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Abstract
Rosenbrock–Wanner methods for systems of stiff ordinary differential equations are
well known since the seventies. They have been continuously developed and are effi-
cient for differential-algebraic equations of index-1, as well. Their disadvantage that
the Jacobian matrix has to be updated in every time step becomes more and more
obsolete when automatic differentiation is used. Especially the family of Rodas meth-
ods has proven to be a standard in the Julia package DifferentialEquations. However,
the fifth-order Rodas5 method undergoes order reduction for certain problem classes.
Therefore, the goal of this paper is to compute a new set of coefficients for Rodas5
such that this order reduction is reduced. The procedure is similar to the derivation of
the methods Rodas4P and Rodas4P2. In addition, it is possible to provide new dense
output formulas for Rodas5 and the new method Rodas5P. Numerical tests show that
for higher accuracy requirements Rodas5P always belongs to the best methods within
the Rodas family.

Keywords Rosenbrock–Wanner methods · Index-1 DAEs · Order reduction · Julia
package Differential Equations · Rodas5

Mathematics Subject Classification 65L04 · 65L80 · 68N15

1 The Rodas family in Julia DifferentialEquations package

Numerical programming in Julia has proven to be very performant. Rackauckas and
Nie [16] implemented the powerful package DifferentialEquations.jl that
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contains a wide range of solvers for several types of problems. We restrict our consid-
erations to initial value problems of the type

M y′ = f (t, y), y(t0) = y0 . (1.1)

When matrix M is singular, (1.1) is a system of differential-algebraic equations
(DAEs), else a system of ordinary differential equations (ODEs). We assume problem
(1.1) to be of index not greater than one. For a detailed definition of the index concept
see [7]. For solving such problems Rosenbrock–Wanner (ROW) methods are well
known, see [4] and [8] for a recent survey.

A ROW scheme with stage-number s for problem (1.1) is defined by:

(M − h γ fy)ki = h f

⎛
⎝t0 + αi h, y0 +

i−1∑
j=1

αi j k j

⎞
⎠ + h fy

i−1∑
j=1

γi j k j + h2γi ft ,

i = 1, ..., s, (1.2)

y1 = y0 +
s∑

i=1

bi ki ,

with fy = ∂ f

∂ y
(t0, y0), ft = ∂ f

∂t
(t0, y0). (1.3)

h is the stepsize and y1 is the approximation of the solution y(t0+h). The coefficients of
themethod are γ ,αi j , γi j , and bi define theweights.Moreover, it holdsαi = ∑i−1

j=1 αi j

and γi = γ + ∑i−1
j=1 γi j .

ROWmethods are alinearly implicit schemes since only a fixed number of s linear
systemshave to be solved.The index-1 conditionguarantees the regularity of thematrix
(M−h γ fy) for sufficiently small stepsizes h > 0, see [4]. A disadvantage compared
to implicit Runge–Kutta methods is the requirement of evaluating the Jacobian matrix
fy in every timestep.
Within the Julia package DifferentialEquations.jl it is possible to com-

pute the Jacobian by automatic differentiation. Therefore, ROWmethods proved to be
very efficient for the solution of stiff ODEs and DAEs. For the following analysis we
choose ROS3P [10], Rodas3 [21], Rodas4 [4], Rodas4P [24], Rodas4P2 [25]
and Rodas5 [3] from the many implemented ROW methods.
Moreover, we include Ros3prl2 and Rodas4PR2 [17] which are successors
of ROS3P respectively Ros3PL [9] and Rodas4P, but not yet implemented in
DifferentialEquations.jl. These schemes are applicable to index-1 DAEs
and are stiffly stable. Stiffly stable methods guarantee R(∞) = 0 for the stability
function R(z), which is a desired property when solving problem (1.1), see [4, 8].
Since in addition all these methods are A-stable they are L-stable as well. The best
known method is certainly Rodas4 from Hairer and Wanner [4]. The other schemes
considered here were constructed based on this inspiration.
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Table 1 Stages s andorder of convergence for different problems: Index-1DAEproblem (DAE-1), Prothero-
Robinson model (Prot-Rob), parabolic problem (Parabol), index-2 DAE problem (DAE-2), DAE problem
with inexact Jacobian (inexact Jac)

ROS3P Ros3prl2 Rodas3 Rodas4 Rodas4PR2 Rodas4P2 Rodas5

Stages s 3 4 4 6 6 6 8

DAE-1 3 (2) 3 (2) 3 (2) 4 (3) 4 (3) 4 (3) 5 (4)

Prot-Rob 2 (2) 3 (2) 1 (2) 1 (1) 4 (3) 3 (3) 1 (1)

Parabol 3 (2) 3 (2) 2 (2) 2 (2) 4 (3) 4 (3) 2 (2)

DAE-2 2 (1) 2 (1) 1 (2) 1 (1) 2 (2) 2 (2) 1 (1)

inexact Jac 1 (1) 1 (1) 2 (1) 1 (1) 1 (1) 2 (1) 1 (1)

The numbers in brackets denote the order of the embedded methods

It is well known that ROW methods suffer from order reduction when they are
applied to the Prothero-Robinson model, see [15, 18, 23]:

y′ = λ (y − g(t)) + g′(t), y(0) = g(0). (1.4)

For a large stiffness parameter |λ| with �(λ) << 0 the order may even drop to one.
Scholz [23] andOstermannandRoche [14] derived additional conditions to be fullfilled
such that the order is independent onλ. Ostermann andRoche pointed out that the same
conditions occurwhen semi-discretized parabolic partial differential equations (PDEs)
are considered. Methods ROS3P, ROS3PL, Ros3prl2, Rodas4P, Rodas4PR2
and Rodas4P2 were developed according to these additional conditions. The letter
P stands for “Prothero-Robinson” as well as “parabolic problem”.

An alternative way to avoid order reduction is considered in [1, 2]. Here, themethod
does not have to fulfill any additional order conditions. In order to achieve a higher stage
order, adapted boundary conditions of the partial differential equation are considered
in the calculation of the individual stages. The advantage is that every ROWmethod is
suitable for this. The disadvantage is that additional information about the problem to
be solvedmust be included in the stage evaluation. Thismaybecomecomplicatedwhen
pipe networks are considered and thus the boundary conditions must take coupling
information into account [26]. A numerical comparison of the two approaches is given
in Sect. 4.

Wmethods forODEs areROWmethodswhich do not need an exact Jacobianmatrix
fy in every timestep. Examples for such methods can be found in [17]. Recently, Jax
[5] was able to enlarge the class of certain W methods to problems of differential
algebraic equations. Unfortunately a huge amount of additional order conditions have
to be satiesfied as well. Conditions up to order two are fullfilled by the Rodas4P2
method.

Table 1 summarizes the properties of the schemes considered. The order of conver-
gence for some test problems was obtained numerically by the solution with different
constant timesteps. The definition of the test problems is given in Sect. 4. Despite the
fact that Rodas4 and Rodas5 are very efficient for a couple of typical test problems
[4], they show remarkable order reduction for special problems.

123



27 Page 4 of 26 BIT Numerical Mathematics (2023) 63 :27

Fig. 1 Values z ∈ C with stability function |R(z)| = 1, black for Rodas5, blue for its embedded method
(colour figure online)

Rodas5 has some further disadvantages. For simple non-autonomous problems
such as y′ = cos(t), y(0) = 0, errors of this method and its embedded scheme are
exactly the same. This leads to a failure of the stepsize control. The embedded method
of Rodas5 is not A-stable. In Fig. 1 we can see that the stability domain does not
contain the whole left complex half-plane. This may cause stepsize reductions for
problems with eigenvalues near the imaginary axis. Moreover, the original literature
[3] does not contain a coefficient set for a dense output formula of Rodas5. In the
Julia implementation a Hermite interpolation is used which is only applicable to ODE
problems.

The aim of this paper therefore is to construct a new coefficient set for Rodas5.
It should still have order 5(4) for standard DAE problems of index-1, but its order
reduction shown in Table 1 should be restricted to that of Rodas4P2. Moreover, the
embedded method should be A-stable and a dense output at least of order p = 4
should be provided. In Sect. 2, all order conditions to be fullfilled by the new method
Rodas5P are stated. The construction and the computation of the coefficients of the
method is explained in Sect. 3, and finally, in Sect. 4, some numerical benchmarks are
given.

2 Order conditions

The order conditions for Rosenbrock methods applied to index-1 DAEs of type (1.1)
were derived by Roche [20]. They are connected to Butcher trees, as shown in Tables 2
and 3. Table 2 lists the conditions up to order p = 5 for ODE problems and Table 3
the additional order conditions up to order p = 5 for index-1 DAE problems, see [3,
4].
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Table 2 Order conditions up to
order p = 5 for ODE problems

No Order Tree Condition

1 1
∑

bi = 1

2 2
∑

biβi = 1/2

3 3
∑

biα
2
i = 1/3

4
∑

biβi jβ j = 1/6

5 4
∑

biα
3
i = 1/4

6
∑

biαiαi jβ j = 1/8

7
∑

biβi jα
2
j = 1/12

8
∑

biβi jβ jkβk = 1/24

9 5
∑

biα
4
i = 1/5

10
∑

biα
2
i αi jβ j = 1/10

11
∑

biαi jβ jαikβk = 1/20

12
∑

biαiαi jα
2
j = 1/15

13
∑

biαiαi jβ jkβk = 1/30

14
∑

biβi jα
3
j = 1/20

15
∑

biβi jα jα jkβk = 1/40

16
∑

biβi jβ jkα
2
k = 1/60

17
∑

biβi jβ jkβklβl = 1/120

The following abbreviations are used:

βi j = αi j + γi j with βi j = 0 for i < j and βi i = γi i = γ, (2.1)

βi =
i∑

j=1

βi j αi =
i−1∑
j=1

αi j , B = (βi j )
s
i, j=1 W = B−1 = (wi j )

s
i, j=1. (2.2)

The sums in the tables are formed over all possible indices.
In Table 4 additional order conditions are defined. Conditions No. 41–44 are given

in [11] for problems of type M(y) · y′ = f (y) with singular matrix M(y). Based on
these conditions the method rowdaind2 was derived in [11]. In the special case of
index-2 DAEs of type

y′ = f (y, z), (2.3)

0 = g(y) (2.4)
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Table 3 Additional order conditions up to order p = 5 for index-1 DAE problems

No Order Tree Condition

18 3
∑

biwi jα
2
j = 1

19 4
∑

biαiαi jw jkα
2
k = 1/4

20
∑

biwi jα
3
j = 1

21
∑

biwi jα jα jkβk = 1/2

22
∑

biwi jα jα jkwklα
2
l = 1

23 5
∑

biαiαi jw jkα
3
k = 1/5

24
∑

biαiαi jw jkαkαklβl = 1/10

25
∑

biαiαi jw jkαkαklwlmα2m = 1/5

26
∑

biαi jβ jαikwklα
2
l = 1/10

27
∑

biα
2
i αi jw jkα

2
k = 1/5

28
∑

biβi jα jα jkwklα
2
l = 1/20

29
∑

bi (αi jw jkα
2
k )2 = 1/5

30
∑

biwi jα
4
j = 1

31
∑

biwi jα
2
jα jkβk = 1/2

32
∑

biwi jα
2
jα jkwklα

2
l = 1

33
∑

biwi jα jα jkβklβl = 1/6

34
∑

biwi jα jα jkα
2
k = 1/3

35
∑

biwi jα jα jkwklα
3
l = 1

36
∑

biwi jα jα jkwklαlαlmβm = 1/2

37
∑

biwi jα jα jkwklαlαlmwmnα2n = 1

38
∑

biwi j (α jkβk )
2 = 1/4

39
∑

biwi jα jkβkα jmwmnα2n = 1/2

40
∑

biwi j (α jkwklα
2
l )2 = 1
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Table 4 Additional order conditions

No Order Condition

41 Index-2 2
∑

biwi jw jkα
2
k = 2

42 3
∑

biαiαi jw jkwklα
2
l = 2/3

43
∑

biwi jα jα jkwklwlmα2m = 2

44
∑

biαi jw jkwklα
2
l αimwmnwnrα

2
r = 4/3

45 W method 2
∑

biγi j = 0

46
∑

biαi jw jkαk = 1/2

47
∑

biwi jα j = 1

48 Prot-Rob 3 C2(H) = ∑s
i=0 Ai H

i = 0

49 4 C3(H) = ∑s−1
i=0 Bi H

i = 0

with a non-singular matrix (
∂g
∂ y · ∂ f

∂z ) in the neighborhood of the solution, condition
No. 41 guarantees convergence order p = 2. The additonal conditions No. 42–44 lead
to order p = 3 for the differential variable y and p = 2 for the algebraic variable z of
such index-2 problems.

Conditions No. 45–47 are introduced by Jax [5]. By these conditions at least order
p = 2 is achieved for index-1 problems using inexact Jacobian matrices. Method
Rodas4P2has beenderived for that purpose, see [25].When the Jacobian is computed
by finite differences, this property might be advantageous.

Conditions No. 48, 49 are necessary for the Prothero-Robinsonmodel, see equation
(1.4). The coefficients of polynomialsC2(H) andC3(H)with H = z

1−γ z and z = λ h
are defined according to [23]

A0 = −N (2)(−1) + γ M(−1) + M(0) (2.5)

Ai = −N (2)(i − 1) + 2γ M(i − 1) + γ 2M(i − 2) + M(i) (2.6)

for 0 < i < s

As = γ 2M(s − 2) (2.7)

B0 = −N (3)(−1) + N (2)(0) (2.8)

Bi = −N (3)(i − 1) + γ N (2)(i − 1) + N (2)(i) (2.9)

for 0 < i < s − 1

Bs−1 = −N (3)(s − 2) + γ N (2)(s − 2) (2.10)

M(ν) =
s∑

i=1

bi Mi (ν), N (σ )(ν) =
s∑

i=1

bi N
(σ )
i (ν) for σ ≥ 2 (2.11)

with
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Mi (ν) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ν < 0
β ′
i if ν = 0∑
βi j1β j1 j2 . . . β jν−1 jν β

′
jν
if ν = 1, . . . , i − 2

0 if ν ≥ i − 1

(2.12)

σ !N (σ )
i (ν) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ν < 0
ασ
i if ν = 0∑
βi j1β j1 j2 . . . β jν−1 jν α

σ
jν
if ν = 1, . . . , i − 2

0 if ν ≥ i − 1

(2.13)

and β ′
i = ∑i−1

j=1 βi j . The summation in (2.12), (2.13) is over jν < · · · < j1 < i .

To distinguish summation
∑i−1

j=1 βi j and
∑i

j=1 βi j in the following, we introduce β ′
i j

with β ′
i j = βi j for j < i and β ′

i j = 0 for j ≥ i .
In order to fulfill conditions No. 48 and 49 in Table 4 all coefficients Ai and Bi

must be zero. As stated in [25], the estimation of the error constant C of the global
error in the paper of Scholz [23] is not sharp. It behaves like C = 1

z C1 for L-stable
methods, see [17]. Therefore, for fixed h asymptotically exact results are obtained for
|λ| → ∞, but for fixed large stiffness |λ| only order p − 1 is obtained numerically.
This can be seen in Table 1. Although the Rodas4P and Rodas4P2methods satisfy
both conditions No. 48 and 49 they only show order p = 3 for the Prothero-Robinson
model with large stiffness |λ|, whereas Rodas4PR2 achieves the full order in stiff
case.

An L-stable method is obtained, when |R(z)| < 1 for �(z) < 0 and R(∞) = 0
holds. The stability function R(z) can be expressed in terms of M(ν) defined in (2.11)
as follows

R(z) =
s∑

i=0

M(i − 2)Hi . (2.14)

3 Construction of Rodas5P

The aim is to construct amethodwhich fullfills all order conditions stated in Tables 2, 3
and 4. Analogously to [3], we choose s = 8 and want to construct a stiffly accurate
method with

bi = β8i for i = 1, . . . , 7, b8 = γ, α8 = 1. (3.1)

The embedded method with stage number ŝ = 7 is stiffly accurate, too:

b̂i = β7i for i = 1, . . . , 6, b̂7 = γ, α7 = 1. (3.2)

It should fullfill the order conditions No. 1-8, 18-22, 41, 48 leading to a method of
order p̂ = 4 for index-1 DAEs. These conditions are denoted by 1̂, 2̂,...,4̂8.
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According to [3, 4] we require

α8i = β7i for i = 1, . . . , 7; α7i = β6i for i=1, . . . , 6; α6=1. (3.3)

Therefore, the following 40 coefficients remain to be determined:

γ, β21, β31, β32, ..., β54, β62, ..., β65, β72, ..., β76, β82, ..., β87,

α21, α31, α32, α41, α42, α43, α51, α52, α53, α54, α62, α63, α64, α65.

Coefficients β61, β71, β81, α61 are not listed, since they are determined later by α6 = 1
and β ′

8 = β ′
7 = β ′

6 = 1 − γ , which follows from condition No.1 and the choice
α7 = α8 = 1.

Our strategy is to fulfill the conditions No. 48, 49 first. In these conditions occur
terms belonging to the long trees (see conditions No. 1, 2, 4, 8, 17) and the trees
belonging to conditions No. 3, 7, 16. Moreover, we try to fullfill at least some of the
conditions to arrive at C4(H) = 0 where terms belonging to trees of conditions No.
5, 14 occur.

Moreover,we can simplifymany conditions related to long trees. Togive an example
we reformulate conditions No. 2, 4:

∑
biβi = 1

2
⇔

∑
β ′
8iβ

′
i + γ 2 + 2γβ ′

8 = 1

2
⇔

∑
β ′
8iβ

′
i = 1

2
−γ 2−2γ (1−γ )=1

2
−2γ+γ 2

∑
biβi jβ j = 1

6
⇔

∑
β ′
8iβ

′
i jβ

′
j + γ 3 + 3γ 2β ′

8 + 3γ
∑

β ′
8iβ

′
i = 1

6
⇔

∑
β ′
8iβ

′
i jβ

′
j = 1

6
−3γ

(
1

2
−2γ+γ 2

)
−3γ 2(1−γ )−γ 3

= 1

6
− 3

2
γ + 3γ 2 − γ 3

1. In the first step we set α21 = 3γ and β21 = 0, see [24]. By this choice the
following conditions are fullfilled: No. 18, 1̂8, 20, 2̂0, 30, 47. Form No. 48, 49 we
obtain A8 = 0, Â7 = 0, B7 = 0.

2. Now we interpret γ , α3, α4, α5, α52, α65 and β ′
5 as free parameters and try to

compute the remaining ones dependent on these. We set β32 = ( α3
α2

)2(α3
3 − γ ) and

β ′
3 = 9

2β32 and get A7 = 0, Â6 = 0, B6 = 0 from No. 48, 49.
3. We solve the linear system

⎛
⎝

1
2α

2
2

1
2α

2
3 − 2γβ ′

3 −γ 2

α2
2 α2

3 0
α3
2 α3

3 0

⎞
⎠

⎛
⎝

β42
β43
β ′
4

⎞
⎠ =

⎛
⎜⎝

0
α2
4

(
α4
3 − γ

)

α3
4

(
α4
4 − γ

)

⎞
⎟⎠
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which yields A6 = 0, Â5 = 0, B5 = 0.
4. In the next step we get A5 = 0, Â4 = 0, B4 = 0 from the linear system

⎛
⎝

1
2α

2
2

1
2α

2
3 − 2γβ ′

3
1
2α

2
4 − 2γβ ′

4 − β43β
′
3

α2
2 α2

3 α2
4

α3
2 α3

3 α3
4

⎞
⎠

⎛
⎝

β52
β53
β54

⎞
⎠ =

⎛
⎜⎝

γ 2β ′
5

α2
5

(
α5
3 − γ

)

α3
5

(
α5
4 − γ

)

⎞
⎟⎠

5. Solving

⎛
⎜⎜⎝

α2
2 α2

3 α2
4 α2

5
α3
2 α3

3 α3
4 α3

5
β ′
2 β ′

3 β ′
4 β ′

5
0 0 β43β

′
3 β53β

′
3 + β54β

′
4

⎞
⎟⎟⎠

⎛
⎜⎜⎝

β62
β63
β64
β65

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
3 − γ
1
4 − γ

1
2 − 2γ + γ 2

1
6 − 3

2γ + 3γ 2 − γ 3

⎞
⎟⎟⎠

gives A4 = 0, Â3 = 0, B3 = 0.
6. In order to get A3 = 0, Â2 = 0, B2 = 0 we now solve the underdetermined linear

system of equations

⎛
⎜⎜⎝

β ′
2 β ′

3 β ′
4 β ′

5 β ′
6 β ′

7
α2
2 α2

3 α2
4 α2

5 1 1
0 0 β43β

′
3 β53β

′
3 + β54β

′
4

1
2 − 2γβ ′

6 − γ 2

0 0 0 β54β43β
′
3

1
6 − 3

2γ + 3γ 2 − γ 3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

β72
β73
β74
β75
β76

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

1
2 − 2γ + γ 2

1
3 − γ

1
6 − 3

2γ + 3γ 2 − γ 3

1
24 − 2

3γ + 3γ 2 − 4γ 3 + γ 4

⎞
⎟⎟⎠

The obtained degree of freedom will be used for fullfilling remaining order condi-
tions in the iteration process later on.

7. Now we can finish the computation of the β-coefficients by solving
ss

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

β ′
2 β ′

3 β ′
4 β ′

5 β ′
6

α2
2 α2

3 α2
4 α2

5 1
0 0 β43β

′
3 β53β

′
3 + β54β

′
4

1
2 − 2γβ ′

6−γ 2 1
2−2γ+γ 2

0 0 0 β54β43β
′
3

1
6− 3

2γ+3γ 2−γ 3 1
6− 3

2γ+3γ 2−γ 3

0 0 0 0 β65β54β43β
′
3

1
24− 2

3γ+3γ 2−4γ 3+γ 4

0 0 0 0 0 β76β65β54β43β
′
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

β82
β83
β84
β85
β86
β87

⎞
⎟⎟⎟⎟⎟⎟⎠
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Fig. 2 Values z ∈ C with stabilty function |R(z)| = 1, black for Rodas5P, blue for its embedded method
(colour figure online)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 − 2γ + γ 2

1
3 − γ

1
6 − 3

2γ + 3γ 2 − γ 3

1
24 − 2

3γ + 3γ 2 − 4γ 3 + γ 4

1
120 − 5

24γ + 5
3γ 2 − 5γ 3 + 5γ 4 − γ 5

1
720 − 1

20γ + 5
8γ 2 − 10

3 γ 3 + 15
2 γ 4 − 6γ 5 + γ 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

After that the following conditions remain to be fullfilled: No. 6, 6̂, 9, 10, 11, 12,
13, 15, 19, 1̂9, 23, 24, 25, 26, 27, 28, 29, 42, 44, 45, 46.

8. The αi j -coefficients occur linearly in equations No. 6, 6̂, 10, 12, 19, 1̂9, 23, 28.
From these and from the free parameters α3, α4, α5, α52, α65 we can compute all
α-coefficients. Since conditions No. 13, 27, 42 are automatically fulfilled, too, the
remaining conditions read No. 9, 11, 15, 24, 25, 26, 29, 44, 45, 46.

9. For these remaining 10 conditions 7 degrees of freedom are left. We can obtain an
exact solution by formulating a nonlinear least-square problem and solving it by
the optimization package Otim.jl using the Nelder-Mead algorithm. Why this
is possible and whether there are structural reasons for it could not be definitely
clarified.

The stability region of Rodas5P is shown in Fig. 2. It is an A-stable method and due
to the stiffly accurate property it is L-stable, too.

Next we derive a dense output formula. According to [4] we compute intermediate
values of the numerical solution by replacing equation (1.3) with

y1(τ ) = y0 +
s∑

i=1

bi (τ )ki for τ ∈ [0, 1]. (3.4)
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The coefficients bi (τ ) are polynomials of degree 4 and should fullfill bi (0) = 0,
bi (1) = bi . Therefore, we set

bi (τ ) = τbi + τ(τ − 1)
(
ci + τdi + τ 2ei

)
(3.5)

= τ(bi − ci ) + τ 2(ci − di ) + τ 3(di − ei ) + τ 4ei (3.6)

In order to get a fourth order interpolation conditions No. 1–8 and 18–22 must be
fullfilled for the weights bi (τ ). Note that the right hand side of the conditions must
be multiplied with τ n , where n is the number of the solid (=black) nodes of the
corresponding tree, see [4]. For example, condition No. 21 now reads

∑
bi (τ )wi jα jα jkβk = 1

2
τ 3 .

This condition can be fullfilled by

∑
biwi jα jα jkβk = 1

2∑
ciwi jα jα jkβk = 1

2∑
diwi jα jα jkβk = 1

2∑
eiwi jα jα jkβk = 0,

where the first equation for coefficients bi is already true. Thus we have 3 · 13 = 39
linear equations to be satisfied by 3 · s = 24 coefficients. Nevertheless, the solution is
possible for the new Rodas5P as well for the known Rodas5 method.

Rodas5P and the new dense output formula for Rodas5 are implemented in the
Github repository of the Julia DifferentialEquations package, see
https://github.com/SciML/OrdinaryDiffEq.jl. All coefficients of the methods can be
found there in particular.

4 Numerical benchmarks

First we show that the orders given in Table 1 are attained.We solve test problems with
known analytical solution yana(t) by each solver with different numbers of constant
stepsizes and compute the numerical errors and orders of convergence. The error is
given in the maximum norm at final time:

err = max
i

|ynumi (tend) − yanai (tend)|. (4.1)

The order p is computed by p = log2(err2h/errh), where errh denotes the error
obtained with stepsize h. The following test problems have been treated:
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1. Index-1 DAE

(
1 0
0 0

) (
y1
y2

)′
=

(
y2
y1y1

y2
− t

)
,

(
y1(2)
y2(2)

)
=

(
ln(2)
1
2 ln(2)

)
, t ∈ [2, 4]

with solution y1(t) = ln(t), y2(t) = 1
t ln(t). The theoretical orders of convergence

are achieved by all methods, see Table 5.
2. Prothero-Robinson model

y′ = −λ(y − g(t)) + g′(t), g(t) = 10 − (10 + t)e−t , λ = 105, t ∈ [0, 2]

with solution y(t) = g(t), see [23, 25]. The results are shown in Table 6 and
agree with those shown in Table 1. The new method Rodas5P behaves like
Rodas4P2 as expected. Computations with different stiffness parameters in the
range λ ∈ [100, 105] show, that only for the method Ros3prl2 the convergence
is independent on λ. This includes also mildly stiff problems, where Rodas4PR2
shows order reduction to p = 3.

3. Parabolic problem

∂u

∂t
= ∂2u

∂x2
+ u2 + h(x, t), x ∈ [−1, 1], t ∈ [0, 1] (4.2)

This problem is a slight modification of a similar problem treated in [2]. Function
h(x, t) is chosen in order to get the solution u(x, t) = x3 ·et . The initial values and
Dirichlet boundary condition are taken from this solution. Sinceu(x, t) is cubic in x ,
the discretization ∂2

∂x2
u(xi , t) = u(xi−1,t)−2u(xi ,t)+u(xi+1,t)


x2
is exact. The numerical

results for nx = 1000 space discretization points are given in Table 7. The methods
do not achieve the full theoretical order for parabolic problems, shown in Tabel 1.
The reason is, that the theory given in [14] assumes linear problems and vanishing
boundary conditions. Similar computationswith a linear parabolic problem resulted
in the full theoretical order. We see further that the embedded method of Rodas5P
has nearly order p = 4, too. Nevertheless, the results of the embedded method
are slightly worse so that the stepsize control is expected to work. Additionally
the results of Rodas5P are compared to the approach chosen in [2]. As proposed
there, method GRK4T is applied to problem (4.2). GRK4T [6] is a 4-stage ROW
method of order p = 4 for ordinary differential equations. Due to a special choice
of its coefficients, it needs only three function evaluations of the righthand side of
the ODE system per timestep. Usually, an order reduction to p = 2 would occur
when applying it to semi-discretized parabolic problems. This order reduction is
prevented by modifications of the boundary conditions in each stage. Technical
details can be found in [2]. For comparison, Rodas4 was modified accordingly
in addition to GRK4T. Figure3 shows the results of Rodas5P and the modified
methods. For different time stepsizes resulting in different number of function
evaluations, the error according to equation (4.1) is plotted. Due to the automatic
differentiation for the computation of the Jacobian and the time derivative, only one
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additional function call was considered respectively. Additonally, themethodswere
applied with adaptive stepsizes for different tolerances and the error versus elapsed
CPU time is shown. While Rodas5P undergoes the small order reduction shown
in Table 7, modified GRK4T and Rodas4 have exactly order p = 4. Nevertheless,
Rodas5P is more efficient because it has a lower error constant.

4. Index-2 DAE

(
1 0
0 0

)(
y1
y2

)′
=

(
y2

y21 − 1
t2

)
,

(
y1(1)
y2(1)

)
=

(−1
1

)
, t ∈ [1, 2]

with solution y1(t) = − 1
t , y2(t) = 1

t2
.MethodsRodas3,Rodas4,Rodas5 show

order reduction to p = 1. All other methods achieve order p = 2, see Table 8.
5. Inexact Jacobian

(
1 0
0 0

)(
y1
y2

)′
=

(
y2

y21 + y22 − 1

)
,

(
y1(0)
y2(0)

)
=

(
0
1

)
, t ∈ [0, 1]

with solution y1(t) = sin(t), y2(t) = cos(t). Instead of the exact Jacobian we

apply J =
(
0 0
0 2y2

)
. According to Jax [5] the derivative of the algebraic equation

with respect to the algebraic variable must be exact. We observe the orders shown
in Table 1, Rodas5P behaves like Rodas4P2.

6. Dense output We check the dense output formulae of the fourth and fifth order
methods via the problem

(
1 0
0 0

) (
y1
y2

)′
=

(
n · tn−1

y1 − y2

)
,

(
y1(0)
y2(0)

)
=

(
0
0

)
, t ∈ [0, 2]

with solution y1(t) = y2(t) = tn . A method of order p ≥ n should solve this
problem exactly within one timestep of size h = 2. After the solution with one
timestep we apply the dense output formula to interpolate the solution to times
ti = i · h, i = 1, ..., k, h = 2

2k
, k = 1, 2, 3 and compute the resulting maximum

error at these timesteps. The numerical errors for different polynomial degrees n
of the solution are given in Table 9. Here we can see that the fourth order methods
are equipped with dense output formulae of order p = 3, Rodas5 and Rodas5P
are able to interpolate with order p = 4.

Next we look at work-precision diagrams and compare the fourth and fifth order
methods.
In these investigations and inTable 9Rodas4PR2was replaced byRodas4P since no
dense output formula is available for Rodas4PR2. The work-precision diagrams are
computed for eight different problems by the function WorkPrecisionSet form
the Julia package DiffEqDevTools.jl which is part of DifferentialEqua
tions.jl. For different tolerances the corresponding computation times and
achieved accuracies are evaluated. We show graphs for two different errors: The l2-
error is taken from the solution at every timestep and the L2-error is taken at 100 evenly
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spaced points via interpolation. Thus the latter should reflect the error of the dense
output formulae. The reference solutions of the problems are computed byRodas4P2
with tolerances reltol=abstol=10−14.

1. Parabolic problem
We treat again the problem shown in equations (4.2) and Table 7. It turns out that
the new method and Rodas4P2 show the best behavior, see Fig. 4. The order
reduction of Rodas4 and Rodas5 is clearly visible at the investigated accuracies.

2. Hyperbolic problem
This problem is discussed in [22, 25]. A hyperbolic PDE is discretized by 250 space
points. Since the true solution is linear in space variable x , the approximation of
the space derivative by first-order finite differences is exact. In Fig. 4 we can see
the improved dense output of Rodas5. While the results of Rodas4 and Rodas5
with respect to the l2-errors are very similar Rodas5 is much better with respect to
the L2-errors. In both cases the newmethod Rodas5P achieves the best numerical
results.

3. Plane pendulum
The pendulum ofmassm = 1 and length L can bemodeled in cartesian coordinates
x(t), y(t) by the equations

ẍ = λx,

ÿ = λy − g,

0 = x2 + y2 − L2,

with Lagrangemultiplier λ(t) and gravitational constant g. This system is an index-
3 DAE which cannot be solved by methods discussed above. By derivation of
the algebraic equation with respect to time we achieve the index-2 and index-1
formulation:

0 = x ẋ + y ẏ (index-2),

0 = ẋ2 + λx2 + ẏ2 + λy2 − yg (index-1).

We solve this system in index-1 and index-2 formulation with initial conditions
x(0) = 2, ẋ(0) = y(0) = ẏ(0) = λ(0) = 0 in the time intervall t ∈ [0, 10]. The
numerical results shown in Fig. 5 turn out as expected. For the index-1 problem the
fifth order methods Rodas5 and Rodas5P yield the best and very similar results.
For the index-2 problem Rodas4 and Rodas5 show the largest order reduction.

4. Transistor amplifier
The two-transistor amplifierwas intruduced in [19] and further discussed in [12, 13].
It consists of eight equations of type (1.1)with index-1. Thework-precision diagram
shown in Fig. 6 indicates similar behavior for all methods in the l2-error. Regarding
the L2-error Rodas5 and Rodas5P perform best and the improved dense output
of Rodas5 is obvious. The new method Rodas5P cannot beat Rodas5 in this
case.

5. Water tube problem This example treats the flow of water through 18 tubes which
are connected via 13 nodes, see [12, 13]. The 49 unknowns of the system are
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Fig. 3 Comparison of results of Rodas5P andmodifiedmethods GRK4T and Rodas4 for parabolic problem.
Computations left with constant and right with adaptive stepsizes

the pressure in the nodes, the volume flow and the resistance coefficients of the
edges. The equations for the volume flow and for the pressure of two nodes which
have a storage function are ordinary differential equations. The equations for the
resistance coefficients are of index-1, in the original formulation the equations for
the pressure are of index 2. We adapted these equations in order to get a DAE
system of index-1. The corresponding results are shown in Fig. 6. It turns out that
Rodas5P is slightly more efficient than Rodas5.

6. Pollution
This is a standard test problem for stiff solvers and contains 20 equations for the
chemical reaction part of an air pollution model, see [12, 13, 27]. The problem is
already part of the Julia package SciMLBenchmarks.jl. The results shown in
Fig. 7 indicate again that the fifth order methods are preferable.

7. Photovoltaic network
The newmethod shall be used in network simulation, see [26]. Therefore we finally
simulate a small electric network consisting of a photovoltaic (PV) element, a bat-
tery and a consumer with currents iPV (t), iB(t), iC (t). All elements are connected
in parallel between two node potentials U0(t), U1(t). The first node is grounded,
at the second node the sum of currents equals zero. The battery is characterized
further by its charge qB(t) and an internal voltage uB(t). These seven states are
described by equations

0 = U0

0 = iB + iPV − iC
0 = P(t) − iC (U1 −U0)

0 = c1 + c2 iPV + c3(U1 −U0) + c4(exp(c5 iPV + c6(U1 −U0)) − 1)

0 = U1 −U0 − (u0(qB) − uB − R0 iB)

u′
B = 1

C
iB − 1

R1C
uB

q ′
B = −iB

The third equation describes the consumer that demands a power P(t). It is assumed
that P(t) represents a constant power, but it is switched on or off every hour. The
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Fig. 4 Work-precision diagrams for parabolic and hyperbolic problems

Fig. 5 Work-precision diagrams for the pendulum problem in index-1 and index-2 formulation
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Fig. 6 Work-precision diagrams for two transistor amplifier and water tube problem

Fig. 7 Work-precision diagrams for pollution problem and photovoltaic network
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Table 9 Numerical results (error) for dense output formulae

Solution Stepsize Rodas4 Rodas4P Rodas4P2 Rodas5 Rodas5P

t3 2.0 1.78e−14 7.99e−15 7.11e−15 3.55e−15 1.78e−14

1.0 1.78e−14 3.14e−13 7.11e−15 4.44e−15 1.78e−14

0.5 1.78e−14 3.14e−13 7.11e−15 7.55e−15 1.78e−14

0.25 1.78e−14 3.14e−13 7.99e−15 7.55e−15 1.78e−14

t4 2.0 5.86e−14 3.20e−14 3.20e−14 4.62e−14 5.68e−14

1.0 2.68e+00 1.18e+00 4.47e−01 4.62e−14 5.68e−14

0.5 3.61e+00 1.18e+00 4.47e−01 4.62e−14 5.68e−14

0.25 3.61e+00 1.32e+00 4.69e−01 4.62e−14 5.68e−14

t5 2.0 1.56e−13 8.96e−01 9.76e−01 1.71e−13 3.48e−13

1.0 9.74e+00 2.68e+00 2.44e+00 3.41e−01 3.12e−01

0.5 1.24e+01 2.68e+00 2.44e+00 3.41e−01 4.17e−01

0.25 1.27e+01 2.81e+00 2.47e+00 3.44e−01 4.65e−01

The solutions with stepsize h = 2 were computed within one timestep. The solution for stepsizes h = 1.0,
h = 0.5 and h = 0.25 were computed from this solution via interpolation

discontinuities occurring in the process are, however, suitably smoothed. The fourth
equation models the voltage-current characteristics of the PV element with given
constants ci , i = 1, .., 6. The battery is described by equations five to seven. Here,
R0, R1, C are internal ohmic resistors and an internal capacity, respectively. The
open-circuit voltage u0 is described by a third-degree polynomial depending on the
charge qB . The main difficulties in this example are the solution of the nonlinear
characteristics of the PV element and the switching processes of the load. The
complete Julia Implementation is listed in the Appendix. Figure7 shows that in
this example the methods Rodas4 and Rodas5P are most suitable.

5 Conclusion

Basedon the constructionmethod forRodas4P2 a newset of coefficients forRodas5
could be derived. The new Rodas5P method combines the properties of Rodas5
(high order for standard problems) and Rodas4P or Rodas4P2 (low order reduc-
tion for Prothero-Robinson model and parabolic problems). Moreover, it was possible
to compute a fourth-order dense output formula for both methods, Rodas5 and
Rodas5P.

In all model problems the numerical results of the new method are in the range of
the best methods from the class of Rodas schemes studied.

Therefore, Rodas5P can be recommended in the future as a standard method for
stiff problems and index-1 DAEs for medium to high accuracy requirements within
the Julia package DifferentialEquations.jl.
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A Appendix

Work-precision diagrams for photovoltaic network with Julia

using DifferentialEquations, Plots, LaTeXStrings, DiffEqDevTools

setups = [Dict(:alg=>Rodas4()),Dict(:alg=>Rodas4P()),Dict
(:alg=>Rodas4P2()),Dict(:alg=>Rodas5()),Dict(:alg=>Rodas5P())]

#---- Problem definition -----------------------------------------------
---------------------

function ode(dy, y, p, t)
c1,c2,c3,c4,c5,c6,R0,R1,C,q_max = p
U0 = y[1]; U1 = y[2]; iC = y[3]; iPV = y[4]; iB = y[5]; uB = y[6]; qB = y[7];
dy[1] = U0;
dy[2] = iB + iPV - iC;
dy[3] = consumer(t) - iC*(U1-U0);
dy[4] = c1 + c2*iPV + c3*(U1-U0) + c4*(exp(c5*iPV+c6*(U1-U0))-1);
dy[5] = U1-U0 - (oc_voltage(qB/q_max) - uB - R0*iB);
dy[6] = iB/C - uB/(R1*C);
dy[7] = -iB;
nothing

end

function consumer(t)
ts = range(3600.0,36000.0,step = 3600.0)
return 50.0*onoff(t,ts,60.0)

end

function oc_voltage(soc)
pp = [6.8072,-10.5555,6.2199,10.2668]; #-- Polynomial coefficients
return ((pp[1]*soc+pp[2])*soc+pp[3])*soc+pp[4];

end

function fstep(t,t0,switchduration)
#-- atanh(0.999) = 3.8002

s = 3.8002/switchduration
return (tanh(s*(t-t0))+1.0)/2.0

end
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function onoff(t,ts,switchduration)
y = 0.0;
for i=1:2:length(ts)

y = y + fstep(t,ts[i],switchduration);
end
for i=2:2:length(ts)

y = y - fstep(t,ts[i],switchduration);
end
return y

end

#--- Benchmark for Rodas-type methods ---
c1 = -3.1037; c2 = 1.0015; c3 = 0.0032; c4 = 1.3984e-09; c5 = 0.4303;
c6 = 1.5*0.9562;
R0 = 0.2; R1 = 0.5; C = 4000.0; q_max = 36000.0;
param = c1,c2,c3,c4,c5,c6,R0,R1,C,q_max
y0 = [0.0, 11.856598910310167, 0.0, 2.9409008015416687, -2.940900801550821,

0.0, 9000.0]
M = zeros(7,7); M[6,6] = 1.0; M[7,7] = 1.0; tspan = [0.0, 36000.0];
f = ODEFunction(ode, mass_matrix = M); prob = ODEProblem(f, y0, tspan, param)
sol = solve(prob,Rodas4P2(),abstol=1.0e-14,reltol=1.0e-14,maxiters=Int(1e8))

#-- reference solution
test_sol = TestSolution(sol)
abstols = 1.0 ./ 10.0 .ˆ (7:12); reltols = 1.0 ./ 10.0 .ˆ (7:12)
wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=true,

error_estimate=:l2,appxsol=test_sol,numruns=20)
P_1 = plot(wp,xlabel=latexstring("\$l_2\$ error"))
wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=true,

error_estimate=:L2, dense_errors=true,appxsol=test_sol,numruns=20)
P_2 = plot(wp,xlabel=latexstring("\$L_2\$ error"))
plot(P_1,P_2,layout=(1,2))
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