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Abstract
We extend and analyze the energy-based discontinuous Galerkin method for second
order wave equations on staggered and structured meshes. By combining spatial stag-
gering with local time-stepping near boundaries, the method overcomes the typical
numerical stiffness associated with high order piecewise polynomial approximations.
In one space dimensionwith periodic boundary conditions and suitably chosen numer-
ical fluxes, we prove bounds on the spatial operators that establish stability for CFL
numbers c�t

h < C independent of order when stability-enhanced explicit time-
stepping schemes of matching order are used. For problems on bounded domains
and in higher dimensions we demonstrate numerically that one can march explicitly
with large time steps at high order temporal and spatial accuracy.
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1 Introduction

Discontinuous Galerkin methods [4, 6] have emerged as one of the most popular
discretization techniques for simulating physical and engineering phenomena includ-
ing various linear and nonlinear wave models. Discontinuous Galerkin methods have
excellent dispersive properties, are geometrically flexible, do not have a global mass
matrix, can be implemented at any order of accuracy, and, being Galerkin methods,
have robust stability properties.

Although discontinuous Galerkin methods are spectrally convergent with the order
q of the approximation, very high order methods, say q > 6, are seldom used in
practice. The primary reason for this is that the spectral radius of the discrete spatial
derivative operator grows as q2/h, where h is an element length scale. This rapidly
growing numerical stiffness forces the use of excessively small time steps, effectively
prohibiting the use of very high order methods. The source of this numerical stiffness
is the approximation by polynomials which must be sampled throughout an element.
Heuristically this can be understood by comparing a wave w = eiqx and its q times
larger derivative wx = iqw with a typical orthogonal polynomial, say a Chebyshev
polynomial, Tq(x) = cos(q cos−1(x)) and its derivative T ′

q(x). Clearly |Tq(x)| ≤ 1,
for |x | ≤ 1 and for all q, as for the wave, but the derivative |T ′

q(±1)| = q2, is q times
larger at the edges.

This numerical stiffness is particularly troublesome for linear wave propagation
problems where solutions typically remain smooth throughout the computation and
thus favor very high order spatial discretizations. Fortunately this numerical stiffness
can be circumvented in several ways, for example by allowing the polynomial approx-
imations to the solution to spread out over many elements as in the traditional finite
difference methods or as in the more recent Galerkin difference methods [3], or by
only sampling the derivatives at the cell center as in Hermite methods [2].

It is also possible to remove this numerical stiffness within the discontinuous
Galerkin framework either by co-volume filtering as proposed in [13] or by carry-
ing two approximate solutions on staggered grids as in central discontinuous Galerkin
methods [10]. Central discontinuous Galerkin methods combine features of discon-
tinuous Galerkin methods and central schemes [11], and they are shown in [10], via
Fourier analysis, to allow a larger time step size than standard upwind discontinuous
Galerkin methods when applied to the linear advection equation. In [12] these results
were established quantitatively for upwind discontinuous Galerkin methods and cen-
tral discontinuous Galerkin methods by estimating the dependence of the operator
bound of the respective spatial discretizations on the approximation order. A serious
drawback with the co-volume approach [13] and the central discontinuous Galerkin
approach [10] is that they must carry two copies of the solution hence with memory
usage and computational cost per right hand side evaluation doubled.

In this paper we present an alternative method that can be time-marched at very
high order of accuracy and with an explicit time discretization and O(1) CFL. Our
method is a staggered version of the energy-based discontinuous Galerkin method [1].
Our method does not require any additional copies of the solution vector and thus has
the samememory cost as the original method in [1] but can takemuch larger timesteps.
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Fig. 1 The method presented here can handle problems on meshes as the one above

With our method being staggered, some polynomial approximations are only sam-
pled in a mesh element away from its edges. This allows us to prove, in one dimension
and with periodic boundary conditions, that this staggered energy-based discontinu-
ous Galerkin method results in a semi-discrete-in-space operator whose norm grows
linearly with the order of the method. Precisely, in Theorem 2 we establish a bound
for the spatial operator Lc:

‖Lc‖ ≤ C
q

h
,

where h is the element width and q is the polynomial degree. This, in combinationwith
the Kreiss-Wu theory [9], indicates that the Courant-Friedrich-Levy (CFL) number
is constant independent of order of accuracy as long as high order locally stable
time stepping methods with large stability domains are applied. Such time-stepping
methods can be constructed at arbitrary order by adding additional stages to enhance
the stability of standard methods; see, for example, [7] where stability-enhanced leap-
frog schemes are proven to exist at all orders and optimized at orders up to sixteen.

At physical boundaries it is no longer possible to stagger the mesh and the CFL
constraint becomes order dependent again. As long as the bulk of the problem can
be meshed by a rectilinear mesh this can easily be remedied in any dimension by
the use of local timestepping in elements near the boundary. Here we use the local
timestepping methods of Diaz and Grote [5] and show in numerical experiments in
one and two dimensions that this approach allows us to retain the large time steps
in the interior. The resulting method, while having some additional computational
overhead near boundaries, asymptotically has the same computational complexity as
the staggered method for the periodic case.

The two dimensional examples we consider below are proof-of-concept compu-
tations in square geometries but we emphasize that a more sophisticated (than the
one we have used for the results in this paper) implementation could be very efficient
for meshes of the type that is displayed in Fig. 1, and that extensions to three spatial
dimensions are straightforward. An example of problems of this type is the simulation
of underwater acoustics with bathymetry.

The rest of the paper is organized as follows. In Sect. 2 we review the formulation of
energy-based DGmethods for the scalar wave equation and extend them to staggered,
structured meshes. In Sect. 3 we establish bounds on the norm of the spatial operator
in one space dimension and with periodic boundary conditions. In Sect. 4 we briefly
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discuss our time-stepping schemes and the corrections needed to maintain large time
steps in the presence of boundaries. Lastly, in Sect. 5 we demonstrate the accuracy
and stability of the method in one and two space dimensions by means of numerical
experiments.

2 Energy-based discontinuous Galerkin method for the wave
equation

We consider the scalar wave equation written as a first order system in time

∂u(x, t)

∂t
= v(x, t), (2.1)

∂v(x, t)

∂t
= ∇ · (c2(x)∇u(x, t)) + f (x, t), (2.2)

on the domain

x = (x1, . . . , xd) ∈ � ⊂ R
d , t > 0,

with initial conditions

u(x, 0) = g(x),
∂u

∂t
(x, 0) = v(x, 0) = h(x), (2.3)

and boundary conditions

γ
∂u

∂t
+ κc �n · ∇u = 0, x ∈ ∂�. (2.4)

Here c = c(x) is the speed of sound and �n is the outward pointing unit normal. For
the boundary conditions we assume the normalization γ 2 +κ2 = 1 and that γ, κ ≥ 0.
Then the choice κ = 0 corresponds to a homogeneous Dirichlet boundary condition
on ∂u

∂t and γ = 0 corresponds to a homogeneous Neumann boundary condition. Any
choice with γ κ being positive will dissipate the energy of the system and can be
thought of as a low order non-reflecting boundary condition.

The energy associated with the scalar wave equation is

E (t) = 1

2

∫
�

(
∂u

∂t

)2

+ c2(x)|∇u|2dx, (2.5)

and it is a discrete version of this energy that our energy-based discontinuous Galerkin
method is built from.

We now present the non-staggered and staggered formulations of the method. A
more thorough analysis of the non-staggeredmethod canbe found in [1], butwe include
it here to illustrate the differences between the two formulations. The essential new
idea in the energy-based method is to enforce Eq. (2.1) weaklywith a nonstandard test
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function; see Eqs. (2.6a) and (2.12a) below. With this choice we can establish energy
estimates without the need for mesh-dependent penalty parameters.

2.1 Non-staggered formulation

Let the finite element mesh, �h = {� j }, with

� =
⋃
j

� j ,

be a discretization of� consisting of geometry-conforming and non-overlapping (pos-
sibly curved) elements with piecewise smooth boundaries.

On each element � j , the approximation to the displacement, uh , and the approxi-
mation to the velocity, vh , are elements of some finite dimensional spacesUh and V h

respectively. Then, the non-staggered energy-based discontinuous Galerkin method
can be stated as follows. On each element � j , require that for all test functions

φ ∈ Uh, ψ ∈ V h,

the following variational formulation holds:

∫
� j

c2∇φ ·
(

∂∇uh

∂t
− ∇vh

)
dx =

∫
∂� j

(c2∇φ · �n)
(
v∗ − vh

)
ds, (2.6a)

∫
� j

ψ
∂vh

∂t
+ ∇ψ · (c2∇uh) − ψ f dx =

∫
∂� j

ψ((c2∇u) · �n)∗ds. (2.6b)

As described in [1] the energy is invariant to constants and this necessitates an addi-
tional equation complementing (2.6a)

∫
� j

(
∂uh

∂t
− vh

)
dx = 0, ∀ j . (2.7)

Here v∗ and ((c2∇u) · �n)∗ are numerical fluxes computed from the averages and jumps
of function values and derivatives. Arbitrarily labeling values from adjacent elements
1 and 2 we recall the standard notation:

{{vh}}α = 1

2

(
αvh,1 + (1 − α)vh,2

)

[[vh]] = vh,1�n1 + vh,2�n2, (2.8)

{{c2∇uh}}α = 1

2

(
αc2∇uh,1 + (1 − α)c2∇uh,2

)
,

[[c2∇uh]] = c2∇uh,1 · �n1 + c2∇uh,2 · �n2. (2.9)

123



5 Page 6 of 26 BIT Numerical Mathematics (2023) 63 :5

We then set

v∗ = {{vh}}α − β[[c2∇uh]], (2.10)(
c2∇u · �n

)∗ = {{c2∇uh}}1−α · �n − τ [[vh]] · �n. (2.11)

Here β ≥ 0 is an upwinding parameter with units of c−1 and τ ≥ 0 is an upwinding
parameter with units of c. When β = τ = 0, one can recover the commonly used
central fluxes by choosing α = 1/2, and alternating fluxes with α = 0 or 1.

2.2 Staggered formulation

We now consider two structured finite element meshes, �h = {� j } and ��,h = {��
k }

� =
⋃
j

� j =
⋃
k

��
k .

We assume each mesh consists of geometry-conforming and non-overlapping (pos-
sibly curved) quadrilaterals (or hexahedra) with piecewise smooth boundaries. We
assume that the meshes are staggered.More precisely, away from non-periodic bound-
aries we assume that all quadrilaterals (hexahedra) are straight sided and convex and
that all vertices have valence 4 (6). By staggeringwemean that, away from boundaries,
the vertices of the mesh ��,h coincide with the centers (defined as the vertex, side
or area/volume centroid) of the elements in �h . An example of a periodic staggered
mesh is presented in Fig. 2.

For consistencywith the theoretical and computational results to follow, we take the
approximation to the velocity, vh , restricted to an element ��

k in ��,h , to be a tensor
product polynomial in (Qqv (��

k ))
d while the approximation to the displacement, uh ,

restricted to an element � j in �h , is taken to be a tensor product polynomial in
(Qqu (� j ))

d . Here qu ∈ N, qv ∈ N ∪ {0}.
The staggered energy-based discontinuous Galerkin method then can be stated as

follows. On each element � j and ��
k , require that for all test functions

φ ∈ (Qqu (� j ))
d , ψ ∈ (Qqv (��

k ))
d ,

the following variational formulation holds:

∫
� j

(
c2∇φ · ∂∇uh

∂t
+ ∇ · (c2∇φ)vh

)
dx =

∫
∂� j

(c2∇φ · �n)v∗ds, (2.12a)

∫
��
k

ψ
∂vh

∂t
+ ∇ψ · (c2∇uh) − ψ f dx =

∫
∂��

k

ψ((c2∇u) · n)∗ds. (2.12b)
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Aswith the non-staggered formulationwemust complement (2.12a)with the equation

∫
� j

(
∂uh

∂t
− vh

)
dx = 0, ∀ j . (2.13)

Again, here v∗ and ((c2∇u) · �n)∗ are numerical fluxes as in (2.10)–(2.11). However,
taking account of the staggering, we note that vh is single valued at ∂� j and c2∇u
is single valued at ∂��

k so the choice of α is not relevant. Lastly we note that the
integrals of gradients in the variational form as well as in the calculations below are
understood to be piecewise-defined in subdomains where the functions are smooth.
For example, the integral in (2.12b) includes boundaries of elements in �h across
which uh is discontinuous. We do not, here, interpret∇uh in a distributional sense and
so no additional boundary terms are implied.

We note the difference between (2.6a) and (2.12a). If the term ∇ · (c2∇φ)vh is
integrated by parts in (2.12a), terms involving the jump in vh across boundaries of
dual mesh elements will appear. These play a role in the energy estimate we now
derive. For the subsequent analysis we set f = 0 for simplicity as the source function
plays no role in determining time step stability constraints.

Define the discrete energy to be

E h(t) = 1

2

∑
k

∫
��
k

(
vh

)2
dx + 1

2

∑
j

∫
� j

c2|∇uh |2 dx . (2.14)

To start, we assume periodic boundary conditions. Choosing φ = uh in (2.12a),
integrating by parts, and using the fact that vh is single valued on ∂� j we find

1

2

d

dt

∑
j

∫
� j

c2|∇uh |2 dx =
∑
j

∫
� j

c2∇uh · ∇vh dx −
∑
k

∫
∂��

k

c2∇uh · [[vh]] ds

− β
∑
j

∫
∂� j

[[c2∇uh]]2 ds,

Similarly we find

1

2

d

dt

∑
k

∫
��
k

(
vh

)2
dx = −

∑
k

∫
��
k

c2∇uh · ∇vh dx +
∑
k

∫
∂��

k

c2∇uh · [[vh]] ds

− τ
∑
k

∫
∂��

k

|[[vh]]|2 ds.

Summing these equations, we see that the left-hand side is the time derivative of the
discrete energy. Since

⋃
j � j = ⋃

k ��
k and recalling the piecewise definition of the
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integrals we conclude that the terms involving c2∇uh ·∇vh cancel. Thus we conclude:

dE h

dt
= −β

∑
j

∫
∂� j

[[c2∇uh]]2 ds − τ
∑
k

∫
∂��

k

|[[vh]]|2 ds. (2.15)

At nonperiodic boundaries we alter the staggered mesh so that elements from both
�h and ��,h conform to ∂�. Now the imposition of the boundary conditions is the
same as for the non-staggered formulation. For example, recalling (2.4) we may set

v∗ = κ

γ + κ

(
vh − c∇uh · �n

)
, (2.16)

(
c2∇uh · �n

)∗ = γ

γ + κ

(
c2∇uh · �n − cvh

)
. (2.17)

Then the contribution of the nonperiodic boundaries to the energy derivative can be
shown to be nonpositive. The mesh modification at these boundaries will preclude
taking global large time steps. To maintain the efficiency of the staggered scheme we
will then use local time stepping in the vicinity of the boundaries; see Sect. 4 for
details.

3 Operator bounds on periodic domains in one space dimension

In this section we use the techniques from [12, 13] to establish bounds for the energy-
based DG and the staggered energy-based DG spatial operator for the second-order
wave Eqs. (3.1) and (3.2) in one space dimension. This allows us to invoke the Kreiss-
Wu theory [9] combined with the energy estimates to establish the stability of fully
discrete locally stable explicit time-stepping schemes.

We restrict the analysis to uniformgrids, periodic boundary conditions, and constant
coefficients. The key ingredient to taming the CFL condition is to evaluate certain
terms with derivatives only near the element centers, and this is made possible by
the proposed staggered formulation. We expect that the analysis can be extended
to smoothly varying grids and to variable coefficients. The numerical experiments
demonstrate the efficiency of themethod for a variable coefficient problem. It may also
be possible to extend the analysis to problems with Dirichlet or Neumann boundary
conditions by using the image principle. However, we don’t pursue this here.

3.1 Operator bounds for the non-staggered formulation

Now, consider the one dimensional wave equation in a uniform medium

ut = v, (3.1)

vt = c2uxx , (3.2)
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on the domain x ∈ [xL, xR] ≡ �. Let the domain be discretized by a grid x j = xL+ jh,

j = 0, . . . , N , h = (xR − xL)/N , and I j = [x j , x j+1]. Associated with the grid, we
define two broken finite element spaces

Uqu
h = {w : w|I j ∈ Q

qu (I j ) ∀ j}, V qv

h = {w : w|I j ∈ Q
qv (I j ) ∀ j}.

Here and belowQ
qu (I j ) is the space of polynomials of degree up to qu in I j , qu ∈ N,

and qv ∈ N ∪ {0}. In addition, we denote φ±(x) = limε→0± φ(x + ε).
The energy-based DG scheme then consists of finding uh(·, t) ∈ Uqu

h and vh(·, t) ∈
Vqv

h such that for any φ ∈ Uqu
h and ψ ∈ V qv

h and for all j

∫ x j+1

x j
c2φx

(
∂uhx
∂t

− vhx

)
dx = c2φ−

x (v∗ − vh,−)

∣∣∣
x j+1

− c2φ+
x (v∗ − vh,+)

∣∣∣
x j

,

(3.3a)∫ x j+1

x j
ψ

∂vh

∂t
+ c2ψxu

h
xdx = c2ψ−u∗

x

∣∣∣
x j+1

− c2ψ+u∗
x

∣∣∣
x j

, (3.3b)

∫ x j+1

x j

∂uh

∂t
− vhdx = 0. (3.3c)

Assuming periodic boundary conditions we may add up the Eqs. (3.3a) and (3.3b)
in j to find

∫
�

c2φx
∂uhx
∂t

+ ψ
∂vh

∂t
dx =

∫
�

c2φxv
h
x − c2ψxu

h
xdx

+
∑
j

c2
(

φ−
x (v∗ − vh,−)

∣∣∣
x j+1

− φ+
x (v∗ − vh,+)

∣∣∣
x j

+ ψ−u∗
x

∣∣∣
x j+1

− ψ+u∗
x

∣∣∣
x j

)
. (3.4)

Throughout, the spatial derivative of functions in any broken finite element space shall
be understood as being defined element by element. To connect the element solutions
in a stable fashion we use the numerical fluxes defined in (2.10)–(2.11) and introduce
the notation

v∗ = H (vh, uhx ) = {{vh}}α − βc2(uh,−
x − uh,+

x ), (3.5a)

u∗
x = G (uhx , v

h) = {{uhx }}1−α − τ

c2
(vh,− − vh,+). (3.5b)

Then the energy estimate (2.15) holds. We note that it can also be used to establish
error estimates for different choices of α, β and τ ; see [1] for details.

We now establish bounds on the spatial operators which constrain the allowable
time step sizes for explicit marching schemes. In particular we are interested in the
dependence of these bounds on the approximation orders, qu and qv and will follow a
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similar analysis as in [12, 13].With the choice of the numerical fluxes in (2.10)–(2.11),
an important observation is that the first two equations in (3.3) are coupled with (3.3c)
in a one-waymanner. That is, (3.3a)–(3.3b)will uniquely determinewh = uhx ∈ Uqu−1

h
and vh ∈ Vqv

h . Oncewh , vh are available, one can further recover the missing constant
in uh on [x j , x j+1] (i.e. in the form of the cell average of uh) through (3.3c) for all j .
As this last step is simply an integration in time it can not affect the numerical stability;
see also the discussion in Sect. 4.

These considerations motivate us to define the operator L : Uqu−1
h × Vqv

h �→
Uqu−1
h × Vqv

h ,

∫
�

L (cw, v)(cϕ,ψ)dx = c2
∫

�

ϕvx − ψxwdx

+ c2
∑
j

(
ψ−G (w, v)

∣∣∣
x j+1

− ψ+G (w, v)

∣∣∣
x j

)

+ c2
∑
j

(
ϕ−(H (v,w) − v−)

∣∣∣
x j+1

− ϕ+(H (v,w) − v+)

∣∣∣
x j

)
(3.6)

for any ϕ ∈ Uqu−1
h and ψ ∈ Vqv

h , with the operator norm as

‖L ‖ ≡ sup
w,ϕ∈Uqu−1

h , v,ψ∈Vqv
h

(w,v) �=(0,0),(ϕ,ψ) �=(0,0)∫
�
L (cw, v)(cϕ,ψ)dx(

‖cw‖2
L2(�)

+ ‖v‖2
L2(�)

)1/2 (
‖cϕ‖2

L2(�)
+ ‖ψ‖2

L2(�)

)1/2 . (3.7)

Once the bound is established for ‖L‖, time step condition, �t ‖L ‖ ≤ R, for
method of lines discretization combinedwith locally stable one-step temporalmethods
will follow from Kreiss-Wu theory [9]. Here R is defined as the radius of the largest
semidisk in the closed left half complex plane contained in the stability domain of the
method. It is well known [8], that one-step methods based on Taylor expansion with
qT = 3, 4, 7, 8, 11, 12, 15, 16, . . . terms are locally stable. For qT of moderate size
they have stability domains which grow with order. Thus, if we can establish a bound
on ‖L ‖ that grows linearly in qu and qv , we should expect that the fully discrete
method can time-march at a CFL condition of O(1) when the spatial and temporal
orders are matched. As the order increases this does not hold, but, as discussed in
Sect. 4, with the introduction of additional stages the size of the stability domain can
be greatly increased. In what follows we will see that such a bound can be established
for the staggered method with suitably chosen numerical fluxes but not for the non-
staggered method. For the non-staggered method, the bound on ‖L ‖ is quadratic in
qu and qv , and this will be proved next. We note that the quadratic dependence on the
degrees is sharp as demonstrated numerically in [1].
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Theorem 1 Let the energy-based DG spatial operator L be defined as in (3.6) with
periodic boundary conditions andwith numerical fluxes defined by (2.10)–(2.11). Then
the following estimate holds:

‖L‖ ≤ C1
c

h
max{(qu − 1)2, q2v }

+ C2
c

h

(
2max

{
cβq2u ,

τ

c
(qv + 1)2

}
+ (|α| + |1 − α|)(qv + 1)qu

)
.

(3.8)

Here C1 ≤ 2
√
3 and C2 ≤ 2 are two universal positive constants, independent of qu,

qv , h, and α, β, τ .

Proof Consider any w, ϕ ∈ Uqu−1
h and v,ψ ∈ Vqv

h . Applying element-wise integra-
tion by parts and the triangle inequality, we have

∫
�

L (cw, v)(cϕ,ψ)dx = − c2
∫

�

ϕxv + ψxwdx

+ c2
∑
j

(
ϕ−H (v,w)

∣∣∣
x j+1

− ϕ+H (v,w)

∣∣∣
x j

)

+ c2
∑
j

(
ψ−G (w, v)

∣∣∣
x j+1

− ψ+G (w, v)

∣∣∣
x j

)

≤ �1 + �2 + �3, (3.9)

with

�1 = c2
∑
j

∫ x j+1

x j
|ϕxv| dx +

∫ x j+1

x j
|ψxw| dx,

�2 = c2
∑
j

∣∣ϕ−H (v,w)
∣∣ ∣∣∣

x j+1
+ ∣∣ϕ+H (v,w)

∣∣ ∣∣∣
x j

,

�3 = c2
∑
j

∣∣ψ−G (w, v)
∣∣ ∣∣∣

x j+1
+ ∣∣ψ+G (w, v)

∣∣ ∣∣∣
x j

.

We now bound each of the terms, starting with the volume term �1. By applying
the Cauchy-Schwarz inequality, we have

�1 ≤ c
∑
j

‖cϕx‖L2(I j )‖v‖L2(I j ) + ‖ψx‖L2(I j )‖cw‖L2(I j ).

For �2 and�3, we use the definitions ofH (v,w) and G (w, v) as well as the triangle
inequality, and arrive at

�2 ≤ c
∑
j

∣∣cϕ−∣∣ (|α| ∣∣v−∣∣ + |1 − α| ∣∣v+∣∣ + cβ
∣∣cw−∣∣ + cβ

∣∣cw+∣∣) ∣∣∣
x j+1
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+ ∣∣cϕ+∣∣ (|α| ∣∣v−∣∣ + |1 − α| ∣∣v+∣∣ + cβ
∣∣cw−∣∣ + cβ

∣∣cw+∣∣) ∣∣∣
x j

,

�3 ≤ c
∑
j

∣∣ψ−∣∣ (|1 − α| ∣∣cw−∣∣ + |α| ∣∣cw+∣∣ + τ

c

∣∣v−∣∣ + τ

c

∣∣v+∣∣) ∣∣∣
x j+1

+ ∣∣ψ+∣∣ (|1 − α| ∣∣cw−∣∣ + |α| ∣∣cw+∣∣ + τ

c

∣∣v−∣∣ + τ

c

∣∣v+∣∣) ∣∣∣
x j

.

Nowwe recall some standard inverse inequalities for polynomials spaces [12]; there

exist positive constants Ĉ1 ≤ √
3, Ĉ2 ≤

√
2
2 , such that ∀p ∈ Q

k([−1, 1]),

‖px‖L2([−1,1]) ≤ Ĉ1k
2‖p‖L2([−1,1]), p(x) ≤ Ĉ2(k + 1)‖p‖L2([−1,1]) ∀x ∈ [−1, 1].

(3.10)

By applying these inverse inequalities, with a linear scaling from [−1, 1] to I j , and
Cauchy-Schwarz inequality, we find that

�1 ≤ 2Ĉ1
c

h

∑
j

(
(qu − 1)2‖cϕ‖L2(I j )‖v‖L2(I j ) + q2v‖ψ‖L2(I j )‖cw‖L2(I j )

)

≤ C1
c

h
max{(qu − 1)2, q2v }

(
‖cw‖2L2(�)

+ ‖v‖2L2(�)

)1/2
(
‖cϕ‖2L2(�)

+ ‖ψ‖2L2(�)

)1/2
,

and similarly, using a linear scaling from [−1, 1] to Is (with s = j, j ± 1), we have

�2 ≤ 2Ĉ2
2
c

h

∑
j

(
qu(qv + 1)‖cϕ‖L2(I j )

(
|α|‖v‖L2(I j−1∪I j ) + |1 − α|‖v‖L2(I j∪I j+1)

)

+ cβq2u‖cϕ‖L2(I j )

(
2‖cw‖L2(I j ) + ‖cw‖L2(I j−1∪I j+1)

) )
,

�3 ≤ 2Ĉ2
2
c

h

∑
j

(
qu(qv + 1)‖ψ‖L2(I j )

(
|1 − α|‖cw‖L2(I j−1∪I j ) + |α|‖cw‖L2(I j∪I j+1)

)

+ τ(qv + 1)2

c
‖ψ‖L2(I j )

(
2‖v‖L2(I j ) + ‖v‖L2(I j−1∪I j+1)

) )
,

and hence

�2 + �3 ≤ C2
c

h

(
2max

{
cβq2u ,

τ

c
(qv + 1)2

}
+ (|α| + |1 − α|)(qv + 1)qu

)
(
‖cw‖2L2(�)

+ ‖v‖2L2(�)

)1/2 (
‖cϕ‖2L2(�)

+ ‖ψ‖2L2(�)

)1/2
.

Finally by adding up � j , j = 1, 2, 3, and based on the operator norm ‖L‖ in (3.7),
we reach the bound in (3.8). ��
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Fig. 2 An example of a periodic staggered mesh in one dimension. When physical boundaries are enforced
at x0 and xn the approximations of both uh and ṽh would contain a break at those vertices and the mild
growth with polynomial degree would no longer be guaranteed (color figure online)

3.2 Operator bounds for the staggered formulation

For the staggered version of the method we introduce element centers ρ j = x j+ 1
2

=
(x j + x j+1)/2 as well as the staggered grid composed of the elements I j+ 1

2
=

[ρ j , ρ j+1] ∀ j . Associated with both grids, we define two broken finite element spaces

Uqu
h = {w : w|I j ∈ Q

qu (I j ) ∀ j}, Ṽ qv

h = {w : w|I
j+ 1

2
∈ Q

qv (I j+ 1
2
) ∀ j}.

Figure2 displays a staggered grid on a periodic mesh. Note how ṽh is continuous at
the breaks of uh and vice versa.

The staggered energy-based DG scheme then consists of finding uh(·, t) ∈ Uqu
h

and ṽh(·, t) ∈ Ṽ qv

h such that for any φ ∈ Uqu
h and ψ ∈ Ṽ qv

h and for all j

∫ x j+1

x j
c2φx

∂uhx
∂t

dx +
∫ ρ j

x j
c2φxx ṽ

hdx +
∫ x j+1

ρ j

c2φxx ṽ
hdx

︸ ︷︷ ︸∫ x j+1
x j c2φxx ṽhdx

= c2φ−
x v∗∣∣

x j+1
− c2φ+

x v∗∣∣
x j

, (3.11a)
∫ ρ j+1

ρ j

ψ
∂ṽh

∂t
dx +

∫ x j+1

ρ j

c2ψxu
h
xdx +

∫ ρ j+1

x j+1

c2ψxu
h
xdx

︸ ︷︷ ︸∫ ρ j+1
ρ j c2ψx uhx dx

= c2ψ−u∗
x

∣∣
ρ j+1

− c2ψ+u∗
x

∣∣
ρ j

, (3.11b)
∫ x j+1

x j

(
∂uh

∂t
− ṽh

)
dx = 0. (3.11c)

Note that the second and third integrals in (3.11a) (resp. in (3.11b)) are against ṽh

(resp. uh) from two elements.
Explicitly we write the flux terms

v∗ = H(ṽh, uhx ) = ṽh − βc2(uh,−
x − uh,+

x ), (3.12a)
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u∗
x = G(uhx , ṽ

h) = uhx − τ

c2
(ṽh,− − ṽh,+), (3.12b)

noting that there is no ambiguity for ṽh in (3.12a) and uhx in (3.12b) since they are
evaluated at the element centers and are uniquely defined.

Assuming periodic boundary conditions, we apply integration by parts to (3.11a)
and (3.11b), add them up in j and reach the equality

∫
�

c2φx
∂uhx
∂t

+ ψ
∂ṽh

∂t
dx = c2

∑
j

∫ x j+1

x j

(
φx ṽ

h
x − ψxu

h
x

)
dx

+ c2
∑
j

(
φ−
x (v∗ − ṽh)

∣∣
x j+1

− φ+
x (v∗ − ṽh)

∣∣
x j

+ φx (ṽ
h,+ − ṽh,−)

∣∣
ρ j

)

+ c2
∑
j

(
ψ−u∗

x

∣∣
ρ j+1

− ψ+u∗
x

∣∣
ρ j

)
, (3.13)

with semi-discrete stability of the method following directly from (2.15).
As for the non-staggered scheme, the first two Eqs. (3.11a)–(3.11b) will determine

wh = uhx ∈ Uqu−1
h and ṽh ∈ Ṽ qv

h , and hence we define the operator Lc : Uqu−1
h ×

Ṽ qv

h �→ Uqu−1
h × Ṽ qv

h , satisfying

∫
�

Lc(cw, v)(cϕ,ψ)dx

= − c2
∑
j

(∫ x j+1

x j
ϕxvdx − ϕ−H(v,w)|x j+1 + ϕ+H(v,w)|x j

)

− c2
∑
j

(∫ ρ j+1

ρ j

ψxwdx − ψ−G(w, v)|ρ j+1 + ψ+G(w, v)|ρ j

)
(3.14)

for any ϕ ∈ Uqu−1
h and ψ ∈ Ṽ qv

h , with the operator norm as

‖Lc‖ ≡ sup
w,ϕ∈Uqu−1

h , v,ψ∈Ṽ qv
h

(w,v) �=(0,0),(ϕ,ψ) �=(0,0)∫
�
Lc(cw, v)(cϕ,ψ)dx(

‖cw‖2
L2(�)

+ ‖v‖2
L2(�)

)1/2 (
‖cϕ‖2

L2(�)
+ ‖ψ‖2

L2(�)

)1/2 .

The theorem governing the bound on the operator Lc has a similar form as the non-
staggered case, namely, with the quadratic dependence on qu and qv . But when the
upwinding parameters β and τ are set to zero and the numerical fluxes become purely
central, or when β and τ are chosen to be order-dependent, the result is significantly
stronger. We now state and prove this theorem.
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Theorem 2 Let the staggered energy-based DG spatial operator Lc be defined as
in (3.14), with numerical fluxes defined by (3.12) and periodic boundary conditions.
Then the following estimate holds:

‖Lc‖ ≤ c

h
C3, 12

(qu + qv − 1)

+ c

h
C4, 12

√
qu(qv + 1) + c

h
C5 max

{
cβq2u ,

τ

c
(qv + 1)2

}
. (3.15)

In particular, when β = τ = 0, or when β = β̂
quc

, τ = cτ̂
qv+1 with fixed dimensionless

constants β̂, τ̂ , the result is strengthened in that ‖Lc‖ is bounded linearly in qu and

qv . Here C3, 12
≤ 8

√
3+4
3 , C4, 12

≤ 128√
3π

, and C5 ≤ 4 are universal positive constants,

independent of qu, qv , h, and β, τ .

Proof What set apart the proof below from the proof of Theorem 1 are the following
inverse inequalities for polynomials spaces (e.g. see Lemmas 3-4 in [12]): there exist

positive constants Ĉ3, 12
≤ 4

√
3+2
3 , Ĉ4, 12

≤ 4
√

3
π
( 34 )

−1/4 =
√

32√
3π

, such that ∀p ∈
Q

k([−1, 1]),

‖px‖L2([− 1
2 , 12 ]) ≤ Ĉ3, 12

k‖p‖L2([−1,1]), p

(
±1

2

)
≤ Ĉ4, 12

√
k + 1‖p‖L2([−1,1]).

(3.16)

With px (resp. p) evaluated away from the edges of the domain [−1, 1], these inverse
inequalities display different, and indeed milder, dependence on polynomial degree k
than those in (3.10), and they will play a key role for our estimate with the desired
dependence on the approximation order qu , qv .

In order to utilize the opportunity provided by the inequalities in (3.16), we pro-
ceed to analyze the terms in the operator Lc on each I j and I j+ 1

2
by examining

their behavior on sub-intervals away or near the element edges. By partitioning I j
into (x j , x j+ 1

4
), (x j+ 1

4
, x j+ 3

4
), (x j+ 3

4
, x j+1), partitioning I j+ 1

2
into (x j+ 1

2
, x j+ 3

4
),

(x j+ 3
4
, x j+ 5

4
), (x j+ 5

4
, x j+ 3

2
), and performing integration by parts on those sub-

intervals of length h/4, we find for any w, ϕ ∈ Uqu−1
h and v,ψ ∈ Ṽ qv

h ,

∫
�

Lc(cw, v)(cϕ,ψ)dx

= c2
∑
j

⎛
⎝

∫ x
j+ 1

4

x j
ϕvxdx −

∫ x
j+ 3

4

x
j+ 1

4

ϕxvdx +
∫ x j+1

x
j+ 3

4

ϕvxdx

⎞
⎠

+ c2
∑
j

⎛
⎝

∫ x
j+ 3

4

x
j+ 1

2

ψwxdx −
∫ x

j+ 5
4

x
j+ 3

4

ψxwdx +
∫ x

j+ 3
2

x
j+ 5

4

ψwxdx

⎞
⎠

+ c2
∑
j

(
−βc2ϕ+ (

w+ − w−) ∣∣
x j

+ βc2ϕ− (
w+ − w−) ∣∣

x j+1

)
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+ c2
∑
j

(
− τ

c2
ψ+ (

v+ − v−) ∣∣
x
j+ 1

2

+ τ

c2
ψ− (

v+ − v−) ∣∣
x
j+ 3

2

)

+ c2
∑
j

(
−ψw

∣∣
x
j+ 3

4

+ ψw
∣∣
x
j+ 5

4

− ϕv
∣∣
x
j+ 1

4

+ ϕv
∣∣
x
j+ 3

4

)
.

Then by the triangle inequality and
∑

j

∫ x
j+ 1

4
x j = ∑

j

∫ x
j+ 5

4
x j+1 ,

∑
j

∫ x
j+ 3

2
x
j+ 5

4
=

∑
j

∫ x
j+ 1

2
x
j+ 1

4
, we have

∫
�

Lc(cw, v)(cϕ,ψ)dx ≤
3∑

k=1

�u,k +
3∑

k=1

�v,k, (3.17)

where

�u,1 = c
∑
j

⎛
⎝

∫ x
j+ 5

4

x
j+ 3

4

∣∣cϕvx
∣∣dx +

∫ x
j+ 3

4

x
j+ 1

4

∣∣cϕxv
∣∣dx

⎞
⎠ ,

�u,2 = c
∑
j

(∣∣cϕ∣∣∣∣v∣∣∣∣∣
x
j+ 1

4

+ ∣∣cϕ∣∣∣∣v∣∣∣∣∣
x
j+ 3

4

)
,

�u,3 = βc2
∑
j

(∣∣cϕ+∣∣∣∣cw+∣∣∣∣∣
x j

+ ∣∣cϕ+∣∣∣∣cw−∣∣∣∣∣
x j

+ ∣∣cϕ−∣∣∣∣cw+∣∣∣∣∣
x j+1

+ ∣∣cϕ−∣∣∣∣cw−∣∣∣∣∣
x j+1

)
,

�v,1 = c
∑
j

⎛
⎝

∫ x
j+ 3

4

x
j+ 1

4

∣∣ψcwx
∣∣dx +

∫ x
j+ 5

4

x
j+ 3

4

∣∣ψx cw
∣∣dx

⎞
⎠ ,

�v,2 = c
∑
j

(∣∣ψ∣∣∣∣cw∣∣∣∣∣
x
j+ 3

4

+ ∣∣ψ∣∣∣∣cw∣∣∣∣∣
x
j+ 5

4

)
,

�v,3 = τ
∑
j

(∣∣ψ+∣∣∣∣v+∣∣∣∣∣
x
j+ 1

2

+ ∣∣ψ+∣∣∣∣v−∣∣∣∣∣
x
j+ 1

2

+ ∣∣ψ−∣∣∣∣v+∣∣∣∣∣
x
j+ 3

2

+ ∣∣ψ−∣∣∣∣v−∣∣∣∣∣
x
j+ 3

2

)
.

We start by bounding the volume integral terms �u,1, �v,1. By using the Cauchy-
Schwarz inequality, and the first inverse inequality in (3.16) with a linear scaling from
[−1, 1] to I j (or to I j− 1

2
= [x j− 1

2
, x j+ 1

2
]), we get

�u,1 ≤ c
∑
j

‖cϕ‖L2([x
j+ 3

4
,x

j+ 5
4
])‖vx‖L2([x

j+ 3
4
,x

j+ 5
4
])

+ ‖cϕx‖L2([x
j+ 1

4
,x

j+ 3
4
])‖v‖L2([x

j+ 1
4
,x

j+ 3
4
])

≤ c

h
2Ĉ3, 12

∑
j

(
qv‖cϕ‖L2(I

j+ 1
2
)‖v‖L2(I

j+ 1
2
) + (qu − 1)‖cϕ‖L2(I j )‖v‖L2(I j )

)

×
(
qv‖ϕ‖L2([x

j+ 3
4
,x

j+ 5
4
])‖v‖L2(I

j+ 1
2
) + (qu − 1)‖ϕ‖L2(I j )‖v‖L2([x

j+ 1
4
,x

j+ 3
4
])
)

.
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Similarly, we obtain

�v,1 ≤ c

h
2Ĉ3, 12

∑
j

(
(qu − 1)‖cw‖L2(I j )‖ψ‖L2(I j ) + qv‖cw‖L2(I

j+ 1
2
)‖ψ‖L2(I

j+ 1
2
)

)
.

By applying the Cauchy-Schwarz inequality, we have

�u,1 + �v,1 ≤ c

h
C3, 12

(qu + qv − 1)
(
‖cw‖2L2(�)

+ ‖v‖2L2(�)

)1/2 (
‖cϕ‖2L2(�)

+ ‖ψ‖2L2(�)

)1/2
. (3.18)

Next, we bound the boundary terms�u,2,�v,2. By using the second inverse inequality
in (3.16) with a linear scaling from [−1, 1] to I j (or to I j− 1

2
), we reach

�u,2 ≤ c

h
2Ĉ2

4, 12

√
qu(qv + 1)

∑
j

‖cϕ‖L2(I j )

(
‖v‖L2(I

j− 1
2
) + ‖v‖L2(I

j+ 1
2
)

)
,

�v,2 ≤ c

h
2Ĉ2

4, 12

√
qu(qv + 1)

∑
j

(
‖cw‖L2(I j )‖ + ‖cw‖L2(I j+1)

)
‖ψ‖L2(I

j+ 1
2
),

and hence

�u,2 + �v,2 ≤ c

h
C4, 12

√
qu(qv + 1)

(
‖cw‖2L2(�)

+ ‖v‖2L2(�)

)1/2 (
‖cϕ‖2L2(�)

+ ‖ψ‖2L2(�)

)1/2
. (3.19)

For �u,3 and �v,3, using the inverse inequality in (3.10) with a linear scaling from
[−1, 1] to Is (with s = j, j ± 1, j ± 1

2 , j + 2
3 ),

�u,3 ≤ c

h
2Ĉ2

2cβq
2
u

∑
j

‖cϕ‖L2(I j )

(
2‖cw‖L2(I j ) + ‖cw‖L2(I j−1)

+ ‖cw‖L2(I j+1)

)
,

�v,3 ≤ c

h
2Ĉ2

2
τ

c
(qv + 1)2

∑
j

‖ψ‖L2(I
j+ 1

2
)

(
2‖v‖L2(I

j+ 1
2
) + ‖v‖L2(I

j− 1
2
) + ‖v‖L2(I

j+ 3
2
)

)
,

and hence

�u,3 + �v,3 ≤ c

h
C5 max{cβq2u ,

τ

c
(qv + 1)2}

(
‖cw‖2L2(�)

+ ‖v‖2L2(�)

)1/2 (
‖cϕ‖2L2(�)

+ ‖ψ‖2L2(�)

)1/2
. (3.20)

Finally, we combine (3.17), (3.18)-(3.20), and conclude

‖Lc‖ ≤ c

h
C3, 12

(qu + qv − 1) + c

h
C4, 12

√
qu(qv + 1) + c

h
C5 max

{
cβq2u ,

τ

c
(qv + 1)2

}
.

��
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4 Timestepping

After the spatial semi-discretization, we are faced with evolving the linear system of
equations

M
dWh

dt
= AWh + Fh . (4.1)

Here M and A are the mass and stiffness matrices corresponding to the spatial dis-
cretizations at hand and Wh is a vector containing all degrees of freedom. To exploit
the operator bounds (3.15) we note that we can partition Wh ,

Wh =
(
Wh

1

Wh
0

)
,

where Wh
0 is the vector containing all the degrees of freedom representing the cell

averages of uh andWh
1 contains all other degrees of freedom for both the velocity and

displacement. In other words, if in each element we write

uh = uh1 + uh0,
∫

� j

uh1dx = 0,

then Wh
0 contains all the uh0 and Wh

1 contains the degrees of freedom representing uh1
and vh . Similarly partitioning the test functions we see that the semi-discrete system
is of the form

(
M1 0
0 M0

)
d

dt

(
Wh

1

Wh
0

)
=

(
A11 0

A01 0

)(
Wh

1

Wh
0

)
+

(
Fh
1

Fh
0

)
. (4.2)

This structure implies that stability is determined by the time stepping scheme
applied to the Wh

1 subsystem; Wh
0 can be computed independently via an integration

in time, though in practicewehave used the same scheme for all degrees-of-freedom. In
addition, as theWh

0 subsystem is simply the discrete formof (2.13), thematrixM−1
0 A01

will be uniformly bounded in both h and the polynomial degrees. The operator bounds
derived in Sect. 3 directly apply to theWh

1 subsystem under the restrictions given there
(one space dimension and periodic boundary conditions). In particular as the norm

induced by M1 is simply the sum of the L2 norms of vh and ∂uh
∂x we have:

‖|a‖| = sup0 �=g,φ∈Fh
a(g, φ)

‖g‖L2(�)‖φ‖L2(�)

= supx,y �=0
xT A11y

‖x‖M1‖y‖M1

= supx,y �=0
〈x, M−1

1 A11y〉M1

‖x‖M1‖y‖M1

= ‖M−1
1 A11‖M1 .

(4.3)
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Here Fh = Uqu−1
h ×Ṽ qv

h , and the staggeredmethod for the unknowns f h = (uhx , ṽ
h) ∈

Fh can be written as (
d f h

dt , φ) = a( f h, φ) ∀φ ∈ Fh . The simplest application of this
result is in the case of central fluxes, which is what we use in the numerical experi-
ments. Then A11 is skew-symmetric and therefore the generalized eigenvalue problem
iα j M11φ j = A11φ j has orthonormal eigenvectors in the induced inner product; thus
a simple von Neumann analysis applies. In fact for the central fluxes we can prove
that stability-enhanced leap-frog schemes as constructed in [7] of the same order as
the spatial discretization and a number of stages proportional to the order can always
be used with a CFL number O(1). We note that optimized schemes are constructed in
[7] and in Fig. 4 we display time step stability limits based on these.

Theorem 3 Under the assumptions of Theorem 2 and using central fluxes, there exist
constants C1 and C2 independent of qu and qv and time stepping schemes with order
qT ≥ max(qu, qv) and a number of stages bounded byC2qT such that the fully discrete
method is stable under the CFL condition c�t ≤ C1h.

Proof The results in [7] may be directly applied to the second order equation

M1
d2Wh

1
dt2

= A11M
−1
1 A11Wh

1 . In particular they show that order qT leap-frog schemes
with qT stages (applications of the spatial operator) can be constructed which are

stable for �t2 ≤ q2T
e2ρ2(M−1

1 A11)
with ρ denoting the spectral radius. This establishes

the result. It is possible to adapt their arguments to leap-frog schemes applied to the
first order case, leading to the analogous inequality �t ≤ qT

e ρ(M−1
1 A11)

, but we omit

the algebraic details. ��
More generally, we can invoke the Kreiss-Wu theory [9] to relate the time step

stability limits to the local stability radius of any locally stable time stepping we
employ. This theory is based on energy estimates which we have derived above.
In particular if the local stability radius is R the fully discrete method is stable if
�t < R

‖M−1
1 A11‖M1

= O(h/max(qu, qv)). In our numerical experiments we simply

use Taylor time stepping. Given the value of Wh at time t

Wh(t) ≈
qT∑
j=0

(t − tn) j

j !
d jWh

dt j
(4.4)

This expansion can easily be computed as time derivatives of Wh at t = tn , and
can be obtained sequentially by (4.1) and the time step is completed by setting t =
tn + �t . As is well-known, the Taylor methods are locally stable for orders qT =
3, 4, 7, 8, 11, 12, . . .. However, for qT large they satisfy R ∼ π for qT a multiple of 4
and R ∼ π/2 for qT one less than a multiple of 4 [8]. Thus we cannot use themwith an
order-independent CFL number. (We conjecture that stability-enhanced schemes can
be built off of the Taylor methods and have some preliminary examples, but they are
not used here.) Despite this we find that if the spatial discretization order is bounded
by 16 we can march at the same or greater order with a CFL number bounded by
0.1. We emphasize that the method is not restricted to the stability-enhanced leap-frog
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schemes or the Taylor-based methods used in the experiments. Any standard locally-
stable scheme can be used for all our choices of numerical flux and reversible schemes
can be applied for the energy-conserving fluxes.

On the other hand, when physical boundaries are present the mesh cannot be stag-
gered and the time steps must be reduced to maintain stability. Fortunately this step
size reduction can be localized to a few elements near the boundary. Following the
local time stepping method by Diaz and Grote [5] we advance the solution for one
time step �t , starting with Wh(tn), as follows.

1. Partition Wh into two parts, Wh
B consisting of degrees-of-freedom associated with

elements near the boundary, and Wh
I .

2. Compute all terms d�Wh(tn)
dt�

, � = 1, . . . , qT. These can be used to update Wh
I (tn +

�t).
3. To updateWh

B take p sub-steps with step size δt = �t/p using (4.1)–(4.4) withWh

replaced by Wh
B . Here flux terms associated with the interface between elements

assigned to the near boundary group and the interior group give rise to a forcing
function Fh

B . We evaluate Fh
B and all necessary derivatives at any intermediate time

step using (4.4).

5 Numerical experiments

In this section, we present numerical experiments that illustrate the properties of our
staggered method. In all cases we use a modal formulation with tensor product Leg-
endre polynomials and we use exact integration (through the use of quadrature of
sufficiently high order) to compute the integrals in the variational formulation. For all
tests, we use purely central fluxes, i.e. we set τ, β = 0.

5.1 Computed rates of convergence

Here we evolve the exact solution

u(x, t) = sin(ω(x + t)), v(x, t) = ω cos(ω(x + t)),

on the periodic domain � = [−1, 1] until T = 2.2. We discretize using the staggered
scheme with qu = 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27 and qv = qu − 1.
In order to make it possible to observe the rates of convergence we set ω = 2quπ for
qu = 2, 3, 6, 7, 10, 11, 14, 15 and ω = 4quπ for qu = 18, 19, 22, 23, 26, 27.

To evolve in time we use Taylor series time stepping with qT = qu + 1 (the
stability domains of all of these Taylor series methods contain the imaginary axis) and
throughout we keep the ratio �t

h = 0.1. The L2-errors in the solution uh as a function
of the element size h are displayed in Fig. 3. As can be seen from the figure the rates of
convergence (as indicated by the dashed lines) appear to be optimal, i.e. qu + 1, when
qu = 3, 7, . . . and suboptimal by one, i.e. qu when qu = 2, 6, . . .. This is consistent
with the analysis and numerical experiments for the non-staggered scheme and central
fluxes; see [1].
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Fig. 3 To the left are the L2-errors in uh for qu = 2, 3, 6, 7, 10, 11, 14, 15 and to the right for
qu = 18, 19, 22, 23, 26, 27. The dashed lines have slope qu when qu is even and qu + 1 when qu is
odd corresponding to the expected rates of convergence for central fluxes

Fig. 4 The left figure displays the spectral radii of the time stepping matrix A scaled by the element size
h and the reciprocal of qu as a function of qu . The right figure displays the ratio of the square root of the
diagonal entries in Fig. 2 in [7] and the spectral radii of the time stepping matrix A scaled by the element
size h. We note that the black dot, red circle, and blue cross overlap with each other, which indicates that the
spectral radii of the time stepping matrix A are independent of the element size h. See the text for details
(color figure online)

5.2 Spectral radii of periodic semi-discretization

Consider now thematrix, A, in the semi-discretization (4.1).With purely central fluxes,
the eigenvalues of Awill be imaginary and based on the estimates on the operator norm
ofLc we expect them to grow linearly with qu . In this experiment we set qv = qu and
consider a computational domain � = [−1, 1].

In Fig. 4 we display the spectral radii of the matrix A, i.e. the eigenvalue of A
with the largest magnitude, λ∞, scaled by (h/qu) for three different element sizes
h = 2/5, 2/10, 2/20. As can be seen the growth of the spectral radii appears to
be asymptotically linear in qu (i.e. constant when scaled by q−1

u ). The right figure
displays ratio of the square root of the diagonal entries in Fig. 2 in [7] (the square
root of those numbers corresponds to optimal CFL numbers for optimized modified
equation timestepping methods of order O(2m)) and the spectral radii of the time
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Fig. 5 On the left 1 − |λ j |, {λ j } the eigenvalues of B from (5.1) for qu = 14 and qv = 13 with m = 2; to
the right 1 − |λ j | for qu = 14 with m = 3

stepping matrix A scaled by the element size h. Note that the enhanced stability limits
(
√

αm,k, k = m − 1) given in [7] are only available for even orders so for qu = 3
we use the 4th order limit and for qu = 5 we use the 6th order limit, etc. From the
figure we see that the ratio (which corresponds to the CFL number) is at least 0.6 for
all orders considered.

5.2.1 Numerical investigation of stability of the local timestepping

In this section, the computational domain is chosen to be [−1, 1.5]. We impose a
homogeneous Neumann boundary condition at the left boundary and a homogeneous
Dirichlet boundary condition at the right boundary. The discretization is carried out
on a staggered uniform mesh with mesh size h. The process of evolving the solution
a full timestep by the local timestepping procedure described above can be expressed
as a matrix multiplication

Wh(tn+1) = BWh(tn). (5.1)

Here, again, Wh is a vector containing the modes describing the element-wise expan-
sions of the displacement and the velocity. The eigenvalues λ of the matrix B reveal if
a particular discretization is stable. As we use a central flux all the eigenvalues should
satisfy |λ| = 1. In practice, the accuracy of the eigenvalue computation can make it
difficult to distinguish if the eigenvalues are strictly smaller than one, equal to one,
or slightly larger than one. If the largest eigenvalue is slightly larger than one, say
|λ| = 1 + δ, this may be an indication of an unstable method. However, if δ is very
small and does not change as the mesh is refined the method may still be considered
useful even though it cannot be claimed to be stable in a mathematically strict sense.

We have found that for very high degrees and when the local timestepping is used,
the thickness, m, of the layer where the local timestepping is used can impact the size
of δ. In this experiment we always set the parameters of the local timestepping as
qT = p = qu + 1.

We first fix the number of DG elements for u to be 10, i.e., h = 2.5/10, and the
number of DG elements for v is 11. The degrees of the approximation spaces for u
and v are chosen to be qu = 14 and qv = 13, respectively. The ratio between time
step size �t and the mesh size h are fixed as �t

h = 0.1.
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Fig. 6 We plot 1 − |λ|, {λ j } the eigenvalues of B in (5.1), as a function of the eigenvalue index j when
qu = 14, qv = 13 and m = 3. Specifically, from left to right are the results with the number of elements
in �h being n = 20, 40, 80, respectively

In Fig. 5 we display 1 − |λ| = −δ as a function of the eigenvalue index. The
left figure is for an overlap with m = 2. We observe that the modulus of the largest
eigenvalue is larger than 1 by about 6 ·10−4. This would correspond to a magnification
of about 2 of an unstable mode after about 1400 time steps, indicating a fast growing
instability. In our simulations, we also observed that (qu, qv) = (10, 9) is the highest
degree we can have to guarantee |δ| ≤ 10−7 when the thickness of the overlap is
m = 2 and the number of DG elements equals 10. The right figure displays the same
method except that the overlap is now increased to m = 3. Now we find that the
modulus of the largest eigenvalue is larger than 1 by about 10−7. As this means that
it will take around 7 million time steps before this mode is doubled in amplitude it is
unlikely that it would show up in any practical computation.

Importantly, δ appears to be robust to grid refinement. In Fig. 6, we fix the m = 3
and increase the number of DG elements for u from 20 to 40 and 80. Again we find
that the modulus of the largest eigenvalue is larger than 1 by about 10−7 for all three
discretizations.

5.3 Convergence in two dimensions with Dirichlet boundary condition

In this section, we investigate the convergence of the staggered energy-based DG
scheme with the local time stepping of Sect. 4 and variable sound wave speed c(x, y)
in two space dimensions. Precisely we solve

∂2u

∂t2
= ∇ · (c2(x, y)∇u) + f (x, y, t), (x, y) ∈ [−1, 1] × [−1, 1], t > 0,

where c(x, y) = 1 + x2 + y2. Further, we construct a manufactured solution so that

u(x, y, t) = sin

(√
k21 + k22π t

)
sin(k1πx) sin(k2π y),

v(x, y, t) =
√
k21 + k22π cos

(√
k21 + k22π t

)
sin(k1πx) sin(k2π y).

That is, the initial condition and the external forcing function f (x, y, t) are determined
by this manufactured solution. The boundary conditions are homogeneous Dirichlet
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Fig. 7 The L2 errors for u, from left to right, are for qu = qv = 2, 3 and qu = qv = 6, 7, respectively

Fig. 8 A staggered grid in two
dimensions. Blue boxes are
elements of �h corresponding to
the piecewise approximation to
u and non-blue boxes are
elements of ��,h corresponding
to the piecewise approximation
to v. Here, we have 3 × 3 = 9
elements in �h and 4 interior
(red boxes), 8 edge (magenta
boxes) and 4 corner (green
boxes) elements in ��,h (color
figure online)

Table 1 Linear regression
estimates of the convergence
rate for u with central flux in two
dimensions

Degree (q) of approx. to u 2 3 6 7

Rate fit with C.-flux 2.00 4.27 7.21 8.13

The degree of the approximation space for u and v are q for both x
and y directions

conditions. To allow for sufficient range to compute the errors we set k1 = k2 = q = 2
for qu = qv = q = 2, 3, and k1 = k2 = 2q for qu = qv = q = 6, 7 with q being the
degree of the approximation space for both u and v (Fig. 7).

The discretization is performed with staggered elements. Themesh�h correspond-
ing to the piecewise polynomial approximation to u is Cartesian with vertices given
by xi = ih, y j = jh, i, j = 0, 1, . . . , n with h = 2/n. In the interior the elements
of ��,h corresponding to the piecewise polynomial approximation to v are staggered
with respect to �h ; its vertices are xi+1/2 = (i + 1/2)h, y j+1/2 = ( j + 1/2)h. Near
the boundaries the elements for v are reduced in size by a factor of 1/2 or 1/4. Then we
have n2 elements in �h and (n + 1)2 elements in ��,h . Figure8 gives an illustration
of the staggered grids with n = 3.

Here we use the central flux, β = τ = 0. We evolve the solution by the local Taylor
time stepping described in Sect. 4 with p = qT = q+1 andm = 3 until the final time
T = 0.5. The ratios of the time step size �t and mesh size h are set to be �t

h = 0.1.
The L2 errors for u are plotted against the mesh size h in Fig. 7. Table 1 presents

the linear regression estimates of the convergence rate for u based on the data in Fig. 7.
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Fig. 9 The top panel, from left to right are 1−|λ j |, {λ j } the eigenvalues of B in (5.1), for the two-dimensional
case with qu = qv = 2, 3, respectively. The bottom panel displays the same results for qu = qv = 6, 7,
respectively

From Table 1, we observe an optimal convergence rate of q + 1 when q = 3, 6, 7 and
a suboptimal convergence by one for q = 2.

5.4 Numerical investigation of the stability of the local time stepping in two
dimensions

In this section, we investigate the stability of the full discretization with the local time
stepping in two dimensions with homogeneous Dirichlet boundary conditions. The
computational domain is chosen to be the same as above, so is the spatial discretization.
Here, we set n = 10. Then, the number of elements in �h is 100 and in ��,h is 121.
The degree of the approximation space for u and v is q for both. The parameters p,
qT in the local Taylor time stepping are set to be p = qT = q + 1 and the overlap is
set to m = 3.

In Fig. 9, we display 1−|λ| for the fully discrete method with different values of q.
The top panel, from left to right, displays the results for q = 2, 3 and the bottom panel,
from left to right displays the results for q = 6, 7. Here, we observe that 1 − |λ| > 0
for all q indicating that these particular discretizations are stable.

6 Conclusion

We have shown that, away from boundaries, the use of staggered meshes and suitably
chosen numerical fluxes leads to energy-basedDGmethods for thewave equationwith
favorable time step stability bounds at high order. In particular, using explicit single
step methods built from Taylor polynomials with degrees qT = 4s, or qT = 4s−1 and
spatial approximations of comparable order we can stably march in time at a fixed,
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order-independent CFL number. A large global time step can be maintained if local
time stepping is used near boundaries. Here we only consider simple geometries, but
with local time stepping the proposed method should be applicable in more complex
domains containing a sufficiently large volume separated from boundaries.
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