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Abstract
In this paper, we consider a class of tensor least squares problem with an invertible
linear transform, which arises in image restoration. Based on the operator-bidiagonal
procedure, two Paige’s algorithms are designed to solve it. The convergence theorems
of the newmethods are derived. Numerical experiments are performed to illustrate the
feasibility and efficiency of the new methods, including when the algorithm is tested
with the synthetic data and on some image restoration problems. Comparisons with
some previous methods are also given.
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1 Introduction

Throughout this paper, vectors arewritten in italic lowercase letters such as u, v, matri-
ces correspond to uppercase letters, e.g., A, B, and tensors are denoted by calligraphic
capital letters such asA ,B. Let RI1×I2×I3 denote the set of I1 × I2 × I3 tensors over
the real field R. The zero tensor O is the one with all entries being zero. A slice is
a two-dimensional section of a tensor, defined by fixing all but two indices. The kth
frontal slice X::k of the third-order tensor X ∈ R

I1×I2×I3 is denoted as X (k). The
tensor Frobenius norm ||A ||F = √〈A ,A 〉 is induced by the tensor inner product

〈A ,B〉 =
I1∑

i

I2∑

j

I3∑

k

ai jkbi jk,

where A = (ai jk) ∈ R
I1×I2×I3 ,B = (bi jk) ∈ R

I1×I2×I3 .
In this paper, we consider the following tensor least squares problem.

Problem 1.1 Given tensors A ∈ R
m×l×n , B ∈ R

p×q×n , and C ∈ R
m×q×n , find a

tensor X̃ ∈ R
l×p×n such that

||A ∗LX̃ ∗LB − C ||2F = min
X ∈Rl×p×n

||A ∗LX ∗LB − C ||2F . (1.1)

Here we set the linear operator M : Rl×p×n → R
m×q×n be

M (X ) = A ∗LX ∗LB.

The operator ∗L in Problem 1.1 is a tensor-tensor product with an invertible linear
transform, which was first proposed by Kernfeld, Kilmer and Aeron [27]. It is a
generalization of the t-product [28] and the cosine transform product (*c product).
The definitions and connections between the t-product and *c product are described in
Section 2. The ∗L product is also referred to as the �M -product family in the literature
[29]. This kind of tensor-tensor product has been applied to processing of seismic data
[13], color image restoration [16, 18], facial recognition [21] and data compression
[41].

Problem 1.1 often arises in the image restoration. As described in [16], the 3D
model of color image restoration can be expressed as the tensor expression

B = A ∗LX + E , (1.2)

where B, A and E are the observation image, the blurring operator and the noise,
respectively. And X is the restored image to be sought. Obviously, Problem 1.1 is
a generalized form of (1.2), which consider both horizontal and vertical blurring of
the image. Compared with the previous image restoration models, the matrix product
model [5]

g = Hx + n, (1.3)
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and the Einstein product model [10, 31, 40]

M = T ∗3Q + N , (1.4)

the advantage of (1.2) is that it avoids the lack of information inherent in the expansion
process of the tensor and takes into account the orderliness and correlation between
the data.

The tensor equations and their least squares problems have been investigated by
many scholars. Some mathematical tools, for example, the tensor generalized inverse,
have been used in the literature [2, 3, 8, 11, 22, 37, 38]. The methods for solving the
tensor equations and their least squares problems can be generally divided into two
classes. The first class is the so-called direct methods, such as the elimination method
[7] and the tensor generalized inverse methods [2, 3, 6, 8]. However, these methods do
not perform well in large-scale data. The second class is the iterative methods. Wang,
Xu and Duan [39] proposed the conjugate gradient method to solve the quaternion
Sylvester tensor equation. Huang andMa [23] andXie et al. [40] solved the tensor least
squares problem in Einstein product by conjugate gradient method and preprocessed
conjugate gradient method, respectively. Ding and Wei [12] proposed the Newton
method to solve the m − 1 degree homogeneous tensor equation with the symmetric
M-tensor coefficient. Guide and Ichi et al. [18] proposed the GMRES-type methods
for solving the image processing problems with the t-product. Similar algorithms can
also be found in the literature [9, 16, 17, 24, 39]. For the ill-posed problem, Reichel
and Ugwu [34, 35] use the Golub-Kahan bidiagonalization and the Arnoldi upper
Hessenberg preprocessors to solve the Tikhonov regularization problem in the image
restoration model. Some other algorithms [19, 36] have been designed by involving
matrixization of tensors, thus they are difficult to be used for the large-scale tensor
least squares problem. However, the research results of Problem 1.1 are very few as
far as we know.

In this paper, we consider the tensor least squares Problem 1.1 arising in image
restoration. We first give the operator-bidiagonal procedures ofM (X ), and then use
them to design two Paige’s Algorithms for solving Problem 1.1. Two convergence
theorems of the new methods are also given. A numerical example shows the feasi-
bility of the Paige’s methods for solving Problem 1.1. The simulation experiments of
the image restoration illustrate the feasibility and effectiveness of the new methods.
Specifically, the algorithms in this paper differ from the ones described in [34, 35] in
the following two ways:

• Our proposed operator bidiagonalization process is distinguished from GG-tGKB
process [35] because it provides a unified iterative framework for different linear
operator bidiagonalization.

• We derive a coefficient relation between the minimal Frobenius norm solution of
Problem 1.1 and the orthogonal tensor bases of the Krylov subspace

Kk(M
∗M ,V1) = span{M ∗(U1), (M

∗M )M ∗(U1), · · · , (M ∗M )k−1M ∗(U1)},
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which allows our algorithms to use only the tensor generated by the current kth
iteration. We do not need additional memory for the orthogonal bases as described
in [34, 35], and this approach reduces the space complexity of the algorithm.

This paper is organized as follows. In Sect. 2, we introduce some notations and
definitions. And we also summarize the connection between ∗L product, t-product
and ∗c product. In Sect. 3, we design the Paige’s algorithms for solving Problem 1.1
and give the convergence theorems. In Sect. 4, some numerical experiments are given
to illustrate that the algorithms are feasible and effective.

2 Preliminaries

In this section, we give some preliminaries, and then recall the ∗L product proposed
by Kernfeld, Kilmer and Aeron [27] and analyze the connection between t-product,
∗c product, and ∗L product.

GivenA ∈ R
m×l×n and its frontal sliceA (i), i = 1, 2, · · · , n, the operators bcirc

unfold and fold can be defined as [28]

bcirc(A ) :=

⎡

⎢⎢⎢⎣

A (1) A (n) · · · A (2)

A (2) A (1) · · · A (3)

...
...

. . .
...

A (n) A (n−1) · · · A (1)

⎤

⎥⎥⎥⎦ , un f old(A ) :=

⎡

⎢⎢⎢⎣

A (1)

A (2)

...

A (n)

⎤

⎥⎥⎥⎦ ,

and f old(un f old(A )) := A . Then the t-product can be defined as follows.

Definition 2.1 (t-product [28]) Let the t-product be the operator ∗: R
m×l×n ×

R
l×p×n → R

m×p×n between two tensors A ∈ R
m×l×n and B ∈ R

l×p×n , which
produces a tensor of Rm×p×n as follows

A ∗ B = f old(bcirc(A )un f old(B)).

Notice that the block matrix bcirc(A ) can be block diagonalized by the discrete
Fourier transform (DFT), i.e.,

A = blockdiag( ˆA (1), ˆA (2), · · · ˆA (n)) = (Fn ⊗ Il)bcirc(A )(F∗
n ⊗ Im),

where ⊗ is the Kronecker product, Fn is the unitary DFT matrix satisfing

FnF
∗
n = F∗

n Fn = In .

Therefore,A ∗Bwith the t-product can be efficiently implemented by the fast Fourier
transform.

Considering the discrete cosine transform instead of the discrete Fourier transform,
we obtain the ∗c product similar to the t-product. The block Toeplitz-plus-Hankel
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matrix and the operator ten can be defined as [27]

mat(A ) :=

⎡

⎢⎢⎢⎣

A (1) A (2) · · · A (n)

A (2) A (1) · · · A (n−1)

...
...

. . .
...

A (n) A (n−1) · · · A (1)

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎣

A (2) · · · A (n) 0
... . .

.
. .
.

A (3)

A (n) 0 . .
. ...

0 A (n) · · · A (2)

⎤

⎥⎥⎥⎥⎦
,

ten(mat(A )) = f old(Tmat(A )El) = A ,

where El =

⎡

⎢⎢⎢⎣

Il
0
...

0

⎤

⎥⎥⎥⎦ ∈ R
nl×l is the first l columns of the identity matrix Inl and

T =

⎡

⎢⎢⎢⎣

Im −Im · · · (−Im)n−1

0 Im · · · (−Im)n−2

...
...

. . .
...

0 0 0 Im

⎤

⎥⎥⎥⎦ ∈ R
nm×nm .

Definition 2.2 (∗c product [27]) Set A ∈ R
m×l×n and B ∈ R

l×p×n be two real
tensors. Then the ∗c product A ∗c B is an m × p × n real tensor defined by

A ∗c B = ten(mat(A )mat(B)).

Both the t-product and the ∗c product use linear transformations that block diagonalize
the block matrix. If we consider each diagonal block as each frontal slice of the tensor,
we can redefine the t-product and ∗c product using the n-mode product.

Definition 2.3 (∗L product [27]) Let L be an invertible linear operator (see Definition
2.4), and set A ∈ R

m×l×n and B ∈ R
l×p×n . Then the ∗L product A ∗L B is an

m × p × n tensor defined by

A ∗L B = L−1(L(A ) 	 L(B)),

where the face-wise product A 	 B is defined by

(A 	 B)(i) = A (i)B(i).

Definition 2.4 ([30]) Let M ∈ R
n×n be an invertible matrix. Then the invertible linear

operator L: Rm×l×n → R
m×l×n is defined as

L(A ) = A ×3 M,

where A ∈ R
m×l×n .
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As described by Kernfeld, Kilmer and Aeron [27], the ∗c product is an example of
the ∗L product, where M = W−1

c Cn(I + Z) in the invertible linear operator L . Here
Cn denote the n× n orthogonal DCT matrix,Wc = diag(Cn(:, 1)) and Z is the n× n
(singular) circulant upshift matrix. The connection between the t-product and the ∗L

product is

M = W−1
t Fn,

where Wt = diag(Fn(:, 1)).
Using the invertible linear operator L ,we cangive the definitionof a tensor transpose

which satisfies the t-product and ∗c product.
Definition 2.5 ([27]) Set A ∈ R

m×l×n , then transpose A T ∈ R
l×m×n satisfies

L(A T )(i) = (L(A )(i))T , i = 1, · · · , n.

We also need the following definitions for the paper.

Definition 2.6 ([18]) Let V = [V1,V2, · · · ,Vk] ∈ R
m×kp×n , where Vi ∈ R

m×p×n ,
i = 1, 2, · · · , k and y = [y1, y2, · · · , yk]T ∈ R

k , Z = [z1, z2, · · · , zk] ∈ R
k×k .

Then the product V � y and V � Z are defined as

V � y =
k∑

i=1

yiVi , V � Z = [V1 � z1,V2 � z2, · · · ,Vk � zk].

Definition 2.7 ([18]) LetA = [A1,A2, · · · ,Ak] ∈ R
m×kl×n andB = [B1,B2, · · · ,

Bp] ∈ R
m×pl×n , where Ai ,Bi ∈ R

m×l×n , i = 1, 2, · · · . Then the product AT♦B is
the k × p matrix defined by

(AT♦B)i j = 〈
Ai ,B j

〉
.

Notice that if B = B ∈ R
m×l×n , then the product AT♦B yields a column vector.

Definition 2.8 ([26]) Let M : Rl×p×n → R
l×q×n be the linear operator. If the linear

operator M ∗: Rl×q×n → R
l×p×n satisfies

〈M (X ),Y 〉 = 〈
X ,M ∗(Y )

〉
, ∀X ∈ R

l×p×n, Y ∈ R
l×q×n,

then it is called the adjoint of M .

3 Paige’s Algorithms for solving problem 1.1

In this section, we first give the operator-bidiagonal procedure of M (X ), and then
use it to design the Paige’s Algorithms for solving Problem 1.1. The convergence of
the new methods are also given.
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3.1 The operator-bidiagonal procedure

This subsection gives the operator-bidiagonal procedure. Firstly, the adjoint operator
M ∗:Rm×q×n → R

l×p×n of the linear operatorM : Rl×p×n → R
m×q×n in Problem

1.1 is derived.

Lemma 3.1 Set M (X ) = A ∗LX ∗LB. The adjoint of the linear operator M is

M ∗(X ) = A T ∗LX ∗LB
T .

Proof Here we first prove that

〈A ∗LX ,Y 〉 =
〈
X ,A T ∗LY

〉
, ∀X ∈ R

l×p×n, Y ∈ R
m×p×n .

Set M = (m1,m2, · · · ,mn), M−1 = (m̂1, m̂2, · · · , m̂n), A = (ai jk) ∈ R
m×l×n ,

X = (xi jk) ∈ R
l×p×n , Y = (yi jk) ∈ R

m×p×n , and set

a(i)
i j := aTi j :mi , i = 1, 2, · · · , n.

Combining Definition 2.4, we have

L(A )(i) = (A ×3 M)(i) =

⎡

⎢⎢⎢⎢⎣

a(i)
11 a(i)

12 · · · a(i)
1l

a(i)
21 a(i)

22 · · · a(i)
2l

...
...

. . .
...

a(i)
m1 a(i)

m2 · · · a(i)
ml

⎤

⎥⎥⎥⎥⎦
.

Similarly, we have

L(X )(i) = (X ×3 M)(i) =

⎡

⎢⎢⎢⎢⎣

x (i)
11 x (i)

12 · · · x (i)
1p

x (i)
21 x (i)

22 · · · x (i)
2p

...
...

. . .
...

x (i)
l1 x (i)

l2 · · · x (i)
lp

⎤

⎥⎥⎥⎥⎦
,

L(Y )(i) = (Y ×3 M)(i) =

⎡

⎢⎢⎢⎢⎣

y(i)
11 y(i)

12 · · · y(i)
1p

y(i)
21 y(i)

22 · · · y(i)
2p

...
...

. . .
...

y(i)
m1 y(i)

m2 · · · y(i)
mp

⎤

⎥⎥⎥⎥⎦
,

where x (i)
i j := xTi j :mi , y(i)

i j := yTi j :mi , i = 1, 2, · · · , n. Then the expression for any
element in A ∗LX can be given as

(A ∗LX )i jk =
(∑l

t=1 a
(1)
i t x (1)

t j

∑l
t=1 a

(2)
i t x (2)

t j · · · ∑l
t=1 a

(n)
i t x (n)

t j

)
m̂i .

123



48 Page 8 of 26 BIT Numerical Mathematics (2023) 63 :48

Noting that

〈A ∗LX ,Y 〉 =
n∑

i=1

〈
(A ∗LX )(i),Y (i)

〉
,

and by making use of the matrix inner product of each frontal slice of the tensor
A ∗LX and tensor Y , we get

n∑

i=1

((A ∗LX )(i)TY (i))rr

=
n∑

i=1

m∑

j=1

(
l∑

t=1
a(1)
j t x

(1)
tr

l∑
t=1

a(2)
j t x

(2)
tr · · ·

l∑
t=1

a(n)
j t x

(n)
tr

)
m̂i y jr

=
n∑

i=1

m∑

j=1

(
l∑

t=1
a(1)
j t x

(1)
tr y jr

l∑
t=1

a(2)
j t x

(2)
tr y jr · · ·

l∑
t=1

a(n)
j t x

(n)
tr y jr

)
m̂i

=
n∑

i=1

l∑

t=1

( m∑
j=1

a(1)
j t y

(1)
jr xtr

m∑
j=1

a(2)
j t y

(2)
jr xtr · · ·

m∑
j=1

a(n)
j t y(n)

jr xtr

)
m̂i

=
n∑

i=1

l∑

t=1

( m∑
j=1

a(1)
j t y

(1)
jr

m∑
j=1

a(2)
j t y

(2)
jr · · ·

m∑
j=1

a(n)
j t y(n)

jr

)
m̂i xtr

=
n∑

i=1

(X (i)T (A T ∗LY )(i))rr , r = 1, 2, · · · , p.

This implies that

〈A ∗LX ,Y 〉 =
〈
X ,A T ∗LY

〉
. (3.1)

In a similar way, we have

〈X ∗LB,Y 〉 =
〈
X ,Y ∗LB

T
〉
. (3.2)

Combining (3.1) and (3.2), we can obtain that

〈A ∗LX ∗LB,Y 〉 =
〈
X ,A T ∗LY ∗LB

T
〉
,

which means that
M ∗(X ) = A T ∗LX ∗LB

T .

The proof is completed. ��
Combining Definition 2.8, we simplify the operator M in Problem 1.1 using the

operator-bidiagonal procedure, which is similar to the Golub-Kahan bidiagonalization
technique [14] as follows.
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Algorithm 1: The lower operator-bidiagonal procedure ofM
1 Set the initial tensor U1 ∈ R

m×q×n , which satisfies ||U1||F = 1;
2 Calculate α1V1 = M ∗(U1) and let k = 1;
3 for k = 1, 2, · · · ,m do
4 βk+1Uk+1 = M (Vk ) − αkUk ;
5 αk+1Vk+1 = M ∗(Uk+1) − βk+1Vk ;
6 end

In Algorithm 1, the scalars αk and βk are chosen so that ||Uk ||F = ||Vk ||F = 1.
It is not difficult to find that after m iterations of Algorithm 1, we have the following
results

Vk ∈ span{M ∗(U1), (M
∗M )M ∗(U1), · · · , (M ∗M )k−1M ∗(U1)}

�= Kk(M
∗M ,M ∗(U1)) = Kk(M

∗M ,V1),

Uk ∈ span{U1, (M
∗M )(U1), · · · , (M ∗M )k−1(U1)} �= Kk(M

∗M ,U1).

By using the definitions

Vk := [V1,V2, · · · ,Vk] ∈ R
l×pk×n, Uk := [U1,U2, · · · ,Uk] ∈ R

m×qk×n,

Lk =

⎡

⎢⎢⎢⎣

α1
β2 α2

. . .
. . .

βk αk

⎤

⎥⎥⎥⎦ , L̃k =

⎡

⎢⎢⎢⎢⎢⎣

α1
β2 α2

. . .
. . .

βk αk

βk+1

⎤

⎥⎥⎥⎥⎥⎦
,

M ∗(Uk) := [M ∗(U1),M
∗(U2), · · · ,M ∗(Uk)] ∈ R

l×pk×n,

M (Vk) := [M (V1),M (V2), · · · ,M (Vk)] ∈ R
m×qk×n,

the recurrence relations of Algorithm 1 can be rewritten as

M ∗(Uk) = Vk � LT
k , M (Vk) = Uk+1 � L̃k . (3.3)

Theorem 3.1 The tensors sequences {Vk} and {Uk} generated by Algorithm 1 are the
orthonormal basis of the Krylov spaceKk(M ∗M ,V1) and Kk(M ∗M ,U1), i.e.

U
T
k ♦Uk = V

T
k ♦Vk = Ik . (3.4)

Proof We prove this theorem by the mathematical induction. When m = 1, we have

〈U1,U2〉 = 〈U1, (M (V1) − α1U1)/β2〉
= 〈M ∗(U1),V1〉 − α1 〈U1,U1〉

β2

= 〈α1V1,V1〉 − α1 〈U1,U1〉
β2

= 0.
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Assume that the result is true for m = k, then for k + 1, we have

〈Ui ,Uk+2〉 = 〈Ui , (M (Vk+1) − αk+1Uk+1)/βk+2〉
= 〈Ui ,M (Vk+1)〉 − αk+1 〈Ui ,Uk+1〉

βk+2

= 〈M ∗(Ui ),Vk+1〉 − αk+1 〈Ui ,Uk+1〉
βk+2

= 〈αiVi + βiVi−1,Vk+1〉 − αk+1 〈Ui ,Uk+1〉
βk+2

=

⎧
⎪⎨

⎪⎩

〈αiVi + βiVi−1,Vk+1〉 − αk+1 〈Ui ,Uk+1〉
βk+2

, i = 1, 2, · · · , k

〈αk+1Vk+1 + βk+1Vk,Vk+1〉 − αk+1 〈Uk+1,Uk+1〉
βk+2

, i = k + 1

= 0.

Similarly, we also have

〈Vi ,Vk+1〉 = 〈
Vi , (M

∗(Uk+1) − βk+1Vk)/αk+1
〉

= 〈Vi ,M ∗(Uk+1)〉 − βk+1 〈Vi ,Vk〉
αk+1

= 〈M (Vi ),Uk+1〉 − βk+1 〈Vi ,Vk〉
αk+1

= 〈αiUi + βi+1Ui+1,Uk+1〉 − βk+1 〈Vi ,Vk〉
αk+1

=

⎧
⎪⎨

⎪⎩

〈αiUi + βi+1Ui+1,Uk+1〉 − βk+1 〈Vi ,Vk〉
αk+1

, i = 1, 2, · · · , k − 1

〈αkUk + βk+1Uk+1,Uk+1〉 − βk+1 〈Vk,Vk〉
αk+1

, i = k

= 0.

It is easy to obtain that ||Vk+1||F = ||Uk+1||F = 1, which means

U
T
k ♦Uk = V

T
k ♦Vk = Ik .

The proof is completed. ��
In a similar way we can get the upper operator-bidiagonal procedure of the linear

operator T : Rm×q×n → R
l×p×n

T (X ) = ˆA ∗L X ∗L B̂,

where ˆA ∈ R
l×m×n and B̂ ∈ R

q×p×n , which can be seen in the following Algo-
rithm 2.
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Algorithm 2: The upper operator-bidiagonal procedure of T

1 Set the initial tensor V1 ∈ R
l×q×n , which satisfies ||V1||F = 1;

2 Calculate ρ1P1 = T ∗(V1) and let k = 1;
3 for k = 1, 2, · · · ,m do
4 θk+1Vk+1 = T (Pk ) − ρkVk ;
5 ρk+1Pk+1 = T ∗(Vk+1) − θk+1Pk ;
6 end

Similar to Algorithm 1, assume that

Vk := [V1,V2, · · · ,Vk] ∈ R
l×pk×n, Pk := [P1,P2, · · · ,Pk] ∈ R

m×qk×n,

Bk =

⎡

⎢⎢⎢⎢⎣

ρ1 θ2

ρ2
. . .

. . . θk
ρk

⎤

⎥⎥⎥⎥⎦
, B̃k =

⎡

⎢⎢⎢⎢⎣

ρ1 θ2

ρ2
. . .

. . . θk
ρk θk+1

⎤

⎥⎥⎥⎥⎦
,

the recurrence relations of Algorithm 2 can be rewritten as

T ∗(Vk) = Pk � BT
k , T (Pk) = Vk+1 � B̃k . (3.5)

Theorem 3.2 The tensors sequences {Vk} and {Pk} generated by Algorithm 2 are the
orthonormal basis of the Krylov spaceKk(T ∗T ,V1) and Kk(T ∗T ,P1), i.e.

P
T
k ♦Pk = V

T
k ♦Vk = Ik .

Proof It is similar with Theorem 3.1 and is omitted here. ��
Comparing (3.3) with (3.5), it can be found that the lower operator-bidiagonal pro-

cedure of the adjoint operatorM ∗ is equivalent to upper operator-bidiagonal procedure
of the linear operator M .

3.2 New algorithms for Problem 1.1 based on the operator-bidiagonal procedure

In this subsection, we present two Paige’s Algorithms (denoted as Paige1-TTP and
Paige2-TTP) based on Algorithms 1 and 2.

Set the initial tensorX0 = 0 and β1U1 = C . Suppose ||R||2F = minX ||M (X )−
C ||2F and X̂ is the solution of Problem 1.1. Then Problem 1.1 is equivalent to

R + M (X ) = C = β1U1,

and its optimality condition is

M ∗(M (X̂ ) − C ) = O,
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i.e.,
M ∗(R) = O.

By constructing the approximate solutionXk of Problem 1.1 as

Xk = Vk � yk,

we have
Rk + M (Vk � yk) = β1U1,

where yk = (η1, η2, · · · , ηk)
T . Combining (3.3), we can deduce that

Rk + (Uk+1 � L̃k) � yk = β1U1. (3.6)

Simplifying (3.6) by (3.4), we obtain that

L̃k yk = β1e1 − U
T
k+1♦Rk . (3.7)

Clearly, there are two cases of Problem 1.1. In the first case, the equations
M (X ) = C are consistent, i.e., R = O . In the second case, R 
= O , the equa-
tions are inconsistent.

We first consider the Case 1 withR = O . According to (3.7), we have

L̃k yk = β1e1.

Thus y can be obtained by

η1 = β1

α1
, ηk+1 = −βk+1

αk+1
ηk .

The case withR 
= O , sinceR is unknown a priori, the ith element ηi of y obviously
cannot be found at the same time as Ui and Vi are produced. We suppose that

γ ≡ 〈U1,R〉 , t ≡ (τ1, τ2, · · · , τk−1)
T ,

⎛

⎝
1
t
τk

⎞

⎠ ≡ U
T
k+1♦R

γ
.

Together with (3.3) and (3.4), we have

L̃k(U
T
k+1♦R) = (Uk+1 L̃k)

T♦R = M (Vk)
T♦R = Vk

T♦(M ∗(R)) = 0.

Set

L̄k =

⎡

⎢⎢⎢⎣

β2
α2 β3

. . .
. . .

αk βk+1

⎤

⎥⎥⎥⎦ ,
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it follows on dividing by γ that

L̄k

(
t
τk

)
= −α1e1.

Therefore, t can be solved by

τk = − αk

βk+1
τk−1, k = 1, 2, · · ·

where τ0 = 1. Then assume that zk = (ξ1, ξ2, · · · , ξk)
T andwk = (ω1, ω2, · · · , ωk)

T

such that

Lkzk = β1e1, Lkwk =
(
1
t

)
.

By yk = zk − γwk , we have

βk+1ηk = βk+1(ξk − γωk) = −γ τk,

i.e.,

γ = βk+1
ξk

βk+1ω − τk
.

Then, Xk in Algorithm 3 can be redescribed as

Xk = Vk � yk = Vk � zk − γVk � wk .

It is easy to find that the residual after the kth step is

Rk = βk+1γωkUk+1 − βk+1ξk + γ

k∑

i=1

τi−1Ui .

In addition to judging that Xk tends to be stable, combining Algorithm 1 and
Algorithm 3, we can easily find that αi , βi , ξi , and ωi become negligible. And γ will
also tend to be stable, so we can also use ||γk − γk−1|| ≤ ε or |ξi | ≤ ε as the stopping
criterion. It also shows that Algorithm 3 will converge to the least squares solution.

Now we will give the convergence theorem for Algorithm 3.

Theorem 3.3 The sequence {Xk} generated by Algorithm 3 converges to the minimum
Frobenius norm solution X ∗ of Problem 1.1 in a finite number of steps.

Proof Suppose that the sequence {Xk} generated by Algorithm 3 converges to X ∗,
which satisfies

X ∗ = Vk � yk ∈ Kk(M
∗M ,V1), M ∗(R∗) = O,
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Algorithm 3: Paige1-TTP method for solving Problem 1.1

Input: The linear operatorM : Rl×p×n → R
l×q×n , tensor C ∈ R

l×q×n and tolerable error ε.
Output: The minimum Frobenius norm least squares solution Xk of Problem 1.1

1 Set τ0 = 1; ξ0 = −1; ω0 = 0; Z0 = O; W0 = O; X0 = O;
2 Calculate β1U1 = C and α1V1 = M ∗(U1), let k = 1;
3 for k = 1, 2, · · · ,m do
4 ξk = −ξk−1βk/αi ;
5 Zk = Zk−1 + ξkVk ;
6 ωk = (τk−1 − βkωk−1)/αk ;
7 Wk = Wk−1 + ωkVk ;
8 βk+1Uk+1 = M (Vk ) − αkUk ;
9 τk = −τk−1αk/βk+1;

10 αk+1Vk+1 = M ∗(Uk+1) − βk+1Vk ;
11 γk = βk+1ξk/(βk+1ωk − τk );
12 Xk = Zk − γkWk ;
13 if ||Xk − Xk−1|| ≤ ε then
14 Stop
15 end
16 end

where R∗ = M (X ∗) − C . By introducing an auxiliary tensor D ∈ R
l×q×n such

that X ∗ = M ∗(D). Let X̃ be any least squares solution of Problem 1.1 and Y =
X̃ − X ∗. We can obtain that

||R∗||2F = ||R̃||2F = ||C − M (X̃ )||2F = ||C − M (X ∗ + Y )||2F
= ||R∗ − M (Y )||2F = ||R∗||2F − 2

〈
R∗,M (Y )

〉 + ||M (Y )||2F
= ||R∗||2F − 2

〈
M ∗(R∗),Y

〉 + ||M (Y )||2F
= ||R∗||2F + ||M (Y )||2F ,

which implies that M (Y ) = O . Then we have

||X̃ ||2F = ||X ∗ + Y ||2F = ||X ∗||2F − 2
〈
X ∗,Y

〉 + ||Y ||2F
= ||X ∗||2F − 2

〈
M ∗(D),Y

〉 + ||Y ||2F
= ||X ∗||2F − 2 〈D,M (Y )〉 + ||Y ||2F
= ||X ∗||2F + ||Y ||2F ≥ ||X ∗||2F .

The equality holds if and only if Y = O , which implies that X ∗ is the minimum
Frobenius norm solution. ��

Next, we will give the Paige2-TTP method. The upper operator-bidiagonal proce-
dure of the operator M is equivalent to the lower operator-bidiagonal procedure of
the operator M ∗ as mentioned above. Therefore, we have

M (Vk) = Pk � LT
k , M ∗(Pk) = Vk+1 � L̃k, P

T
k ♦Pk = V

T
k ♦Vk = Ik .
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As can be seen in Algorithm 3, we construct the approximate solution as

Xk = Vk � yk .

For convenience, we choose θ1V1 = M ∗(C ). Paige [32] points out that when θ1V1 =
M ∗(C ), the diagonalization process will stop when θk+1Vk+1 = O , i.e.

M (Vk) = Pk � LT
k , M ∗(Pk) = Vk � Lk .

Let yk = (η1, η2, · · · , η3)
T . We are more interested in Vk � yk than in the end of

the bidiagonalization, which completely solves for yk and then determines Xk . We
rederive the iterative relation

M (X ) = M (Vk � yk) = (Pk � LT
k ) � yk = Pk � (LT

k yk) = C − R,

which implies
LT
k yk = Pk � (C − R).

Notice that

Lk(Pk
T♦(C − R)) = (Pk � LT

k )T♦(C − R) = (M (Vk))
T♦(C − R)

= V
T
k ♦(M ∗(C − R)) = θ1e1.

By assuming that z = Pk
T♦(C − R), we have

LT
k yk = z, Lkz = θ1e1. (3.8)

Combining (3.8) we obtain that

Xk = Vk � yk = (Vk � L−T
k ) � (LT

k yk) = Wk � z,

whereWk = Vk � L−T
k andWk = [W1,W2, · · · ,W ]. We can determineWi sequen-

tially by
Wk � LT

k = Vk .

We give the Paige2-TTP Algorithm for solving Problem 1.1 as follows.
We also give the convergence theorem for Algorithm 4.

Theorem 3.4 The sequence {Xk} generated by Algorithm 4 converges to the minimum
Frobenius norm solution X ∗ of Problem 1.1 in a finite number of steps.

Proof It is similar with Theorem 3.3 and is omitted here. ��

123



48 Page 16 of 26 BIT Numerical Mathematics (2023) 63 :48

Algorithm 4: Paige2-TTP method for solving Problem 1.1

Input: The linear operatorM : Rl×p×n → R
l×q×n , tensor C ∈ R

l×q×n and tolerable error ε.
Output: The minimum Frobenius norm least squares solution Xk of Problem 1.1

1 Calculate θ1V1 = M ∗(C ); ρ1P1 = M (V1), let k = 1;
2 Calculate W1 = V1

/
ρ1; η1 = θ1

/
ρ1; X1 = η1W1;

3 for k = 1, 2, · · · ,m do
4 θk+1Vk+1 = M ∗(Pk ) − ρkVk ;
5 ρk+1Pk+1 = M (Vk+1) − θk+1Pk ;
6 Wk+1 = (Vk+1 − θk+1Wk )

/
ρk+1;

7 ηk+1 = −ηkθk+1
/
ρk+1;

8 Xk+1 = Xk − ηk+1Wk+1;
9 if ||Xk − Xk−1|| ≤ ε then

10 Stop
11 end
12 end

3.3 Computational complexity analysis

In this subsection,we provide the computational complexity ofAlgorithms 3 and 4.We
note that the computational cost of the multiplication operations of L(A ) = A ×3 M
and A ∗LB are O(mln2) and O(mln2 + lpn2 + mlpn), respectively. Thus the cost
of computing Uk and Vk in Algorithm 1 is O(mln2 + lpn2 + pqn2 + min{(l +
q)mpn, (m + p)lqn}). Similarly, the cost of computing Vk andPk in Algorithm 2 is
O(mln2 + lpn2 + pqn2 + min{(l + q)mpn, (m + p)lqn}).

The computational cost of Algorithm 3 involves mainly tensor multiplication and
addition. The computational cost of each iteration of Algorithm 3 is O(lpn), except
that the cost of calculatingUk and Vk is the same as in Algorithm 1, which means that
the computational complexity of Algorithm 3 is O(mln2 + lpn2 + pqn2 +min{(l +
q)mpn, (m + p)lqn}). Analogously, the computational cost of Algorithm 4 is mainly
posed by steps 4 and 5. Therefore, the computational cost for Algorithm 4 is O(mln2+
lpn2 + pqn2 + min{(l + q)mpn, (m + p)lqn}).

4 Numerical experiments

In this section we give numerical examples and simulation experiments of image
restoration to illustrate the performance of Algorithms 3 and 4. All of the tests are
implemented in MATLAB R2018b with the machine precision 10−16 on PC (Intel(R)
Core(TM) i5-1155G7), where the CPU is 2.50 GHz and the memory is 16.0 GB.
The implementations of the algorithms are based on the functions from the MATLAB
Tensor Toolbox developed by Bader and Kolda [1].

Example 4.1 Consider Problem1.1withm = 5, l = 4,n = 3, p = 4, andq = 5,where
the tensorsA andB are constructedbyusing theMATLABcommand rand(I1, I2, I3)
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as follow

A (:, :, 1) =

⎛

⎜⎜⎜⎜⎝

0.7663 0.9361 0.3733 0.1862
0.1746 0.8927 0.1163 0.2087
0.5031 0.4435 0.5251 0.5304
0.3827 0.7515 0.3411 0.0843
0.9772 0.9094 0.8494 0.2408

⎞

⎟⎟⎟⎟⎠
,

A (:, :, 2) =

⎛

⎜⎜⎜⎜⎝

0.6346 0.3135 0.4382 0.7165
0.1111 0.7621 0.1864 0.6203
0.6073 0.9545 0.4431 0.0898
0.8898 0.6459 0.4881 0.1118
0.4907 0.4853 0.8611 0.5756

⎞

⎟⎟⎟⎟⎠
,

A (:, :, 3) =

⎛

⎜⎜⎜⎜⎝

0.4617 0.4819 0.5076 0.1959
0.5454 0.1605 0.2380 0.9748
0.0380 0.7544 0.1927 0.5751
0.5793 0.7935 0.8087 0.5832
0.6290 0.2914 0.0667 0.9500

⎞

⎟⎟⎟⎟⎠
;

B(:, :, 1) =

⎛

⎜⎜⎝

0.4521 0.0431 0.0431 0.8928 0.6670
0.0268 0.5561 0.7263 0.7794 0.9781
0.4253 0.6113 0.7133 0.4949 0.1171
0.1058 0.7388 0.5038 0.7615 0.8693

⎞

⎟⎟⎠ ,

B(:, :, 2) =

⎛

⎜⎜⎝

0.5679 0.0623 0.9191 0.4355 0.1427
0.1202 0.2781 0.4152 0.6354 0.2006
0.9703 0.4096 0.7115 0.9016 0.6209
0.8400 0.6268 0.9709 0.8716 0.7750

⎞

⎟⎟⎠ ,

B(:, :, 3) =

⎛

⎜⎜⎝

0.2468 0.1708 0.0821 0.6053 0.6116
0.3695 0.7456 0.7815 0.3545 0.8432
0.3411 0.0980 0.8487 0.7591 0.4570
0.4564 0.8903 0.4509 0.5894 0.8828

⎞

⎟⎟⎠ .

The tensor C of Problem 1.1 is generated by C = A ∗L X ∗ ∗L B, whereX ∗ is the
exact solution.

C (:, :, 1) =

⎛

⎜⎜⎜⎜⎝

2.0709 2.9842 3.7128 4.6192 4.2295
1.2905 2.2195 2.7104 3.5677 3.2243
2.0320 2.6432 3.3329 4.2888 3.7896
1.3801 2.6006 2.7593 3.9167 3.8628
2.7502 3.6893 4.8344 5.7619 5.1022

⎞

⎟⎟⎟⎟⎠
,

C (:, :, 2) =

⎛

⎜⎜⎜⎜⎝

1.9866 1.1023 2.5292 2.4022 1.4136
1.3878 0.6701 1.9098 1.7834 0.9858
1.6750 0.8739 2.2706 2.1246 1.1841
1.9704 0.7190 2.2637 1.9022 1.0239
2.2009 1.1848 2.8530 2.7460 1.5583

⎞

⎟⎟⎟⎟⎠
,
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C (:, :, 3) =

⎛

⎜⎜⎜⎜⎝

1.5129 2.6267 2.5285 3.1925 3.8561
1.6347 2.4602 2.6092 3.0806 3.3725
1.2401 2.0938 1.9912 2.8409 3.2008
2.4940 3.4742 3.7211 4.8108 5.2201
1.6014 3.1166 3.0049 3.6039 4.2954

⎞

⎟⎟⎟⎟⎠
.

Given a random invertible linear transformation matrix

M =
⎛

⎝
−0.5560 0.1429 −0.8188
−0.6669 −0.6646 0.3368
−0.4961 0.7334 0.4648

⎞

⎠ ,

we solve Problem 1.1 by usingAlgorithms 3 and 4with ε = 10−6. After 129 iterations,
we get the solution

X ∗ = X 129
Paige1 = X 129

Paige2,

where

X 129
Paige1(:, :, 1) = X 129

Paige2(:, :, 1) =

⎛

⎜⎜⎝

0.1000 0.1670 0.3653 0.5469
0.8787 0.6461 0.4024 0.9860
0.8915 0.1803 0.0898 0.2127
0.2140 0.1165 0.6838 0.9190

⎞

⎟⎟⎠ ,

X 129
Paige1(:, :, 2) = X 129

Paige2(:, :, 2) =

⎛

⎜⎜⎝

0.6652 0.1063 0.7282 0.7956
0.7435 0.8838 0.2856 0.0735
0.3785 0.4451 0.5937 0.9927
0.4748 0.6682 0.3705 0.7760

⎞

⎟⎟⎠ ,

X 129
Paige1(:, :, 3) = X 129

Paige2(:, :, 3) =

⎛

⎜⎜⎝

0.0074 0.8850 0.9972 0.6549
0.8889 0.4656 0.8698 0.4118
0.8641 0.3716 0.0001 0.4764
0.6976 0.0830 0.6800 0.3883

⎞

⎟⎟⎠ .

The residual errors are

‖A ∗LX 129
Paige1∗LB−C ‖F = 2.5535×10−7, ‖A ∗LX 129

Paige2∗LB−C ‖F = 2.0378×10−7.

The relative errors are

‖X 129
Paige1 − X ∗‖F

‖X ∗‖F = 1.6625 × 10−7,
‖X 129

Paige2 − X ∗‖F
‖X ∗‖F = 1.3598 × 10−7.

We also give the convergence curves of Algorithms 3 and 4 in the figure 1.

Example 1 demonstrates the feasibility of Algorithms 3 and 4 in solving Problem
1.1. To further illustrate their effectiveness, we present two simulation experiments
for color image restoration as follows.
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Fig. 1 Convergence curves of Algorithms 3 and 4

Colored 3D models for the image restoration can be modeled as tensor expressions
[16]

B = A ∗LX + E ,

where B, A and E ∈ R
n×n×3 are the observation image, the blurring operator and

the noise, respectively. And X is the restored image to be sought. Each frontal slice
of A ∈ R

n×n×3 is a Toeplitz matrix obtained from a matrix S ∈ R
n×n , where S is a

two-dimensional Gaussian function

S(i, j) =
{

1√
2πσ

exp(− (i− j)2

2σ 2 ), |i − j | ≤ r ,

0, otherwise,
(4.1)

and A is obtained from

A (1) = αS, A (2) = βS, A (3) = γ S. (4.2)

Here α, β and γ are the entries of the circular matrix

Scolor =
⎛

⎝
α γ β

β α γ

γ β α

⎞

⎠ ,
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obtained from [20], which satisfy α + β + γ = 1. This matrix gives rise to cyclic
mixing between different channels (RGB channels). We set the noise level

v := ‖E ‖F
‖A ∗LX ‖F .

The noise E obeys a Gaussian distribution, which has a zero mean and v variance.
We use Algorithm 3, Algorithm 4, PGD algorithm [25], CG algorithm [33], NSPG

algorithm [4] and GMRES algorithm [16] to solve the above model with ∗c product
and t-product. The stopping criterion for all algorithms is either

‖Xk − Xk−1‖
‖Xk−1‖ ≤ 10−4,

or the iteration step k reached the upper limit 1000. All color images in the experi-
ments are from the USC-SIPI image database. In the experiments, we use CPU time,
relative error (RE) and peak signal-to-noise ratio (PSNR) as the measurement for the
restoration effect of the color image. The relative error (RE) and peak signal-to-noise
ratio (PSNR) are defined as

RE = ‖X − Q‖F
‖Q‖F , PSN R = 10log10(

Q2
max I1 I2 I3

‖X − Q‖2F
),

where X and Q are the restored image and the real image, respectively. The higher
PSNR and the lower RE, the better restoration performance.

Example 4.2 We consider Problem 1.1 withA obtained from (4.1) and (4.2) by setting
σ = 2, r = 3, α = 0.5, β = 0.1 and γ = 0.4 as inside channel and cross-channel
blur, respectively. Take the House ∈ R

512×512×3 and Airplane ∈ R
512×512×3 to be

the true images. And we get a series of blurred images C = A ∗L X ∗L B + E
by adding noise E with noise level v = 10−4, where B is a third-order tensor with
B(1) = ST and B(2) = B(3) = 0.

In the implementation of the algorithms for this example, we simultaneously con-
sidered the cases of t-product and ∗c product. We present visual representations of
restored images obtained through various algorithms. Additionally, we magnify the
local details in these images to compare the effectiveness of different restoration tech-
niques on blurred images.We also provide numerical results for the CPU time, relative
error (RE), and peak signal-to-noise ratio (PSNR) for each algorithm to compare their
performance. All experimental results are listed in Figs. 2−3 and Tables 1−2.

Figures 2 and 3 show the visual effects of the restored images (House andAirplane).
We can observe that the two images restored byAlgorithms 3 and 4 have clearer texture
details and features. This indicates that the results recovered by Algorithms 3 and 4
are of higher quality and more similar to the original images.

On the other hand, from Tables 1 and 2, we can see that our methods (Algorithms
3 and 4) obtain the highest PSNR value and the least RE value and take the least CPU
time. The higher PSNR value and the lower RE value, the better recovery performance.
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Fig. 2 The visualization of the restoration image (House) for each algorithm. Experiments were performed
under ∗c product

Fig. 3 Thevisualizationof the restoration image (Airplane) for each algorithm.Experimentswere performed
under t-product

So our methods outperform PGD, CG, NSPG and GMRES methods in PSNR and RE
value.

The image restoration model is a typical ill-posed problem. When we use an algo-
rithm to solve this problem, we often encounter the semi-convergence1 phenomenon.
Especially, when the residual of Problem 1.1 is less than ‖E ‖F , the tensor least squares
problemwill treat some of the noise as part of the image to be restored. The happening

1 When we use an algorithm to solve the ill-posed problem, the algorithm exhibits a gradual convergence
behavior for the first k iterations. However, after the kth step, the error will increase and the convergence
will disappear. This is called "semi-convergence".
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Table 1 The computational results for Algorithms 3, 4, PGD, CG, NSPG and GMRES when the stopping
criterion is reached under ∗c product

House Airplane

Algorithms RE PSN R T ime/s RE PSN R T ime/s

Algorithm 3 0.0464 30.4615 16.3611 0.0302 32.3227 19.1900

Algorithm 4 0.0464 30.4615 16.8903 0.0302 32.3227 19.0411

PGD 0.1166 22.4669 35.6320 0.0761 24.3182 27.9519

CG 0.0679 27.1624 42.1370 0.0444 29.0019 42.1587

NSPG 0.0573 28.6272 28.7995 0.0367 30.6470 39.0540

GMRES 0.0825 25.4646 165.5080 0.0726 24.7288 196.5575

The best RE, PSNR and CPU time results are highlighted in bold

Table 2 The computational results for Algorithms 3, 4, PGD, CG, NSPG and GMRES when the stopping
criterion is reached under t-product

House Airplane

Algorithms RE PSN R T ime/s RE PSN R T ime/s

Algorithm 3 0.0465 30.4576 17.1224 0.0271 33.2824 25.8698

Algorithm 4 0.0465 30.4576 17.4108 0.0271 33.2824 25.6273

PGD 0.0691 27.0057 24.7539 0.0449 28.8918 30.0570

CG 0.0487 30.0489 60.2831 0.0396 29.9860 45.6450

NSPG 0.0567 28.7228 38.0364 0.0367 30.6433 26.1994

GMRES 0.0528 29.3461 180.1900 0.0320 31.8283 156.7062

The best RE, PSNR and CPU time results are highlighted in bold

of overfitting leads to the semi-convergence phenomenon, which makes the restored
image significantly different from the real image. This phenomenon is obvious in
solving the image restoration model with a high noise level2. In this case, we add the
Tikhonov regularization into Problem 1.1 to overcome this difficulty, i.e.,

min
X ∈Rn×n×3

‖A ∗LX − B‖2F + μ‖X ‖2F . (4.3)

Set the linear operator M : Rn×n×3 → R
2n×n×3 be

M (X ) =
[

A
μ1/2I

]
X ,

and the tensor C ∈ R
2n×n×3 be

C =
[
B
O

]
.

2 SetXk be the kth iterative value of an algorithm. If the noise E satisfies ‖E ‖F ≤ ‖A ∗LXk − B‖F , it
is called as a low noise level. Conversely, if E satisfies ‖E ‖F > ‖A ∗LXk − B‖F , it is called as a high
noise level.
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Fig. 4 The visualization of the restoration images (Peppers and Sailboat). The first row of images is obtained
under the t-product, and the second row of images is obtained under the ∗c product

Our proposed algorithms can also be used to solve Problem (4.3). In the upcoming
experiments, we will address this problem by utilizing Algorithms 3 and 4. Addi-
tionally, we will compare our results not only with PGD, CG, NSPG, and GMRES
algorithms but also with the recently proposed GG-tGKT [34, 35] and GG-LtAT [35]
methods.

Example 4.3 This example studies the image restoration model with a higher noise
level. We consider Problem (4.3) with A obtained from (4.1) and (4.2) by setting
σ = 3, r = 3, α = 0.8, β = 0.1 and γ = 0.1 as inside channel and cross-channel
blur, respectively. Take the Peppers ∈ R

512×512×3 and Sailboat ∈ R
512×512×3 to be

the true images. And we get a series of blurred imagesB = A ∗L X + E by adding
noise E with noise level v = 10−2. The obtained images are displayed on the left of
Fig. 4. The optimal regularization parameter μopt = 5.1× 10−3 (μopt = 2.9× 10−3)
under ∗c product (t-product) was obtained by using the generalized GCVmethod [15].

The visual results of two color images (Peppers and Sailboat) restored by Algo-
rithms 3 and 4 are shown in Fig. 4. We can observe that the images restored by our
algorithm are very close to the original images, with clear contour and texture features.

Further, the results of comparing Algorithms 3 and 4 with other algorithms are
presented in Tables 3 and 4. These tables show that Algorithms 3 and 4 achieve the
same PSNR and RE values as the PGD, CG, NSPG, GMRES, GG-tGKT and GG-
LtAT algorithms. This suggests that all algorithms restore images to a comparable
quality. However, our methods require the least CPU time compared to the other four
algorithms. Therefore, the convergence rate of Algorithm 3 and 4 are faster than PGD,
CG, NSPG, GMRES, GG-tGKT and GG-LtAT algorithms.
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Table 3 The computational results for Algorithms 3, 4, PGD, CG, NSPG, GMRES, GG-tGKT and GG-
LtAT when the stopping criterion is reached under ∗c product

Peppers Sailboat

Algorithms RE PSN R T ime/s RE PSN R T ime/s

Algorithm 3 0.0858 26.6157 2.8114 0.0934 25.5349 2.8102

Algorithm 4 0.0858 26.6157 2.9385 0.0934 25.5349 2.7089

PGD 0.0847 26.7355 53.9421 0.0931 25.5632 51.7664

CG 0.0860 26.5994 19.7067 0.0940 25.4821 18.4134

NSPG 0.0861 26.5926 10.3421 0.0940 25.4789 13.5531

GMRES 0.0861 26.5905 8.5961 0.0941 25.4758 9.4450

GG-tGKT 0.0860 26.6001 7.3658 0.0939 25.4948 8.1918

GG-LtAT 0.0861 26.5837 9.0724 0.0940 25.4808 11.3202

The best CPU time result is highlighted in bold

Table 4 The computational results for Algorithms 3, 4, PGD, CG, NSPG, GMRES, GG-tGKT and GG-
LtAT when the stopping criterion is reached under t-product

Peppers Sailboat

Algorithms RE PSN R T ime/s RE PSN R T ime/s

Algorithm 3 0.0807 27.1563 2.5629 0.0922 25.6488 2.0364

Algorithm 4 0.0807 27.1563 2.4029 0.0922 25.6488 2.9412

PGD 0.0807 27.1526 26.1720 0.0923 25.6403 25.6363

CG 0.0807 27.1523 10.1876 0.0922 25.6471 9.9940

NSPG 0.0807 27.1516 10.2315 0.0922 25.6465 10.4668

GMRES 0.0807 27.1513 6.9074 0.0922 25.6468 5.3284

GG-tGKT 0.0926 25.9576 7.4188 0.0942 25.4608 5.8344

GG-LtAT 0.0843 26.7747 4.3153 0.0941 25.4720 4.7237

The best CPU time result is highlighted in bold

5 Conclusion

In this paper, we consider a class of tensor least squares problems under the tensor-
tensor product with an invertible linear transforms, which arises in image restoration.
TwoPaige’sAlgorithms are proposed to solve this problem.The convergence theorems
are also derived. Numerical experiments show that the new algorithms are feasible and
effective for Problem 1.1. Two simulation experiments for the image restoration show
the good performance of the new algorithms.
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