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Abstract
This paper is concerned with conditionally structure-preserving, low regularity time
integration methods for a class of semilinear parabolic equations of Allen–Cahn type.
Important properties of such equations include maximum bound principle (MBP) and
energy dissipation law; for the former, that means the absolute value of the solution
is pointwisely bounded for all the time by some constant imposed by appropriate
initial and boundary conditions. The model equation is first discretized in space by
the central finite difference, then by iteratively using Duhamel’s formula, first- and
second-order low regularity integrators (LRIs) are constructed for time discretization
of the semi-discrete system. The proposed LRI schemes are proved to preserve the
MBP and the energy stability in the discrete sense. Furthermore, their temporal error
estimates are also successfully derived under a low regularity requirement that the
exact solution of the semi-discrete problem is only assumed to be continuous in time.
Numerical results show that the proposed LRI schemes are more accurate and have
better convergence rates than classic exponential time differencing schemes, especially
when the interfacial parameter approaches zero.
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1 Introduction

Phase-field modeling is an important mathematical tool for solving interfacial prob-
lems in scientific and engineering fields. Phase-field models were first introduced by
Fix [17] and Langer [30], and have gained increasing interest and attention in solid-
ification dynamics [4, 5] and other areas such as fracture mechanics [6, 7], viscous
fingering [18, 41], hydrogen embrittlement [23, 40], vesicle dynamics [3, 37], etc.
A thorough review on phase-field modeling can be found in [11]. The Allen–Cahn
equation, originally introduced by Allen and Cahn in [2], is a well-known phase-field
model used to describe the motion of antiphase boundaries in crystalline solids. It
belongs to a class of semilinear parabolic equations of the form:

∂t u = ε2Δu + f (u), xxx ∈ Ω, t > 0, (1.1)

where Ω ⊂ R
d (d = 1, 2, 3) is an open and bounded Lipschitz domain, u : Ω ×

[0,∞) → R is the unknown function, ε > 0 is the interfacial parameter representing
the width of the transition regions, and f : R → R is a nonlinear function. An initial
boundary value problem associated with equation (1.1) is obtained by imposing the
initial condition u(xxx, 0) = u0(xxx) for any xxx ∈ Ω , and suitable boundary conditions
(e.g., periodic or homogeneous Neumann or Dirichlet boundary conditions).

Suppose that the nonlinear function f satisfies the following assumptions:

(A1) f (β) ≤ 0 ≤ f (−β)for some β > 0.
(A2) f is continuously differentiable and nonconstant on [−β, β].
Then the solution to (1.1) satisfies the maximum bound principle (MBP) as analyzed
in [13], namely if the initial data is pointwisely bounded in absolute value by β, then
the solution is also pointwisely bounded in absolute value by β for all the time, i.e.,

max
xxx∈Ω

|u0(xxx)| ≤ β �⇒ max
xxx∈Ω

|u(xxx, t)| ≤ β for all t > 0. (1.2)

For example, for the Allen–Cahn equation with f (u) = u − u3 [14], the solution is
bounded by β = 1. In addition, as a phase-field type model, equation (1.1) can be
viewed as an L2 gradient flow with respect to the energy functional

E(u) =
∫

Ω

(
ε2

2
|∇u(xxx)|2 + F(u(xxx))

)
dxxx, (1.3)
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where F is a smooth potential function with F ′(u) = − f (u). Thus, the solution
to (1.1) decreases the energy (1.3) in time:

d

dt
E(u(t)) = −

∫
Ω

|∂t u(xxx, t)|2 dxxx ≤ 0. (1.4)

Such a property is known as the energy dissipation law of the phase transition process.
MBP and energy dissipation are two physical properties of Allen–Cahn type equa-
tions (1.1), thus they are highly desired to be preserved when constructing numerical
schemes for these equations.

VariousMBP-preserving schemes for semilinear parabolic equations have been dis-
covered recently. In [53], it was shown that implicit-explicit discretization in time and
central finite difference in space for the Allen–Cahn equation preserve the MBP. The
decay of the discrete energy functional along the time is obtained based on the MBP
result. The generalized Allen–Cahn equation with a nonlinear degenerated mobility
was studied in [48], where a first-order semi-implicit scheme was proved to preserve
the MBP under some time step constraint (which can be further improved by adding a
stabilizing term). Following these ideas, both linear and nonlinear second-orderCrank-
Nicolson/Adams-Bashforth schemeswere constructed in [21, 22], which guarantee the
MBP and energy stability for the Allen–Cahn equation as well as its variants. When
solving problems with strong stiff linear terms, exponential-type integrators such as
exponential timedifferencing (ETD) and integrating factorRunge–Kutta (IFRK)meth-
ods have been shown to be more effective. Based on Duhamel’s formula (also known
as the variation-of-constants formula) along with approximating the nonlinear term by
polynomial interpolations, the ETD schemes [38, 39] evaluate the linear part exactly,
ensuring both stability and accuracy. In [13], a general framework of ETD schemes for
a class of semilinear parabolic equations was established, where linear and nonlinear
operators have to satisfy certain conditions to preserve the MBP. ETD methods were
also used for the nonlocal Allen–Cahn equation [12] and the conservative Allen–Cahn
equation [32]. A combination of ETD with overlapping domain decomposition was
studied in [34]. Unlike ETD, the main idea of IFRK methods is to use the integrating
factor to eliminate the stiff linear term before applying the conventional Runge–Kutta
method. A four-stage, fourth-order IFRK scheme was proposed in [26] which pre-
serves the MBP under some certain condition on the time step size. By adding a
stabilizing constant, the stabilized IFRK method was introduced in [33] and shown
to unconditionally preserve the MBP up to the third order. In addition, uniform L p−
bounds, which areweaker than theMBP,were also studied for numerical discretization
of the Allen–Cahn equation in [62].

Similar to the MBP preserving schemes, energy stable numerical methods for time
integration of the Allen–Cahn type equations as well as other gradient flows have
attracted much attention. Examples of traditional approaches include fully implicit
method [15, 58], convex splitting schemes [19, 49, 54, 55], stabilized semi-implicit
methods [16, 52, 53, 59] and ETD schemes [12, 13, 27, 28, 64]. Some novel linear
schemes have been investigated in the past few years such as the invariant energy
quadratization (IEQ) schemes [60, 61, 63] and the scalar auxiliary variable (SAV)
schemes [10, 50, 51], which monotonically decrease certain modified energies. The
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main idea of these two methods is to transform the energy functional (1.3) into
quadratic forms of some new auxiliary variables. Because of the efficiency of the
SAV approach in term of computations, many of its variants were also developed [1,
9, 24, 36].

It should be noted that convergence and error estimates play an essential role when
analyzing a numerical scheme. A common way is to first discretize the model problem
(cf. equation (1.1)) in space, then apply time integration to the space-discrete problem.
Convergence of the numerical solution to the exact space-discrete solution is usually
obtainedunder someassumptions on the smoothness of the exact solution. In particular,
ETD schemes [12, 13] require the exact space-discrete solution to be in C1 for the
first-order scheme and in C2 for the second-order scheme. Similarly, convergence of
the IFRK schemes [26, 33] only holds when the exact solution at least belongs to C p

in time, where p is the order of the method. Therefore, it is desirable to develop time
integration schemes for Allen–Cahn type equations which only require low regularity
on the exact solution but hold similar optimal error estimates, while still preserving
the two intrinsic properties, namely MBP and energy stability.

The LRIs are recently introduced time discretization techniques for evolution prob-
lems, which require weaker regularity assumptions for error analysis than those by
classical methods. The so-called resonance based schemes were developed for non-
linear dispersive equations at low regularity, including the Korteweg-de Vries (KdV)
[20, 56, 57], Schrödinger [42–44], Boussinesq [45], and Dirac [47] equations. These
schemes are based on Fourier series expansions of the solution (instead of Taylor
expansions as in classical methods), thus they are restricted to periodic boundary con-
ditions only. High-order resonance-based methods can be constructed using decorated
tree series as shown in [8]. Recently, a new framework of LRIs has been introduced
in [46] which does not rely on Fourier expansions, thus can be applied to general
boundary conditions. The idea is to introduce filter oscillations to treat the dominant
oscillations exactly and use a stabilized Taylor series expansion to approximate the
lower order parts. First- and second-order LRIs have been constructed and analyzed
in [46]. The LRIs can be coupled with various spatial discretization techniques, such
as finite element methods as considered in [31], where a first-order semi-implicit LRI
scheme was applied to solve the Navier–Stokes (NS) equations. Analysis of tempo-
ral convergence for both space-continuous and fully discrete problems were carried
out under a weaker regularity condition than the semi-implicit Euler method and the
classical exponential integrator.

In this paper, we aim to construct first- and second-order LRIs for the time approx-
imation of equation (1.1) which is discretized in space by the standard central finite
difference. The proposed schemes are obtained by iterating Duhamel’s formula as in
[46] and are shown to preserve MBP, from which energy stability and error estimates
of the numerical solutions can be proved independently. In particular, convergence of
the fully discrete numerical solution to the exact space-discrete solution is obtained
for both first- and second-order schemes, by only assuming that the exact solution
is continuous in time (instead of C1 or C2 as required by ETD or IFRK methods).
The main contribution of our work can be summarized as follows. Firstly, we do not
require high regularity of the solution to the semi-discrete system of (1.1) to carry out
error estimates, the regularity is passed to the nonlinear function f instead. Secondly,
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we optimize the condition on the time step size Δt to preserve the MBP, allowing the
use of fairly large Δt . Thirdly, the proofs of energy stability rely only on the MBP,
avoiding some extra conditions on the exact solution (needed for many other methods
due to the use of error estimate results for the proof). Finally, numerical results show
that the proposed LRIs (especially the second-order scheme) are more accurate and
have better convergence rates than the ETD schemes, especially when the interface
parameter ε in (1.1) is very small. We also would like to note that the proposed LRI
schemes can be straightforwardly applied to other similar systems, e.g., nonlocal or
fractional Allen–Cahn equations [12].

The rest of this paper is organized as follows. In Sect. 2, we discretize the model
equation (1.1) in space using the central finite difference method and then derive
first- and second-order LRI schemes for time integration of the space-discrete prob-
lem. Next, MBP and energy stability of the resulting fully discrete numerical solution
are proved in Sect. 3; we also discuss the MBP results under some typical choices
of the potential function. In Sect. 4, we carry out convergence and temporal error
analysis of the proposed LRI schemes under low regularity assumptions. In Sect. 5,
numerical results are presented to illustrate the accuracy and convergence of the pro-
posed schemes. Finally, some concluding remarks are given in Sect. 6. Throughout the
paper, we suppose that assumptions (A1) and (A2) hold; any further conditions on f ,
if required, will be stated explicitly.

2 Space-discrete problem and low regularity integrators

Assume that the spatial domain Ω in Rd is either a finite interval (d = 1), a rectangle
(d = 2), or a rectangular parallelepiped (d = 3). We consider a uniform partition of
Ω into rectangular elements; for simplicity, we assume all elements have equal sides
and denote by h the length of the side of each element. Let N be the number of grid
points of the mesh for unknowns, and denote by

u(t) = (u1(t), u2(t), . . . , uN (t))T ,

where u j (t) is the approximation of u(xxx j , t) for j = 1, 2, . . . , N . Using central finite
differences for spatial discretization of problem (1.1) with the homogeneous Neumann
boundary conditions, we obtain the following space-discrete system:

du
dt

= AAAu + fff (u), (2.1)

where fff (u) = ( f (u1), f (u2), . . . , f (uN ))T , AAA = ε2DDDh , andDDDh is defined as in [29].
Particularly, DDDh = λh in one dimension, DDDh = III ⊗ λh + λh ⊗ III in two dimensions,
and DDDh = III ⊗ III ⊗λh + III ⊗λh ⊗ III +λh ⊗ III ⊗ I in three dimensions. Here ⊗ denotes
the Kronecker product, III is the identity matrix, and λh is a square matrix of order N
given by
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λh := 1

h2

⎡
⎢⎢⎢⎢⎢⎣

−2 2 0 . . . 0
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
0 . . . 0 2 −2

⎤
⎥⎥⎥⎥⎥⎦

.

It is well-known that matrix DDDh is diagonally dominant with all diagonal entries
negative. We then have the following result [26, Lemma 3.3], which is crucial to the
analysis of exponential-type integrators:

Lemma 1 For any γ > 0, we have ‖eγDDDh‖∞ ≤ 1, and therefore ‖eγ AAA‖∞ ≤ 1.

Based on this result, the space-discrete problem (2.1) is well-posed and preserves the
MBP as stated below (the proof is similar to Theorem 2 in [34]).

Theorem 1 Given any fixed terminal time T > 0. Assume that the initial data is
bounded by β in absolute value, i.e., ‖u0‖L∞ ≤ β, then the semi-discrete system (2.1)
admits a unique solution u ∈ C([0, T ];RN ) and

‖u(t)‖∞ ≤ β for all t ∈ [0, T ].

Remark 1 The result of Theorem 1 still holds when one imposes the periodic boundary
condition or theDirichlet boundary condition (where theDirichlet data is also assumed
to be bounded by β in absolute value); see [13] for more details. In addition, other
types of spatial discretizations (e.g., finite volume and lumped-mass finite element) for
problem (1.1) can also be considered without affecting the analysis presented in this
paper, provided that the corresponding matrix AAA = (ai j )N×N satisfies the following
property [13, Proposition 2.5]:

|aii | ≥
N∑

j=1, j �=i

|ai j |, aii < 0, ai j ≥ 0 ( j �= i). (2.2)

A slightly more relaxed condition on AAA for Lemma 1 to hold can be further found in
[26, Lemma 3.3].

For the time discretization, let us consider a uniform partition of the time interval
[0, T ] : 0 = t0 < t1 < · · · < tM = T , with the step size Δt = T

M . The exact (in time)
solution to (2.1) at each time level is given by Duhamel’s formula:

u(tm+1) = eΔt AAAu(tm) +
∫ Δt

0
e(Δt−s)AAA fff (u(tm + s)) ds, m = 0, 1, . . . , M − 1.

(2.3)

The main idea of LRIs developed in [31, 46] is to use again Duhamel’s formula to
compute u(tm + s) in (2.3). In particular, we have, for any s ∈ [0,Δt]:

u(tm + s) = esAAAu(tm) +
∫ s

0
e(s−σ)AAA fff (u(tm + σ)) dσ. (2.4)
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Using (2.4) to approximate u(tm + s) in (2.3) leads to the first- and second-order LRIs
described below.

For convenience of presentation, we introduce the following notation: for any func-
tion g : R → R, let g : RN → R

N be defined as g(v) := (g(v1), g(v2), . . . , g(vN ))T ,
for any v = (v1, v2, . . . , vN )T ∈ R

N ; when g is sufficiently smooth, we denote by

∂ p g
∂v p

(v) := diag(g(p)(v1), g
(p)(v2), . . . , g

(p)(vN )), p ∈ N. (2.5)

Note that when p = 1, (2.5) is simply the Jacobian of g. In addition, we make use of
the notation � for denoting element-wise operations, e.g., v�2 := (v21, v

2
2, . . . , v

2
N )T

and u � v := (u1v1, u2v2, . . . , uNvN )T .

2.1 First-order low regularity integrators

Let us take U0 = u(0). For first-order schemes, we approximate u(tm + s) by esAAAUm

in (2.3) and obtain: for m = 0, 1, . . . , M − 1,

Um+1 = eΔt AAAUm +
∫ Δt

0
e(Δt−s)AAA fff (esAAAUm) ds = eΔt AAAUm +

∫ Δt

0
g(s) ds, (2.6)

where g(s) = e(Δt−s)AAA fff (esAAAUm). We then compute the integral on the right-hand
side using one-point quadrature rules, which leads to the following schemes:

(i) LRI1a with g(s) on [0,Δt] approximated by g(0) (as in [46]):

Um+1 = eΔt AAA(Um + Δt fff (Um)). (2.7)

(ii) LRI1b with g(s) on [0,Δt] approximated by g(Δt):

Um+1 = eΔt AAAUm + Δt fff (eΔt AAAUm). (2.8)

We remark that the LRI1a scheme is identical to the first-order IFRK scheme [25, 26],
while the LRI1b scheme (first proposed in [31]) is essentially different from the IFRK
or ETD schemes.

2.2 Second-order low regularity integrator

Let us approximate u(tm +s) by esAAAUm +s fff (Um) from (2.4), and plug that into (2.3)
to obtain: for m = 0, 1, . . . , M − 1,

Um+1 = eΔt AAAUm +
∫ Δt

0
e(Δt−s)AAA fff (esAAAUm + s fff (Um)) ds.
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By replacing fff (esAAAUm + s fff (Um)) by fff (esAAAUm) + s ∂ fff
∂u (esAAAUm) fff (Um), we arrive

at

Um+1 = eΔt AAAUm +
∫ Δt

0
g(s) ds +

∫ Δt

0
se(Δt−s)AAA ∂ fff

∂u
(esAAAUm) fff (Um) ds.

Finally, the LRI2 scheme is defined by computing the integral
∫ Δt
0 g(s) ds using the

trapezoid rule and approximating e(Δt−s)AAA ∂ fff
∂u (esAAAUm) fff (Um)by eΔt AAA ∂ fff

∂u (Um) fff (Um)

in the above equation:

Um+1 = eΔt AAAUm + Δt

2

[
eΔt AAA fff (Um) + fff (eΔt AAAUm)

]
+ Δt2

2
eΔt AAA ∂ fff

∂u
(Um) fff (Um).

(2.9)

3 Properties of the fully discrete numerical solutions

3.1 Discrete maximum bound principle

Weshall prove that theLRI1 andLRI2 schemes proposed in the previous section satisfy
the MBP in the discrete sense. We first state some preliminary result needed for the
MBP proof. It is easy to see from assumptions (A1) and (A2) that min|x |≤β

f ′(x) < 0.

Define ω0 := − 1
min|x |≤β

f ′(x) > 0.

Lemma 2 It holds that

|x + ω f (x)| ≤ β for all x ∈ [−β, β] and ω ∈ (0, ω0].

Proof Let f0(x) = x+ω f (x), we have f ′
0(x) = 1+ω f ′(x) ≥ 0, for any ω ∈ (0, ω0]

and x ∈ [−β, β]. Moreover, as f (β) ≤ 0 ≤ f (−β), we deduce that

−β ≤ f0(−β) ≤ f0(x) ≤ f0(β) ≤ β for all x ∈ [−β, β],

which concludes the proof. ��
Both LRI1a and LRI1b schemes preserve the discrete MBP under certain time step
constraint as stated below.

Theorem 2 Suppose that ‖u0‖L∞ ≤ β, then the numerical solution {Um} generated by
the LRI1a scheme (cf. Eq. (2.7)) or the LRI1b scheme (cf. Eq. (2.8)) is also pointwisely
bounded in the absolute value by β, i.e.,

‖Um‖∞ ≤ β, m = 0, 1, . . . , M,

provided that 0 < Δt ≤ ω0.
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Proof By induction, we only need to prove: if ‖Um‖∞ ≤ β, then it also holds that
‖Um+1‖∞ ≤ β. For the LRI1a scheme, by applying Lemmas 1 and 2, we deduce
from (2.7) that

‖Um+1‖∞ ≤ ‖eΔt AAA‖∞‖Um + Δt fff (Um)‖∞ ≤ β for all Δt ∈ (0, ω0].

For the LRI1b scheme, as ‖eΔt AAAUm‖∞ ≤ β (Lemma 1), together with Lemma 2 we
obtain

‖Um+1‖∞ = ‖eΔt AAAUm + Δt fff (eΔt AAAUm)‖∞ ≤ β for all Δt ∈ (0, ω0].

The proof is thus completed. ��
Unlike the LRI1 schemes, the LRI2 scheme requires a stronger condition on f to

obtain the discrete MBP, namely:

(A3) f is twice continuously differentiable and nonconstant on [−β, β].
The MBP preservation of the LRI2 scheme is guaranteed by the following theorem.
Define

ω1 := − min|x |≤β
[ f ′′(x) f (x)].

Theorem 3 Suppose that f satisfies (A1) and (A3). If ‖u0‖L∞ ≤ β, then the numerical
solution {Um} generated by the LRI2 scheme (cf. Eq. (2.9)) is also pointwisely bounded
in the absolute value by β, i.e.,

‖Um‖∞ ≤ β, m = 0, 1, . . . , M,

provided that 0 < Δt ≤ δ0ω0, where δ0 is given by

δ0 =
{
min{1, δ}, if ω1 > 0,

1, if ω1 ≤ 0,

with δ = −1+
√
1+7ω2

0ω1

2ω2
0ω1

if ω1 > 0.

Proof By induction,we again only need to show that if ‖Um‖∞ ≤ β then ‖Um+1‖∞ ≤
β. Apply Lemma 1, for any δ1 ∈ (0, 2) we have

‖Um+1‖∞ ≤
∥∥∥∥δ1

2
eΔt AAAUm + Δt

2
fff (eΔt AAAUm)

∥∥∥∥∞
+

∥∥∥∥2 − δ1

2
eΔt AAAUm

+Δt

2
eΔt AAA fff (Um) + Δt2

2
eΔt AAA ∂ fff

∂u
(Um) fff (Um)

∥∥∥∥∞

≤ δ1

2

∥∥∥∥eΔt AAAUm + Δt

δ1
fff (eΔt AAAUm)

∥∥∥∥∞
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+ 1

2

∥∥∥∥(2 − δ1)Um + Δt fff (Um) + Δt2
∂ fff

∂u
(Um) fff (Um)

∥∥∥∥∞
.

Notice that ‖eΔt AAAUm‖∞ ≤ β. If Δt
δ1

∈ (0, ω0] (i.e., Δt ∈ (0, δ1ω0]), then we observe
by Lemma 2 that

∥∥∥∥eΔt AAAUm + Δt

δ1
fff (eΔt AAAUm)

∥∥∥∥∞
≤ β.

Define K (x) = (2− δ1)x +Δt f (x)+Δt2 f ′(x) f (x) for x ∈ [−β, β]. Rewrite K (x)
as follows:

K (x) = (2 − δ1)x + (1 + Δt f ′(x))Δt f (x).

IfΔt ∈ (0, ω0], one can apply the property of f ′
0(x) in the proof of Lemma 2 to obtain

−(2 − δ1)β ≤ K (−β), and K (β) ≤ (2 − δ1)β. (3.1)

On the other hand,

K ′(x) = 2 − δ1 + Δt f ′(x) + Δt2[ f ′(x)]2 + Δt2 f ′′(x) f (x)

=
(
1

2
+ Δt f ′(x)

)2

+ 7

4
− δ1 + Δt2 f ′′(x) f (x)

≥ 7

4
− δ1 − Δt2ω1 for all x ∈ [−β, β].

If δ1 < 7
4 , and Δt ≤

√
1
ω1

( 7
4 − δ1

)
in case of ω1 > 0, then we have

K ′(x) ≥ 0 for all x ∈ [−β, β].

Therefore, K is non-decreasing on [−β, β]. This, combines with (3.1), gives us

|K (x)| ≤ (2 − δ1)β for all x ∈ [−β, β].

Thus,

‖Um+1‖∞ ≤ δ1

2
β + 2 − δ1

2
β = β, (3.2)

provided that the following conditions are all satisfied

δ1 ∈
(
0,

7

4

)
, Δt ∈ (0, δ1ω0], Δt ∈ (0, ω0],

Δt ≤
√

1

ω1

(
7

4
− δ1

)
if ω1 > 0.
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Ifω1 ≤ 0,we can choose δ1 = 1 and the condition on the time step size isΔt ∈ (0, ω0].
If ω1 > 0 then Δt has to satisfy the constraint below

0 < Δt ≤ min

{
ω0, δ1ω0,

√
1

ω1

(
7

4
− δ1

)}
, δ1 ∈

(
0,

7

4

)
,

or equivalently,

0 < Δt ≤ ω0 min

{
1, δ1,

√
1

ω2
0ω1

(
7

4
− δ1

)}
.

The best choice of the constant δ1 in this case is δ1 = δ because of the the following
relations:

δ =
√

1

ω2
0ω1

(
7

4
− δ

)
, δ ∈

(
0,

7

4

)
.

Hence, we require 0 < Δt ≤ ω0 min{1, δ} when ω1 > 0. Consequently, (3.2) is true
for all Δt ∈ (0, δ0ω0], which completes the proof of Theorem 3. ��
Remark 2 If the nonlinear function f satisfies additionally f (−β) = f (β) = 0 for
some β > 0, then (3.1) is obviously true without the requirement 0 < Δt ≤ ω0. Also
in this case, it is not difficult to prove that ω1 > 0, meaning that δ exists. Thus, the
range of Δt can be enlarged, particularly, 0 < Δt ≤ δω0. This is the case for both
double-well potential and Flory-Huggins potential functions [13]. The double-well
potential function F(u) = 1

4 (u
2 − 1)2 gives the nonlinear term f (u) = u − u3, then

f (−1) = f (1) = 0, i.e., β = 1. By simple calculations, we obtain

ω0 = 1

2
, ω1 = 3

2
, δ = −4 + √

58

3
≈ 6

5
.

Therefore, the MBP is preserved when 0 < Δt ≤ 1
2 (for the LRI1 schemes) and

0 < Δt ≤ 3
5 (for the LRI2 scheme). The Flory-Huggins potential function is given

by F(u) = θ
2 [(1 + u) ln(1 + u) + (1 − u) ln(1 − u)] − θc

2 u
2, where 0 < θ < θc.

Then f (u) = −F ′(u), namely, f (u) = θ
2 ln

1−u
1+u + θcu. Consider a particular case

[26] where θ = 0.8 and θc = 1.6, then β ≈ 0.9575 satisfying f (−β) = f (β) = 0.
We can easily verify that

ω0 = 1 − β2

θ − θc(1 − β2)
≈ 0.1247, ω1 ≈ − f (0.932) f ′′(0.932) ≈ 13.1739, δ ≈ 1.367.

Thus, the conditions on Δt to preserve the MBP are 0 < Δt ≤ 0.1247 for the LRI1
schemes and 0 < Δt ≤ 0.1705 for the LRI2 scheme. We shall verify these time step
constraints in the numerical experiments (cf. Sect. 5).
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3.2 Discrete energy stability

The discrete energy Eh is defined as

Eh(U) =
N∑
i=1

F(Ui ) − ε2

2
UT DDDhU for all U = (U 1,U 2, . . . ,UN )T ∈ R

N ,

(3.3)

where F is the potential function. In the following, we show that the first- and second-
order LRI schemes are conditionally energy stable in the sense that the discrete energy
is bounded at all times. We first state some preliminary results needed for the main
theorem. Let us define F0 = max|x |≤β | f (x)| and F1 = max|x |≤β | f ′(x)|.
Lemma 3 If ‖Um‖∞ ≤ β for all m = 0, 1, · · · , M, then there exists WWW in R

N ,
‖WWW‖∞ ≤ F0 such that

Eh(Um+1) − Eh(Um) ≤ (Um+1 − Um)T (WWW − AAAUm+1),

for m = 0, 1, · · · , M − 1.

Proof We first have the following identity from (3.3):

Eh(Um+1) − Eh(Um) =
N∑
i=1

[F(Ui
m+1) − F(Ui

m)] − ε2

2
(UT

m+1DDDhUm+1 − UT
mDDDhUm).

(3.4)

Since ‖Um‖∞ ≤ β for m = 0, 1, . . . , M , by the mean value theorem, there exist
γ1, γ2, . . . , γN such that |γi | ≤ β for i = 1, 2, . . . , N and

F(Ui
m+1) − F(Ui

m) = (Ui
m+1 −Ui

m)F ′(γi ) = −(Ui
m+1 −Ui

m) f (γi ), i = 1, 2, . . . , N .

LetWWW := −[ f (γ1), f (γ2), . . . , f (γN )]T , we can see that ‖WWW‖∞ ≤ F0 and

N∑
i=1

[F(Ui
m+1) − F(Ui

m)] = (Um+1 − Um)TWWW . (3.5)

On the other hand, DDDh is negative semidefinite and symmetric, so

0 ≥ (Um+1 − Um)T DDDh(Um+1 − Um)

= UT
m+1DDDhUm+1

+ UT
mDDDhUm − UT

m+1DDDhUm − UT
mDDDhUm+1

= −UT
m+1DDDhUm+1 + UT

mDDDhUm + 2(Um+1 − Um)T DDDhUm+1.

123



BIT Numerical Mathematics (2023) 63 :2 Page 13 of 32 2

Therefore,

UT
m+1DDDhUm+1 − UT

mDDDhUm ≥ 2(Um+1 − Um)T DDDhUm+1. (3.6)

From (3.4), (3.5) and (3.6), we get

Eh(Um+1) − Eh(Um) ≤ (Um+1 − Um)T (WWW − AAAUm+1),

which leads to the conclusion. ��
Lemma 4

(i) If 0 < Δt ≤ ω0 and f satisfies (A1) and (A2), then the numerical solution {Um}
generated by the LRI1a scheme (2.7) or the LRI1b scheme (2.8) satisfies

‖Um+1 − Um‖∞ ≤ (β‖AAA‖∞ + F0)Δt .

(ii) If 0 < Δt ≤ δ0ω0 and f satisfies (A1) and (A3), then the numerical solution {Um}
generated by the LRI2 scheme (2.9) satisfies

‖Um+1 − Um‖∞ ≤ (β‖AAA‖∞ + F0 + δ0ω0F0F1)Δt .

Proof By Theorem 2 or 3, we know that the numerical solution {Um} generated by
the schemes (2.7), (2.8) or (2.9) preserves the MBP, meaning that ‖Um‖∞ ≤ β for
m = 0, 1, . . . , M .

(i) Consider the LRI1a scheme (2.7). Define qqq1(t) = etAAAUm + teΔt AAA fff (Um), then
qqq1(0) = Um , qqq1(Δt) = Um+1, and

qqq ′
1(t) = AAAetAAAUm + eΔt AAA fff (Um).

By Lemma 1, we can easily see that

‖qqq ′
1(t)‖∞ ≤ β‖AAA‖∞ + F0 for all t > 0.

Apply the mean value theorem, we get

‖Um+1 − Um‖∞ = ‖qqq1(Δt) − qqq1(0)‖∞ ≤ (β‖AAA‖∞ + F0)Δt .

Similarly for the LRI1b scheme (2.8), defineqqq2(t) = etAAAUm + t fff (eΔt AAAUm), then
qqq2(0) = Um and qqq2(Δt) = Um+1. Moreover,

‖qqq ′
2(t)‖∞ = ‖AAAetAAAUm + fff (eΔt AAAUm)‖∞ ≤ β‖AAA‖∞ + F0 for all t > 0.

The result of (i) then follows by the mean value theorem.
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(ii) For the LRI2 scheme (2.9), define qqq3(t) = qqq1(t)+qqq2(t)
2 + t2

2 e
Δt AAA ∂ fff

∂u (Um) fff (Um),
then qqq3(0) = Um , qqq3(Δt) = Um+1 and

qqq ′
3(t) = qqq ′

1(t) + qqq ′
2(t)

2
+ teΔt AAA ∂ fff

∂u
(Um) fff (Um).

Thus we have

‖qqq ′
3(t)‖∞ ≤ ‖qqq ′

1(t)‖∞ + ‖qqq ′
2(t)‖∞

2
+ δ0ω0F0F1

≤ β‖AAA‖∞ + F0 + δ0ω0F0F1 for all t ∈ [0,Δt].

Then the result of (ii) follows by the mean value theorem. ��
Theorem 4 Suppose 0 < Δt ≤ ω0 (resp. 0 < Δt ≤ δ0ω0) and f satisfies (A1) and
(A2) (resp. (A1) and (A3)), then the numerical solution {Um} generated by the LRI1a
scheme (2.7) or the LRI1b scheme (2.8) (resp. the LRI2 scheme (2.9)) satisfies

Eh(Um) ≤ Eh(U0) + C, m = 0, 1, . . . , M, (3.7)

where the constant C > 0 is independent of Δt .

Proof According to Lemma 4, there exists c > 0 independence of Δt such that

‖Um+1 − Um‖∞ ≤ cΔt .

This, together with Lemma 3, gives us

Eh(Um+1) − Eh(Um) ≤ ‖(Um+1 − Um)T ‖∞(‖WWW‖∞
+ ‖AAAUm+1‖∞) ≤ cNΔt(F0 + β‖AAA‖∞).

Therefore,

Eh(Um) ≤ Eh(U0) + cNT (F0 + β‖AAA‖∞) =: Eh(U0) + C,

where C = cNT (F0 + β‖AAA‖∞) > 0 independence of Δt . ��

4 Temporal error estimates

In this section, we always assume ‖u0‖L∞ ≤ β so that

u ∈ C([0, T ];RN ) and ‖u(t)‖∞ ≤ β for all t ∈ [0, T ],

by Theorem 1 and the discrete MBP of the numerical solution {Um} also holds by
Theorem 2 or Theorem 3. By using Duhamel’s formula as the key idea, we will show
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that these requirements on u (the continuity of u(t) and its MBP) are enough to obtain
the temporal error estimates (under a fixed spatial mesh size) for the proposed LRI
schemes. Let em := Um − u(tm) be the error at tm = mΔt ≤ T . Let us define
F2 = max|x |≤β

| f ′′(x)|, F3 = max|x |≤β
|( f ′(x) f (x))′|, F̃1 = max|x |≤β+δ0ω0F0

| f ′(x)|, and F̃2 =
max|x |≤β+δ0ω0F0

| f ′′(x)|. The following result will be useful for the error analysis of the

LRI schemes.

Lemma 5 For each 0 ≤ s ≤ Δt , define

λ(s) = e(Δt−s)AAA fff (esAAAu(tm)) and ψ(s) = e(Δt−s)AAA ∂ fff

∂u
(esAAAu(tm)) fff (u(tm)).

Then

(i) ‖λ′(s)‖∞ ≤ (F0 + βF1)‖AAA‖∞ and ‖λ′′(s)‖∞ ≤ (F0 + 3βF1 + β2F2)‖AAA‖2∞.

(ii) ‖ψ ′(s)‖∞ ≤ F0(F1 + βF2)‖AAA‖∞.

Proof We have

λ′(s) = e(Δt−s)AAA
[
−AAA fff (esAAAu(tm)) + ∂ fff

∂u
(esAAAu(tm))(AAAesAAAu(tm))

]
.

Since ‖esAAAu(tm)‖∞ ≤ β, this implies

‖λ′(s)‖∞ ≤ F0‖AAA‖∞ + βF1‖AAA‖∞ = (F0 + βF1)‖AAA‖∞.

On the other hand,

λ′′(s) = e(Δt−s)AAA
[
AAA2 fff (esAAAu(tm)) − 2AAA

∂ fff

∂u
(esAAAu(tm))(AAAesAAAu(tm))

+ ∂2 fff

∂u2
(esAAAu(tm))(AAAesAAAu(tm))�2 + ∂ fff

∂u
(esAAAu(tm))(AAA2esAAAu(tm))

]
.

Thus we get

‖λ′′(s)‖∞ ≤ F0‖AAA‖2∞ + 2βF1‖AAA‖2∞ + β2F2‖AAA‖2∞ + βF1‖AAA‖2∞
= (F0 + 3βF1 + β2F2)‖AAA‖2∞.

Similarly for ψ , we have

ψ ′(s) = e(Δt−s)AAA
[

− AAA
∂ fff

∂u
(esAAAu(tm)) fff (u(tm)) + ∂2 fff

∂u2
(esAAAu(tm))(AAAesAAAu(tm)) � fff (u(tm))

]
.

Therefore,

‖ψ ′(s)‖∞ ≤ F0(F1‖AAA‖∞ + βF2‖AAA‖∞) = F0(F1 + βF2)‖AAA‖∞.
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The proof is then completed. ��
Next, we prove the convergence of the numerical solutions by the LRI1a, LRI1b

and LRI2 schemes to the exact solution of the space-discrete problem (2.1) asΔt tends
to zero, and their corresponding error estimates.

Theorem 5 Given any fixed terminal time T > 0 and spatial mesh size h > 0. Assume
that u ∈ C([0, T ];RN ) is the exact solution of (2.1) and {Um} is the numerical
solution generated by the LRI1a scheme (cf. Eq. (2.7)). Then, there exists a constant
C = C(β, F0, F1, ‖AAA‖∞) > 0 independent of Δt such that the following estimate is
true for all 0 < Δt ≤ ω0:

‖Um − u(tm)‖∞ ≤ C(eF1tm − 1)Δt, m = 0, 1, . . . , M .

Proof For the LRI1a scheme (2.7), we have

u(tm+1) = eΔt AAA (u(tm) + Δt fff (u(tm))) + RRR1(tm), (4.1)

where RRR1(tm) is the corresponding truncation error. This together with (2.7) gives us

em+1 = eΔt AAA [em + Δt ( fff (Um) − fff (u(tm)))] − RRR1(tm).

Since ‖eΔt AAA‖∞ ≤ 1, we have

‖em+1‖∞ ≤ ‖em‖∞ + Δt‖ fff (Um) − fff (u(tm))‖∞ + ‖RRR1(tm)‖∞. (4.2)

Observe that both the exact and numerical solutions of (2.1) satisfy the MBP when
0 < Δt ≤ ω0, meaning that ‖Um‖∞ ≤ β, ‖u(tm)‖∞ ≤ β. By using the Lipschitz
continuity of fff , we obtain

‖ fff (Um) − fff (u(tm))‖∞ ≤ F1‖Um − u(tm)‖∞ = F1‖em‖∞. (4.3)

On the other hand, by comparing (2.3) and (4.1), we can rewrite RRR1(tm) as follows:

RRR1(tm) =
∫ Δt

0
e(Δt−s)AAA fff (u(tm + s)) ds − ΔteΔt AAA fff (u(tm))

=
∫ Δt

0

[
e(Δt−s)AAA fff (u(tm + s)) − eΔt AAA fff (u(tm))

]
ds.

Therefore,

‖RRR1(tm )‖∞ ≤
∫ Δt

0
‖eΔt AAA fff (u(tm )) − e(Δt−s)AAA fff (u(tm + s))‖∞ ds

≤
∫ Δt

0

(
‖eΔt AAA fff (u(tm )) − e(Δt−s)AAA fff (esAAAu(tm ))‖∞ + ‖e(Δt−s)AAA fff (esAAAu(tm )) − e(Δt−s)AAA fff (u(tm + s))‖∞

)
ds

≤
∫ Δt

0

(
‖eΔt AAA fff (u(tm )) − e(Δt−s)AAA fff (esAAAu(tm ))‖∞ + ‖ fff (esAAAu(tm )) − fff (u(tm + s))‖∞

)
ds
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=:
∫ Δt

0
(Q1 + Q2) ds,

where

Q1 = ‖eΔt AAA fff (u(tm)) − e(Δt−s)AAA fff (esAAAu(tm))‖∞, Q2 = ‖ fff (esAAAu(tm)) − fff (u(tm + s))‖∞.

Using Lemma 5 and the mean value theorem, we deduce that

Q1 = ‖λ(0) − λ(s)‖∞ ≤ s(F0 + βF1)‖AAA‖∞. (4.4)

To estimate Q2, we apply the formula (2.4) to obtain

Q2 ≤ F1‖esAAAu(tm) − u(tm + s)‖∞ = F1

∥∥∥∥
∫ s

0
e(s−σ)AAA fff (u(tm + σ)) dσ

∥∥∥∥∞

≤ F1

∫ s

0
‖e(s−σ)AAA‖∞‖ fff (u(tm + σ))‖∞dσ ≤ F0F1s. (4.5)

Thus we obtain from (4.4) and (4.5) that

‖RRR1(tm)‖∞ ≤
∫ Δt

0
(Q1 + Q2) ds ≤

∫ Δt

0
[(F0 + βF1)‖AAA‖∞ + F0F1]s ds

= 1

2
[(F0 + βF1)‖AAA‖∞ + F0F1]Δt2 =: c0Δt2. (4.6)

By (4.2), (4.3) and (4.6), the following estimate holds:

‖em+1‖∞ ≤ (1 + F1Δt)‖em‖∞ + c0Δt2. (4.7)

This implies

‖em‖∞ + c0Δt

F1
≤ (1 + F1Δt)

(
‖em−1‖∞ + c0Δt

F1

)

≤ (1 + F1Δt)m
(

‖e0‖∞ + c0Δt

F1

)
.

Note that e0 = 0, thus

‖em‖∞ ≤ c0Δt

F1

[
(1 + F1Δt)m − 1

] ≤ c0Δt

F1
(eF1tm − 1) =: C(eF1tm − 1)Δt,

where C = c0
F1

= 1
2

[(
F0
F1

+ β
)

‖AAA‖∞ + F0
]

> 0. ��

Theorem 6 Given any fixed terminal time T > 0 and spatial mesh size h > 0. Assume
that u ∈ C([0, T ];RN ) is the exact solution of (2.1) and {Um} is the numerical
solution generated by the LRI1b scheme (cf. Eq. (2.8)). Then, there exists a constant
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C = C(β, F0, F1, ‖AAA‖∞) > 0 independent of Δt such that the following estimate is
true for all 0 < Δt ≤ ω0:

‖Um − u(tm)‖∞ ≤ C(eF1tm − 1)Δt, m = 0, 1, . . . , M .

Proof For the LRI1b scheme (2.8), we have

u(tm+1) = eΔt AAAu(tm) + Δt fff
(
eΔt AAAu(tm)

)
+ RRR2(tm), (4.8)

where RRR2(tm) is the corresponding truncation error. This together with (2.8) gives us

em+1 = eΔt AAAem + Δt
[
fff

(
eΔt AAAUm

)
− fff

(
eΔt AAAu(tm)

)]
− RRR2(tm).

Since ‖eΔt AAA‖∞ ≤ 1, we have

‖em+1‖∞ ≤ ‖em‖∞ + Δt
∥∥∥ fff

(
eΔt AAAUm

)
− fff

(
eΔt AAAu(tm)

)∥∥∥∞ + ‖RRR2(tm)‖∞.

(4.9)

Notice that ‖eΔt AAAu(tm)‖∞ ≤ β and ‖eΔt AAAUm‖∞ ≤ β under the condition 0 < Δt ≤
ω0. Using the Lipschitz continuity of fff , we obtain

∥∥∥ fff
(
eΔt AAAUm

)
− fff

(
eΔt AAAu(tm)

)∥∥∥∞ ≤ F1
∥∥∥eΔt AAAUm − eΔt AAAu(tm)

∥∥∥∞ ≤ F1‖em‖∞.

(4.10)

Compare (4.8) and (2.3), we can rewrite RRR2(tm) as follows:

RRR2(tm) =
∫ Δt

0
e(Δt−s)AAA fff (u(tm + s)) ds − Δt fff (eΔt AAAu(tm))

=
∫ Δt

0

[
e(Δt−s)AAA fff (u(tm + s)) − fff (eΔt AAAu(tm))

]
ds.

Therefore,

‖RRR2(tm)‖∞ ≤
∫ Δt

0

(
‖ fff (eΔt AAAu(tm)) − e(Δt−s)AAA fff (esAAAu(tm))‖∞

+‖e(Δt−s)AAA fff (esAAAu(tm)) − e(Δt−s)AAA fff (u(tm + s)) ‖∞
)
ds

≤
∫ Δt

0

(
‖ fff (eΔt AAAu(tm)) − e(Δt−s)AAA fff (esAAAu(tm))‖∞

+‖ fff (esAAAu(tm)) − fff (u(tm + s)) ‖∞
)
ds

=:
∫ Δt

0
(Q0 + Q2)ds,
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where

Q0 = ‖ fff (eΔt AAAu(tm)) − e(Δt−s)AAA fff (esAAAu(tm))‖∞,

and Q2 is the same term as appeared in the proof of the previous theorem. Using
Lemma 5 and the mean value theorem, we deduce that

Q0 = ‖λ(Δt) − λ(s)‖∞ ≤ (Δt − s)(F0 + βF1)‖AAA‖∞. (4.11)

Thus we obtain from (4.11) and (4.5) that

‖RRR2(tm)‖∞ ≤
∫ Δt

0
(Q0 + Q2) ds ≤

∫ Δt

0
[(Δt − s)(F0 + βF1)‖AAA‖∞ + F0F1s] ds

= 1

2
[(F0 + βF1)‖AAA‖∞ + F0F1]Δt2 = c0Δt2, (4.12)

where c0 is the same constant as appeared in the proof of the previous theorem.
Combine (4.9), (4.10) and (4.12) we have

‖em+1‖∞ ≤ (1 + F1Δt)‖em‖∞ + c0Δt2.

By the same arguments as in Theorem 5, we obtain

‖em‖∞ ≤ C(eF1tm − 1)Δt,

where C = c0
F1

> 0 is independent of Δt . ��
Theorem 7 Given any fixed terminal time T > 0 and spatial mesh size h > 0. Suppose
that f satisfies assumptions (A1) and (A3). Assume that u ∈ C([0, T ];RN ) is the exact
solution of (2.1) and {Um} is the numerical solution generated by the LRI2 scheme (cf.
Eq. (2.9)). Then, there exists C = C(β, δ0, ω0, F0, F1, F̃1, F2, F̃2, F3, ‖AAA‖∞) > 0
independent of Δt such that the following estimate is true for all 0 < Δt ≤ δ0ω0:

‖Um − u(tm)‖∞ ≤ C(eF4tm − 1)Δt2, m = 0, 1, . . . , M,

where F4 := F1 + 1
2δ0ω0F3.

Proof Let RRR3(tm) be the truncation error of the LRI2 scheme (2.9), we have

u(tm+1) = eΔt AAAu(tm) + Δt

2

[
eΔt AAA fff (u(tm)) + fff (eΔt AAAu(tm)

]

+ Δt2

2
eΔt AAA ∂ fff

∂u
(u(tm)) fff (u(tm)) + RRR3(tm). (4.13)

This together with (2.9) gives us
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em+1 = eΔt AAAem + Δt

2

[
eΔt AAA( fff (Um) − fff (u(tm)) + fff (eΔt AAAUm) − fff (eΔt AAAu(tm))

]

+ Δt2

2
eΔt AAA

[
∂ fff

∂u
(Um) fff (Um) − ∂ fff

∂u
(u(tm)) fff (u(tm))

]
− RRR3(tm).

Therefore,

‖em+1‖∞ ≤ ‖em‖∞ + Δt

2[
‖ fff (Um) − fff (u(tm)‖∞ + ‖ fff (eΔt AAAUm) − fff (eΔt AAAu(tm))‖∞

]

+ Δt2

2

∥∥∥∥∂ fff

∂u
(Um) fff (Um) − ∂ fff

∂u
(u(tm)) fff (u(tm))

∥∥∥∥∞
+ ‖RRR3(tm)‖∞.

Using the similar arguments as in proofs of Theorems 5 and 6, we can easily obtain

‖ fff (Um) − fff (u(tm)‖∞ ≤ F1‖Um − u(tm)‖∞ = F1‖em‖∞,

‖ fff (eΔt AAAUm) − fff (eΔt AAAu(tm))‖∞ ≤ F1‖eΔt AAAUm − eΔt AAAu(tm)‖∞ ≤ F1‖em‖∞.

Define l(vvv) = ∂ fff
∂u (vvv) fff (vvv) for vvv ∈ R

N . It is easy to verify that ‖ ∂ l
∂vvv

‖∞ ≤ F3 when
‖vvv‖∞ ≤ β, then

‖l(Um) − l(u(tm))‖∞ ≤ F3‖Um − u(tm)‖∞ = F3‖em‖∞.

Consequently, we have

‖em+1‖∞ ≤
(
1 + F1Δt + 1

2
F3Δt2

)
‖em‖∞ + ‖RRR3(tm)‖∞. (4.14)

On the other hand, by comparing (4.13) and (2.3), for RRR3(tm) we arrive at

RRR3(tm) =
∫ Δt

0
e(Δt−s)AAA fff (u(tm + s)) ds − Δt

2

[
eΔt AAA fff (u(tm)) + fff (eΔt AAAu(tm)

]

− Δt2

2
eΔt AAA ∂ fff

∂u
(u(tm)) fff (u(tm))

=
∫ Δt

0

[
e(Δt−s)AAA fff (u(tm + s)) − seΔt AAA ∂ fff

∂u
(u(tm)) fff (u(tm))

−
(
1 − s

Δt

)
eΔt AAA fff (u(tm)) − s

Δt
fff (eΔt AAAu(tm))

]
ds

=
∫ Δt

0
(I1 + I2 + I3 + I4) ds,

where Ii , i = 1, 2, 3, 4 are defined as follow:

I1 = e(Δt−s)AAA
[
fff (u(tm + s)) − fff (esAAAu(tm) + s fff (u(tm)))

]
,
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I2 = e(Δt−s)AAA
[
fff (esAAAu(tm) + s fff (u(tm)))

−
(
fff (esAAAu(tm)) + s

∂ fff

∂u
(esAAAu(tm)) fff (u(tm))

)]
,

I3 = se(Δt−s)AAA ∂ fff

∂u
(esAAAu(tm)) fff (u(tm)) − seΔt AAA ∂ fff

∂u
(u(tm)) fff (u(tm)),

I4 = e(Δt−s)AAA fff (esAAAu(tm)) −
(
1 − s

Δt

)
eΔt AAA fff (u(tm)) − s

Δt
fff (eΔt AAAu(tm)).

Since ‖u(tm)‖∞ ≤ β and s ≤ Δt ≤ δ0ω0, we have

‖esAAAu(tm) + s fff (u(tm))‖∞ ≤ ‖esAAAu(tm)‖∞ + s‖ fff (u(tm))‖∞ ≤ β + δ0ω0F0.
(4.15)

It is easy to see that when v,w ∈ R
N and ‖v‖∞, ‖w‖∞ ≤ β + δ0ω0F0, then

‖ fff (v) − fff (w)‖∞ ≤ F̃1‖v − w‖∞.

This, together with the formula (2.4), gives us

‖I1‖∞ ≤
∥∥∥ fff (u(tm + s)) − fff (esAAAu(tm) + s fff (u(tm)))

∥∥∥∞
≤ F̃1

∥∥∥u(tm + s) −
(
esAAAu(tm) + s fff (u(tm)

)∥∥∥∞

= F̃1

∥∥∥∥s fff (u(tm)) −
∫ s

0
e(s−σ)AAA fff (u(tm + σ)) dσ

∥∥∥∥∞

= F̃1

∥∥∥∥
∫ s

0

[
fff (u(tm)) − e(s−σ)AAA fff (u(tm + σ))

]
dσ

∥∥∥∥∞

≤ F̃1

∫ s

0

[‖ fff (u(tm))−esAAA fff (u(tm))‖∞+‖esAAA fff (u(tm))−e(s−σ)AAA fff (eσ AAAu(tm))‖∞

+ ‖e(s−σ)AAA fff (eσ AAAu(tm)) − e(s−σ)AAA fff (u(tm + σ))‖∞
]
dσ

=: F̃1
∫ s

0
(J1 + J2 + J3) dσ,

where J1, J2 and J3 are given by

J1 = ‖ fff (u(tm)) − esAAA fff (u(tm))‖∞,

J2 = ‖esAAA fff (u(tm)) − e(s−σ)AAA fff (eσ AAAu(tm))‖∞,

J3 = ‖e(s−σ)AAA fff (eσ AAAu(tm)) − e(s−σ)AAA fff (u(tm + σ))‖∞.

By themean value theorem,we have J1 ≤ F0‖esAAA− I‖∞ ≤ sF0‖AAA‖∞.Using Lemma
5 and the mean value theorem, we obtain J2 ≤ (F0 +βF1)‖AAA‖∞σ.Using the formula
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(2.4), we have

J3 ≤ F1‖eσ AAAu(tm) − u(tm + σ)‖∞

= F1

∥∥∥∥
∫ σ

0
e(σ−ξ)AAA fff (u(tm + ξ))dξ

∥∥∥∥∞
≤ F1

∫ σ

0
F0dξ = F0F1σ.

Therefore,

‖I1‖∞ ≤ F̃1

∫ s

0
(J1 + J2 + J3) dσ

≤ F̃1

∫ s

0
[F0‖AAA‖∞s + (F0 + βF1)‖AAA‖∞σ + F0F1σ ]dσ

= 1

2
F̃1[(3F0 + βF1)‖AAA‖∞ + F0F1]s2 =: c1s2. (4.16)

By Taylor expansion, there exists V ∈ R
N , ‖V‖∞ ≤ β + δ0ω0F0 (from (4.15)) such

that

fff (esAAAu(tm) + s fff (u(tm))) = fff (esAAAu(tm)) + s
∂ fff

∂u
(esAAAu(tm)) fff (u(tm))

+ ∂2 fff

∂u2
(V )

[s fff (u(tm))]�2

2
.

Thus one gets

‖I2‖∞ ≤
∥∥∥∥∂2 fff

∂u2
(V )

[s fff (u(tm))]�2

2

∥∥∥∥∞
≤ 1

2
F2
0 F̃2s

2 =: c2s2. (4.17)

To estimate I3, using Lemma 5 and the mean value theorem, we obtain

‖I3‖∞ = s‖ψ(s) − ψ(0)‖∞ ≤ F0(F1 + βF2)‖AAA‖∞s2 =: c3s2. (4.18)

For I4 notice that

‖I4‖∞ =
∥∥∥λ(s) −

(
1 − s

Δt

)
λ(0) − s

Δt
λ(Δt)

∥∥∥
∞

.

Using Taylor expansion, there exist V 1, V 2 ∈ R
N satisfying

‖V 1‖∞, ‖V 2‖∞ ≤ max
s∈[0,Δt] ‖λ

′′(s)‖∞
Lemma 5≤ (F0 + 3βF1 + β2F2)‖AAA‖2∞

subject to

{
λ(0) = λ(s) − sλ′(s) + s2

2 V 1,

λ(Δt) = λ(s) + (Δt − s)λ′(s) + (Δt−s)2

2 V 2.
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Thus we have

‖I4‖∞ =
∥∥∥∥
(
1 − s

Δt

) s2

2
V 1 + s

Δt

(Δt − s)2

2
V 2

∥∥∥∥∞

≤ 1

2
(F0 + 3βF1 + β2F2)‖AAA‖2∞(sΔt − s2) =: c4(sΔt − s2). (4.19)

Combining the above estimates (4.16)–(4.19) for Ii , i = 1, 2, 3, 4 yields

‖RRR3(tm)‖∞ ≤
∫ Δt

0
(c1 + c2 + c3)s

2 + c4(sΔt − s2) ds

=
(
c1 + c2 + c3

3
+ c4

6

)
Δt3 =: cΔt3. (4.20)

From (4.14) and (4.20), we get

‖em+1‖∞ ≤
(
1 + F1Δt + 1

2
F3Δt2

)
‖em‖∞ + cΔt3 ≤ (1 + F4Δt) ‖em‖∞ + cΔt3.

Therefore,

‖em‖∞ + cΔt2

F4
≤ (1 + F4Δt)m

(
‖e0‖∞ + cΔt2

F4

)
.

Using the fact that e0 = 0, we deduce that

‖em‖∞ ≤ cΔt2

F4
[(1 + F4Δt)m − 1] ≤ cΔt2

F4
(eF4tm − 1) =: C(eF4tm − 1)Δt2,

where C = c
F4

= 1
F4

( c1+c2+c3
3 + c4

6

)
> 0, and c1, c2, c3, c4, F4 depend on β, δ0,

ω0, F0, F1, F̃1, F2, F̃2, F3, and ‖AAA‖∞. ��

Remark 3 For the case of f (u) = u − u3 (i.e., the Allen–Cahn equation with the
double-well potential), the estimates derived in Theorems 5, 6 and 7 could be made
simpler. In particular, for theLRI1a andLRI1b schemes, there existsC = C(‖AAA‖∞) >

0 such that the following inequality holds for all 0 < Δt ≤ 1
2 :

‖Um − u(tm)‖∞ ≤ C(e2tm − 1)Δt, m = 0, 1, . . . , M .

For the LRI2 scheme, there exists C = C(‖AAA‖∞) > 0 so that for all 0 < Δt ≤ 3
5 we

have:

‖Um − u(tm)‖∞ ≤ C(e
16
5 tm − 1)Δt2, m = 0, 1, . . . , M .
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5 Numerical experiments

We now verify numerically the convergence rates in time, MBP preservation and
energy stability of the proposed LRI schemes (LRI1a (2.7), LRI1b (2.8), and LRI2
(2.9)) analyzed in the previous sections. To illustrate the advantages of the LRI
schemes, we compare their performance with the ETD schemes [13] of orders 1
and 2 (i.e., ETD1 and ETDRK2) in terms of time discretization errors as the inter-
facial parameter ε approaches zero. Two test cases in the two dimensional domain
Ω = (−0.5, 0.5)2 are presented: Test case 1 having a traveling wave solution and Test
case 2 modeling the coarsen dynamics. For the latter, both double-well potential and
Flory-Huggins potential functions will be considered in the numerical simulations. All
numerical results are obtained via a fast implementation of the LRI and ETDmethods
based on matrix decomposition and Discrete Fourier Transform (DFT) as proposed in
[29]. The code is implemented in MATLAB on a MacBook Pro with the M1 Pro chip
and 32 GB memory.

5.1 Test case 1: traveling wave

To investigate the convergence in time of the proposed schemes, we use the benchmark
test [35]where a travelingwave solution of theAllen–Cahn equation (1.1)with f (u) =
u − u3 is considered. In particular, if the initial data is given by

u0(x, y) = 1

2

(
1 − tanh

(
x

2
√
2ε

))
, (x, y) ∈ Ω, (5.1)

then the Allen–Cahn equation in the whole space has the traveling wave solution

u(x, y, t) = 1

2

(
1 − tanh

(
x − st

2
√
2ε

))
, (x, y) ∈ Ω, (5.2)

where s = 3ε
/√

2 is the speed of the traveling wave.We impose a homogeneous Neu-
mann boundary condition on the whole boundary ∂Ω , so that (5.2) can be used as an
approximate exact solution (for ε � 1) onΩ×[0, T ].We take ε ∈ {0.02, 0.01, 0.005},
and set the ending time T = 1/4 s. With a fixed mesh size h = 1/2048, we compute
the numerical solutions obtained by the first-order methods (ETD1, LRI1a and LRI1b)
and the second-order methods (ETDRK2 and LRI2) with decreasing time step sizes.
The L2 and L∞ errors at time t = T and their convergence rates of the first-order
schemes are reported in Tables 1 and 2, respectively. The corresponding results for
the second-order schemes are shown in Table 3.

For the first-order schemes, we observe expected first-order temporal convergence
rates in both L2 and L∞ norms with various values of ε. In addition, the errors by two
LRI1 schemes are always smaller than those by ETD1; the performance of LRI1a and
LRI1b is quite similar as ε decreases. For the second-order schemes, we first notice
that the errors are much smaller compared to the first-order schemes with the same
time step sizes, especially when ε is close to zero. Importantly, second-order temporal
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Table 1 [Test case 1] L2 errors and convergence rates in time by the first-order ETD and LRI schemes

ε Δt ETD1 LRI1a LRI1b

L2 error Rate L2 error Rate L2 error Rate

0.02 T /32 4.24e−2 – 3.35e−2 – 2.86e−2 –

T /64 2.24e−2 0.92 1.75e−2 0.93 1.50e−2 0.93

T /128 1.15e−2 0.96 8.98e−3 0.97 7.66e−3 0.97

T /256 5.83e−3 0.98 4.55e−3 0.98 3.87e−3 0.98

T /512 2.93e−3 0.99 2.29e−3 0.99 1.95e−3 0.99

T /1024 1.47e−3 1.00 1.15e−3 1.00 9.77e−4 1.00

0.01 T /32 1.11e−1 – 8.51e−2 – 7.89e−2 –

T /64 6.36e−2 0.81 4.73e−2 0.85 4.37e−2 0.85

T /128 3.40e−2 0.90 2.50e−2 0.92 2.30e−2 0.93

T /256 1.76e−2 0.95 1.28e−2 0.96 1.18e−2 0.96

T /512 8.91e−3 0.98 6.48e−3 0.98 5.96e−3 0.98

T /1024 4.48e−3 0.99 3.25e−3 0.99 2.99e−3 0.99

0.005 T /32 2.08e−1 – 1.70e−1 – 1.66e−1 –

T /64 1.45e−1 0.52 1.12e−1 0.61 1.08e−1 0.61

T /128 8.93e−2 0.70 6.51e−2 0.78 6.28e−2 0.79

T /256 4.93e−2 0.86 3.49e−2 0.90 3.36e−2 0.90

T /512 2.57e−2 0.94 1.80e−2 0.96 1.73e−2 0.96

T /1024 1.30e−2 0.98 9.07e−3 0.99 8.69e−3 0.99

convergence rates of LRI2 are confirmed even for small ε. For ε = 0.02, the errors in
space are dominant when Δt is sufficiently small, that is why the convergence rates
deteriorate after several refinements in time. Moreover, we remark that the errors are
computed using the approximate exact solution (5.2) which is accurate when ε is
close enough to zero. Unlike LRI2, ETDRK2 fails to converge when ε = 0.005; a
similar behavior was also observed for the Navier–Stokes equations with the classical
exponential integratorwhen the viscosity coefficient is close to zero [31]. Furthermore,
as for the first-order schemes, the errors by ETDRK2 are always bigger than those
by LRI2 with the same Δt for all considered values of ε; this phenomenon becomes
much more significant when ε gets smaller.

We report in Table 4 the running times (in seconds) of LRI and ETD methods
with fixed h = 1/2048 and varying time step sizes. The running times are similar for
different values of ε, thus we only show the results when ε = 0.01.We observe that for
thefirst-order schemes,LRI1a andLRI1bhave similar running times and are faster than
ETD1. For the second-ordermethods, LRI2 also outperformsETDRK2 regardingCPU
time. Thus, we conclude that LRI1 and LRI2 schemes are more effective than ETD1
and ETDRK2 methods, respectively, in terms of both accuracy and computational
cost.
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Table 2 [Test case 1] L∞ errors and convergence rates in time by the first-order ETD and LRI schemes

ε Δt ETD1 LRI1a LRI1b

L∞ error Rate L∞ error Rate L∞ error Rate

0.02 T /32 1.61e−1 – 1.28e−1 – 1.12e−1 –

T /64 8.49e−2 0.93 6.70e−2 0.93 5.83e−2 0.93

T /128 4.35e−2 0.96 3.43e−2 0.97 2.97e−2 0.97

T /256 2.20e−2 0.98 1.74e−2 0.98 1.50e−2 0.98

T /512 1.11e−2 0.99 8.73e−3 0.99 7.54e−3 0.99

T /1024 5.55e−3 1.00 4.38e−3 1.00 3.78e−3 1.00

0.01 T /32 5.51e−1 – 4.30e−1 – 4.11e−1 –

T /64 3.30e−1 0.74 2.47e−1 0.80 2.32e−1 0.82

T /128 1.78e−1 0.89 1.31e−1 0.91 1.22e−1 0.92

T /256 9.22e−2 0.95 6.76e−2 0.96 6.27e−2 0.97

T /512 4.67e−2 0.98 3.42e−2 0.98 3.16e−2 0.99

T /1024 2.35e−2 0.99 1.72e−2 0.99 1.59e−2 1.00

0.005 T /32 9.68e−1 – 9.06e−1 – 9.04e−1 –

T /64 8.49e−1 0.19 7.13e−1 0.34 7.07e−1 0.35

T /128 6.05e−1 0.49 4.57e−1 0.64 4.48e−1 0.66

T /256 3.55e−1 0.77 2.54e−1 0.85 2.47e−1 0.86

T /512 1.88e−1 0.92 1.32e−1 0.94 1.28e−1 0.95

T /1024 9.57e−2 0.97 6.69e−2 0.98 6.43e−2 0.99

5.2 Test case 2: coarsening dynamics

Next we validate MBP preservation and energy dissipation of the proposed LRIs.
Toward that end, we simulate the process of the coarsening dynamics by consider-
ing a random initial configuration. The model problem is given by the Allen–Cahn
equation (1.1) with periodic boundary conditions. We consider two choices for the
nonlinear function f (u):

f (u) = f1(u) = u − u3, or f (u) = f2(u) = θ

2
ln
1 − u

1 + u
+ θcu, (5.3)

corresponding to the double-well and Flory-Huggins potential cases, respectively. For
the latter, the parameters are θ = 0.8 and θc = 1.6 as in Remark 2. We set ε = 0.01,
and fix the spatial mesh h = 1/1024. The initial data is generated by random numbers
on each mesh point, the range of these numbers will be specified for each nonlinear
function considered.

When f = f1 (double-well potential case) in (5.3), we run the simulation with the
random initial data ranging from −1 to 1 and a uniform time step of size Δt = 0.5
for LRI1a and LRI1b, and Δt = 0.6 for LRI2. Note that these are the upper bounds
of the time steps predicted by our theoretical results (cf. Remark 2). Evolutions of the
supremum norm and the energy of the numerical solutions are depicted in Fig. 1. It can
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Table 3 [Test case 1] Errors and convergence rates in time by the second ETD and LRI schemes

ε Δt ETDRK2 LRI2

L2 Rate L∞ Rate L2 Rate L∞ Rate
Error Error Error Error

0.02 T /16 8.92e−3 – 3.08e−2 – 6.34e−3 – 2.57e−2 –

T /32 2.50e−3 1.83 8.83e−3 1.80 1.80e−3 1.82 7.24e−3 1.83

T /64 6.65e−4 1.91 2.36e−3 1.90 4.80e−4 1.91 1.92e−3 1.91

T /128 1.71e−4 1.95 6.10e−4 1.95 1.24e−4 1.95 4.94e−4 1.96

T /256 4.57e−5 1.91 1.53e−4 2.00 3.48e−5 1.84 1.43e−4 1.79

T /512 1.95e−5 1.23 1.43e−4 0.10 1.81e−5 0.94 1.43e−4 0.00

0.01 T /16 3.75e−2 – 1.80e−1 – 2.97e−2 – 1.62e−1 –

T /32 1.18e−2 1.67 5.92e−2 1.61 9.44e−3 1.65 5.14e−2 1.66

T /64 3.35e−3 1.81 1.70e−2 1.80 2.68e−3 1.82 1.45e−2 1.83

T /128 8.87e−4 1.92 4.52e−3 1.91 7.05e−4 1.92 3.80e−3 1.93

T /256 2.19e−4 2.02 1.12e−3 2.02 1.71e−4 2.04 9.28e−4 2.04

T /512 4.45e−5 2.30 2.30e−4 2.28 3.25e−5 2.40 1.81e−4 2.36

0.005 T /16 2.74e−1 – 7.06e−1 – NaN – NaN –

T /32 4.87e−2 2.49 3.38e−1 1.06 4.23e−2 – 3.13e−1 –

T /64 1.67e−2 1.55 1.17e−1 1.53 1.36e−2 1.64 1.02e−1 1.62

T /128 6.74e−3 1.31 2.77e−2 2.08 3.78e−3 1.84 2.82e−2 1.85

T /256 3.05e−2 −2.18 7.06e−2 −1.35 9.24e−4 2.03 6.90e−3 2.03

T /512 3.61e−2 −0.24 7.65e−2 −0.12 1.54e−4 2.59 1.17e−3 2.57

Table 4 [Test case 1] Running
times (in seconds) of the first
and second-order LRI and ETD
schemes with h = 1/2048

Δt ETD1 LRI1a LRI1b ETDRK2 LRI2

T /32 29.77 24.12 24.13 41.51 35.14

T /64 47.08 35.73 35.79 70.57 57.95

T /128 82.13 59.42 59.51 129.20 103.76

T /256 152.24 107.50 106.96 246.61 194.71

T /512 296.41 204.15 203.84 480.35 379.02

be seen that the numerical solutions obtained are all bounded by 1 in absolute value,
and the associated energies are dissipative over a long time horizon. Figure2 shows
the snapshots of the numerical solution at t = 5, 10, 20, 40, 80, and 120, generated
by using the LRI2 scheme with a smaller time step Δt = 0.1; when Δt = 0.05, we
obtain very similar results for the evolution of the numerical solution.

When f = f2 (Flory-Huggins potential case) in (5.3),we use the random initial data
ranging from −0.9 to 0.9. A uniform time step of of size Δt = 0.12 is used for LRI1a
and LRI1b, andΔt = 0.17 for LRI2, which are close to the upper bounds estimated in
Remark 2. Evolutions of the supremumnorm and the energy of the numerical solutions
are plotted in Fig. 3. We again observe that the LRI schemes preserve MBP very well
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Fig. 1 [Test case 2 with the double-well potential f1] Evolutions of the supremum norm (left) and the
energy (right) of the numerical solutions by the LRI1a and LRI1b schemes with Δt = 0.5 and by the LRI2
scheme with Δt = 0.6

Fig. 2 [Test case 2 with the the double-well potential f1] Snapshots of the numerical solution at t = 5, 10,
20, 40, 80 and 120 (from left to right and top to bottom) produced by the LRI2 scheme with Δt = 0.1

with the chosen time steps, i.e., the supremum norm of numerical solutions does not
exceed β ≈ 0.9575, and the energy monotonically decays along the time.

6 Conclusion

In this work, we have studied some low regularity integrators for a class of semilinear
parabolic equations with MBP. We introduce the first-order (LRI1a and LRI1b) and
the second-order (LRI2) schemes, which preserve the MBP under very reasonable
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Fig. 3 [Test case 2 with the Flory-Huggins potential f2] Evolutions of the supremum norm (left) and the
energy (right) of the numerical solutions by the LRI1a and LRI1b schemes withΔt = 0.12 and by the LRI2
scheme with Δt = 0.17

time step sizes. Through the case of Allen–Cahn equation, we elaborate that the range
of the time step can be enlarged when the second-order scheme is used. We show that
the discrete energy functional is bounded uniformly for the proposed LRI schemes
by using the MBP and the mean value theorem. Then we also prove the optimal tem-
poral error estimates (under a fixed spatial mesh size) of the LRI numerical solutions
under the assumption that the exact space-discrete solution is continuous, which is
a much weaker regularity requirement compared to other methods such as ETD or
IFRK. Finally, some numerical experiments are performed and the results confirm
the theoretical analysis and demonstrate the advantages of using the proposed LRI
schemes. Our ongoing work includes the fully discrete error analysis for the proposed
LRI schemes when both the mesh size and the time step size simultaneously go to
zero, and the application of LRIs to other types of phase-field equations. In addition,
higher-order LRI schemes will also be considered, with low regularity requirements
for the exact solution and high regularity assumptions on the nonlinear term.
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