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Abstract
This paper presents a sequence of variable time step deferred correction (DC) meth-
ods constructed recursively from the second-order backward differentiation formula
(BDF2) applied to the numerical solution of initial value problems for first-order ordi-
nary differential equations (ODE). The sequence of corrections starts with the BDF2
then considered as DC2. We prove that this improvement from a p-order solution
(DCp) results in a p +1-order accurate solution (DCp +1). This one-order increment
in accuracy holds for the least stringent BDF2 0-stability conditions. If we introduce
additional requirements for the ratio of consecutive variable time step sizes, then the
order increment is 2, allowing a direct transition fromDCp to DCp+2. These require-
ments include the constant time step DCp methods. We also prove that all these DCp
methods are A-stable. We briefly discuss two other DC variants to illustrate how a
proper transition from DCp to DCp + 1 is critical to maintaining A-stability at all
orders. Numerical experiments based on two manufactured (closed-form) solutions
confirmed the accuracy orders of the DCp – for DCp, p = 2, 3, 4, 5 – both with con-
stant or alternating time step sizes. We showed that the theoretical conditions required
to obtain an increment of orders 1 and 2 are satisfied in practice. Finally, a test case
shows that we can estimate the error on the DCp solution with the DCp + 1 solution,
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and a last test case that our new methods maintain their order of accuracy for a stiff
system.

Keywords Ordinary differential equations · High-order time-stepping methods ·
Deferred correction · A-stability · Backward differentiation formulae
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1 Introduction

From the latter half of the 20th century onwards, many authors have contributed to
the development of time integration methods for the solution of ordinary and partial
differential equations – by the methods of lines. A main objective was to develop A-
stablemethodswith anorder of accuracy larger than2 to tackle efficiently the numerical
solution of stiff problems arising, among others, from the modelling of viscous fluid
flows. In this context,we recall thatmanyfluidflows are unsteady (e.g., vortex shedding
downstream of a circular cylinder) and require substantial computational resources to
carry out the simulation.

Regardless of the time integration method accuracy (order), the difficulty of choos-
ing the optimal time step size to capture the time-sensitive variations of physical
phenomena limits the predictive efficiency of any discretized model. As a result, sev-
eral studies proposed a conservative time step value based on the minimum size of the
spatial discretization and an estimate of the maximum fluid velocity [9], or through
the Courant-Friedrichs-Lewy condition [16] of an explicit time integration method.
Nevertheless, this approach leads to poor use of allocated computational resources
to undertake the simulations. In response to this problem Ouyang and Tamma [30],
Gresho et al. [13], Birken et al. [1], John andRang [19], andMayr et al. [27] introduced
time integrators with a variable time step size (VS) that only require the initial time
step size and tolerance for local error.

Past contributions from several authors (including ours) to the modelling of incom-
pressible fluid flows and fluid-structure interaction relied primarily on finite element
and finite differences (among which, Backward Difference Formulae – BDF), respec-
tively, for spatial and temporal discretizations. In particular, Euler and Gear’s implicit
methods remain frequently used for solving complex problems by many researchers
and in commercial codes (e.g., Fluent, COMSOL). It is well known that these are,
within the theoretical framework of Dahlquist, the only A-stable methods in the BDF
family. BDF methods with an order greater than 2 are not A-stable, and one must
dynamically adjust the order and time step size according to the evolution of the
simulation, as popularized and implemented in the DASSL code by Petzold [31]
and co-workers [10, 20]. Of particular relevance to incompressible flows, we also
acknowledge the work of Skelboe [34], Brenan et al. [2] and Hay et al. [17, 18] for
the integration of Hessenberg index-2 differential-algebraic equations (DAEs).

Admittedly, these variable-step variable-order BDF heuristics (VSVO) allow solv-
ing with efficiency relatively simple physical phenomena such as the Von Kármán
vortex street. However, when simulating breaking waves [38], large bubble deforma-
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tions [29] or the chaotic motion of submerged devices [4], we found that the order
of the BDF method rarely exceeds order 2; this is a disappointing outcome limiting
the reach of the VSVO adaptivity. Hence, to improve the computational efficiency
of multiscale physical problems, this suggests using higher order non-LMM (Linear
Multistep Method) time discretizations that are A-stable beyond the second Dahlquist
barrier.

To this end, we investigated two alternatives to BDF for temporal integration based
on finite difference formulae: Implicit Runge-Kutta (IRK) and deferred corrections for
the simulation of the Navier-Stokes equations. In this context, IRK methods proved
to be very accurate and robust [3]. However, they require more storage space and
more computing time per time step than BDF discretizations, at least for fully implicit
IRK (non-DIRK). On the other hand, we found that our deferred correction method
[26] was as accurate as the third-order BDF discretization without requiring much
more storage space for the system of algebraic equations. This approach used the
methodology proposed by Guermond and Minev [14], iteratively improving the first-
order BDF discretizations to construct second and third-order solutions – but limited
to constant time step integration.

We have therefore chosen themethodology of deferred corrections to elaborate time
integration methods with variable time steps. More specifically, we are interested in
designing arbitrary order A-stable methods based on finite difference formulae (BDF)
to benefit from the experience gained in this specific research area. While we recog-
nize the possibilities of spectral deferred corrections [6, 28, 36], this choice certainly
facilitates the adaptation of existing finite element simulation software – based on
BDF time integration formulae – to take advantage of these improved computational
methods.

Within this research framework, we identify the work of Gustafsson and Kress as
the most relevant to our study. In [15], Gustafsson and Kress developed a family of
deferred correction methods for linear initial value problems. In this paper, they apply
the implicit midpoint rule p/2 times in each time step to obtain an accurate solution
of even order p. Subsequently, they studied and applied this methodology to linear
boundary value problems [25], where they derive error estimates for time-dependent
coefficients and performed numerical experiments to confirm the theoretical results.
More recently, Kress [24] has enriched these results by substituting the Gear method
(BDF2) for themidpoint rule as the building block in the deferred correctionmethodol-
ogy. Furthermore, she also proposed modifications to the standard Dirichlet boundary
to avoid the order reduction phenomenon. We mention that these implicit midpoint
DC methods were extended to nonlinear initial value problems [23] and reaction-
diffusion equations [22]. Finally, we note that Gustafsson and Kress developed their
methodology only for constant time step integration deferred correction methods.

In this paper, we obtain from the second-order backward differencemethod (BDF2)
a family of deferred correction methods of arbitrary order p (DCp). We introduce and
analyze these new methods in the context of variable time step integration for solving
initial value problems. In doing so, we establish the 0-stability of the BDF2 building
block as a main ingredient of our DCp methodology. We also show that the usual
stability conditions are sufficient for the maximal increase of order of accuracy to
hold for the cascade BDF2 → DC3 → DC4, etc., but not for the direct construction
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from BDF2 to DC4. An extra condition on the ratio of consecutive time step sizes
is introduced for the jump from DCp to DCp + 2 to reach maximal order increase.
This analysis is an original contribution. Finally, we prove the A-stability for these
methods. Accordingly, we present in Sect. 2 the variable time integration algorithm
and the construction of the deferred correction methods. We study the 0-stability and
A-stability of these methods and derive their error estimates in Sect. 3. And, finally,
in Sect. 4, we make use of the manufactured solution method to confirm the results of
the theoretical analysis.

2 Deferred correctionmethods

In this section, we build a suite of time integration methods – of increasing accuracy
– based on the second-order backward differentiation formula. This is part of the
general development of higher-order implicit A-stablemethods to allow adaptive time-
stepping for better control of the computational accuracy. It falls within the scope of
the seminal work of Fox [8], Keller and Pereyra [21], and extends the Difference
Corrected BDF framework of Söderlind [35] and the results of Kress [24] to variable
step size integration.

Notation 2.1 We adopt the following conventions for the solutions of the model ordi-
nary differential equation (ODE) (2.1):

– I = [0, T ], solution time interval;
– 0 = t0 < t1 < ... < t N = T , N+1 discrete solution times;
– kn = tn − tn−1 and {kn}N

n=1, time steps;
– ωn = kn/kn−1, ratio of successive time steps;
– k = max{kn}N

n=1, maximum time step;
– u = u(t), an exact solution;
– un ≡ u(tn), shorthand for the solution u = u(t) at time tn;
– un ≈ u(tn), a numerical approximation of the solution u = u(t) at time tn;
– uk = {un}N

n=0, a vector of numerical solution;
– Fn = F(tn, u(tn)), r.h.s. exact value at time tn;
– Fn = F(tn, un), r.h.s. approximation at time tn.

Let us begin this exposé with the initial value problem for the first-order differential
equation

du

dt
= F(t, u),

u(0) = u0,

(2.1)

with solution u ∈ C p+1(I;R) – see Sect. 3 for appropriate values of p – and initial
value u0. To simplify notations, we assume that we have a scalar ODE, but u(t) can be
taken inRd or anyHilbert space H with appropriate assumptions on F(t, ·) : H → H .

Using the second-order backward difference approximation (BDF2) of the time
derivative, the differential equation is transformed into the following implicit algebraic
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formula

d

dt
u(tn) ≈

2∑

i=0

cn
i un−i = F(tn, un) (2.2)

with

cn
0 = 1

kn
+ 1

kn + kn−1
= 2ωn + 1

kn (ωn + 1)

cn
1 = − 1

kn
− 1

kn−1
= − (ωn + 1)2

kn (ωn + 1)

cn
2 = kn

kn−1

1

kn + kn−1
= (ωn)

2

kn (ωn + 1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (2.3)

wherewe seek the solution at tn knowing the solutions at tn−1 and tn−2. By substituting
the exact solution u(t) into the BDF2 algebraic formula (2.2), we obtain

cn
0u(tn) + cn

1u(tn−1) + cn
2u(tn−2) − F(tn, u(tn)) − E(tn) = 0

E(tn) =
∞∑

j=3

(−1) j u( j)(tn)

j ! (cn
1 k j

n + cn
2(kn + kn−1)

j )

⎫
⎪⎪⎬

⎪⎪⎭
. (2.4)

At this point, let us emphasize that the proper approximation of the truncation error
E(tn) is central to the development of the deferred correction methods of this study.

To obtain higher-ordermethods, it is often sufficient tomodify the algebraic formula
(2.2) by adding one or more terms borrowed from the expression of the truncation
error (2.4). We carried out this process in two steps. First, we replace in (2.4) the
unknown values of the solution u(tn), u(tn−1) and u(tn−2) by their known numerical
approximations un , un−1 and un−2. Finally, we replace the analytical error E(tn)

with a numerical approximation Dp(un), where we approximate the derivatives of
the unknown solution u( j)(tn) by well-chosen finite difference formulas, noted u( j),n ,
involving known numerical values at tn , tn−1, tn−2, and so on. For example, we write

2∑

i=0

cn
i un−i + Dp(u

n) = F(tn, un)

Dp(u
n) =

p∑

j=3

(−1) j+1 u( j),n

j ! (cn
1 k j

n + cn
2(kn + kn−1)

j )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (2.5)

This results in the family of BDFmethods which are conditionally stable above BDF2
[39], i.e., the second-order approximation. However, in the deferred correction, we
replace un inDp(un)with a known lower-order approximation vn , such thatDp(un) ≈
Dp(v

n), to enhance the stability of the high-order numerical solution un . To illustrate
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this approach, consider the following set of equations:

2∑

i=0

cn
i ūn−i = F(tn, ūn)

2∑

i=0

cn
i ûn−i + D3(ū

n) = F(tn, ûn)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (2.6)

where ū and û are the BDF2 and the high-order deferred correction solution, respec-
tively. This results in a third-order deferred correction (DC3) with D3(ūn), i.e., with
one term in this correction series. This is written as

D3(ū
n) = ū(3),n

3! (cn
1 k3n + cn

2(kn + kn−1)
3)

ū(3),n = 2 δ F̄
12

(2.7)

where δ F̄
12

def= F̄[tn, tn−1, tn−2] stands for the second backward divided difference
through the data points

(tn, F̄n), ..., (tn−2, F̄n−2) (2.8)

with F̄n = F(tn, ūn)), i.e., the best available u̇(tn) timederivative. Finally, to complete
this description, we put in Table 1 the divided difference through these data points.
Then the usual Newton polynomial through these points,

p̄2(t) = F̄n + δ F̄
11 (t − tn) + δ F̄

12 (t − tn) (t − tn−1) , (2.9)

yields

ū(3)(tn) ≈ d2 p̄2
dt2

(tn) = ū(3),n = 2 δ F̄
12 (2.10)

This overall procedure is a natural generalization of the Difference Corrected BDF
framework [35, 39] to encompass variable step size integration. Moreover, note that
it is also possible to use a higher degree polynomial to enhance the third derivative
approximation.

We repeat this procedure, to sequentially construct fourth-order (DC4 method) and
fifth-order (DC5method) solutions, etc.We summarize this process with the following
set of equations starting with BDF2 up to DC5:

2∑

i=0

cn
i ūn−i = F(tn, ūn)

⎫
⎬

⎭ BDF2 , (2.11)
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Table 1 Divided difference
based on F̄(t, ū) tn F̄n

kn = tn − tn−1 δ F̄
11

tn−1 F̄n−1 δ F̄
12

kn−1 = tn−1 − tn−2 δ F̄
21 δ F̄

13

tn−2 F̄n−2 δ F̄
22 δ F̄

14

kn−2 = tn−2 − tn−3 δ F̄
31 δ F̄

23

tn−3 F̄n−3 δ F̄
32

kn−3 = tn−3 − tn−4 δ F̄
41

tn−4 F̄n−4

F̄n−i = F(tn−i , ūn−i ) ∀ i ∈ {0, 1, 2}
ū(3),n = 2 δ F̄

12

2∑

i=0

cn
i ûn−i + D3(ū

n) = F(tn, ûn)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

DC3, (2.12)

F̂n−i = F(tn−i , ûn−i ) ∀ i ∈ {0, 1, 2, 3}
û(3),n = 2 δ F̂

12 + 2 δ F̂
13 (2 kn + kn−1)

û(4),n(tn) = 6 δ F̂
13

2∑

i=0

cn
i ũn−i + D4(û

n) = F(tn, ũn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

DC4, (2.13)

and

F̃n−i = F(tn−i , ũn−i ) ∀ i ∈ {0, 1, 2, 3, 4}
ũ(3),n = 2 δ F̃

12 + 2 δ F̃
13 (2 kn + kn−1)

+2 δ F̃
14 (3 k2n + 4 kn kn−1 + 2 kn−2 kn + k2n−1 + kn−2 kn−1)

ũ(4),n = 6 δ F̃
13 + 6 δ F̃

14 (3 kn + 2 kn−1 + kn−2)

ũ(5),n = 24 δ F̃
14

2∑

i=0

cn
i un−i + D5(ũ

n) = F(tn, un)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

DC5. (2.14)

We immediately observe the computational cascade. At time tn , we use the second-
order solution (2.11) – BDF2 – to calculate the third-order solution (2.12), and so on
until we reach the fifth-order solution (2.14). Obviously, this example is limited to the
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fifth-order approximation only to illustrate the construction sequence and to show the
intricate interaction explicitly with the divided difference and the time steps.

3 Stability and error estimates

In this section, we prove the stability and obtain error estimates for our DC methods.
Since our analysis depends in an essential way on the 0-stability of the BDF2 method,
we must first review and discuss the conditions to reach this stability. Our proof of
0-stability is inspired by Crouzeix and Mignot [5, chap.7], but the developments spe-
cific to BDF2 and some of the strategies to select varying time steps are not discussed
and regrouped in this form in the literature. In the following subsections, we derive
the error estimates for our DC methods of order 3 and 4 with variable time steps,
and indicate how these estimates can be generalized to higher-order DC methods. It
is a deliberate choice to make explicit the difficulties encountered in the proofs of
theorems and propositions.

We first prove that one correction step from BDF2 to DC3, then an other from DC3
to DC4 lead, respectively, to third and fourth-order of accuracy, with no constraint on
the ratio ωn of successive time steps beyond the requirements for 0-stability. We also
investigate the possibility to construct a variant of DC4 directly from BDF2 in one
correction step to reduce the computational cost, as was done by [24] with constant
time steps. We show that this is possible, but under a severe restriction on the ratio of
the form |ωn − ωn−1| ≤ Ck, as the maximal time step k is reduced. This section ends
with a proof of the A-stability of our DC methods of arbitrary orders with constant
time steps, since this notion applies in this case only.

3.1 BDF2 with variable steps – 0-stability and error estimate

Given u j , j = 0, 1, the BDF2 method with variable time steps (2.2) can be rewritten
as:

un − (ωn + 1)2

2ωn + 1
un−1 + ω2

n

2ωn + 1
un−2 = kn (ωn + 1)

2ωn + 1
F(tn, un), n ≥ 2, (3.1)

The 0-stability consists in a uniform bound on the error between the solution un of
the original problem and the solution zn of a perturbed problem, solved with the same
method

zn − (ωn + 1)2

2ωn + 1
zn−1+ ω2

n

2ωn + 1
zn−2 = kn (ωn + 1)

2ωn + 1
F(tn, zn)+δn, n ≥ 2, (3.2)

with initial conditions z j = u j + e j , j = 0, 1, and perturbations δn , n ≥ 2. For this
purpose, we define en = zn − un , and substract (3.1) from (3.2):

[
1 − gn kn (ωn + 1)

2ωn + 1

]
en = (ωn + 1)2

2ωn + 1
en−1 − ω2

n

2ωn + 1
en−2 + δn, (3.3)
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where

F(tn, zn) − F(tn, un) = gn (zn − un) with gn =
∫ 1

0
Fu(tn, un + s (zn − un)) ds,

and Fu is the partial derivative of F with respect to variable u. It follows that if F is
globally Lipschitz with respect to the variable u, then |gn| ≤ L , for all n. In matrix
form, this gives

⎡

⎣1 − gn kn (ωn + 1)

2ωn + 1
0

0 1

⎤

⎦

︸ ︷︷ ︸
Dn

[
en

en−1

]

︸ ︷︷ ︸
Un

=
⎡

⎣
(ωn + 1)2

2ωn + 1
− ω2

n

2ωn + 1
1 0

⎤

⎦

︸ ︷︷ ︸
Rn

[
en−1

en−2

]

︸ ︷︷ ︸
Un−1

+
[
δn

0

]

︸︷︷︸
En

.

(3.4)

Shortly, this reads as DnUn = RnUn−1+En orUn = SnUn−1+Ēn ,with Sn = D−1
n Rn ,

Ēn = D−1
n En and the matrices and vectors given in the previous equation.

Definition 3.1 (S-condition) [5, p.152] The method (3.1) satisfies the S-condition for
stability if ∃ C > 0 such that ∀k,∀n with 1 ≤ k ≤ n ≤ N − 1, we have:

‖Rn Rn−1 · · · Rk‖1 ≤ C. (3.5)

Theorem 3.1 [5, th.7.6] If the method (3.1) satisfies the S-condition and F is globally
Lipschitz in the variable u with constant L, then (3.1) is 0-stable, i.e., there exists a
constant K > 0 independent from kn but depending on T and L, and such that

|zn − un| ≤ K
⎛

⎝|e0| + |e1| +
n−1∑

j=2

|δ j |
⎞

⎠ . (3.6)

Theorem 3.2 Assume that the solution of (2.1) is such that u ∈ C3([0, T ],R). If the
BDF2 method is 0-stable for sequences of steps {kn}N

n=1, with k = maxn kn → 0 when
N → ∞, and |e0|, |e1| = O(k2), then the following error estimate holds

|u(tn) − un| ≤ C k2, ∀n = 1, . . . , N , (3.7)

where the constant C is independent from the numerical solution un and the steps kn.

Proof To simplify notations, the exact solution is noted as un = u(tn) and the r.h.s.
of the ODE as Fn = F(tn, u(tn)). From Sect. 2, the truncation error for (3.1) is

En
2 =

2∑

i=0

cn
i un−i − Fn = −u′′′

n

6
kn (kn + kn−1) + O(k3). (3.8)
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1798 Y. Bourgault, A. Garon

In (3.2), we set zn = un = u(tn), thus

δn = kn (ωn + 1)

2ωn + 1
En
2 ⇒ |δn| ≤ C kn k2 ‖u′′′‖∞,(0,T ).

From this bound on |δn|, the hypothesis |e0|, |e1| = O(k2) and
∑N

n=1 kn = T , the
0-stability bound (3.6) directly gives the error estimate (3.7). ��

In the rest of this section, we investigate for which sequences of steps {kn}n≥1 the
BDF satisfies the S-condition and is 0-stable. We first present the following sufficient
condition.

Proposition 3.1 If ωn ≤ γ < 1 + √
2, ∀n, the BDF2 method satisfies the S-condition

and is 0-stable.

Proof Let us introduce the following change of basis

H =
[
1 0
1 ε

]
and H−1 =

[
1 0

−1/ε 1/ε

]
.

We note that for all matrices Rn , u1 = [1 1]t is an eigenvector with eigenvalue
λ1 = 1. This gives

H−1Rn H =
[

1 0
−1/ε 1/ε

][
(ωn+1)2

2ωn+1 − ω2
n

2ωn+1
1 0

][
1 0
1 ε

]
=

⎡

⎣1 − ε ω2
n

2ωn+1

0 ω2
n

2ωn+1

⎤

⎦ .

We recall that ‖M‖1 = max
1≤ j≤q

p∑

i=1

|Mi j |, for any matrix M of size p × q, hence

‖H−1Rn H‖1 = max

(
1,

(1 + |ε|) ω2
n

2ωn + 1

)
. (3.9)

It results that

‖Rn Rn−1 · · · Rk‖1 = ‖H(H−1Rn H)(H−1Rn−1H) · · · (H−1Rk H)H−1‖1
≤ ‖H‖1‖H−1Rn H‖1‖H−1Rn−1H‖1 · · · ‖H−1Rk H‖1‖H−1‖1
≤ ‖H‖1 ‖H−1‖1 = C, (3.10)

if ‖H−1Rn H‖1 ≤ 1 for all n.
Imposing this condition for each n is one step selection strategy among others, see

remark 3.1 below. This condition is satisfied if

max

(
1,

(1 + |ε|) ω2
n

2ωn + 1

)
= 1, ∀n ⇐⇒ (1 + |ε|) ω2

n ≤ 1 + 2ωn . (3.11)

Inequality (3.11) is true under the following conditions:
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• The limit case occurs for |ε| = 0 ⇒ ω2
n ≤ 1+ 2ωn ⇔ ω2

n − 2ωn − 1 ≤ 0. Since
ω± = 1 ± √

2, we must have ωn ≤ ω+ = 1 + √
2.

• |ε| > 0 is essential, since the matrix H must be invertible. A sufficient condition
to have (3.11) is ωn ≤ γ < 1 + √

2. Since 1 − √
2 < 0 < γ < 1 + √

2, one gets
1 + 2γ − γ 2 > 0 and the largest |ε| must be such that (1 + |ε|) γ 2 = 1 + 2γ ⇔
|ε| = 1+2γ−γ 2

γ 2 > 0. We note that γ → 1 + √
2 ⇒ |ε| → 0 ⇒ ‖H−1‖ → +∞,

then we must impose ωn ≤ γ < 1+ √
2 to have ‖H−1Rn H‖1 ≤ 1 and be able to

pick the same |ε| > 0, for all n.

��

Remark 3.1 From (3.9), we have ‖H−1Rn H‖1 ≥ 1. For the S-condition to hold,
‖H−1Rn H‖1 = 1 was enforced for all n. We could still get (3.10) while allowing
a maximum of p steps for which 1 < ‖H−1Rn H‖1 ≤ M , with M fixed, and by
imposing ‖H−1Rn H‖1 = 1 for all the other steps. This would then yield

‖Rn Rn−1 · · · Rk‖1 ≤ M p ‖H‖1‖H−1‖1 ≤ C, ∀n ≥ k ≥ 1.

Multistep methods are sensitive to abrupt changes of the time step, both in terms
of accuracy and stability. In particular, Gear and Tu [11, 37] showed that p time steps
must be taken between changes of the size of kn in order to ensure the 0-stability of
certain classes of order p methods. Alternating sequences of the form k2 j+1 = k1 and
k2 j = k2 lead to the instability of these classes of multistep methods beyond order 2.
We now show that BDF2 is 0-stable for any alternating sequence of this type. Since
our DC methods are stable under the same conditions as BDF2, they are 0-stable for
all alternating sequences.

Proposition 3.2 The BDF2 method satisfies the S-condition and is 0-stable for all
alternating sequences k1-k2, for any pair of steps k1 and k2, even if one of ω or 1/ω
is larger than 1 + √

2.

Proof Let

ω = k1/k2, γ1 = ω2

1 + 2ω
and γ2 = 1/ω2

1 + 2/ω
,

and use the matrices Rn and H introduced above to define

R̄n = H−1Rn H =
[
1 −ε γn

0 γn

]
, n = 1, 2.

This gives

‖Rn Rn−1 · · · Rk‖1 ≤ ‖H‖1‖R̄1 R̄2‖
n−k
2

1 ‖H−1‖1 ≤ C,
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as long as ‖R̄1 R̄2‖ ≤ 1. Noting that

R̄1 R̄2 =
[
1 −ε γ1
0 γ1

] [
1 −ε γ2
0 γ2

]
=

[
1 −ε γ2 (1 + γ1)

0 γ1 γ2

]
,

the 0-stability holds if

‖R̄1 R̄2‖ = max (1, γ1 γ2 (1 + |ε|) + γ2 |ε|) ≤ 1.

We set and notice that

r = γ1 γ2 (1 + |ε|) + γ2 |ε| = 1

(1 + 2ω) (1 + 2/ω)
+ |ε| (1 + ω)2

ω2 (1 + 2ω) (1 + 2/ω)︸ ︷︷ ︸
Aω

= 1

1 + 4 + 2ω + 2/ω)
+ |ε| Aω ≤ 1

9
+ |ε| Aω ≤ 1,

for all |ε| ≤ 8/(9Aω). ��

3.2 DC3 – Error estimate

We now obtain an error estimate for the variable-step DC3 method, by first proving
the following lemma. In this lemma, D3(ū) is defined in (2.7) and D3(u) refers to the
same finite difference operator applied to the exact solution evaluated at the discrete
times tn . This convention also applies to higher order approximations analyzed below.

Lemma 3.1 Assume that the hypotheses from Theorem 3.2 hold so that we have the
error estimate (3.7) for the solution ūn of BDF2. Then, for a maximal step k small
enough,

kn (ωn + 1)

2ωn + 1
|D3(u) − D3(ū)| ≤ C k4, (3.12)

with a constant C independent from k and the numerical solutions.

Proof The proof proceeds by extending the idea from [23] to variable time steps and
corrections D(u) defined in F rather than u.

We first define D−Fn = Fn−Fn−1
kn

(using kn−1 for D−Fn−1 and so forth) and write

D3(u) − D3(ū) = kn (kn + kn−1)

3
(δF

12 − δ F̄
12)

= kn

3

(
D−(Fn − F̄n) − D−(Fn − F̄n−1)

)
. (3.13)

We get the estimate in three steps:
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1. Let us define

hn = Fn − F̄n =
∫ 1

0
F ′(K n

1 ) ēn ds1, (3.14)

where K n
1 = un + s1 (ūn − un) = un − s1 ēn . We note that

|K n
1 | ≤ |un| + s1 |ēn| ≤ C (1 + k2) ≤ C̄, for k ≤ k̄0,

since the exact solution u = u(t) is continuous, thus bounded on [0, T ], and the
BDF2method converges with order 2. Hence |F ′(K n

1 )| ≤ L̄ , provided F ∈ C1 (we
are not using here the fact that F is globally Lipschitz). It results that |hn| ≤ C k2,
for k ≤ k̄0. The conditions for the 0-stability of BDF2 and |ēi | ≤ Ck2, i = 0, 1,
apply to warrant the error estimate on ūn , which conditions must also hold to prove
items (2) and (3) below.

2. The bound |D−hn| ≤ C k2 is obtained using the fact that

D−hn = D−(Fn − F̄n) =
∫ 1

0
F ′(K n

1 ) D−ēn ds1

+
∫ 1

0

∫ 1

0
F ′′(K n

2 ) (D−K n
1 ) ēn ds1ds2, (3.15)

where K n
2 = K n−1

1 + s2 (K n
1 − K n−1

1 ). We have that K n
2 is bounded, since K n

1 is
bounded, thus |F ′′(K n

2 )| ≤ C if F ∈ C2.
We show that |D−ēn| ≤ C k2. From BDF2,

2ωn + 1

ωn + 1
D−ēn − ωn

ωn + 1
D−ēn−1 = hn + En

2 , (3.16)

⇒

|D−ēn| ≤ ωn + 1

2ωn + 1

(|hn| + |En
2 |) + ωn

2ωn + 1
|D−ēn−1|. (3.17)

Forωn ≥ 0, the inequalities 0 ≤ ωn/(2ωn +1) ≤ 1/2 and 1/2 ≤ (ωn +1)/(2ωn +
1) ≤ 1 hold and give

|D−ēn| ≤ (|hn| + |En
2 |) + 1

2
|D−ēn−1| ≤ 1

2n−1 |D−ē1| +
n∑

j=2

|h j | + |E j
2 |

2n− j

≤ 1

2n−1 |D−ē1| +
n∑

j=2

C k2

2n− j
≤ C̄ k2,

using |h j | = O(k2), |E j
2 | = O(k2) and |D−ē1| = O(k2) (which results from a

startup with a second-order method).
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Finally, |D−K n
1 | ≤ |D−un| + s1|D−ēn| ≤ C for s1 ∈ [0, 1], and we are done

bounding |D−hn|.
3. From (3.13), we get directly

kn (ωn + 1)

2ωn + 1
|D3(u) − D3(ū)| = kn (ωn + 1)

2ωn + 1

kn

3
|D−hn − D−hn−1| ≤ C k4.

��

Theorem 3.3 Assume that the solution of (2.1) is such that u ∈ C4([0, T ],R). For
j = 0, 1, let be given initial solutions ū j and û j that approach the exact solution u(t j )

with second and third-order accuracy, respectively. Consider ūn and ûn, respectively,
solutions of (2.11) and (2.12), for n = 2, . . . , N. Assume that the hypotheses on
0-stability of BDF2 from Theorem 3.2 hold. Then the solution of DC3 satisfies the
following error estimate

|ên| = |un − ûn| ≤ C k3, n ≥ 0, (3.18)

where the constant C is independent from the numerical solutions ūn, ûn, and the steps
kn.

Proof Using (2.4), the truncation error for DC3 is obtained by sustituting the exact
solution un = u(tn):

En
3 =

2∑

i=0

cn
i un−i + D3(u) − Fn

=
[

u′
n − kn (2 k2n + 3 kn kn−1 + k2n−1)

72
u(4)

n + O(k4)

]
− Fn

= −kn (2 k2n + 3 kn kn−1 + k2n−1)

72
u(4)

n + O(k4), (3.19)

where u(4)
n = u(4)(tn).

We obtain a recurrence relation for ên by substracting (2.12) from (3.19):

2ωn + 1

kn (ωn + 1)
ên − (ωn + 1)2

kn (ωn + 1)
ên−1 + ω2

n

kn (ωn + 1)
ên−2 + (D3(u) − D3(ū))

= (Fn − F̂n) + En
3 . (3.20)

We rewrite the recurrence as in (3.3):

[
1 − ĝn kn (ωn + 1)

2ωn + 1

]
ên = (ωn + 1)2

2ωn + 1
ên−1 − ω2

n

2ωn + 1
ên−2 + δn, (3.21)
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with

δn = kn (ωn + 1)

2ωn + 1

[
En
3 − (D3(u) − D3(ū))

]
.

The terms in δn do not depend on the solution ûn of the DC3 method, but only on
the solution ūn of BDF2 and the exact solution. The first term is easily bounded by
assuming that k is sufficiently small,

kn (ωn + 1)

2ωn + 1
|En

3 | ≤ kn (ωn + 1)

2ωn + 1

kn (2 k2n + 3 kn kn−1 + k2n−1)

72
|u(4)

n | + O(k5)

≤ C k4 ‖u(4)‖∞,[0,T ].

From Lemma 3.1, we then get that |δn| ≤ C k4. The recurrence (3.21) is the same as
for BDF2 (with a different δn), and the 0-stability of BDF2 gives

|ên| = |u(tn) − ûn| ≤ C1 (|ê0| + |ê1|) + C2 k3 ≤ C k3,

assuming that |ê0|, |ê1| ≤ Ck3 and any of the conditions for the 0-stability of BDF2
holds. The constants C, C1 and C2 are independent from k and the numerical solution
ûn , but depend on the exact solution.

��

Remark 3.2 The DC3 method is 0-stable since it is convergent. Any step selection
strategy, e.g., ωn ≤ ω < 1 + √

2, alternating steps or any other, that makes BDF2
0-stable is sufficient for obtaining error estimates for DC3 or higher-order DCmethods
presented in this paper.

3.3 DC4 – Error estimate

We first obtain an error estimate for the variable-step DC4 method, part of the three-
substep approach BDF2 → DC3 → DC4.

Theorem 3.4 Assume that the solution of (2.1) is such that u ∈ C5([0, T ],R), and that
ūn, ûn are obtained as in Theorem 3.3. For j = 0, 1, 2, let be given initial solutions ũ j

that are fourth-order accurate. Consider ũn solution of (2.13), for n = 3, . . . , N. Then,
under any of the conditions for 0-stability of BDF2 and assuming that the maximal
step k is small enough, the solution of DC4 satisfies the following error estimate

|ẽn| = |un − ũn| ≤ C k4, n ≥ 0, (3.22)

where the constant C is independent from the numerical solutions ūn, ûn, un, and the
steps kn.
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Proof We obtain the same recurrence as in (3.21) with ên replaced by ẽn , ĝn by g̃n

and

δn = kn (ωn + 1)

2ωn + 1

[
En
4 − (D4(u) − D4(û))

]
.

The estimate (3.22) follows as in the proof of Theorem 3.3, from the hypothesis
|ẽ1|, |ẽ2| ≤ C k4 and by noting that for k sufficiently small,

kn (ωn + 1)

2ωn + 1
|En

4 | ≤ C k5 ‖u(5)‖∞,[0,T ],

and

kn (ωn + 1)

2ωn + 1
|D4(u) − D4(û)| ≤ C k5. (3.23)

The bound (3.23) is derived as follows:

1. Let us define

hn = Fn − F̂n =
∫ 1

0
F ′(K n

1 ) ên ds1, (3.24)

where K n
1 = un − s1 ên is also bounded for k sufficiently small, and |hn| ≤ C k3

results from |ên| = O(k3).
2. We get the bound |D−hn| ≤ C k3 by just noticing that (3.17) becomes

|D−ên| ≤ ωn + 1

2ωn + 1

(|hn| + |En
3 | + |D3(u) − D3(ū)|) + ωn

2ωn + 1
|D−ên−1|,

(3.25)

with the first three terms at the right being O(k3), and by assuming that |D−ê1| =
O(k3) (a natural assumption if we initialize the computations with a third-order
method).

3. From the definition of D4(u),

kn (ωn + 1)

2ωn + 1
|D4(u) − D4(û)|

≤ kn (ωn + 1)

2ωn + 1

{
|D3(u) − D3(û)| + kn (kn + kn−1) (2 kn + kn−1)

12
|δF
13 − δ F̂

13|
}

≤ kn (ωn + 1)

2ωn + 1

kn

3
|D−hn − D−hn−1|

+ (ωn + 1) k2n (kn + kn−1) (2 kn + kn−1)

12 (2ωn + 1)

∣∣∣∣∣∣
(δF
12 − δ F̂

12)(t
n) − (δF

12 − δ F̂
12)(t

n−1)

kn + kn−1 + kn−2

∣∣∣∣∣∣

≤ C k5 + (ωn + 1) k2n (kn + kn−1)

6 (2ωn + 1)

{
|(δF

12 − δ F̂
12)(t

n)| + |(δF
12 − δ F̂

12)(t
n−1)|

}
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≤ C k5 + (ωn + 1) k2n (1 + √
2)

6 (2ωn + 1)

{|D−hn − D−hn−1| + |D−hn−1 − D−hn−2|
}

≤ C k5,

using the fact that (kn +kn−1)/(kn +kn−1+kn−2) < 1, (kn +kn−1) δF
12 = D−Fn −

D−Fn−1, kn + kn−1 ≤ (1 + √
2) (kn−1 + kn−2) and the bound |D−hn| ≤ C k3

obtained in item 2.

��
It was shown in [24] that the two-substep approach BDF2 → DC4 leads to fourth-

order accuracy when constant time steps are used. We present numerical experiments
in Sect. 4.4 where only third-order accuracy can be recovered with this approach in
the general setting of variable time steps, even if the condition ωn ≤ γ ≤ 1+ √

2 for
0-stability is imposed at each time step. The method consists in computing ūn solution
of (2.11) directly followed by the computation of ũn solution of

F̄n−i = F(tn−i , ūn−i ) ∀ i ∈ {0, 1, 2, 3}
ū(3),n = 2 δ F̄

12 + 2 δ F̄
13 (2 kn + kn−1)

ū(4),n(tn) = 6 δ F̄
13

2∑

i=0

cn
i ũn−i + D4(ū

n) = F(tn, ũn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

DC4. (3.26)

Fourth-order accuracy can be reached under a more restrictive rule for selecting vari-
able time steps.

Theorem 3.5 Assume that the solution of (2.1) is such that u ∈ C5([0, T ],R), and that
ūn is obtained as in Theorem 3.2. For j = 0, 1, 2, let be given initial solutions ũ j that
are fourth-order accurate. Consider ũn solution of (3.26), for n = 3, . . . , N. Then,
under any of the conditions for 0-stability of BDF2, the condition |ωn − ωn−1| ≤ Ck
and assuming that the maximal step k is small enough, the solution of DC4 satisfies
the following error estimate

|ẽn| = |un − ũn| ≤ C k4, n ≥ 0, (3.27)

where the constant C is independent from the numerical solutions ūn, un, and the steps
kn.

Proof The estimate on ẽn is obtained as in theorem 3.4, replacing all ûn by ūn . The
only bound that requires a new analysis is

kn (ωn + 1)

2ωn + 1
|D4(un) − D4(ū

n)| ≤ C k5, (3.28)

which relies on the estimate |D−hn − D−hn−1| ≤ C k3.
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This time, hn is defined as forDC3,with estimates hn = O(k3) and D−hn = O(k3)
rather than O(k2). From (3.15), we calculate:

D−hn − D−hn−1 =
∫ 1

0
F ′(K n

1 ) D−ēn ds1 +
∫ 1

0

∫ 1

0
F ′′(K n

2 ) (D−K n
1 ) ēn ds1ds2

−
∫ 1

0
F ′(K n−1

1 ) D−ēn−1 ds1 −
∫ 1

0

∫ 1

0
F ′′(K n−1

2 ) (D−K n−1
1 ) ēn−1 ds1ds2

=
∫ 1

0
F ′(K n

1 ) [D−ēn − D−ēn−1] ds1 +
∫ 1

0
[F ′(K n

1 ) − F ′(K n−1
1 )] D−ēn−1 ds1

+
∫ 1

0

∫ 1

0
[F ′′(K n

2 ) − F ′′(K n−1
2 )] (D−K n

1 ) ēn ds1ds2

+
∫ 1

0

∫ 1

0
F ′′(K n−1

2 ) [(D−K n
1 ) − (D−K n−1

1 )] ēn ds1ds2

+
∫ 1

0

∫ 1

0
F ′′(K n−1

2 ) (D−K n−1
1 ) [ēn − ēn−1] ds1ds2

where K n
j+1 = K n−1

j + s j+1 (K n
j − K n−1

j ), j ≥ 1. This gives

D−hn − D−hn−1 =
∫ 1

0
F ′(K n

1 ) [D−ēn − D−ēn−1] ds1

+kn

∫ 1

0

∫ 1

0
[F ′′(K n

2 ) (D−K n
1 ) (D−ēn−1) ds1ds2

+ kn

∫ 1

0

∫ 1

0

∫ 1

0
F ′′′(K n

3 ) (D−K n
2 ) (D−K n

1 ) ēn ds1ds2ds3

+
∫ 1

0

∫ 1

0
F ′′(K n−1

2 ) [(D−K n
1 ) − (D−K n−1

1 )] ēn ds1ds2

+ kn

∫ 1

0

∫ 1

0
F ′′(K n−1

2 ) (D−K n−1
1 ) (D−ēn) ds1ds2

= A + B + C + D + E . (3.29)

Each of these terms can be bounded in O(k3):

1. |ēn| = O(k2), as expected for the solution ūn of BDF2.
2. |K j | ≤ C, ∀ j ≥ 1, for the same reasons as above. Assuming F ∈ C3, this gives

|F ′(K n
1 )|, |F ′′(K n

2 )|, |F ′′′(K n
3 )| ≤ C.

3. From the proof of Theorem 3.3, |D−ēn| ≤ C k2 and |D−K n
1 | ≤ C, when k ≤ k̄1

with k̄1 small enough. Hence

|D−K n
2 | ≤ |D−K n−1

1 | + s2 (|D−K n
1 | + |D−K n−1

1 | ≤ C, for k ≤ k̄1.

(3.30)

4. Combining items 1, 2 and 3, it follows that |B|, |C |, |E | ≤ C k3, for k ≤ k̄1.
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5. To get |D| ≤ C k3, we note that

|D−K n
1 − D−K n−1

1 | ≤ |D−un − D−un−1| + s1 |D−ēn − D−ēn−1|
≤ C1 k ‖u′′‖∞,(0,T ) + C2 k2 ≤ C k, for k ≤ k̄2 ≤ k̄1.

6. We are left bounding |A|, in particular |D−ēn−D−ēn−1| ≤ C k3. From substracting
(3.16) at consecutive steps,

D−ēn − D−ēn−1

= kn (ωn + 1)

2ωn + 1
[D−hn + D−En

2 ] + ωn−1 − ωn

(2ωn−1 + 1)(2ωn + 1)
[hn−1 + En−1

2 ]

+ ωn

2ωn + 1
[D−ēn−1 − D−ēn−2] + ωn − ωn−1

(2ωn−1 + 1)(2ωn + 1)
D−ēn−2.

From |D−hn|, |hn|, |D−En
2 |, |En

2 | ≤ C k2, the inequalities 0 ≤ ωn/(2ωn + 1) ≤
1/2 and 1/2 ≤ (ωn + 1)/(2ωn + 1) ≤ 1 and (2ωn−1 + 1)(2ωn + 1) ≥ 1, for
ωn ≥ 0, and using the hypothesis |ωn − ωn−1| ≤ C k, we deduce that:

|D−ēn − D−ēn−1| ≤ C k3 + 1

2
|D−ēn−1 − D−ēn−2|

≤ C k3
n∑

j=3

1

2n− j
+ 1

2n−2 |D−ē2 − D−ē1| ≤ C k3, (3.31)

as long as |D−ē2 − D−ē1| = O(k3).

��
Remark 3.3 TheDC4methodwith variable steps (2.11)+(3.26) is fourth-order accurate
if ωn ≤ ω < 1 + √

2 and |ωn − ωn−1| ≤ Ck. If ωn is constant, this last condition
is satisfied. An other possibility is to impose for ω fixed the bounds ω − mk ≤
ωn ≤ ω + Mk, ∀n, in which case |ωn − ωn−1| ≤ (m + M) k and the convergence
is fourth-order whenever k → 0. Since the goal of adaptive methods is to be able
to reduce or increase the time step from one step to the next, this restricts ω to be
1. This then puts a relatively severe constraint on the variation of the step kn , since
kn−1(1 − mk) ≤ kn ≤ kn−1(1 + Mk) and the increment on kn must be O(k2). The
alternating sequence k1–k2 discussed above does not comply with this criteria, and
the order of convergence is reduced to 3 in this case. In fact, k1 = k and k2 = ω k ⇒
ωn − ωn−1 = ω − 1/ω = const �= 0, for all k > 0 and ω �= 1.

We state the following general theoremon the order of accuracy of theDCp method.
The proof is a mixture of the techniques used above for studying DC3 and DC4, and
the general notations introduced in [23] to handle the multilinear forms D j

−hn in the
general setting.

Theorem 3.6 Assume that the solution of (2.1) is such that u ∈ C p+1([0, T ],R), and
that ul,n, l = 2, . . . , p − 1, are solutions of DC methods of order l built from BDF2
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with variable time steps as in Sect. 2. For j = 0, 1, . . . , p − 2, let be given initial
solutions u p, j that are p-th order accurate. For n = p − 1, . . . , N, consider u p,n

solution of the DC method built from the correction Dp(u p−1,n). Then, under any of
the conditions for 0-stability of BDF2 and assuming that the maximal step k is small
enough, the solution of DCp satisfies the following error estimate

|un − u p,n| ≤ C k p, n ≥ 0, (3.32)

where the constant C is independent from all numerical solutions u j,n and steps kn.

Remark 3.4 We have the following equivalences between the notation of Theorem 3.6
and the notation introduced previously in Sect. 2: u2, j ≡ ū j , u3, j ≡ û j , u4, j ≡ ũ j ,
and u5, j ≡ u j .

3.4 A-stability

Wefirst prove the A-stability of our DCmethods, then investigate the absolute stability
of two closely related methods and show how these two methods lack the mechanism
to achieve A-stability.

The notion of A-stability applies to multistep methods with constant time steps. We
consider the differential equation

du

dt
= λu, λ ∈ C. (3.33)

A time-stepping method is absolutely stable for a λ ∈ C provided its numerical
solution of (3.33) for this λ is such that un → 0 whenever n → ∞. A method is
A-stable if the region of absolute stability contains all C− = {λ ∈ C | Re(λ) < 0}.

3.4.1 DCmethods

The BDF2 method with constant time step applied to (3.33) gives the homogeneous
difference equation

a ūn + b ūn−1 + c ūn−2 = 0, n ≥ 2, (3.34)

with a = 3/2 − z, b = −2, c = 1/2 and z = λk. The general solution is given by
ūn = c1ξn

1 + c2ξn
2 , where ξi , i = 1, 2, are the roots of the characteristic equation

a ξ2 + b ξ + c = 0, c1 and c2 are coefficients to fit the initial conditions. BDF2
is A-stable because |ξi | < 1, i = 1, 2, for Re(λ) < 0, which implies ūn → 0 as
n → ∞. To simplify notations in the proof below, we order the roots according to
|ξ1| ≤ |ξ2| < 1.

To prove the A-stability of our DC methods, we consider the non-homogeneous
difference equation

a un + b un−1 + c un−2 = gn, n ≥ 2, (3.35)
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where gn is a given function of n independent from un . The general solution is given
by un = ūn + vn , where ūn is the solution of the homogeneous difference equation
given above and vn is the particular solution of the non-homogeneous equation given
by

vn =
n∑

j=2

g j (a1 ξ
n− j
1 + a2 ξ

n− j
2 ), n ≥ 2. (3.36)

See [7, chap.2] for a review of linear difference equations.
The fact that un → 0 is controlled by vn . It results from the following lemma:

Lemma 3.2 Assume that there exist K > 0 and fixed integers α, β ≥ 0 such that
|g j | ≤ K jα |ξ2| j−β , ∀ j . Then there exists K̄ > 0 such that

|vn| ≤ K̄ nα+1 |ξ2|n−β, n ≥ max(2, β). (3.37)

Proof

|vn| ≤ max(|a1|, |a2|)
n∑

j=2

|g j | |ξ2|n− j ≤ K1 |ξ2|n−β
n∑

j=2

jα = K1 |ξ2|n−β Πα+1(n),

where n ≥ max(2, β), K1 = K max(|a1|, |a2|) and Πα+1(n) is a polynomial of
degree α + 1 in n from the formulae for the sums of powers of integers. The result
follows from |Πα+1(n)| ≤ C nα+1, which holds for n ≥ 1 and consequently for
n ≥ max(2, β). ��
Theorem 3.7 The DC method of order p built from BDF2 is A-stable.

Proof We detail the proof for DC3 and present the main steps for DCp, p ≥ 4, in the
sequence BDF2 → DC3 → DC4 → . . . → DCp.

The application of DC3 to (3.33) gives a difference equation of the form (3.35)
with

gn = −
∑

i=1,2

ci z
ξ2i − 2ξi + 1

3
ξn−2

i .

We apply lemma 3.2 with α = 0, β = 2 and

K =
∑

i=1,2

|ci z| |ξ2i − 2ξi + 1|
3

,

which gives |vn| ≤ K̄ n |ξ2|n−2 → 0 as n → ∞.
Through an induction, it is seen that the application of DCp to (3.33) gives a

difference equation of the form (3.35), where gn is a polynomial Π(ξ1, ξ2; n, z) in
ξ

β1
1 ξ

β2
2 with n − N + 1 ≤ β1 + β2 ≤ n and whose coefficients are polynomials
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of degree at most N − 3 in n. We apply lemma 3.2 with α = N − 3, β = N − 1
and K that results from bounding the coefficients in Π(ξ1, ξ2; n, z), which gives
|vn| ≤ K̄ nN−2 |ξ2|n−N+1 → 0 as n → ∞.

For the sequenceBDF2→DC4→ . . . →DCp, p even, the proof forDC4 proceeds
as for DC3 above, using α = 0 and β = 3 in lemma 3.2. An induction and the
application of the lemma with α = N/2 − 2 and β = N − 1 proves the result for
DCp. ��

3.4.2 Related methods

We now present and briefly analyze two DC3 methods where the correction is more
tightly coupled with the solution of the DC3 method, rather than being computed
from the solution of BDF2 that evolves independently from the solution of DC3.
This illustrates how important this is to evaluate the correction from an independently
evolving numerical solution to maintain A-stability at arbitrary orders.

We first consider a “most extreme” variant of the DC3 method (with constant time
step to simplify) where the correctionD3(u) is evaluated from the solution u of DC3:

3un − 4un−1 + un−2

2k
= F(tn, un)

−k2

3

F(tn, un) − 2F(tn−1, un−1) + F(tn−2, un−2)

k2
. (3.38)

This variant, here called the modified BDF2 method, is third-order accurate, but unfor-
tunately far from being A-stable. This scheme applied to (3.33) gives the following
homogeneous difference equation

(3/2 − 2z/3)un − (2 + 2z/3)un−1 + (1/2 + z/3)un−2 = 0, n ≥ 2. (3.39)

The absolute stability region is much smaller than for BDF3, see Fig. 1.

Fig. 1 Boundary of the absolute stability regions. At left: modified BDF2 – Eq. (3.38) – (black dotted line),
BDF3 (red dashed line) and DC3 method from (3.40) (blue plain line). At right: zoom near the origin of the
graph at left. In all cases, the stability region lies immediately at the left of the origin (color figure online)
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We next consider a variant of the DC3 method where the correctionD3 is evaluated
from un−1 and un−2, the solution of DC3, and a “prediction” ūn obtained fromBDF2:

3ūn − 4un−1 + un−2

2k
= F(tn, ūn),

3un − 4un−1 + un−2

2k
= F(tn, un)

−k2

3

F(tn, ūn) − 2F(tn−1, un−1) + F(tn−2, un−2)

k2
. (3.40)

This can be seen as a hybrid between the DC methods investigated in this paper and
the method (3.38) that we just discussed. Note that a family of similar DC methods
built from BDF methods with constant time steps was proposed in [12].

One would expect that, since un−1 and un−2 are more accurate than ūn−1 and
ūn−2 obtained from BDF2, the solution un of (3.40) would be more accurate than
the solution of (2.12). It turns out that this is not the case, at least in the preliminary
numerical tests that we performed (not shown here). Moreover, the A-stability is lost,
see Fig. 1. The absolute stability region is obtained from applying the method to (3.33)
and solving the so-obtained homogeneous difference equation

(3/2 − z)un + 4z2 + 10z − 18

9 − 6z
un−1 + 9/2 − z − 2z2

9 − 6z
un−2 = 0, n ≥ 2. (3.41)

This method is more stable than BDF3 in the vicinity of the origin, but the boundary
of the absolute stability region has a vertical asymptote at the left of the imaginary
axis. Hence, except at the origin, there is a neighbourhood of the imaginary axis where
this DC method is unstable, while this is not the case for BDF3 when z = i y, |y| gets
large enough.

Computing the correction D3 directly from the solution of the DC method (com-
pletely or partially) has dramatic impact on the stability. For instance, the resulting
method (3.38) is a third-order linear multistep method, hence there is no surprise that
it is not A-stable from the second Dahlquist barrier. In case of D3 partially evaluated
from the DC solution, the resulting method (3.40) is a third-order general linear mul-
tistep method, yet not A-stable. The BDF2-based DC methods proposed in this paper
are not general linear methods. They maintain A-stability at arbitrary order from the
fact that an A-stable method (here BDF2) is slightly perturbed with a correction term
Dp evaluated from a completely independent solution obtained with an other A-stable
method (here DCp to get DCp+1 or DCp+2). For equation (3.33), the characteristic
roots of BDF2 are then preserved, leading to un → 0, n → ∞, while these roots are
modified for the last two DC variants proposed and studied in this subsection.

4 Numerical tests

To assess the numerical behaviour of the deferred corrections integration methods –
DC3 to DC5 –, we will make use of the method of manufactured solutions (MMS) [32,
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Table 2 Manufactured solutions

ODE function Integration domain Initial value Manufactured solution

MMS-1 F(t, u) = 7 t6 I = (0, 1) u0 = 0 ums(t) = t7

MMS-2 F(t, u) = u cos(t) I = (0, 10π) u0 = 1 ums(t) = esin(t)

33] and carry out simulations with constant and alternating step size [11, 37]. When
usedwith time-stepping systematic refinement studies,which are remarkably sensitive,
the MMS produces robust code verifications in comparison with the theoretical error
estimates obtained previously in Sect. 3. Moreover, when used with alternating step
size verification strategy, MMS often reveals unsuspected weaknesses such as the
reduction of the order of convergence of the time integration method, and thus its
inability to effectively adjust the step size within an adaptive error control strategy.

In this context, we have selected two manufactured solutions whose results are
representative of all the numerical tests carried out. Table 2 summarizes the parameters
of these manufactured solutions in relationship with the model ODE (2.1). This allows
us to measure the integration error E(k) between the numerical and exact solutions as
follows:

E(k) = ‖uk − ums‖∞ = max
n

|un − ums(t
n)|

E(k) ≤ C k p
(4.1)

where k, uk and ums(t) are, respectively, the time step, the vector of numerical solution
and the manufactured (or closed-form) solution. Finally, we recall that the objective
of the systematic time step refinement studies is to measure the rate of convergence p
of the time integration method and then to compare the result with the theory.

The family of BDF integration methods requires, in addition to the initial solution
u0, one or more additional solutions to start the computation [39]. For example, BDF2
requires u0 = u(t0) and u1 = u(t1) to predict u2. The same is true for the deferred
correction methods. In this study, these values are initialized using the manufactured
solution. In doing so, we measure the accuracy of the discretization scheme with-
out mitigating the effect of the initialization of these additional values. This ensures
compliance with the accuracy requirements for the initial conditions as stated in The-
orems 3.2–3.5.

The specific objectives of the numerical tests are fourfold: i) – Sect.4.1 – to measure
the convergence rate of the deferred correction methods with constant step size, ii) –
Sect. 4.2 – to measure the convergence rate of the deferred corrections methods with
alternating step size, iii) – Sect. 4.3 – to estimate the error of a low order deferred
correction method with a higher-order method, and iv) – Sect. 4.4 – to assess the
convergence rate of the DC4 variant (3.26) under constant and alternating step sizes.

Finally in Sect. 4.5 we assess the numerical behaviour of the deferred corrections
methods with a stiff system of linear ODEs.
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4.1 Constant time step refinement studies

We integrate the model Eq. (2.1), stepping through the time integration interval I in
N time steps of constant size. The computation is then repeated by systematically
doubling the number of time steps. We then calculate the rate of convergence p in the
usual manner by considering the ratio of two successive errors,

E(k)

E(k/2)
≈ 2p.

Tables 3 and4 show the results of this convergence study for themanufactured solutions
described in Table 2.

For the first manufactured solution (MMS-1), we reach rapidly and monotonically
the theoretical convergence rates established in Sect. 3. Beyond 640 time steps, the
precision of higher-order integration methods (DC4 and more rapidly so for DC5) lies
within floating-point arithmetic accuracy, and the computation of the convergence rate
p becomes meaningless. On the other hand, the solutions of the second manufactured
problem (MMS-2) showoscillatory convergence towards their theoretical convergence
rates. Beyond 5120 time steps, the computational error of DC5 is againwithin floating-
point arithmetic accuracy.

4.2 Alternating time step refinement studies

Wenow integrate Eq. (2.1) by stepping through the time integration interval in 2 N time
steps and alternating between two steps k1 = kmax and k2 = kmin – per Proposition 3.2.
More precisely, we assume that the ratio ω,

k2 i

k2 i−1
= kmax

kmin
= ω,∀i ∈ {1, 2, ..., N },

Table 3 MMS-1, constant step size refinement

BDF2 DC3 DC4 DC5

Number of
time step

E p E p E p E p

40 0.0080 0 2.4935e-04 0 1.3973e-05 0 7.0266e-07 0

80 0.0021 1.9368 3.2635e-05 2.9337 9.2108e-07 3.9232 2.3374e-08 4.9098

160 5.3434e-04 1.9673 4.1744e-06 2.9668 5.9039e-08 3.9636 7.4995e-10 4.9620

320 1.3513e-04 1.9834 5.2788e-07 2.9833 3.7362e-09 3.9820 2.3721e-11 4.9826

640 3.3981e-05 1.9916 6.6369e-08 2.9916 2.3497e-10 3.9910 7.4252e-13 4.9976

1280 8.5200e-06 1.9958 8.3204e-09 2.9958 1.4730e-11 3.9956 2.4758e-14 4.9065

2560 2.1331e-06 1.9979 1.0416e-09 2.9979 9.2126e-13 3.9990 9.9920e-16 4.6310

5120 5.3367e-07 1.9989 1.3029e-10 2.9989 5.4845e-14 4.0702 2.9976e-15 −1.5850

10240 1.3347e-07 1.9995 1.6291e-11 2.9996 6.8834e-15 2.9942 9.8810e-15 −1.7208
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Table 4 MMS-2, constant step size refinement

BDF2 DC3 DC4 DC5

Number of
time step

E p E p E p E p

40 4.1115 0 5.6880 0 5.3995 0 4.1974 0

80 0.1741 4.5614 0.1719 5.0479 0.0672 6.3284 0.0122 8.4309

160 0.0550 1.6634 0.0074 4.5326 0.0016 5.3683 8.0383e-04 3.9195

320 0.0150 1.8706 7.7195e-04 3.2666 1.1990e-04 3.7619 2.3732e-05 5.0820

640 0.0039 1.9490 1.1498e-04 2.7471 6.2668e-06 4.2580 6.4152e-07 5.2092

1280 9.8783e-04 1.9787 1.5951e-05 2.8497 3.1781e-07 4.3015 1.9124e-08 5.0680

2560 2.4862e-04 1.9903 2.0947e-06 2.9288 1.7123e-08 4.2142 5.9135e-10 5.0152

5120 6.2351e-05 1.9954 2.6802e-07 2.9663 9.7917e-10 4.1282 1.8587e-11 4.9916

10240 1.5612e-05 1.9978 3.3883e-08 2.9837 5.8147e-11 4.0738 6.5814e-13 4.8198

between two consecutive time steps of even and odd indices is constant and indepen-
dent of the number of steps. This implies that the ratio between two consecutive time
steps of odd and even indices is also constant and equal to

k2 i+1

k2 i
= kmin

kmax
= 1

ω
,∀i ∈ {1, 2, ..., N − 1}.

The computations are repeated by systematically doubling the number of time steps
while keeping the ratio ω constant – kmax and kmin are thus divided by two. Finally,
note that k in E(k) is kmax.

Tables 5 and 6 show the results for the manufactured solutions described in Table 2.
For this refinement studies we choose ω = 4 which is above the recommended the-
oretical 0-stability limit of the BDF2 integration – Proposition 3.1. Nevertheless, as
shown previously in Proposition 3.2, this alternating time-stepping strategy yields sta-
ble solutions. Hence, a comparative study between the results of Tables 5 and 6 and
those of Tables 3 and 4 does not reveal any significant change. The ability to achieve
the theoretical convergence rates seems not to be hampered by the extreme variation
of the time step.

4.3 Error estimation

In this study, we have, so far, used themanufactured solutions of Table 2 tomeasure the
integration error of the numerical solutions. In practice, these closed-form solutions
are replaced by appropriate alternatives denoted u∗. A possibility is to use a high-
order solution u∗ as a substitute to the exact solution in the computation of E . This
allows us to compute an integration error E∗(k) between the numerical solution and
the surrogate solution u∗,

E∗(k) = ‖uk − u∗‖∞
E∗(k) ≤ C k p

}
, (4.2)
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Table 5 MMS-1, alternating step size k2i /k2i−1 = 4 refinement

BDF2 DC3 DC4 DC5

Number of
time step

E p E p E p E p

40 0.0082 0 2.8440e-04 0 1.8586e-05 0 9.1140e-07 0

80 0.0021 1.9502 3.6905e-05 2.9460 1.2203e-06 3.9289 3.0323e-08 4.9096

160 5.3719e-04 1.9746 4.6984e-06 2.9736 7.8015e-08 3.9674 9.7171e-10 4.9637

320 1.3550e-04 1.9872 5.9269e-07 2.9868 4.9301e-09 3.9841 3.0703e-11 4.9841

640 3.4026e-05 1.9935 7.4426e-08 2.9934 3.0984e-10 3.9920 9.7344e-13 4.9791

1280 8.5257e-06 1.9968 9.3246e-09 2.9967 1.9442e-11 3.9942 6.0840e-14 4

2560 2.1338e-06 1.9984 1.1669e-09 2.9983 1.2481e-12 3.9614 4.2188e-14 0.5282

5120 5.3376e-07 1.9992 1.4595e-10 2.9992 8.1712e-14 3.9330 8.2157e-15 2.3604

10240 1.3348e-07 1.9996 1.8112e-11 3.0104 1.3267e-13 -0.6992 1.3267e-13 -4.0133

Table 6 MMS-2, alternating step size k2i /k2i−1 = 4 refinement

BDF2 DC3 DC4 DC5

Number of
time step

E p E p E p E p

40 3.7208 0 4.9125 0 7.0856 0 2.7373 0

80 0.1448 4.6835 0.0982 5.6446 0.0677 6.7106 0.0120 7.8352

160 0.0544 1.4116 0.0054 4.1957 0.0013 5.7401 8.6554e-04 3.7917

320 0.0152 1.8449 6.0077e-04 3.1570 1.3457e-04 3.2335 2.6376e-05 5.0363

640 0.0039 1.9513 7.6678e-05 2.9699 7.9301e-06 4.0848 6.4549e-07 5.3527

1280 9.9156e-04 1.9824 1.1479e-05 2.7398 4.2340e-07 4.2273 1.8137e-08 5.1534

2560 2.4912e-04 1.9929 1.5569e-06 2.8823 2.3508e-08 4.1708 5.4629e-10 5.0531

5120 6.2417e-05 1.9968 2.0206e-07 2.9458 1.3700e-09 4.1010 1.5466e-11 5.1425

10240 1.5620e-05 1.9985 2.5717e-08 2.9740 8.3686e-11 4.0330 2.3896e-12 2.6943

and the efficiency ratio,

η = E∗(k)

E(k)
, (4.3)

a measure of its reliability as an error estimation technique. Thus an estimation tech-
nique is reliable and robust if the efficiency is close to 100%, repeatedly, for different
problems. Specifically, we propose to test the efficiency of the solution from DC3,
as u∗, to estimate the discretization error of BDF2, and the solution from DC4, to
estimate the discretization error of DC3, and so on.

In Tables 7 and 8, we present the results of these numerical experiments for the
BDF2, DC3 and DC4 methods, for the first and the second manufactured problem.
We observe that the effectiveness of the error estimation is almost optimal over a wide
range of time integration steps, integration methods and manufactured problems. Note

123



1816 Y. Bourgault, A. Garon

Table 7 MMS-1, alternating
step size k2i /k2i−1 = 4
refinement, error estimate
efficiency

BDF2 DC3 DC4
Number of time step η η η

40 0.9651 0.9346 0.9510

80 0.9825 0.9669 0.9752

160 0.9913 0.9834 0.9875

320 0.9956 0.9917 0.9938

640 0.9978 0.9958 0.9969

1280 0.9989 0.9979 0.9969

2560 0.9995 0.9989 0.9662

5120 0.9997 0.9994 1.0978

10240 0.9999 1.0073 0.0310

Table 8 MMS-2, alternating
step size k2i /k2i−1 = 4
refinement, error estimate
efficiency

BDF2 DC3 DC4
Number of time step η η η

40 2.2548 2.4424 1.3863

80 1.3744 1.6886 1.0709

160 1.0017 1.0770 1.6157

320 1.0143 0.9289 1.1556

640 1.0021 1.0603 1.0533

1280 0.9992 1.0201 1.0250

2560 0.9992 1.0073 1.0129

5120 0.9995 1.0032 1.0056

10240 0.9997 1.0015 0.9866

that we carried out these tests with alternating time steps, i.e., the most challenging
integration scenario of this study.

4.4 BDF2 to DC4 numerical assessment

In this section, we study the convergence rate of the DC4 method described by Eq.
(3.26). Recall that this version constructs a fourth-order approximation directly from
the second-order solution obtained from the BDF2 method. It, therefore, avoids the
use of the DC3 method, thus reducing the computational cost.

We present in Table 9 the results of three convergence studies for the second man-
ufactured solution (MMS-2) of the model Eq. (2.1), i.e., (i) a constant time step
convergence study, (ii) an alternating time step convergence study, and (iii) an asymp-
totic convergence study – note that the parameters of the first two studies are described
in Sects. 4.1 and 4.2 , respectively. In the asymptotic study, we integrate the solution
by stepping through the time interval I in N time steps of increasing size according to
a geometric progression. For this purpose, the ratio between the maximum and min-
imum time step is kept constant regardless of the number of time steps. Specifically,
we set
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Table 9 MMS-2, BDF2 to DC4 numerical assessment

Constant time stepping Alternating time stepping Asymptotic time stepping
Number of
time step

E p E p E p

40 2.8886 0 0.7907 0 10.0557 0

80 0.0234 6.9490 0.0758 3.3834 0.0522 7.5891

160 6.7507e-04 5.1140 0.0053 3.8419 0.0013 5.3040

320 7.8344e-05 3.1071 6.6860e-04 2.9824 6.7780e-05 4.2856

640 4.0755e-06 4.2648 8.4668e-05 2.9813 3.5483e-06 4.2556

1280 2.0236e-07 4.3320 1.0551e-05 3.0044 2.4870e-07 3.8347

2560 1.0628e-08 4.2510 1.3139e-06 3.0055 1.6805e-08 3.8874

5120 5.9567e-10 4.1572 1.6385e-07 3.0033 1.0894e-09 3.9473

10240 3.4903e-11 4.0931 2.0456e-08 3.0018 6.9311e-11 3.9742

kN

k1
= kmax

kmin
= γ = 2

kmax = T /N

⎫
⎬

⎭ . (4.4)

This intrinsically defines a geometric progression such that

r = γ 1/(N−1)

k1 = T (r − 1)/(r N − 1)

ki = k1 r i−1 ∀i ∈ {1, 2, ..., N }

⎫
⎪⎬

⎪⎭
, (4.5)

with r the common ratio. With this construction, kmax decreases by two as the number
of time steps doubles, and the ratio ωn , between two successive time steps, satisfies

lim
N→∞ ωn → 1, (4.6)

thus respecting the condition |ωn − ωn−1| ≤ C k, where k = kmax, of Theorem 3.5 –
see also Remark 3.3.

The results in Table 9 confirm the theoretical results of Theorem 3.5: at constant
time step, themethod is fourth-order; at alternating time step, themethod is third-order;
and if the ratio converges asymptotically to unity then the method converges again
to fourth-order. However, in the context of adaptive time step control, the occurrence
of asymptotic time step convergence is exceptional. In practice, it is more likely to
experience a loss of convergence order,making thismethod unsuitable for this purpose.

4.5 Stiff linear ODEs numerical assessment

Weconclude these tests by studying the convergenceof thenumerical solution for a sys-
tem of stiff linear differential equations. To this end, we use the procedure described in
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Sect. 4.1 by systematically doubling the number of time steps.We apply this procedure
to compute the solution of the following first-order system of differential equations

du
dt

=
⎛

⎝
−1 1 +100
0 0 +100
0 −100 0

⎞

⎠

︸ ︷︷ ︸
A

u

u(0) = (
2 1 1

)t

, (4.7)

on the interval I = [0, 5]. Once again, we use (4.1) to measure the integration error
between the numerical and the exact solution of (4.7) given by

u(t) = e−t

⎛

⎝
1
0
0

⎞

⎠ + cos(100 t)

⎛

⎝
1
1
1

⎞

⎠ + sin(100 t)

⎛

⎝
1
1

−1

⎞

⎠ . (4.8)

Note that the ratio of the largest to the smallest eigenvalue of A is 100 (in modulus).
Moreover, this simple system would be hard to solve by BDF methods of order 3 and
higher (if possible at all) because of the pair of imaginary eigenvalues.

In Table 10, we show the results of this comparative study between the DC3method
and the first and second-order BDF methods. These BDF methods are used, in par-
ticular, for the solution of stiff differential equations. Note that we selected DC3 as a
representative of our DC methodology.

The results collected in Table 10 confirm that the DC3 method can capture the
solution of a system of stiff ordinary differential equations. Above 4000 time steps,
DC3 outclasses the BDF methods. We believe that higher-order DC methods (such as
DC4 and DC5) would require significantly fewer time steps to reach a target accuracy.
This without losing stability and convergence order.

5 Conclusion

We first described in Sect. 2 a novel deferred correction methodology based on the
second-order backward differentiation formula (BDF2) as its building block, where
we established these algebraic relations to allow variable time-stepping to ultimately
control the local truncation error. This approach is implicit and improves the previous
solution by one order of accuracy from one iteration to the next such as DCp →
DCp + 1 for p ≥ 2 with DC2 standing for BDF2.

To prove on solid grounds the stability of our DCmethods, we began by examining
and discussing the 0-stability specific to the BDF2 building block, as it is essential to
establish the theorems and propositions of Sect. 3. We proved that one correction step
from BDF2 to DC3 – Theorem 3.3 – , then an other from DC3 to DC4 – Theorem 3.4
– lead, respectively, to third and fourth-order of accuracy, with no constraint on the
ratio ωn of successive time steps beyond the requirements for 0-stability. We then
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indicated how these estimates can be generalized to higher-order DCmethods through
Theorem 3.6.

To challenge the robustness and efficiency of our DC methodology, we also inves-
tigated a variant of DC4 built directly from BDF2 in one correction step in the manner
of Kress [24] with constant time steps. In Theorem 3.5 we showed that this is possible,
but under a severe restriction on the time step ratio of the form |ωn − ωn−1| ≤ Ck, as
the maximal time step k is reduced. Finally, Theorem 3.7 proves the A-stability of our
DC methods of arbitrary orders.

We selected in Sect. 4 two representative manufactured solutions from a collection
of numerical tests to verify and validate the implementation of the deferred corrections
methods (DC3 to DC5) described previously in Sect. 2. The consistency between the
simulations and the theoretical predictions ensures the quality of the implementation
and the sharpness of all the error estimates obtained in Sect. 3. We observed that the
convergence rate of these methods does not seem to be hampered significantly by the
extreme variation of the time step beyond the bound ωn ≤ 1+√

2 commonly used for
0-stability, at leastwithin the scope of the alternating time step scenario. These deferred
correctionsmethods can then be exploited to control a local truncation aswell as global
error estimates. For this purpose, we demonstrated that it is reliable to use the solution
of a higher-order method to estimate the integration error of a lower-order solution.
In particular, the computation of one extra correction step provides a reliable estimate
of the global error, but this comes with a computational overhead. In situations where
optimal time steps are not known a priori, this additional computational effort due
to adaptivity should make the integration process robust in the sense of guaranteeing
the accuracy aimed for. Assuming that one has a good strategy to adapt the time step
based on a global error estimator, it would then be worth paying the price of one more
DC step. More work is needed here to assess this adaptation strategy.

In Sects. 4.1 to 4.3, we investigated the robustness of the computational cascade of
Eqs. (2.11) to (2.14) in the presence of a non-constant time step for applications related
to adaptive time step control. This approach improves the accuracy of the solution
by one order by stepping through the integration methods for a linear increase in
computational cost. On the other hand, in Sect. 4.4, we have verified that it is possible
to reduce the computational cost considerably by using an alternative construction
that allows a two-order increase in computational accuracy. However, the possibility
to adapt the time step is reduced.
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