+1 = h2k+2

Δ1,k(hλ)

n∑
l=0

Qn−l(hλ)Ml , n = 0, 1, . . . , N − 1.

In the remaining part, we let C denote various constants which are independent of
λ, h, and ω for simplicity. It is noted that Condition 1 implies 1/Δ1,k(z) is bounded
in the case of Re(z) ≤ 0 and approaches zero as |z| → ∞. Furthermore, Condition 2
ensures that Q(z) remains bounded in the neighborhood of z = 0 and becomes strictly
less than 1 as z moves away from0 in the left complex plane. As a result, for sufficiently
small r and |z| ≤ r , we have

∑n
l=0 |Qn−l(z)| ≤ C(n + 1). On the other hand, for

|z| ≥ r and sufficiently small real part of z, we have
∑n

l=0 |Qn−l(z)| converges. We
are now in a position to derive the convergence property of HCQ-k.

Theorem 3.1 Suppose that Conditions 1–3 are satisfied and g ∈ A (2k + 1) ∩
C2k+3([0, T ]). Then for any tn+1 ∈ XN , the quadrature error of HCQ-k satisfies:

|( f ∗ g)(tn+1) − I [ f , g]n+1
h,k | ≤ Ch2k+1. (3.3)

Proof With the representation for the collocation error of TPHC-k established, our
remaining work is to evaluate the integration of F(λ)ε0n+1 over Γ . To begin with, we
show that

y(2k+2)(t) =
2k+1∑
i=0

λ2k+1−i g(i)(0)eλt +
∫ t

0
g(2k+2)(t − s)eλsds

=
∫ t

0
g(2k+2)(t − s)eλsds.

As a result, for anyλ ∈ Γ , y(2k+2)(t) is bounded on [0, T ] if |λ| ≤ 1,while |y(2k+2)(t)|
decays as quickly as |λ|−1 in the case of |λ| ≥ 1 and |λ| → ∞.

Straightforward computation reveals that

∣∣∣∣
∫

Γ

F(λ)ε0n+1dλ

∣∣∣∣ ≤ h2k+2
∫

Γ

|F(λ)| Mmax

|Δ1,k(hλ)|
n∑

l=0

|Q(hλ)|l |dλ|, (3.4)
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where Mmax := {|M0|, |M1|, . . . , |Mn|}. We proceed by dividing the integration path
into the following two parts:

Γ1 := {λ = σ + κi ∈ Γ : |κ| ≤ 1}, Γ2 := {λ = σ + κi ∈ Γ : |κ| ≥ 1},

and conduct the analysis separately. For λ ∈ Γ1, we find F(λ), Mmax ,
1

|Δ1,k (hλ)| and
h

∑n
l=0 |Q(hλ)|l are bounded by a constant independent of λ and h. As a result, it

follows
∣∣∣∣
∫

Γ1

F(λ)ε0n+1dλ

∣∣∣∣ ≤ Ch2k+1.

For λ ∈ Γ2, we obtain both 1
|Δ1,k (hλ)| and

∑n
l=0 |Q(hλ)|l are bounded by a constant

independent of λ and h. In addition, |F(λ)Mmax | decays as quickly as |λ|−μ−1.Hence,
we get

∣∣∣∣
∫

Γ2

F(λ)ε0n+1dλ

∣∣∣∣ ≤ Ch2k+2
∫

Γ2

|λ|−μ−1|dλ| ≤ Ch2k+2.

To conclude, we have |( f ∗ g)(tn+1) − I [ f , g]n+1
h,k | ≤ Ch2k+1. This completes the

proof. �
If the condition g ∈ A (2k +1) does not hold, the proposed convolution quadrature

cannot attain the theoretical convergence rate given in the above theorem. In order to
enhance the convergence of HCQ-k, we begin by solving the linear system

I [ f , tq ]n+1
h,k +

k∑
j=0

ŵn, j t
q
j = ( f ∗ tq)(tn+1), q = 0, 1, . . . , 2k + 1, (3.5)

and obtain the modified weights ŵn, j . Then we denote the k-order modified Hermite

convolution quadrature (MHCQ-k) Î [ f , g]n+1
h,k as

Î [ f , g]n+1
h,k = I [ f , g]n+1

h,k +
2k+1∑
j=0

ŵn, j

(
2k+1∑
l=0

g(l)(0)

l! t l
j

)
. (3.6)

Then for any sufficiently smooth g(t), we can express it as

g(t) =
(

g(t) −
2k+1∑
l=0

g(l)(0)

l! t l

)
+

2k+1∑
l=0

g(l)(0)

l! t l .

It is obvious that MHCQ-k is exact for
∑2k+1

l=0
g(l)(0)

l! t l . On the other hand, since

g(t)−∑2k+1
l=0

g(l)(0)
l! t l ∈ A (2k+1),we conclude that the convergence rate ofMHCQ-

k coincides with that in Theorem 3.1.
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Table 5 AEs and convergence rates of MHCQs for CI (3.7)

MHCQ-1 MHCQ-2 MHCQ-3
AE Order AE Order AE Order

N = 4 2.83 × 10−4 – 1.58 × 10−5 – 1.02 × 10−7 –

N = 8 4.22 × 10−5 2.75 4.85 × 10−7 5.03 7.75 × 10−10 7.04

N = 12 1.33 × 10−5 2.84 6.37 × 10−8 5.01 4.49 × 10−11 7.02

N = 16 5.82 × 10−6 2.88 1.51 × 10−8 5.00 5.97 × 10−12 7.02

N = 20 3.04 × 10−6 2.91 4.95 × 10−9 5.00 1.25 × 10−12 7.00

N = 24 1.78 × 10−6 2.93 1.99 × 10−9 5.00 3.48 × 10−13 7.01

N = 28 1.13 × 10−6 2.94 9.21 × 10−10 5.00 1.17 × 10−13 7.08

N = 32 7.64 × 10−7 2.95 4.72 × 10−10 5.00 4.62 × 10−14 6.95

To validate the theoretical estimates presented above, we conduct a series of numer-
ical experiments involving CIs with smooth and weakly singular kernels. In the
following numerical experiments, the absolute error (AE) is calculated as the maxi-
mumof the difference between the approximation and the one computed byMatlab’s
built-in function “quadgk” with sufficiently small subintervals.

Firstly, we consider the smooth kernel with g(t) falling in A (−1),

∫ 1

0
e− (1−τ )

4 sin(τ 2 + τ + 1)dτ. (3.7)

Table 5 presents AEs computed by MHCQs and their corresponding convergence
orders. The convergence rates observed in Table 5 for MHCQ-ks with k = 1, 2, 3 are
3, 5, 7, respectively, which is consistent with the theoretical estimates established in
Theorem 3.1.

A surge of research in fractional calculus has emerged over the past few decades,
withCQestablishing itself as a prominent approach for efficiently computing fractional
derivatives and integrals (see [1]). Let us consider the numerical approximation to the
following Riemann–Liouville fractional integrals by MHCQs,

1

γ ( 23 )

∫ 1

0
(1 − τ)−

1
3 cos(τ 2 + 1)dτ. (3.8)

Again, we find cos(τ 2 + 1) ∈ A (−1). We apply MHCQ-ks with k = 1, 2, 3 to
numerical calculation of CI (3.8), and computed results are given in Table 6. It can be
seen that MCHQs demonstrate their capability to approximate the Riemann–Liouville
fractional integral with the convergence order of 2k + 1, and the fractional order of
−1/3 does not affect the computational accuracy.
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Table 6 AEs and convergence rates of MHCQs for CI (3.8)

MHCQ-1 MHCQ-2 MHCQ-3
AE Order AE Order AE Order

N = 4 5.95 × 10−4 – 5.41 × 10−6 – 3.62 × 10−8 –

N = 8 7.45 × 10−5 3.00 1.64 × 10−7 5.05 2.84 × 10−10 6.99

N = 12 2.20 × 10−5 3.00 2.14 × 10−8 5.02 1.66 × 10−11 7.00

N = 16 9.28 × 10−6 3.00 5.07 × 10−9 5.01 2.22 × 10−12 7.00

N = 20 4.75 × 10−6 3.00 1.66 × 10−9 5.00 4.65 × 10−13 7.00

N = 24 2.75 × 10−6 3.00 6.67 × 10−10 5.00 1.29 × 10−13 7.04

N = 28 1.73 × 10−6 3.00 3.09 × 10−10 5.00 4.36 × 10−14 7.03

N = 32 1.16 × 10−6 3.00 1.58 × 10−10 5.00 1.68 × 10−14 7.16

4 Application to a Highly Oscillatory Problem

This section focuses on the application of MHCQ-k to solving highly oscillatory
problems arising in the single layer potential equation for acoustic scattering from
the half-plane. In fact, through the polar coordinate transformation and spatial Fourier
transform, this class of potential equations can be transformed into a Volterra integral
equation

∫ t

0
J0(ω(t − τ))u(τ )dτ = a(t), t ∈ (0, 1]. (4.1)

During the past two decades, numerical solutions to Eq. (4.1) have been studied by a
number of authors (see [4, 5, 11, 26]).When dealing with large values ofω, it becomes
unavoidable to compute the following highly oscillatory integrals of convolution-type
that arise in the discretization method

(
Jω

m ∗ g
)
(t) :=

∫ t

0
Jm(ω(t − τ))g(τ )dτ, t ∈ [0, 1]. (4.2)

Studies on the calculation of highly oscillatory integrals attract a number of atten-
tions during the past two decades. Theoretical and numerical evidences have verified
that efficient approaches, such as Filon-type [7, 25] and Levin-type quadratures [10,
20, 24], are able to compute high-order approximations to highly oscillatory integrals
as the oscillation parameter ω enlarges. We find MHCQs exhibit properties similar
to those of existing Filon-type and Levin-type quadratures. MHCQs are particularly
advantageous in situations where the Laplace transform of the oscillatory kernel can
be easily obtained or computed efficiently.

Oberseving that the Laplace transform of Jm(ωt) is given by

F(λ) = (
√

ω2 + λ2 − λ)m

ωm
√

ω2 + λ2
,
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we discover that it exhibits non-analyticity at ±ωi. Meanwhile, it is found that F(λ)

slightly increase as λ varies along Γ from λ = σ − ωi to λ = σ + ωi. For |κ| ≥ ω,

the magnitude |F(λ)| with λ = σ ± κi decays as quickly as |λ|−m−1. This suggests
that we should partition the integration curve along the oscillation parameter ω in the
analysis of MHCQs.

Let us shift our focus to the reformulation of MHCQ-k. Suppose that ĝ(t) ∈
Sk(XN ) and satisfies the interpolation condition ĝ(l)(tn) = g(l)(tn) with l = 0, . . . , k
and n = 0, . . . , N . Given that H ′

2k+1(t) − λH2k+1(t) − ĝ(t) ∈ Sk(XN ) also satisfies
the aforementioned interpolation conditions, we deduce that H ′

2k+1(t)−λH2k+1(t) =
ĝ(t). This implies H2k+1(t) = ∫ t

0 e
λ(t−s)ĝ(s)ds and

I [Jω
m , g]n+1

h,k =
∫ tn+1

0
Jm(ω(tn+1 − τ))ĝ(τ )dτ.

LettingΦ0(τ ) = g(tn+1−τ)− ĝ(tn+1−τ),with the help of the property of the Bessel
function [19, p. 222]

d

dτ

(
τm+1 Jm+1(τ )

)
= τm+1 Jm(τ ),

we repeatedly utilize integration by parts and get

(
Jω

m ∗ g
)
(tn+1) − I

[
Jω

m , g
]n+1

h,k =
k∑

r=0

(−1)r

ωr
Φr (0)

∫ tn+1

0
Jm+r (ωτ)dτ

−
k∑

r=0

(−1)r+1

ωr+1 (Φr (tn+1) − Φl(0)) Jm+r+1(ωtn+1)

+ (−1)k+1

ωk+1

∫ tn+1

0
Jm+k+1(ωτ)Φk+1(τ )dτ,

where Φr+1(τ ) = Φ ′
r (τ ) − (m+r+1)(Φr (τ )−Φr (0))

τ
. Noting that

Φ
(r)
0 (t j ) = g(r)

(
tn+1 − t j

) − ĝ(r)(tn+1 − t j ) = g(r)(tn+1− j ) − ĝ(r)(tn+1− j ) = 0,

we have Φr (t j ) = 0, which implies

(
Jω

m ∗ g
)
(tn+1) − I [Jω

m , g]n+1
h,k = (−1)k+1

ωk+1

∫ tn+1

0
Jm+k+1(ωτ)Φk+1(τ )dτ, (4.3)

Then we are in the position to get the following frequency-explicit estimation for
MHCQs applied to the calculation of CI (4.2).

123



8 Page 16 of 23 BIT Numerical Mathematics (2024) 64 :8

Theorem 4.1 Suppose that Conditions 1–3 are satisfied and g ∈ A (2k + 1) ∩
C2k+3([0, T ]). Then for any tn+1 ∈ XN and sufficiently large hω, it follows

|(Jω
m ∗ g)(tn+1) − I [Jω

m , g]n+1
h,k | ≤ Chk+1ω−k−2. (4.4)

Proof We begin by considering the asymptotic property of the integral

∫ tn+1

0
Jm+k+1(ωτ)Φ

(k+1)
0 (τ )dτ.

Inserting the Laplace transform of Jm+k+1(ωτ) into the above integral leads to

Ir := 1

2π i

∫
Γ

(√
ω2 + λ2 − λ

)m+k+1

ωm+k+1
√

ω2 + λ2

∫ tn+1

0
eλ(tn+1−τ)Φ

(k+1)
0 (τ )dτdλ.

As a result, we have using integration by parts

∫ tn+1

0
eλ(tn+1−τ)Φ

(k+1)
0 (τ )dτ =

(
Φ

(k)
0 (tn+1) − Φ

(k)
0 (0)

)

+ λ

∫ tn+1

0
eλ(tn+1−τ)Φ

(k)
0 (τ )dτ

= λ

∫ tn+1

0
eλ(tn+1−τ)Φ

(k)
0 (τ )dτ

· · · · · ·
= λk+1

∫ tn+1

0
eλ(tn+1−τ)Φ0(τ )dτ

= λk+1(y(tn+1) − Hk+1(tn+1)).

As is done in the proof of Theorem 3.1, it follows that

|Ir | ≤ Ch2k+2
∫

Γ

∣∣∣∣∣∣∣

(√
ω2 + λ2 − λ

)m+k+1

ωm+k+1
√

ω2 + λ2

∣∣∣∣∣∣∣
|λ|k+1

|Δ1,k(hλ)|
n∑

l=0

|Qn−l(hλ)||Ml ||dλ|.

Divide the integration path into the following three parts:

Γ̂1 : = {λ = σ + κi ∈ Γ : |κ| ≤ 1},
Γ̂2 : = {λ = σ + κi ∈ Γ : 1 ≤ |κ| ≤ ω},
Γ̂3 : = {λ = σ + κi ∈ Γ : |κ| ≥ ω}.
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Then for λ ∈ Γ̂1, since |Mmax | and h
∑n

l=0 |Qn−l(hλ)| are bounded by a constant
independent of λ, h, ω, we have

|Ir | ≤ Ch2k+1
∫

Γ̂1

∣∣∣∣∣∣∣
ωm+k+1

√
λ2 + ω2

(√
ω2 + λ2 + λ

)m+k+1

∣∣∣∣∣∣∣
|dλ|

= Ch2k+1
∫

Γ̂1/ω

|

∣∣∣∣∣∣∣
1

√
θ2 + 1

(√
θ2 + 1 + θ

)m+k+1

∣∣∣∣∣∣∣
|dθ |

≤ Ch2k+1ω−1,

where the variable transformation λ = ωθ is employed. For λ ∈ Γ̂2, since Mmax ≤
C |λ|−1, and

∑n
l=0 |Qn−l(hλ)| converges, we obtain

|Ir | ≤ Chk+2
∫

Γ̂2

∣∣∣∣ ωm+k+1

√
λ2 + ω2(

√
ω2 + λ2 + λ)m+k+1

∣∣∣∣ |hλ|k
|Δ1,k(hλ)| |dλ|

= Chk+2
∫

Γ̂2/ω

∣∣∣∣ 1√
θ2 + 1(

√
θ2 + 1 + θ)m+k+1

∣∣∣∣ |hωθ |k
|Δ1,k(hωθ)| |dλ|

≤ Chk+2(hω)−1
∫

Γ̂2/ω

∣∣∣∣ 1√
θ2 + 1(

√
θ2 + 1 + θ)m+k+1

∣∣∣∣ |dθ |

≤ Chk+1ω−1,

whereweutilize the fact that
∣∣∣ 1√

θ2+1(
√

θ2+1+θ)m+k+1

∣∣∣ is bounded. Forλ ∈ Γ̂3, it is noted

that |hλ|k+1

|Δ1,k (hλ)| is bounded for arbitrary h andλ, Mmax ≤ C |λ|−1, and
∑n

l=0 |Qn−l(hλ)|
converges, which implies

|Ir | ≤ Chk+1
∫

Γ̂3

∣∣∣∣∣∣∣
ωm+k+1

√
λ2 + ω2

(√
ω2 + λ2 + λ

)m+k+1 |λ|

∣∣∣∣∣∣∣
|dλ|

= Chk+1ω−1
∫

Γ̂3/ω

∣∣∣∣∣∣∣
1

√
θ2 + 1

(√
θ2 + 1 + θ

)m+k+1 |θ |

∣∣∣∣∣∣∣
|dθ |

≤ Chk+1ω−1
∫

Γ̂3/ω

|θ |−m−k−3|dθ |

≤ Chk+1ω−1.
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As a result, we have

∣∣∣∣
∫ tn+1

0
Jm+k+1(ωτ)Φ

(k+1)
0 (τ )dτ

∣∣∣∣ ≤ Chk+1ω−1. (4.5)

Noting the relation between Φ
(r)
0 (τ ) and Φr (τ ), we find

∫ tn+1
0 Jm+k+1(ωτ)Φk+1

(τ )dτ consists of the moments

∫ tn+1

0
Jm+k+1(ωτ)

Φ
(p)
0 (τ )

τ q
dτ, p + q = k + 1.

On the other hand, utilizing the integration by parts indicates

∫ t

0
eλ(t−τ) Φ

(p)
0 (τ )

τ q
dτ = 1

−q + 1

∫ t

0
eλ(t−τ)Φ

(p)
0 (τ )d(τ−q+1)

= 1

−q + 1

(
Φ

(p)
0 (t)

tq−1 − eλtΦ
(k)
0 (0)

)

+ λ

q − 1

∫ t

0
eλ(t−τ) Φ

(p)
0 (τ )

τ q−1 dτ

+ 1

q − 1

∫ t

0
eλ(t−τ) Φ

(p+1)
0 (τ )

τ q−1 dτ.

Therefore, repeated application of the above integration by parts yields the following
expression for the given integral at t = tn+1

∫ tn+1

0
eλ(tn+1−τ) Φ

(p)
0 (τ )

τ q
dτ = Cλk+1

∫ tn+1

0
eλ(tn+1−τ)Φ0(τ )dτ.

Following the same approach as in the proof of Eq. (4.5), we derive

|(Jω
m ∗ g)(tn+1) − I [Jω

m , g]n+1
h,k | ≤ Chk+1ω−k−2.

This completes the proof. �
Equation (4.4) implies as ω increases and h is fixed, the quadrature error converges

as quickly as ω−k−2. Meanwhile, in the case of ω � 1, reducing the step size will,
correspondingly, lead to a decrease in quadrature errors.

Now let us test MHCQs for highly oscillatory integrals and examine the asymp-
totic property of the quadrature error as ω increases. Consider the calculation of the
following highly oscillatory integral,

∫ 1

0
J0(ω(1 − τ)) sin(τ 2 + τ + 1)dτ. (4.6)
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Table 7 AEs of CQs for CI (4.6)

ω 100 200 400 800 1600

MHCQ-1 2.06 × 10−8 2.77 × 10−9 3.65 × 10−10 4.39 × 10−11 5.61 × 10−12

MHCQ-2 1.03 × 10−9 5.46 × 10−11 8.38 × 10−12 1.27 × 10−13 1.67 × 10−14

RKCQ 6.52 × 10−4 2.28 × 10−4 1.91 × 10−5 2.81 × 10−5 1.50 × 10−6

BDFCQ 6.51 × 10−4 2.28 × 10−4 1.90 × 10−5 2.82 × 10−5 1.49 × 10−6

We uniformly divide [0, 1] into 5 subintervals and applyMHCQs, BDFCQ and RKCQ
to numerically compute CI (4.6). For BDFCQ, we utilize the second-order backward
difference formula to solve IVP (1.4). In contrast, for RKCQ, we employ 3-stage
Runge–Kutta method to solve IVP (1.4). AEs computed using MHCQ-1, MHCQ-2,
RKCQ and BDFCQ are presented in Table 7, with ω being a variable parameter. As
this table demonstrates, AEs of all CQs exhibit a common decaying trend as the value
of ω increases. Among the methods considered, MHCQs provide the most accurate
approximations. To examine the asymptotic behavior of AEs, we present AEs mul-
tiplied by their corresponding orders in Figs. 2 and 3. The nearly horizontal lines in
these figures suggest that the asymptotic orders of MHCQ-1, MHCQ-2, RKCQ and
BDFCQ are O(ω−3), O(ω−4), O(ω−3/2), and O(ω−3/2), respectively. Therefore,
MHCQs demonstrate superior efficiency in solving highly oscillatory problems com-
pared to existing CQs.

Next, we examine the influence of stepsize onAEs in the case of the high oscillation.
Let ErrωN represent AEs computed by MHCQ-1 using N nodes. In Fig. 4, we show the

ratios Ratio168 := Errω16
Errω8

and Ratio3216 := Errω32
Errω16

for varying values of ω between 1000 and
3000. The observed oscillation of the ratios around 1/4 suggests that the convergence
order of MHCQ-1 with respect to the stepsize is approximately 2. It’s worth noting
that this convergence property is only observed in the case of the high oscillation. If
the condition hω ≈ 1 is met, the convergence order will be irregular.

We conclude this section by presenting a numerical example that demonstrates the
application of MHCQs to solve the first-kind Volterra integral equation (4.1) with
a(t) = te−t . We employ the direct-Filon method (DF) introduced by [26], BDFCQ
andMHCQs to solve this integral equation, and list AEs at t = 1 in Fig. 5. It is evident
that MHCQs exhibit superior performance compared to the other two approaches in
solving highly oscillatory integral equations.

5 Final remarks

What we have seen from the above is the proposed CQ using the Hermite collocation
method is able to efficiently compute CI (1.1) when correction terms are incorpo-
rated into the numerical formula. Moreover, it adopts the same block structure as its
Runge-Kutta counterpart, and both methods attain high convergence orders as the
step size decreases. However, it is crucial to highlight that MHCQs demonstrate the
highest convergence rate among existing CQs for calculating highly oscillatory inte-
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Fig. 2 Asymptotic convergence rates of MHCQ-1 (left) and MHCQ-2 (right) for CI (4.6)
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Fig. 3 Asymptotic convergence rates of RKCQ (left) and BDFCQ (right) for CI (4.6)

grals. Therefore, we can speculate that MHCQs hold immense potential for numerical
solutions of highly oscillatory problems.
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