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Abstract
We propose a fractional Adams–Simpson-type method for nonlinear fractional ordi-
nary differential equations with fractional order α ∈ (0, 1). In our method, a
nonuniform mesh is used so that the optimal convergence order can be recovered
for non-smooth data. By developing a modified fractional Grönwall inequality, we
prove that the method is unconditionally convergent under the local Lipschitz condi-
tion of the nonlinear term, and show that with a propermesh parameter, themethod can
achieve the optimal convergence order 3+α even if the given data is not smooth. Under
very mild conditions, the nonlinear stability of the method is analyzed by using a per-
turbation technique. The extensions of the method to multi-term nonlinear fractional
ordinary differential equations and multi-order nonlinear fractional ordinary differ-
ential systems are also discussed. Numerical results confirm the theoretical analysis
results and demonstrate the effectiveness of the method for non-smooth data.
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1 Introduction

Fractional ordinary differential equations (FODEs) appear in many fields of science
and engineering, such as viscoelastic materials [2, 3, 35, 52], underground transport
[31], anomalous diffusion [6, 16, 34], advection and dispersion of solutes in natural
porous or fractured media [4, 5], options pricing model in financial markets [58],
and etc. Some FODEs with special form, such as linear equations, can be solved by
the Fourier transform method or the Laplace transform method (see [53]). However,
analytical solutions ofmanygeneralizedFODEs, such as nonlinear FODEs, are usually
difficult to obtain. Therefore, it is necessary to develop numerical methods for these
equations. In this paper, we propose and analyze a high-order numerical method for
the following initial value problem of nonlinear FODE:

{C
0Dα

t y(t) = f (t, y(t)), t ∈ (0, T ], 0 < α < 1,
y(0) = φ0,

(1.1)

where φ0 is an arbitrary real number and the fractional derivative C
0Dα

t y is defined, in
the Caputo sense, by

C
0Dα

t y(t) =
∫ t

0
ω1−α(t − s)y′(s) ds with ωβ(t) = tβ−1

�(β)
. (1.2)

Existence and uniqueness of solutions for (1.1) have been discussed, e.g. in [19, 53].
For any function w ∈ L1[0, T ], we define the Riemann-Liouville fractional integral
0Iα

t w of order α by

0Iα
t w(t) =

∫ t

0
ωα(t − s)w(s) ds, t ∈ [0, T ]. (1.3)

It has been proved in [19] that the problem (1.1), if a continuous solution is admitted,
is equivalent to the following Volterra integral problem

{
y(t) = φ0 + 0Iα

t f (t, y(t)), t ∈ (0, T ], 0 < α < 1,
y(0) = φ0.

(1.4)

Our numerical method for the problem (1.1) is based on the above equivalent problem
(1.4). Let N be a positive integer, and let {tn}N0 be a general mesh such that

0 = t0 < t1 < · · · < tN = T . (1.5)

The goal of this paper is to construct high-order schemes of the form:

⎧⎪⎨
⎪⎩

yn = φ0 +
n−1∑
k=0

Q(α)
k,n f (tk, yk), 1 ≤ n ≤ N ,

y0 = φ0,

(1.6)
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where yn ≈ y(tn) and the kernel Q
(α)
k,n represents approximation coefficients generated

in the Lagrange interpolation polynomial approximation of the integral operator 0Iα
t

(see Sect. 3 below).
So far, two types of discretization techniques have been used to develop numerical

methods for the problem (1.1). The first technique is to directly discretize the frac-
tional derivative (1.2) by using finite difference schemes (see, e.g. [1, 9, 12, 25, 28, 37,
38, 45, 50, 57]). The second technique is to approximate the fractional integral (1.3)
and develop the corresponding numerical method of the equivalent Volterra integral
problem (1.4). Since our scheme (1.6) follows the second technique, we focus our
literature review on works using this technique. Lubich [48, 49] studied a kind of frac-
tional multistepmethods of the fractional integral (1.3) based on a discrete convolution
form. Brunner and Houwen [7] discussed the linear multistep methods for Volterra
integral problems. Lin and Liu [44] analyzed a linear multistep method and proved
the stability and convergence of the method. A review on the linear multistep methods
of the fractional integral (1.3) can be found in [22]. Kumar and Agrawal [36] pro-
posed a block-by-block method for Volterra integral problem (1.4). Huang et al. [32]
derived the error estimate and the convergence order of the block-by-block method
under certain assumptions. Following the idea of the block-by-block method in [36],
Cao and Xu [10] constructed and analyzed an improved block-by-block method. To
treat the nonlinear term and avoid solving nonlinear equations, Diethelm et al. [23,
24] discussed an Adams-type predictor–corrector method for Volterra integral prob-
lem (1.4) and gave an error analysis of the method. Li and Tao [41] further studied the
error analysis for the Adams-type predictor-corrector method proposed in [23, 24].
Deng [15] andDaftardar-Gejji et al. [13]modified themethod discussed in [23, 24] and
introduced, respectively, a newpredictor–correctormethod.Using piecewise quadratic
interpolation polynomials, Yan et al. [59] proposed a high order fractional Adams-
type predictor–corrector method for solving integral problem (1.4). This method has
higher convergence order than the method in [15] and is easier to implement than
the methods in [10, 62]. For other studies on Adams-type methods, we refer to [14,
27, 29, 30, 42]. In most of the above numerical methods, the expected convergence
order requires that the Caputo derivative C

0Dα
t y (or f (t, y(t))) be smooth enough. For

example, it is required that C0Dα
t y ∈ C1[0, T ] or C2[0, T ] in [42], C0Dα

t y ∈ C2[0, T ]
in [13, 15, 24], C0Dα

t y ∈ C3[0, T ] in [32, 59], C0Dα
t y ∈ C4[0, T ] in [10]. However,

the Caputo derivative C
0Dα

t y is usually not in C1[0, T ] and has a weak singularity at
t = 0, even if the forcing term or the solution y is smooth; see, e.g. [19, 22, 24, 33]
or Theorems 2.1 and 2.2 below. Indeed, the low regularity of C

0Dα
t y will make the

numerical methods in the above works unable to produce the expected convergence
order.

In order to compensate for the initial weak singularity, several methods have been
proposed. One method is to introduce the correction terms by selecting starting values
and starting weights (see, e.g. [11, 22, 30, 49, 60]). In this method, as Diethelm et al.
[22] pointed out, unsuitable starting values and startingweightsmay lead to calculation
instability. Anothermethod is to use non-polynomial basis functionmethods to include
the correct singularity index (see [8, 26, 61]). In addition to the above two methods, a
more easily implemented method is to use nonuniform meshes to keep the error small
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near t = 0 and make up for the loss of accuracy. Based on a class of nonuniform
meshes, Liu et al. [46] studied the error estimates of the fractional rectangle, trapezoid
and predictor-corrector methods introduced in [42], and showed that the methods can
achieve optimal convergence orders between 1 and 2 when C

0Dα
t y /∈ C1[0, T ]. Liu et

al. [47] extended the fractional Adams-type predictor-corrector method proposed in
[23, 24] to the gradedmesh,which is a very effective nonuniformmesh for dealingwith
related problems (see [39, 40, 43, 47, 56]), and proved that the optimal convergence
order 1 + α of this method can be recovered when C

0Dα
t y /∈ C2[0, T ]. Employing

piecewise quadratic interpolation polynomials and the gradedmesh, Lyu andVong [51]
proposed a high-order approximation for the fractional integral (1.3). The resulting
numerical method for the integral problem (1.4) has the optimal convergence order 3
even if C

0Dα
t y /∈ C1[0, T ]. We would like to note that nonuniform meshes have also

been used to deal with fractional partial differential equations and parabolic equations
with non-smooth data in many applications (see, e.g. [12, 39, 40, 43, 56]).

The main purpose of this paper is to develop a higher-order approximation for the
fractional integral (1.3) and propose a higher-order Adams-type method of the form
(1.6) for the problem (1.1) with non-smooth data. To do this, we follow the idea of the
block-by-block methods in [10, 32, 36, 59], but with some necessary modifications.
Similar to [51], we use a general nonuniform mesh, including the graded mesh as a
special case, to deal with the initial weak singularity, and employ piecewise quadratic
interpolation polynomials to approximate the function within the integral, but the spe-
cific construction process is different. In addition, our analysis of the local truncation
error is also different from [51]. In order to prove the unconditional convergence of
the proposed method, we present a modified fractional Grönwall inequality. The con-
vergence result shows that with a proper mesh parameter, the proposed method can
achieve the optimal convergence order 3 + α, even if C

0Dα
t y /∈ C1[0, T ]. Therefore,

our method has a higher convergence order than the methods in [46, 47, 51]. It is
also easy to implement because we do not need to solve any nonlinear equation at
each time level. Our method can be interpreted as a fractional variant of the classi-
cal Adams–Simpson-type method, so we call it the fractional Adams–Simpson-type
method.

The outline of the paper is as follows. In Sect. 2, we describe the regularity assump-
tion imposed in this paper. Section 3 is devoted to the construction of the fractional
Adams–Simpson-type method. The local truncation error of the method is analyzed in
Sect. 4. In Sect. 5, we present the convergence analysis of the method by introducing
a modified fractional Grönwall inequality, and give the nonlinear stability analysis
of the method by using a perturbation technique. In Sect. 6, we extend the method to
multi-term nonlinear fractional ordinary differential equations andmulti-order nonlin-
ear fractional ordinary differential systems with non-smooth data. Numerical results
are given in Sect. 7 to confirm the theoretical convergence results and demonstrate
the computational effectiveness of the method for non-smooth data. The concluding
section contains a brief conclusion.

Notation. Throughout the paper, the sums and integrals are always set to zero if
the upper index is less than the lower one. The notation C with or without subscript,
denotes a positive constant which may differ at different occurrences, but it is always
independent of the step size and the time levels.
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2 Regularity assumption

Define G = {(t, y) | t ∈ [0, T ], |y − φ0| ≤ K } with some K > 0. Assume that
f ∈ C(G) and fulfills a Lipschitz condition with respect to its second variable on G.
According to Theorem 6.5 of [18] (also see [19]), there exists a unique solution y on
[0, T ] for the problem (1.1). The regularity properties of the solution y and its Caputo
derivative are given as follows.

Theorem 2.1 (see [24]) (1) Assume f ∈ C2(G). Define ν̂ = � 1
α
�− 1. Then there exist

a function ψ ∈ C1[0, T ] and some c1, c2, . . . , ĉν ∈ R such that the solution y of (1.1)
is of the form

y(t) = ψ(t) +
ν̂∑

ν=1

cν t
να. (2.1)

(2) Assume f ∈ C3(G). Define ν̂ = � 2
α
� − 1 and ν̃ = � 1

α
� − 1. Then there exist a

function ψ ∈ C2[0, T ] and some c1, c2, . . . , ĉν ∈ R and d1, d2, . . . , d̃ν ∈ R such that
the solution y of (1.1) is of the form

y(t) = ψ(t) +
ν̂∑

ν=1

cν t
να +

ν̃∑
ν=1

dν t
1+να. (2.2)

Theorem 2.2 (see [24]) If y ∈ Cm[0, T ] for some m ∈ N and 0 < α < m, then

C
0Dα

t y(t) = ψ(t) +
m−2∑
l=0

y(l+1)(0)

�(2 − α + l)
t1−α+l , (2.3)

with some function ψ ∈ Cm−1[0, T ], where y(l) means the lth derivative of y.

Theorem 2.1 shows that the solution y of (1.1) is usually non-smooth, even if f is
smooth on G. We see from Theorem 2.2 that smoothness of the function y will imply
non-smoothness of its Caputo derivative unless some special conditions are fulfilled.
For more discussions, we refer to [19, 22, 24]. When f ∈ Cm(G) (m ≥ 3 orm = 2 but
α ∈ (0, 1

2 )), we have from Theorem 2.1 that, with some ĉ1, ĉ2, . . . , ĉ̂ν ∈ R (̂ν > 1),

C
0Dα

t y(t) =
ν̂∑

ν=1

ĉν t
(ν−1)α + smoother terms (2.4)

which implies that C0Dα
t y behaves as C(1+ tα). Based on the above observations, we

introduce the following assumption for the solution y of the problem (1.1):

Assumption 1 Assume that g := C
0Dα

t y ∈ C4(0, T ] and there exists a positive constant
C such that

|g(l)(t)| ≤ C(1 + tσ−l), t ∈ (0, T ], l = 0, 1, 2, 3, 4, (2.5)
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where σ ∈ (0, 1) is a real number.

The above assumption admits a certain weak singularity of g at t = 0, i.e. g is
continuous at t = 0, but g(l) (l = 1, 2, 3, 4) blow up at t = 0.

3 Fractional Adams–Simpson-typemethod

Under Assumption 1, many existing numerical methods for the problem (1.1) would
produce less accurate numerical solutions when they are directly applied. Next, we
will develop a fractional Adams-type method of the form (1.6) on a nonuniform mesh
(1.5), which has higher-order convergence under Assumption 1.

Let τn := tn − tn−1 (1 ≤ n ≤ N ) be the step size. Given two nonnegative integers
p and q satisfying p ≤ q, for any function w ∈ L1[0, T ] ∩ C p+1(0, T ], we let L p,qw

be the Lagrange interpolation polynomial (of degree p) of w with respect to the nodes
(tq , tq−1, . . . , tq−p), that is,

⎧⎪⎨
⎪⎩
L p,qw(t) =

q∑
k=q−p

lk,p,q(t)w(tk) if p > 0,

L0,qw(t) = w(tq),

(3.1)

where

lk,p,q(t) =
∏q

k∗=q−p,k∗ �=k(t − tk∗)∏q
k∗=q−p,k∗ �=k(tk − tk∗)

if p > 0. (3.2)

The corresponding interpolation error is denoted by Rp,qw(t) := w(t) − L p,qw(t).
Define

0 Î
α
t w(t1) =

∫ t1

t0
ωα(t1 − s)L0,0w(s) ds, (3.3)

0 Î
α
t w(t2) =

∫ t2

t0
ωα(t2 − s)L1,1w(s) ds, (3.4)

0 Î
α
t w(tn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−3
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)L2,2k+2w(s) ds +

∫ tn

tn−1

ωα(tn − s)L2,n−1w(s) ds

if n is odd and n ≥ 3,
n−4
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)L2,2k+2w(s) ds +

∫ tn

tn−2

ωα(tn − s)L2,n−1w(s) ds

if n is even and n ≥ 4.

(3.5)

We approximate the integral 0Iα
t w(tn) by

0Iα
t w(tn) ≈ 0 Î

α
t w(tn), 1 ≤ n ≤ N . (3.6)
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This approximation method can be interpreted as a fractional variant of the classical
Adams–Simpson-typemethod.We call it the fractionalAdams–Simpson-typemethod.

Remark 3.1 The approximation (3.6) is completely different from the block-by-block
methods used in [10, 32, 36, 59]. A major difference is the approximation on the last
interval. Specifically, our approximation (3.6) does not depend on the valuew(tn). This
will enable us to avoid solving nonlinear equations when applying the approximation
(3.6) to nonlinear problems. Another difference is that our approximation (3.6) is
based on the general nonuniform mesh (1.5), which helps to make up for the loss of
accuracy for non-smooth data.

In order to give a compact form of (3.6), we define

b(α)
0,0,1 =

∫ t1

t0
ωα(t1 − s) ds, (3.7)

b(α)
k,1,2 =

∫ t2

t0
ωα(t2 − s)lk,1,1(s) ds, k = 0, 1, (3.8)

b(α)
k,n−1,n =

⎧⎪⎪⎨
⎪⎪⎩

∫ tn

tn−1

ωα(tn − s)lk,2,n−1(s) ds if n is odd,∫ tn

tn−2

ωα(tn − s)lk,2,n−1(s) ds if n is even,
k = n − 3, n − 2, n − 1, n ≥ 3,

(3.9)

a(α)
k,q,n =

∫ tq

tq−2

ωα(tn − s)lk,2,q (s) ds, k = q − 2, q − 1, q, 2 ≤ q ≤ n − 1, n ≥ 3.

(3.10)

Then we have

0 Î
α
t w(t1) =

∫ t1

t0
ωα(t1 − s)w(t0) ds = b(α)

0,0,1w(t0), (3.11)

0 Î
α
t w(t2) =

∫ t2

t0
ωα(t2 − s)

(
1∑

k=0

lk,1,1(s)w(tk)

)
ds =

1∑
k=0

b(α)
k,1,2w(tk).

(3.12)

When n ≥ 3 and is odd,

0 Î
α
t w(tn) =

n−3
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)

(
2k+2∑
m=2k

lm,2,2k+2(s)w(tm)

)
ds

+
∫ tn

tn−1

ωα(tn − s)

(
n−1∑

k=n−3

lk,2,n−1(s)w(tk)

)
ds

=
n−3
2∑

k=0

2k+2∑
m=2k

a(α)
m,2k+2,nw(tm) +

n−1∑
k=n−3

b(α)
k,n−1,nw(tk)
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=
n−3
2∑

k=0

a(α)
2k,2k+2,nw(t2k) +

n−3
2∑

k=0

a(α)
2k+1,2k+2,nw(t2k+1)

+
n−3
2∑

k=0

a(α)
2k+2,2k+2,nw(t2k+2) +

n−1∑
k=n−3

b(α)
k,n−1,nw(tk). (3.13)

When n ≥ 4 and is even,

0 Î
α
t w(tn) =

n−4
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)

(
2k+2∑
m=2k

lm,2,2k+2(s)w(tm)

)
ds

+
∫ tn

tn−2

ωα(tn − s)

(
n−1∑

k=n−3

lk,2,n−1(s)w(tk)

)
ds

=
n−4
2∑

k=0

2k+2∑
m=2k

a(α)
m,2k+2,nw(tm) +

n−1∑
k=n−3

b(α)
k,n−1,nw(tk)

=
n−4
2∑

k=0

a(α)
2k,2k+2,nw(t2k) +

n−4
2∑

k=0

a(α)
2k+1,2k+2,nw(t2k+1)

+
n−4
2∑

k=0

a(α)
2k+2,2k+2,nw(t2k+2) +

n−1∑
k=n−3

b(α)
k,n−1,nw(tk). (3.14)

Define

Q(α)
0,1 = b(α)

0,0,1, Q(α)
k,2 = b(α)

k,1,2 (k = 0, 1), Q(α)
k,3 = a(α)

k,2,3 + b(α)
k,2,3 (k = 0, 1, 2),

(3.15)

Q(α)
k,4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(α)
0,2,4 if k = 0,

a(α)
k,2,4 + b(α)

k,3,4 if k = 1, 2,

b(α)
3,3,4 if k = 3,

(3.16)

Q(α)
k,5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a(α)
k,2,5 if k = 0, 1,

a(α)
2,2,5 + a(α)

2,4,5 + b(α)
2,4,5 if k = 2,

a(α)
k,4,5 + b(α)

k,4,5 if k = 3, 4,

(3.17)
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Q(α)
k,6 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a(α)
k,2,6 if k = 0, 1,

a(α)
2,2,6 + a(α)

2,4,6 if k = 2,

a(α)
k,4,6 + b(α)

k,5,6 if k = 3, 4,

b(α)
5,5,6 if k = 5.

(3.18)

For an odd n ≥ 7, we define

Q(α)
k,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(α)
0,2,n if k = 0,

a(α)
2m+1,2m+2,n if k = 2m + 1, m = 0, 1, . . . , n−5

2 ,

a(α)
2m,2m,n + a(α)

2m,2m+2,n if k = 2m, m = 1, 2, . . . , n−5
2 ,

a(α)
n−3,n−3,n + a(α)

n−3,n−1,n + b(α)
n−3,n−1,n if k = n − 3,

a(α)
k,n−1,n + b(α)

k,n−1,n if k = n − 2, n − 1.

(3.19)

For an even n ≥ 8, we define

Q(α)
k,n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(α)
0,2,n if k = 0,

a(α)
2m+1,2m+2,n if k = 2m + 1, m = 0, 1, . . . , n−6

2 ,

a(α)
2m,2m,n + a(α)

2m,2m+2,n if k = 2m, m = 1, 2, . . . , n−4
2 ,

a(α)
k,n−2,n + b(α)

k,n−1,n if k = n − 3, n − 2,

b(α)
n−1,n−1,n if k = n − 1.

(3.20)

Then a compact form of (3.6) is given by

0Iα
t w(tn) ≈

n−1∑
k=0

Q(α)
k,nw(tk), 1 ≤ n ≤ N . (3.21)

Applying the above approximation to (1.4), we obtain the scheme (1.6) for solving
(1.1). We call this scheme the fractional Adams–Simpson-type scheme.

4 Analysis of the local truncation error

Letting t = tn in (1.4), we obtain

y(tn) = φ0 +
n−1∑
k=0

Q(α)
k,n f (tk, y(tk)) + Rn, 1 ≤ n ≤ N , (4.1)
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where Rn is the local truncation error given by

Rn = 0Iα
t f (tn, y(tn)) −

n−1∑
k=0

Q(α)
k,n f (tk, y(tk)) = 0Iα

t g(tn) −
n−1∑
k=0

Q(α)
k,ng(tk),

(4.2)

where we have used g(t) := C
0Dα

t y(t) = f (t, y(t)). From the derivation of (3.21),
we can see that

R1 =
∫ t1

t0
ωα(t1 − s)R0,0g(s) ds, R2 =

∫ t2

t0
ωα(t2 − s)R1,1g(s) ds, (4.3)

Rn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n−3
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)R2,2k+2g(s) ds +

∫ tn

tn−1

ωα(tn − s)R2,n−1g(s) ds

if n is odd and n ≥ 3,
n−4
2∑

k=0

∫ t2k+2

t2k
ωα(tn − s)R2,2k+2g(s) ds +

∫ tn

tn−2

ωα(tn − s)R2,n−1g(s) ds

if n is even and n ≥ 4,
(4.4)

where the interpolation error Rp,qg(t) = g(t) − L p,qg(t) is given by the following
lemma.

Lemma 4.1 Under Assumption 1, it holds that

R0,0g(t) = t
∫ 1

0
g′(st) ds, t > 0, (4.5)

R1,1g(t) = −
1∑

k=0

lk,1,1(t)(t − tk)
2
∫ 1

0
g(2)(tk(1 − s) + ts)s ds, t > 0, (4.6)

R2,2g(t) = −
2∑

k=0

lk,2,2(t)(t − tk)
2
∫ 1

0
g(2)(tk(1 − s) + ts)s ds, t > 0, (4.7)

R2,q g(t) = 1

2

q∑
k=q−2

lk,2,q (t)(t − tk)
3
∫ 1

0
g(3)(tk(1 − s) + ts)s2 ds, q ≥ 2, t > 0.

(4.8)

Proof See “Appendix A”. �
In order to obtain a better bound of the local truncation error Rn underAssumption 1,

it is reasonable to choose a nonuniform mesh (1.5) that concentrates grid points near
t = 0. Let γ ≥ 1 be a user-chosen parameter and assume that there are two positive
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constants ρ > 0 and ρ > 0, dependent on γ but independent of n, such that the
nonuniform mesh (1.5) satisfies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) ρ ≤ τn

τn+1
≤ 1 for 1 ≤ n ≤ N − 1,

(ii) τn ≤ ρN−1t1−1/γ
n for 1 ≤ n ≤ N ,

(iii) τn+1 − τn ≤ ρN−2t1−2/γ
n for 2 ≤ n ≤ N − 1,

(iv) tn ≤ ρtn−1 for 2 ≤ n ≤ N .

(4.9)

Since τ1 = t1, the property (4.9)-(ii) implies that τ1 = O(N−γ ) while for those tn
bounded away from t = 0 one has τn = O(N−1). This is necessary to compensate for
the initial weak singularity given by (2.5). An example satisfying (4.9) is the graded
mesh

tn =
( n

N

)γ

T , 0 ≤ n ≤ N (4.10)

which is very efficient for dealing with related problems (see [39, 40, 43, 47, 56]).
When γ = 1, the graded mesh (4.10) reduces to the uniform mesh.

Theorem 4.1 Assume that the solution y of the problem (1.1) satisfies Assumption 1,
and let the mesh assumption (4.9) hold. Then

|Rn| ≤ CN−γ (σ+α), n = 1, 2, (4.11)

|Rn| ≤ CN−min{γ (σ+α),3+α}, 3 ≤ n ≤ N . (4.12)

Proof It follows from (4.5) and (2.5) that

∣∣R0,0g(t)
∣∣ ≤ Ct

∫ 1

0
(st)σ−1 ds = C

σ
tσ , t > 0. (4.13)

Therefore, we have from (4.4), (4.13) and (4.9)-(ii) that

|R1| ≤ C

σ

∫ t1

t0
ωα(t1 − s)sσ ds = C�(1 + σ)

σ�(1 + σ + α)
tσ+α
1 ≤ CN−γ (σ+α).

(4.14)

By (4.6), (4.9)-(iv) and (2.5), we have that for t ∈ (t0, t2),

∣∣R1,1g(t)
∣∣ ≤ |t − t1|t2

τ1

∫ 1

0

∣∣∣g(2)(ts)
∣∣∣ s ds + |t − t1|2t

τ1

∫ 1

0

∣∣∣g(2)(t1(1 − s) + ts)
∣∣∣ s ds

≤ C |t − t1|t
[∫ 1

0

∣∣∣g(2)(ts)
∣∣∣ s ds +

∫ 1

0

∣∣∣g(2)(t1(1 − s) + ts)
∣∣∣ s ds

]

≤ C |t − t1|tσ−1. (4.15)
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This implies

|R2| ≤ C
∫ t2

t0
ωα(t2 − s)|s − t1|sσ−1 ds ≤ Ctσ+α

2 ≤ CN−γ (σ+α), (4.16)

where we have used t2 ≤ ρt1 ≤ ργ+1N−γ from (4.9)-(iv) and (4.9)-(ii) to derive the
last inequality. This proves (4.11).

In order to prove (4.12), we first consider the case of odd n and n ≥ 3. According
to (4.4), we decompose Rn into three terms:

Rn = R1n + R2n + R3n, (4.17)

where

R1n =
∫ t2

t0
ωα(tn − s)R2,2g(s) ds, (4.18)

R2n =
n−3
2∑

k=1

∫ t2k+2

t2k
ωα(tn − s)R2,2k+2g(s) ds, (4.19)

R3n =
∫ tn

tn−1

ωα(tn − s)R2,n−1g(s) ds. (4.20)

(i) The estimation of R1n By (4.7), (4.9)-(i), (4.9)-(iv) and (2.5), we have that for
t ∈ (t0, t2),

∣∣R2,2g(t)
∣∣ ≤ C

[
t2

∫ 1

0

∣∣∣g(2)(ts)
∣∣∣ s ds + t

2∑
k=1

|t − tk |
∫ 1

0

∣∣∣g(2)(tk(1 − s) + ts)
∣∣∣ s ds

]

≤ Ct2t
σ−1, (4.21)

and thus

|R1n| ≤ Ct2

∫ t2

t0
ωα(tn − s)sσ−1 ds ≤ Ctσ+α

2 ≤ CN−γ (σ+α). (4.22)

(ii) The estimation of R2n We have from (4.8) that for k ≥ 1,

R2,2k+2g(t) = 1

2

2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3
∫ 1

0
g(3)(tm(1 − s) + ts)s2 ds

= 1

6
g(3)(t2k+2)

2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3

+1

2

2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3gm,2k+1(t), (4.23)
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where

gm,2k+1(t) =
∫ 1

0

[
g(3)(tm(1 − s) + ts) − g(3)(t2k+2)

]
s2 ds. (4.24)

Define 2k(t) = (t − t2k)(t − t2k+1)(t − t2k+2). According to divided difference
theory,

2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3 = 2k(t)
2k+2∑
m=2k

(t − tm)2

′
2k(tm)

= 2k(t), (4.25)

and so

R2,2k+2g(t) = 1

6
g(3)(t2k+2)2k(t) + 1

2

2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3gm,2k+1(t).

(4.26)

Based on the above expression, we write

R2n = R21n + R22n, (4.27)

where

R21n = 1

6

n−3
2∑

k=1

g(3)(t2k+2)

∫ t2k+2

t2k
ωα(tn − s)2k(s) ds, (4.28)

R22n = 1

2

n−3
2∑

k=1

∫ t2k+2

t2k
ωα(tn − s)

2k+2∑
m=2k

lm,2,2k+2(s)(s − tm)3gm,2k+1(s) ds.

(4.29)

In order to estimate R21n , we define


∗
2k(t) =

∫ t2k+2

t
2k(s) ds.

(4.30)

It follows from integration by parts that

R21n =1

6

n−3
2∑

k=1

g(3)(t2k+2)ωα(tn − t2k)
∗
2k(t2k)

− 1

6

n−3
2∑

k=1

g(3)(t2k+2)

∫ t2k+2

t2k
ωα−1(tn − s)

∗
2k(s) ds. (4.31)
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Since


∗
2k(t2k) =

∫ t2k+2

t2k
2k(s) ds = 1

12
(t2k+2 − t2k)

3(τ2k+1 − τ2k+2),

we have from (2.5) and (4.9)-(i) that the first term of R21n in (4.31), denoted by
R211,n , is bounded by

|R211,n| ≤ C max
1≤k≤ n−3

2

{
tσ+α−3
2k+2 (τ2k+2 + τ2k+1)

2(τ2k+2 − τ2k+1)
}

×
n−3
2∑

k=1

ωα(tn − t2k)t
−α
2k+2(t2k+2 − t2k). (4.32)

A simple calculation shows that

n−3
2∑

k=1

ωα(tn − t2k)t
−α
2k+2(t2k+2 − t2k) ≤

n−3
2∑

k=1

∫ t2k+2

t2k
ωα(tn − s)s−α ds

≤
∫ tn

t0
ωα(tn − s)s−α ds = B(α, 1 − α)

�(α)
.

Therefore, we obtain

|R211,n| ≤ C max
1≤k≤ n−3

2

{
tσ+α−3
2k+2 (τ2k+2 + τ2k+1)

2(τ2k+2 − τ2k+1)
}

. (4.33)

Define β = min{ γ
2 (σ + α), 2}. By (4.9),

|R211,n| ≤ C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)2
τ2k+2 − τ2k+1

t2k+2

}

≤ C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)β (
τ2k+2 − τ2k+1

t2k+2

) β
2
}

≤ CN−2β max
1≤k≤ n−3

2

{
t
σ+α− 2β

γ

2k+2

}
≤ CN−2β = CN−min{γ (σ+α),4}.

(4.34)

For the second term of R21n in (4.31), denoted by R212,n , we have

|R212,n| ≤ C

n−3
2∑

k=1

tσ−3
2k+2

∫ t2k+2

t2k
|ωα−1(tn − s)|

∣∣∣∗
2k(s)

∣∣∣ ds. (4.35)
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By (4.9)-(i) and (4.9)-(ii),

|R212,n| ≤ C max
1≤k≤ n−3

2

{
tσ−3
2k+2τ

4
2k+2

}
τα−1
n

= C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)3+α

τ 1−α
2k+2

}
τα−1
n

≤ C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)min{γ (σ+α),3+α}}

≤ CN−min{γ (σ+α),3+α} max
1≤k≤ n−3

2

{
t
σ+α−min{σ+α, 3+α

γ
}

2k+2

}

≤ CN−min{γ (σ+α),3+α}. (4.36)

Finally, we obtain from (4.31), (4.34) and (4.36) that

|R21n| ≤ CN−min{γ (σ+α),3+α}. (4.37)

We next estimate R22n . Since for t ∈ (t2k, t2k+2) andm = 2k, 2k+1, 2k+2 (k ≥ 1),

∣∣gm,2k+1(t)
∣∣ ≤

∫ 1

0

∣∣∣g(4)(ξt )

∣∣∣ |tm(1 − s) + ts − t2k+2| s2 ds

≤ 2

3
(τ2k+1 + τ2k+2) sup

η∈(t2k ,t2k+2)

|g(4)(η)|, (4.38)

and

∣∣∣∣∣
2k+2∑
m=2k

lm,2,2k+2(t)(t − tm)3

∣∣∣∣∣ ≤ (τ2k+1 + τ2k+2)
4

τ2k+1
+ (τ2k+1 + τ2k+2)

5

τ2k+1τ2k+2

+ (τ2k+1 + τ2k+2)
4

τ2k+2
, (4.39)

it follows from (4.9)-(i), (4.9)-(ii), (4.9)-(iv) and (2.5) that

|R22n | ≤ C max
1≤k≤ n−3

2

{
τ42k+2t

α
2k+2t

σ−4
2k

} ∫ tn−1

t2
ωα(tn − s)s−α ds

≤ C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)4
}

≤ C max
1≤k≤ n−3

2

{
tσ+α
2k+2

(
τ2k+2

t2k+2

)min{γ (σ+α),4}}

≤ CN−min{γ (σ+α),4} max
1≤k≤ n−3

2

{
t
σ+α−min{σ+α, 4

γ
}

2k+2

}
≤ CN−min{γ (σ+α),4},

(4.40)
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where we have used the following estimate:

∫ tn−1

t2
ωα(tn − s)s−α ds ≤ B(α, 1 − α)

�(α)
.

Consequently, we have from (4.27), (4.37) and (4.40) that

|R2n| ≤ CN−min{γ (σ+α),3+α}. (4.41)

(iii) The estimation of R3n
In order to estimate R3n , we first give a bound of R2,n−1g(t). By (4.8), (4.9)-(i) and
(2.5), we have that for t ∈ (tn−1, tn),

∣∣R2,n−1g(t)
∣∣ ≤ Cτ 3n t

σ−3. (4.42)

This bound implies

|R3n| ≤ Cτ 3n

∫ tn

tn−1

ωα(tn − s)sσ−3 ds

≤ Ctσ−3
n−1 τ 3+α

n ≤ Ctσ+α
n−1

(
τn−1

tn−1

)min{γ (σ+α),3+α}
≤ CN−min{γ (σ+α),3+α},

(4.43)

where we have used (4.9)-(i) and (4.9)-(ii) to derive the above last two inequalities.
Finally, we conclude from (4.22), (4.41) and (4.43) that for an odd number n and

n ≥ 3,

|Rn| ≤ CN−min{γ (σ+α),3+α}. (4.44)

This proves (4.12) for the case of odd n and n ≥ 3.
For the case of even n and n ≥ 4, the proof of (4.12) is similar and we omit it for

the length of the paper. �

5 Convergence and stability analysis

5.1 Auxiliary results

We give some auxiliary results, which will be used later.

Lemma 5.1 Let the mesh assumption (4.9)-(i) hold. Then the coefficients Q(α)
k,n defined

in Sect. 3 satisfy

|Q(α)
k,n| ≤ Cτk+1(tn − tk)

α−1, 0 ≤ k ≤ n − 1, 1 ≤ n ≤ N . (5.1)
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Proof It is clear that

|b(α)
0,0,1| = τα

1

�(α + 1)
≤ Cτ1(t1 − t0)

α−1, (5.2)

|b(α)
k,1,2| ≤ C

∫ t2

t0
ωα(t2 − s) ds ≤ C(t2 − t0)

α = Ct2(t2 − t0)
α−1

≤ Cτk+1(t2 − tk)
α−1, k = 0, 1. (5.3)

When n ≥ 3 and k = n − 3, n − 2, n − 1, we have

|b(α)
k,n−1,n| ≤

⎧⎪⎪⎨
⎪⎪⎩
C

∫ tn

tn−1

ωα(tn − s) ds ≤ Cτk+1(tn − tk)
α−1 if n is odd,

C
∫ tn

tn−2

ωα(tn − s) ds ≤ Cτk+1(tn − tk)
α−1 if n is even.

(5.4)

We next estimate a(α)
k,q,n , where n ≥ 3, 2 ≤ q ≤ n − 1, k = q − 2, q − 1, q. By the

definition of a(α)
k,q,n and (4.9)-(i),

|a(α)
k,q,n| ≤ C

∫ tq

tq−2

ωα(tn − s) ds ≤ C(τq + τq−1)ωα(tn − tq) ≤ Cτk+1(tn − tq)
α−1.

(5.5)

Since 0 < α < 1, we have

(tn − tq )α−1 = (tn − tk)
α−1

(
tn − tq
tn − tk

)α−1
≤ (tn − tk)

α−1
(

tn − tq
tn − tq−2

)α−1

≤ (tn − tk)
α−1

(
tq+1 − tq

tq+1 − tq−2

)α−1
= (tn − tk)

α−1
(

τq+1

τq−1 + τq + τq+1

)α−1

≤ 31−α(tn − tk)
α−1. (5.6)

This proves

|a(α)
k,q,n| ≤ Cτk+1(tn − tk)

α−1, n ≥ 3, 2 ≤ q ≤ n − 1, k = q − 2, q − 1, q.

(5.7)

Combining (5.2)–(5.4) and (5.7) with the definition of Q(α)
k,n , we immediately get (5.1).

�
Let E(z) be the Mittag-Leffler function of order α, defined by

E(z) =
∞∑
k=0

zk

�(kα + 1)
. (5.8)
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Lemma 5.2 (A fractionalGrönwall inequality)Let g0 andC0 be twopositive constants,
and let the mesh be given by (1.5). Also let {θn}N0 be a set function. Assume that

θ0 ≤ g0, θk ≤ C0

k−1∑
j=0

τ j+1(tk − t j )
α−1θ j + g0 (1 ≤ k ≤ n, n ≥ 1). (5.9)

Then θn ≤ E(α)g0, where

E(α) = E(C0�(α)T α). (5.10)

Proof See the proof of Lemma 3.3 of [42] (note that τ j in that paper corresponds to
τ j+1 in this paper). �
Lemma 5.3 (A modified fractional Grönwall inequality) Let g0, C0 and ε be positive
constants, and let the mesh be given by (1.5). Also let {En}N0 be a nonnegative set
function. Assume that

(i) for any 1 ≤ n ≤ N, if max0≤k≤n−1 Ek ≤ ε, one has

En ≤ C0

n−1∑
k=0

τk+1(tn − tk)
α−1Ek + g0;

(ii) E0 ≤ g0 and E(α)g0 ≤ ε, where the function E(α) is defined by (5.10).

Then En ≤ E(α)g0 for all 0 ≤ n ≤ N.

Proof By the condition (ii), E0 ≤ g0 < E(α)g0 ≤ ε. We assert that max0≤n≤N En ≤
ε. Otherwise, there exists 1 ≤ n ≤ N such that max0≤k≤n−1 Ek ≤ ε and En > ε.
Then for any 1 ≤ j ≤ n, max0≤k≤ j−1 Ek ≤ max0≤k≤n−1 Ek ≤ ε. By the condition
(i), we have

E j ≤ C0

j−1∑
k=0

τk+1(t j − tk)
α−1Ek + g0, 1 ≤ j ≤ n.

Therefore, we get from Lemma 5.2 and the condition (ii) that En ≤ E(α)g0 ≤ ε

which is a contradiction. Since max0≤n≤N En ≤ ε, the desired result follows from the
condition (i) and Lemma 5.2. �

5.2 Convergence analysis

Let y be the solution of the problem (1.1). Without loss of generality, we assume that
M ≤ y(t) ≤ M for all t ∈ [0, T ]. For the sake of numerical analysis, we assume that
f fulfills the following local Lipschitz condition with respect to its second variable:

| f (t, v) − f (t, ṽ)| ≤ L|v − ṽ|, ∀ t ∈ [0, T ], M − 1 ≤ v, ṽ ≤ M + 1.

(5.11)
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Theorem 5.1 Assume that the solution y of the problem (1.1) satisfies Assumption 1,
and let the local Lipschitz condition (5.11) and the mesh assumption (4.9) be fulfilled.
Let yn be the numerical solution of the fractional Adams–Simpson-type scheme (1.6).
Then there exists a positive constant N0, independent of N and n, such that when
N ≥ N0,

|y(tn) − yn| ≤ CN−min{γ (σ+α),3+α}, 0 ≤ n ≤ N . (5.12)

Proof Let en = y(tn) − yn . We have from (1.6) and (4.1) that

⎧⎪⎨
⎪⎩
en =

n−1∑
k=0

Q(α)
k,n [ f (tk, y(tk)) − f (tk, yk)] + Rn, 1 ≤ n ≤ N ,

e0 = 0.

(5.13)

Taking absolute values and using Theorem 4.1, we deduce

|en | ≤
n−1∑
k=0

∣∣∣Q(α)
k,n

∣∣∣ | f (tk , y(tk)) − f (tk , yk)| + CN−min{γ (σ+α),3+α}, 1 ≤ n ≤ N .

(5.14)

It is clear that |e0| = 0. For any 1 ≤ n ≤ N , we assume max0≤k≤n−1 |ek | ≤ 1. This
ensures

M − 1 ≤ y(tk) − 1 ≤ yk ≤ y(tk) + 1 ≤ M + 1, 0 ≤ k ≤ n − 1, (5.15)

and so by the local Lipschitz condition (5.11),

| f (tk, y(tk)) − f (tk, yk)| ≤ L|ek |, 0 ≤ k ≤ n − 1. (5.16)

Substituting the above estimate into (5.14) and using (5.1), we obtain

|en| ≤ C0

n−1∑
k=0

τk+1(tn − tk)
α−1 |ek | + g0, (5.17)

where

C0 = CL, g0 = CN−min{γ (σ+α),3+α}. (5.18)

Let E(α) be defined by (5.10), and let N ≥ N0 be sufficiently large such that

E(α)g0 = CE(α)N−min{γ (σ+α),3+α} ≤ 1.

This shows that when N ≥ N0, the nonnegative set function {|en|}N0 satisfies the
conditions (i) and (ii) of Lemma 5.3 with g0 and C0 being given in (5.18) and ε = 1.
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Therefore, by Lemma 5.3,

|en| ≤ E(α)g0 = CE(α)N−min{γ (σ+α),3+α}, 0 ≤ n ≤ N . (5.19)

This proves (5.12). �

Theorem 5.1 shows that under Assumption 1 and the mesh assumption (4.9), the
numerical solution of the fractional Adams–Simpson-type scheme (1.6) converges
with the order min{γ (σ + α), 3 + α}. Especially, the numerical solution can achieve
the optimal convergence order 3+α when the mesh parameter γ ≥ (3+α)/(σ +α).
Since a large value of γ will result in a high concentration of the grid points near
t = 0, the optimal mesh parameter γ is given by γopt = (3 + α)/(σ + α).

Remark 5.1 The introduction of Lemma 5.3 (a modified fractional Grönwall inequal-
ity) in the proof of Theorem 5.1 makes us naturally get the convergence estimate
(5.12).

5.3 Nonlinear stability analysis

Let yn be the numerical solution of the fractional Adams–Simpson-type scheme (1.6).
We have from Theorem 5.1 that for sufficiently large N , the numerical solution yn is
bounded by

M − 1

2
≤ yn ≤ 1

2
+ M, 0 ≤ n ≤ N , (5.20)

where M and M are the constants appeared in (5.11).
We first investigate the stability of the numerical solution yn with respect to the

initial value φ0. Suppose that in (1.6), φ0 is perturbed and becomes φ0 + ε0. Denote
by ỹn the resulting perturbed solution of (1.6).

Theorem 5.2 Let the local Lipschitz condition (5.11) and the mesh assumption (4.9)-
(i) be fulfilled. Let yn be the solution of the fractional Adams–Simpson-type scheme
(1.6), and let N be sufficiently large such that (5.20) is satisfied. Then for sufficiently
small |ε0|,

|yn − ỹn| ≤ C |ε0|, 0 ≤ n ≤ N . (5.21)

Proof Let z̃n = ỹn − yn . We have the following perturbed problem:

⎧⎪⎨
⎪⎩
z̃n =

n−1∑
k=0

Q(α)
k,n [ f (tk, ỹk) − f (tk, yk)] + ε0, 1 ≤ n ≤ N ,

z̃0 = ε0.

(5.22)
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Taking absolute values, we have

|̃zn| ≤
n−1∑
k=0

∣∣∣Q(α)
k,n

∣∣∣ | f (tk, ỹk) − f (tk, yk)| + |ε0|, 1 ≤ n ≤ N . (5.23)

When |ε0| ≤ 1
2 , |̃z0| = |ε0| ≤ 1

2 . For any 1 ≤ n ≤ N , we assume max0≤k≤n−1 |̃zk | ≤
1
2 . Then by (5.20),

M − 1 ≤ yk − 1

2
≤ ỹk ≤ yk + 1

2
≤ M + 1, 0 ≤ k ≤ n − 1, (5.24)

and so by (5.1) and the local Lipschitz condition (5.11),

|̃zn| ≤ C0

n−1∑
k=0

τk+1(tn − tk)
α−1 |̃zk | + g0, (5.25)

whereC0 = CL and g0 = |ε0|. Let E(α) be defined by (5.10).When |ε0| is sufficiently
small such that

E(α)g0 = E(α)|ε0| ≤ 1

2
,

the nonnegative set function {|̃zn|}N0 satisfies the conditions (i) and (ii) of Lemma 5.3
with ε = 1

2 . Therefore, by Lemma 5.3,

|̃zn| ≤ E(α)g0 = E(α)|ε0|, 0 ≤ n ≤ N . (5.26)

This proves (5.21). �
Next, we discuss the influence of changes in the given function f on the right-hand

side of the equation. Assume that the function f is perturbed and becomes f̂ . Denote
by ŷn the resulting perturbed solution of (1.6). Define

ε f = max
(t,v)∈[0,T ]×[M−1,M+1]

∣∣ f (t, v) − f̂ (t, v)
∣∣ , (5.27)

where M and M are the constants appeared in (5.11).

Theorem 5.3 Let the local Lipschitz condition (5.11) and the mesh assumption (4.9)-
(i) be fulfilled. Let yn be the solution of the fractional Adams–Simpson-type scheme
(1.6), and let N be sufficiently large such that (5.20) is satisfied. Then for sufficiently
small ε f ,

|yn − ŷn| ≤ Cε f , 0 ≤ n ≤ N . (5.28)
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Proof Let ẑn = yn − ŷn . We have the following perturbed problem:

⎧⎪⎨
⎪⎩
ẑn =

n−1∑
k=0

Q(α)
k,n

[
f (tk, yk) − f̂ (tk, ŷk)

]
, 1 ≤ n ≤ N ,

ẑ0 = 0.

(5.29)

For any 1 ≤ n ≤ N , we assume max0≤k≤n−1 |̂zk | ≤ 1
2 . Then by (5.20),

M − 1 ≤ yk − 1

2
≤ ŷk ≤ yk + 1

2
≤ M + 1, 0 ≤ k ≤ n − 1. (5.30)

Taking absolute values in (5.29) and using (5.11), (5.27) and (5.1), we get

|̂zn| ≤
n−1∑
k=0

∣∣∣Q(α)
k,n

∣∣∣ | f (tk, yk) − f (tk, ŷk)| +
n−1∑
k=0

∣∣∣Q(α)
k,n

∣∣∣ ∣∣ f (tk, ŷk) − f̂ (tk, ŷk)
∣∣

≤ CL
n−1∑
k=0

τk+1(tn − tk)
α−1 |̂zk | + Cε f

n−1∑
k=0

τk+1(tn − tk)
α−1, 1 ≤ n ≤ N .

(5.31)

Since

n−1∑
k=0

τk+1(tn − tk)
α−1 ≤

n−1∑
k=0

∫ tk+1

tk
(tn − t)α−1 dt = 1

α
tαn ,

we have from (5.31) that

|̂zn| ≤ CL
n−1∑
k=0

τk+1(tn − tk)
α−1 |̂zk | + C

α
T αε f , 1 ≤ n ≤ N . (5.32)

The remaining proof is similar to that of Theorem 5.2. �
Remark 5.2 It should be mentioned that the bounds (5.21) and (5.28) on the perturba-
tions only apply provided that |ε0| and ε f are sufficiently small. This phenomenon is
typical of nonlinear stability analysis (see [55]) and has no counterpart in the linear
stability theory (see [54]).

6 Extensions

6.1 Extension tomulti-term nonlinear fractional ordinary differential equations

In the previous sections, we have only considered so-called single-term equations, i.e.
equations where only one fractional differential operator is involved. However, in cer-
tain cases, we need to solve equations containing more than one fractional differential
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operators. An equation of this type is called a multi-term fractional differential equa-
tion (see [17, 18, 20, 21]). Consider the following initial value problem of multi-term
nonlinear fractional ordinary differential equation:

{
C
0Dα

t y(t) + C
0Dβ

t y(t) = f (t, y(t)), t ∈ (0, T ], 0 < β < α < 1,
y(0) = φ0.

(6.1)

Let ϕ(t) = φ0ωα−β+1(t). We can transform the above problem into its integral form
as

{
y(t) = φ0 + ϕ(t) − 0Iα−β

t y(t) + 0Iα
t f (t, y(t)), t ∈ (0, T ], 0 < β < α < 1,

y(0) = φ0.

(6.2)

Then we apply (3.21) to discretize each fractional integral in (6.2) and derive the
following fractional Adams–Simpson-type scheme for (6.1):

⎧⎪⎨
⎪⎩

yn = φ0 + ϕn −
n−1∑
k=0

Q(α−β)
k,n yk +

n−1∑
k=0

Q(α)
k,n f (tk, yk), 1 ≤ n ≤ N ,

y0 = φ0,

(6.3)

where yn ≈ y(tn) and ϕn = ϕ(tn). Under the mesh assumption (4.9)-(i), we have from
Lemma 5.1 that

|Q(α−β)
k,n | ≤ Cτk+1(tn − tk)

α−β−1, 0 ≤ k ≤ n − 1, 1 ≤ n ≤ N , (6.4)

|Q(α)
k,n| ≤ Cτk+1(tn − tk)

α−1 ≤ CT βτk+1(tn − tk)
α−β−1, (6.5)

0 ≤ k ≤ n − 1, 1 ≤ n ≤ N .

Define gαβ := C
0Dα

t y + C
0Dβ

t y. Let Rmt,n be the local truncation error of (6.3). From
(6.2) and (6.3), we have Rmt,n = Ry,n + R f ,n , where

Ry,n = −
(

0Iα−β
t y(tn) −

n−1∑
k=0

Q(α−β)
k,n y(tk)

)
, (6.6)

R f ,n = 0Iα
t f (tn, y(tn)) −

n−1∑
k=0

Q(α)
k,n f (tk, y(tk)) = 0Iα

t gαβ(tn) −
n−1∑
k=0

Q(α)
k,ngαβ(tk).

(6.7)

In order to apply Theorem 4.1 to obtain bounds of Ry,n and R f ,n , we introduce the
following assumption for the solution y of the problem (6.1):
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Assumption 2 (i) Assume that y ∈ C4(0, T ] and there exists a positive constant C
such that

|y(l)(t)| ≤ C(1 + tσy−l), t ∈ (0, T ], l = 0, 1, 2, 3, 4, (6.8)

where σy ∈ (0, 1) is a real number.

(ii) Assume that gαβ := C
0Dα

t y + C
0Dβ

t y ∈ C4(0, T ] satisfies Assumption 1, where σ

is replaced with σ f .

By directly applying Theorem 4.1, we can easily obtain the following theorem on
bounds of local truncation errors Ry,n and R f ,n .

Theorem 6.1 Let the mesh assumption (4.9) hold.

(i) Assume that the solution y of the problem (6.1) satisfies Assumption 2-(i). Then

∣∣Ry,n
∣∣ ≤ CN−γ (σy+α−β), n = 1, 2, (6.9)∣∣Ry,n
∣∣ ≤ CN−min{γ (σy+α−β),3+α−β}, 3 ≤ n ≤ N . (6.10)

(ii) Assume that the solution y of the problem (6.1) satisfies Assumption 2-(ii). Then

∣∣R f ,n
∣∣ ≤ CN−γ (σ f +α), n = 1, 2, (6.11)∣∣R f ,n
∣∣ ≤ CN−min{γ (σ f +α),3+α}, 3 ≤ n ≤ N . (6.12)

Using Theorem 6.1, we prove the following theorem on the convergence of the
fractional Adams–Simpson-type scheme (6.3).

Theorem 6.2 Assume that the solution y of the problem (6.1) satisfies Assumption 2,
and let the local Lipschitz condition (5.11) and the mesh assumption (4.9) be fulfilled.
Let yn be the numerical solution of the fractional Adams–Simpson-type scheme (6.3).
Then there exists a positive constant N0, independent of N and n, such that when
N ≥ N0,

|y(tn) − yn| ≤ CN−min{γ (σy+α−β),γ (σ f +α),3+α−β}, 0 ≤ n ≤ N . (6.13)

Proof Let en = y(tn) − yn . We have from (6.2) and (6.3) that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
en = −

n−1∑
k=0

Q(α−β)
k,n ek +

n−1∑
k=0

Q(α)
k,n [ f (tk, y(tk)) − f (tk, yk)] + Ry,n + R f ,n,

1 ≤ n ≤ N ,

e0 = 0.

(6.14)

Taking absolute values and using Theorem 6.1, we get

|en| ≤
n−1∑
k=0

∣∣∣Q(α−β)
k,n

∣∣∣ |ek | +
n−1∑
k=0

∣∣∣Q(α)
k,n

∣∣∣ | f (tk, y(tk)) − f (tk, yk)|
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+ CN−min{γ (σy+α−β),γ (σ f +α),3+α−β}, 1 ≤ n ≤ N . (6.15)

Using (6.4) and (6.6), the remaining proof is similar to that of Theorem 5.1. �
We now turn to the nonlinear stability analysis of the fractional Adams–Simpson-

type scheme (6.3).

Theorem 6.3 Let the local Lipschitz condition (5.11) and the mesh assumption (4.9)-
(i) be fulfilled. Let yn be the solution of the fractional Adams–Simpson-type scheme
(6.3), and let N be sufficiently large such that (5.20) is satisfied. Suppose that in (6.3),
φ0 is perturbed and becomes φ0+ε0, and denote by ỹn the resulting perturbed solution
of (6.3). Then for sufficiently small |ε0|,

|yn − ỹn| ≤ C |ε0|, 0 ≤ n ≤ N . (6.16)

Proof Let z̃n = ỹn − yn . We have the following perturbed problem:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
z̃n = −

n−1∑
k=0

Q(α−β)
k,n z̃k +

n−1∑
k=0

Q(α)
k,n

[
f (tk , ỹk) − f (tk , yk)

] + [
1 + ωα−β+1(tn)

]
ε0,

1 ≤ n ≤ N ,

z̃0 = ε0.

(6.17)

Comparing (6.17)with (5.22), we find out that the first term and the termωα−β+1(tn)ε0
in (6.17) are the only extra terms to (5.22). With the help of the bounds given in (6.4)
and (6.6) and the estimate |ωα−β+1(tn)ε0| ≤ [T α−β/�(α−β +1)]|ε0|, we can easily
prove (6.16) by using a technique similar to the proof of Theorem 5.2. �
Theorem 6.4 Let the local Lipschitz condition (5.11) and the mesh assumption (4.9)-
(i) be fulfilled. Let yn be the solution of the scheme (6.3), and let N be sufficiently
large such that (5.20) is satisfied. Assume that the function f in (6.3) is perturbed and
becomes f̂ , and denote by ŷn the resulting perturbed solution of (6.3). Also let ε f be
defined by (5.27). Then for sufficiently small ε f ,

|yn − ŷn| ≤ Cε f , 0 ≤ n ≤ N . (6.18)

Proof With the help of (6.4) and (6.6), the proof of the theorem is similar to that of
Theorem 5.3. �

6.2 Extension tomulti-order nonlinear fractional ordinary differential systems

The proposed fractional Adams–Simpson-type scheme (1.6) can also be extended
to a system of fractional ordinary differential equations where each equation has an
order that may or may not coincide with the orders of the other equations. A system
of this class is called a multi-order fractional ordinary differential system (see [17,
18]). Consider the following initial value problem of multi-order nonlinear fractional
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ordinary differential system:

⎧⎨
⎩

C
0Dα

t y(t) = f1(t, y(t), z(t)), t ∈ (0, T ], 0 < α < 1,
C
0Dβ

t z(t) = f2(t, y(t), z(t)), t ∈ (0, T ], 0 < β < 1,
y(0) = φy,0, z(0) = φz,0.

(6.19)

Its integral form is given by

⎧⎨
⎩

y(t) = φy,0 + 0Iα
t f1(t, y(t), z(t)), t ∈ (0, T ], 0 < α < 1,

z(t) = φz,0 + 0Iβ
t f2(t, y(t), z(t)), t ∈ (0, T ], 0 < β < 1,

y(0) = φy,0, z(0) = φz,0.

(6.20)

Similar to deriving the scheme (1.6), we get the following fractional Adams–Simpson-
type scheme for (6.19):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yn = φy,0 +
n−1∑
k=0

Q(α)
k,n f1(tk, yk, zk), 1 ≤ n ≤ N ,

zn = φz,0 +
n−1∑
k=0

Q(β)
k,n f2(tk, yk, zk), 1 ≤ n ≤ N ,

y0 = φy,0, z0 = φz,0,

(6.21)

where yn ≈ y(tn) and zn ≈ z(tn). Under the mesh assumption (4.9)-(i), we have from
Lemma 5.1 that

|Q(α)
k,n| ≤ CT α−min{α,β}τk+1(tn − tk)

min{α,β}−1, 0 ≤ k ≤ n − 1, 1 ≤ n ≤ N ,

(6.22)

|Q(β)
k,n| ≤ CT β−min{α,β}τk+1(tn − tk)

min{α,β}−1, 0 ≤ k ≤ n − 1, 1 ≤ n ≤ N .

(6.23)

Define gy := C
0Dα

t y and gz := C
0Dβ

t z. Let R f1,n and R f2,n be the local truncation
errors of the first and second equations in (6.21). From (6.20) and (6.21), we have

R f1,n = 0Iα
t f1(tn, y(tn), z(tn)) −

n−1∑
k=0

Q(α)
k,n f1(tk, y(tk), z(tk))

= 0Iα
t gy(tn) −

n−1∑
k=0

Q(α)
k,ngy(tk), (6.24)

R f2,n = 0Iβ
t f2(tn, y(tn), z(tn)) −

n−1∑
k=0

Q(β)
k,n f2(tk, y(tk), z(tk))

= 0Iβ
t gz(tn) −

n−1∑
k=0

Q(β)
k,ngz(tk). (6.25)
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A direct application of Theorem 4.1 leads to the following theorem on the bounds of
the local truncation errors R f1,n and R f2,n .

Theorem 6.5 Let (y, z) be the solution of problem (6.19), and let the mesh assumption
(4.9) hold.

(i) Assume that gy := C
0Dα

t y satisfies Assumption 1, where σ is replaced with σ f1 .
Then

∣∣R f1,n
∣∣ ≤ CN−γ (σ f1+α), n = 1, 2, (6.26)∣∣R f1,n
∣∣ ≤ CN−min{γ (σ f1+α),3+α}, 3 ≤ n ≤ N . (6.27)

(ii) Assume that gz := C
0Dβ

t z satisfies Assumption 1, where σ is replaced with σ f2 .
Then

∣∣R f2,n
∣∣ ≤ CN−γ (σ f2+β), n = 1, 2, (6.28)∣∣R f2,n
∣∣ ≤ CN−min{γ (σ f2+β),3+β}, 3 ≤ n ≤ N . (6.29)

Let (y, z) be the solution of the problem (6.19). We assume that M ≤ y(t), z(t) ≤
M for all t ∈ [0, T ], and assume that f1 and f2 satisfy the following local Lipschitz
conditions:

| fk(t, v, w) − fk(t, ṽ, w̃)| ≤ L(|v − ṽ| + |w − w̃|),
∀ t ∈ [0, T ], M − 1 ≤ v,w, ṽ, w̃ ≤ M + 1, k = 1, 2. (6.30)

The following theorem gives the convergence of the fractional Adams–Simpson-type
scheme (6.21).

Theorem 6.6 Let (y, z) be the solution of the problem (6.19). Assume that gy :=
C
0Dα

t y(t) and gz := C
0Dβ

t z(t) satisfy Assumption 1, where σ is replaced with σ f1 and
σ f2 respectively. Let the local Lipschitz condition (6.30) and themesh assumption (4.9)
be fulfilled. Let (yn, zn) be the numerical solution of the fractional Adams–Simpson-
type scheme (6.21). Then there exists a positive constant N0, independent of N and n,
such that when N ≥ N0,

|y(tn) − yn| ≤ CN−min{γ (σ f1+α),γ (σ f2+β),3+α,3+β}, 1 ≤ n ≤ N , (6.31)

|z(tn) − zn| ≤ CN−min{γ (σ f1+α),γ (σ f2+β),3+α,3+β}, 1 ≤ n ≤ N . (6.32)

Proof Let ey,n = y(tn) − yn and ez,n = z(tn) − zn . From (6.20) and (6.21), we have⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ey,n =
n−1∑
k=0

Q(α)
k,n [ f1(tk, y(tk), z(tk)) − f1(tk, yk, zk)] + R f1,n, 1 ≤ n ≤ N ,

ez,n =
n−1∑
k=0

Q(β)
k,n [ f2(tk, y(tk), z(tk)) − f2(tk, yk, zk)] + R f2,n, 1 ≤ n ≤ N ,

ey,0 = ez,0 = 0.
(6.33)
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Using (6.22), (6.23), (6.33) and Theorem 6.5, we can use a technique similar to the
proof of Theorem 5.1 to get

|ey,n| + |ez,n| ≤ CN−min{γ (σ f1+α),γ (σ f2+β),3+α,3+β}, 1 ≤ n ≤ N . (6.34)

This proves (6.31) and (6.32). �
Wenow carry out the nonlinear stability analysis of the fractional Adams–Simpson-

type scheme (6.21).

Theorem 6.7 Let the local Lipschitz condition (6.30) and themesh assumption (4.9)-(i)
be fulfilled. Let (yn, zn) be the solution of the fractional Adams–Simpson-type scheme
(6.21), and let N be sufficiently large such that yn and zn satisfy (5.20). Suppose that
in (6.21), (φy,0, φz,0) are perturbed and become (φy,0 + εy,0, φz,0 + εz,0), and denote
by (ỹn, z̃n) the resulting perturbed solution of (6.21). Then for sufficiently small |εy,0|
and |εz,0|,

|yn − ỹn| + |zn − z̃n| ≤ C(|εy,0| + |εz,0|), 0 ≤ n ≤ N . (6.35)

Proof With the help of (6.22) and (6.23), we can easily prove (6.35) for sufficiently
small |εy,0| and |εz,0| by a technique similar to the proof of Theorem 5.2. �

Assume that the functions ( f1, f2) in (6.21) are perturbed and become ( f̂1, f̂2).
Denote by (ŷn, ẑn) the resulting perturbed solution of (6.21). Define

ε fk = max
(t,v,w)∈[0,T ]×[M−1,M+1]×[M−1,M+1]

∣∣ fk(t, v, w) − f̂k(t, v, w)
∣∣ , k = 1, 2,

(6.36)

where M and M are the constants appeared in (6.30).

Theorem 6.8 Let the local Lipschitz condition (6.30) and themesh assumption (4.9)-(i)
be fulfilled. Let (yn, zn) be the solution of the fractional Adams–Simpson-type scheme
(6.21), and let N be sufficiently large such that yn and zn satisfy (5.20). Then for
sufficiently small ε f1 and ε f2 ,

|yn − ŷn| + |zn − ẑn| ≤ C(ε f1 + ε f2), 0 ≤ n ≤ N . (6.37)

Proof With the help of (6.22) and (6.23), the proof of the theorem is similar to that of
Theorem 5.3. �

7 Numerical results

In this section, we give numerical results of the proposed fractional Adams–Simpson-
type schemes for three model problems. The exact analytical solution of each problem
is explicitly known and is mainly used to compare with the numerical solution. In
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Example 7.1, we check the accuracy and the convergence order of the scheme (1.6)
for a nonlinear fractional ordinary differential equation with non-smooth data. In this
example, we also numerically compare our scheme (1.6) with the Adams predictor–
corrector scheme proposed in [47] (see (1.6) of [47]) and the scheme developed in
[51] (see (3.16) of [51]). In Examples 7.2 and 7.3, we test the effectiveness of the
schemes (6.3) and (6.21) in solving a multi-term nonlinear fractional ordinary differ-
ential equation and a multi-order nonlinear fractional ordinary differential system.

In our computations, we use the graded mesh (4.10) with a given number N of steps
and a mesh parameter γ ≥ 1. For checking the accuracy and the convergence order
of the numerical solution yn of the schemes (1.6) and (6.3) and the schemes given in
[47, 51], we record the maximum error E(N ) = max0≤n≤N |y(tn) − yn| and compute
the convergence order O(N ) by

O(N ) = log2

[
E(N )

E(2N )

]
. (7.1)

Similarly, for the numerical solution (yn, zn) of the scheme (6.21), we measure its
error in the sense of E(N ) = max0≤n≤N {|y(tn) − yn|, |z(tn) − zn|} and compute its
convergence order O(N ) by (7.1).

Example 7.1 Consider the initial value problem of the nonlinear fractional ordinary
differential equation:

{
C
0Dα

t y(t) = y(t) + 0.2y2(t) + F(t), t ∈ (0, 1], 0 < α < 1,
y(0) = 0.

(7.2)

We choose a suitable F(t) such that the solution y of (7.2) is given by y(t) = tα + t2α .
It is easy to see that g(t) := C

0Dα
t y(t) = �(α + 1) + �(2α+1)

�(α+1) t
α , which satisfies

Assumption 1 with σ = α.

(a) Convergence order of the numerical solution ynof the scheme (1.6) We use
the scheme (1.6) to solve the above problem numerically. Table 1 shows the maxi-
mum error E(N ) and the convergence order O(N ) of the numerical solution yn of
(1.6) with different γ , N and α. The results show clearly that the convergence order
O(N ) is min{2γα, 3 + α}, which agrees precisely with the theoretical order given in
Theorem 5.1.

(b) Numerical comparisons of the scheme (1.6) with the schemes given in [47, 51]
For comparison, we also solve the above problem by the schemes given in [47,

51]. In theory, these two schemes in solving the above problem has the convergence
orders min{2γα, 1 + α} (see Theorem 1.5 of [47]) and min{2γα, 3} (see Lemma 3.1
of [51]), respectively. Taking different γ , N and α, in Tables 2 3 and 4, we give the
maximum error E(N ) and the convergence order O(N ) of the numerical solution yn
of the scheme (1.6) and the schemes in [47, 51]. It can be seen from these tables that

• the convergence order O(N ) is min{2γα, 3 + α} for our scheme (1.6), while it is
only min{2γα, 1 + α} for the scheme in [47] and min{2γα, 3} for the scheme in
[51];
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Table 1 The error and the convergence order of the scheme (1.6) for Example 7.1

γ N α = 0.4 α = 0.6 α = 0.8

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

1 25 1.887e−01 1.473 1.563e−02 1.200 3.906e−03 1.600

26 6.796e−02 1.541 6.801e−03 1.200 1.289e−03 1.600

27 2.335e−02 0.980 2.960e−03 1.200 4.251e−04 1.600

28 1.184e−02 0.800 1.289e−03 1.200 1.402e−04 1.600

29 6.801e−03 0.800 5.609e−04 1.200 4.626e−05 1.600

210 3.906e−03 2.441e−04 1.526e−05
3+α
4α 25 2.891e−02 1.515 2.698e−03 1.576 1.381e−03 1.900

26 1.012e−02 1.605 9.048e−04 1.689 3.700e−04 1.900

27 3.326e−03 1.649 2.807e−04 1.743 9.915e−05 1.900

28 1.060e−03 1.672 8.388e−05 1.770 2.657e−05 1.900

29 3.326e−04 1.685 2.460e−05 1.784 7.118e−06 1.900

210 1.034e−04 7.142e−06 1.907e−06
3+α
2α 25 1.814e−02 3.472 6.366e−04 3.736 4.383e−05 3.789

26 1.635e−03 3.470 4.776e−05 3.597 3.170e−06 3.797

27 1.476e−04 3.445 3.948e−06 3.599 2.280e−07 3.800

28 1.355e−05 3.426 3.257e−07 3.600 1.636e−08 3.804

29 1.260e−06 3.394 2.687e−08 3.600 1.171e−09 3.816

210 1.199e−07 2.215e−09 8.314e−11
3+α
α 25 9.555e−02 3.266 4.367e−03 3.695 3.401e−04 3.886

26 9.936e−03 3.366 3.372e−04 3.661 2.301e−05 3.845

27 9.634e−04 3.425 2.666e−05 3.633 1.602e−06 3.821

28 8.970e−05 3.425 2.149e−06 3.616 1.133e−07 3.810

29 8.354e−06 3.416 1.752e−07 3.616 8.075e−09 3.824

210 7.827e−07 1.429e−08 5.701e−10

• when γ = 1+α
2α —the optimal mesh parameter of the scheme in [47], our scheme

(1.6) has roughly the same convergence order as the schemes in [47, 51];
• when γ = 3

2α—the optimalmesh parameter of the scheme in [51], the convergence
order of our scheme (1.6) is almost the same as that of the scheme in [51], but
higher than that of the scheme in [47];

• when γ = 3+α
2α —the optimal mesh parameter of our scheme (1.6), our scheme

(1.6) can achieve the convergence order 3 + α, while the convergence orders of
the schemes in [47, 51] are only 1 + α and 3, respectively.
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Table 2 The error and the convergence order of the scheme (1.6) for Example 7.1

γ N α = 0.4 α = 0.6 α = 0.8

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

1+α
2α 25 3.365e−02 1.634 3.906e−03 1.600 1.953e−03 1.800

26 1.084e−02 1.214 1.289e−03 1.600 5.609e−04 1.800

27 4.671e−03 1.294 4.251e−04 1.600 1.611e−04 1.800

28 1.905e−03 1.337 1.402e−04 1.574 4.626e−05 1.800

29 7.539e−04 1.362 4.711e−05 1.571 1.328e−05 1.800

210 2.932e−04 1.585e−05 3.815e−06
3
2α 25 1.843e−02 2.978 1.172e−03 2.972 1.290e−04 2.959

26 2.340e−03 2.992 1.494e−04 2.990 1.660e−05 2.986

27 2.941e−04 2.997 1.880e−05 2.997 2.095e−06 2.995

28 3.683e−05 2.999 2.356e−06 2.999 2.628e−07 2.999

29 4.607e−06 3.000 2.947e−07 3.001 3.287e−08 3.001

210 5.761e−07 3.681e−08 4.105e−09
3+α
2α 25 1.814e−02 3.472 6.366e−04 3.736 4.383e−05 3.789

26 1.635e−03 3.470 4.776e−05 3.597 3.170e−06 3.797

27 1.476e−04 3.445 3.948e−06 3.599 2.280e−07 3.800

28 1.355e−05 3.426 3.257e−07 3.600 1.636e−08 3.804

29 1.260e−06 3.394 2.687e−08 3.600 1.171e−09 3.816

210 1.199e−07 2.215e−09 8.314e−11

Example 7.2 In this example, we use the scheme (6.3) to solve the following initial
value problem of multi-term nonlinear fractional ordinary differential equation:

{
C
0Dα

t y(t) + C
0Dβ

t y(t) = sin y(t) + F(t), t ∈ (0, 1], 0 < β < α < 1,
y(0) = φ0.

(7.3)

We choose suitable F(t) such that the problem has the solution y(t) = φ0 + tα + t2α .
This solution satisfies Assumption 2 with σy = α and σ f = α − β. For computation,
we take α = 0.9, β = 0.4, φ0 = 1. The numerical results in Table 5 show that the
scheme (6.3) works well for solving the above problem, and its convergence order
is close to min{γ (2α − β), 3 + α − β} = min{1.4γ, 3.5}, which is consistent with
the theoretical order given in Theorem 6.2. In Fig. 1, we plot the pointwise errors
|y(tn) − yn| for the case of N = 28.

Example 7.3 In order to test the effectiveness of the scheme (6.21), we consider the
following initial value problemofmulti-order nonlinear fractional ordinary differential
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Table 3 The error and the convergence order of the scheme in [47] for Example 7.1

γ N α = 0.4 α = 0.6 α = 0.8

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

1+α
2α 25 1.322e−01 1.195 2.125e−02 1.569 5.991e−03 1.774

26 5.774e−02 1.300 7.164e−03 1.593 1.752e−03 1.792

27 2.344e−02 1.353 2.374e−03 1.604 5.060e−04 1.801

28 9.179e−03 1.376 7.812e−04 1.607 1.452e−04 1.806

29 3.537e−03 1.386 2.564e−04 1.608 4.153e−05 1.809

210 1.354e−03 8.409e−05 1.185e−05
3
2α 25 1.704e−01 1.014 2.978e−02 1.498 8.028e−03 1.749

26 8.439e−02 1.184 1.054e−02 1.549 2.389e−03 1.775

27 3.715e−02 1.289 3.603e−03 1.573 6.978e−04 1.789

28 1.520e−02 1.343 1.211e−03 1.586 2.019e−04 1.796

29 5.990e−03 1.369 4.035e−04 1.592 5.815e−05 1.800

210 2.319e−03 1.338e−04 1.670e−05
3+α
2α 25 1.829e−01 0.981 3.572e−02 1.477 1.059e−02 1.732

26 9.270e−02 1.159 1.283e−02 1.537 3.187e−03 1.766

27 4.150e−02 1.275 4.419e−03 1.567 9.370e−04 1.784

28 1.714e−02 1.337 1.491e−03 1.582 2.722e−04 1.793

29 6.787e−03 1.366 4.981e−04 1.590 7.855e−05 1.797

210 2.634e−03 1.654e−04 2.260e−05

Table 4 The error and the convergence order of the scheme in [51] for Example 7.1

γ N α = 0.4 α = 0.6 α = 0.8

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

1+α
2α 25 3.951e−03 2.065 5.185e−04 1.771 3.028e−04 2.452

26 9.443e−04 2.280 1.520e−04 1.635 5.534e−05 2.294

27 1.944e−04 1.565 4.891e−05 1.620 1.129e−05 2.147

28 6.572e−05 1.426 1.592e−05 1.611 2.548e−06 1.801

29 2.446e−05 1.416 5.210e−06 1.606 7.313e−07 1.801

210 9.167e−06 1.711e−06 2.099e−07
3
2α 25 3.200e−03 3.037 1.536e−04 3.089 7.225e−06 1.982

26 3.898e−04 3.065 1.806e−05 3.046 1.829e−06 2.040

27 4.657e−05 3.107 2.187e−06 3.024 4.447e−07 2.626

28 5.406e−06 3.069 2.689e−07 3.010 7.205e−08 2.816

29 6.441e−07 2.956 3.337e−08 3.006 1.023e−08 2.902

210 8.300e−08 4.153e−09 1.369e−09
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Table 4 continued

γ N α = 0.4 α = 0.6 α = 0.8

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

3+α
2α 25 3.868e−03 3.023 1.356e−04 3.093 5.853e−05 4.548

26 4.759e−04 3.079 1.590e−05 3.012 2.502e−06 4.785

27 5.630e−05 3.067 1.972e−06 2.987 9.075e−08 1.094

28 6.720e−06 3.053 2.487e−07 2.983 4.251e−08 2.477

29 8.098e−07 3.034 3.147e−08 2.982 7.634e−09 2.765

210 9.885e−08 3.981e−09 1.123e−09

Table 5 The error and the convergence order of the scheme (6.3) for Example 7.2

N γ = 1 γ = 1.5 γ = 2.5

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

25 3.400e−03 1.690 2.018e−03 2.778 6.147e−04 4.616

26 1.054e−03 1.580 2.943e−04 2.182 2.507e−05 3.515

27 3.524e−04 1.510 6.483e−05 2.149 2.192e−06 3.507

28 1.237e−04 1.469 1.461e−05 2.130 1.929e−07 3.503

29 4.470e−05 1.443 3.339e−06 2.118 1.701e−08 3.504

210 1.643e−05 7.693e−07 1.499e−09

Fig. 1 Pointwise error |y(tn) − yn | of the scheme (6.3) with N = 28 for Example 7.2

123



7 Page 34 of 40 BIT Numerical Mathematics (2023) 63 :7

Table 6 The error and the convergence order of the scheme (6.21) for Example 7.3 (α = 0.5, β = 0.8 and
φy,0 = φz,0 = 1)

N γ = 1 γ = 1.5 γ = 3.5

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

25 6.250e−02 1.000 1.495e−02 1.435 4.758e−03 3.482

26 3.125e−02 1.000 5.530e−03 1.241 4.258e−04 3.495

27 1.563e−02 1.000 2.340e−03 1.350 3.777e−05 3.498

28 7.813e−03 1.000 9.182e−04 1.413 3.342e−06 3.500

29 3.906e−03 1.000 3.449e−04 1.449 2.955e−07 3.500

210 1.953e−03 1.264e−04 2.612e−08

system:

⎧⎨
⎩

C
0Dα

t y(t) = y(t) + z(t) + sin y(t) + F1(t), t ∈ (0, 1], 0 < α < 1,
C
0Dβ

t z(t) = 2y(t) − z(t) + cos z(t) + F2(t), t ∈ (0, 1], 0 < β < 1,
y(0) = φy,0, z(0) = φz,0.

(7.4)

We take suitable F1(t) and F2(t) such that the solution (y, z) of the above problem is
given by

y(t) = φy,0 + tα + 2t2α, z(t) = φz,0 + 3tβ + t2β. (7.5)

It is clear that gy := C
0Dα

t y and gz := C
0Dβ

t z satisfy Assumption 1 with σ = α and
σ = β, respectively. Table 6 shows the maximum error E(N ) and the convergence
order O(N ) of the numerical solution (yn, zn) of the scheme (6.21) when solving
the multi-order problem (7.4), where α = 0.5, β = 0.8 and φy,0 = φz,0 = 1. The
corresponding numerical results for the case of α = 0.4, β = 0.7 and φy,0 = 1.5
and φz,0 = 3 are given in Table 7. It can be seen from these two tables that the
convergence order O(N ) is about min{2γα, 2γβ, 3 + α, 3 + β}. This coincides with
the theoretical order given in Theorem 6.6. In Figs. 2 and 3, we present the pointwise
errors |y(tn)− yn| and |z(tn)− zn| for the case of N = 28. The above numerical results
demonstrate that the scheme (6.21) is effective for solving the multi-order nonlinear
fractional ordinary differential system with non-smooth data.

8 Conclusion

We proposed a fractional Adams–Simpson-type method for nonlinear fractional ordi-
nary differential equationswith fractional orderα ∈ (0, 1).We proved the convergence
and the nonlinear stability of themethod by developing amodified fractional Grönwall
inequality and using a perturbation technique. In constructing our method, we used
a nonuniform mesh, so that with a proper mesh parameter, the proposed method can
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Table 7 The error and the convergence order of the scheme (6.21) for Example 7.3 (α = 0.4, β = 0.7,
φy,0 = 1.5 and φz,0 = 3)

N γ = 1 γ = 2 γ = 4.25

E(N ) O(N ) E(N ) O(N ) E(N ) O(N )

25 1.707e−01 1.250 1.171e−01 2.460 2.733e−02 3.387

26 7.179e−02 0.800 2.127e−02 1.490 2.613e−03 3.396

27 4.123e−02 0.800 7.572e−03 1.536 2.482e−04 3.399

28 2.368e−02 0.800 2.612e−03 1.563 2.353e−05 3.400

29 1.360e−02 0.800 8.840e−04 1.579 2.230e−06 3.400

210 7.813e−03 2.960e−04 2.113e−07

Fig. 2 Pointwise errors |y(tn) − yn | and |z(tn) − zn | of the scheme (6.21) with N = 28 for Example 7.3
(α = 0.5, β = 0.8 and φy,0 = φz,0 = 1)

Fig. 3 Pointwise errors |y(tn) − yn | and |z(tn) − zn | of the scheme (6.21) with N = 28 for Example 7.3
(α = 0.4, β = 0.7, φy,0 = 1.5 and φz,0 = 3)
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achieve the optimal convergence order 3+ α even if the given data is not smooth. We
further discussed how to extend the proposed method to multi-term nonlinear frac-
tional ordinary differential equations and multi-order nonlinear fractional ordinary
differential systems.

Weprovidednumerical results to confirm the theoretical analysis results anddemon-
strate the effectiveness of the proposed method for non-smooth data when solving a
single-term or multi-term nonlinear fractional ordinary differential equation and a
multi-order nonlinear fractional ordinary differential system. We also compared our
method with the existing methods through some numerical results. It was observed
that our method is more effective.
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A Appendix

In this appendix, we prove Lemma 4.1.

Proof It is clear that

g(t) − g(t0) =
∫ t

t0
g′(ξ) dξ = t

∫ 1

0
g′(st) ds, t > 0. (A.1)

This proves

R0,0g(t) = t
∫ 1

0
g′(st) ds, t > 0, (A.2)

and so (4.5) is proved. By Taylor expansion with integral remainder,

g(tk) =
1∑

l=0

1

l!g
(l)(t)(tk − t)l +

∫ tk

t
g(2)(ξ)(tk − ξ) dξ, k ≥ 0, t > 0,

(A.3)

g(tk) =
2∑

l=0

1

l!g
(l)(t)(tk − t)l + 1

2

∫ tk

t
g(3)(ξ)(tk − ξ)2 dξ, k ≥ 0, t > 0.

(A.4)
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This implies

R1,1g(t) = g(t) −
1∑

k=0

lk,1,1(t)g(tk)

= g(t) −
1∑

l=0

1

l! g
(l)(t)

1∑
k=0

lk,1,1(t)(tk − t)l −
1∑

k=0

lk,1,1(t)
∫ tk

t
g(2)(ξ)(tk − ξ) dξ

= −
1∑

k=0

lk,1,1(t)(t − tk)
2
∫ 1

0
g(2)(tk(1 − s) + ts)s ds, t > 0, (A.5)

R2,2g(t) = g(t) −
2∑

k=0

lk,2,2(t)g(tk)

= g(t) −
1∑

l=0

1

l! g
(l)(t)

2∑
k=0

lk,2,2(t)(tk − t)l −
2∑

k=0

lk,2,2(t)
∫ tk

t
g(2)(ξ)(tk − ξ) dξ

= −
2∑

k=0

lk,2,2(t)(t − tk)
2
∫ 1

0
g(2)(tk(1 − s) + ts)s ds, t > 0, (A.6)

and

R2,qg(t) = g(t) −
q∑

k=q−2

lk,2,q(t)g(tk)

= g(t) −
2∑

l=0

1

l!g
(l)(t)

q∑
k=q−2

lk,2,q(t)(tk − t)l

−1

2

q∑
k=q−2

lk,2,q(t)
∫ tk

t
g(3)(ξ)(tk − ξ)2 dξ

= 1

2

q∑
k=q−2

lk,2,q(t)(t − tk)
3
∫ 1

0
g(3)(tk(1 − s) + ts)s2 ds,

q ≥ 2, t > 0. (A.7)

This proves (4.6)–(4.8). �
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