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Abstract
In uncertainty quantification, it is commonly required to solve a forwardmodel consist-
ing of a partial differential equation (PDE)with a spatially varying uncertain coefficient
that is represented as an affine function of a set of random variables, or parameters.
Discretizing suchmodels using stochastic Galerkin finite element methods (SGFEMs)
leads to very high-dimensional discrete problems that can be cast as linear multi-
term matrix equations (LMTMEs). We develop efficient computational methods for
approximating solutions of such matrix equations in low rank. To do this, we follow
an alternating energy minimization (AEM) framework, wherein the solution is repre-
sented as a product of twomatrices, and approximations to each component are sought
by solving certain minimization problems repeatedly. Inspired by proper generalized
decomposition methods, the iterative solution algorithms we present are based on a
rank-adaptive variant of AEMmethods that successively computes a rank-one solution
component at each step. We introduce and evaluate new enhancement procedures to
improve the accuracy of the approximations these algorithms deliver. The efficiency
and accuracy of the enhancedAEMmethods is demonstrated through numerical exper-
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iments with LMTMEs associated with SGFEMdiscretizations of parameterized linear
elliptic PDEs.

Keywords Low-rank approximation · Alternating energy minimization · Stochastic
Galerkin methods · Matrix equations · PDEs with random inputs · Uncertainty
quantification
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1 Introduction

We are interested in computing low-rank approximate solutions of linear systems
Au = b with the Kronecker-product structure

(
m∑
i=0

Gi ⊗ Ki

)
u =

m̂∑
i=0

gi ⊗ fi , (1.1)

where A = ∑m
i=0 Gi ⊗Ki is symmetric positive definite,⊗ is the Kronecker product,

{Ki }mi=0 ∈ R
n1×n1 , {Gi }mi=0 ∈ R

n2×n2 , { fi }m̂i=0 ∈ R
n1 , and {gi }m̂i=0 ∈ R

n2 , and we
assume thatm, m̂ � n1, n2. The solution vector u ∈ R

n1n2 consists of n2 subvectors of
dimension n1, i.e., u = [uT1, . . . , uTn2 ]T, where {ui }n2i=1 ∈ R

n1 . The solution also has an
alternative representation in matrix format, U = [u1, . . . , un2 ] ∈ R

n1×n2 . Exploiting
this, and using standard properties of the Kronecker product, one can show that the
linear system (1.1) is equivalent to a linear multi-termmatrix equation (LMTME) [36]

m∑
i=0

KiUGT
i = B, where B =

m̂∑
i=0

fi g
T
i ∈ R

n1×n2 . (1.2)

Systems with such structure arise, for example, in the discretization of deter-
ministic linear elliptic PDEs on high-dimensional domains [2,20–22] as well as
in the discretization, via stochastic Galerkin finite element methods (SGFEMs)
[13,18,25,28,47], of linear elliptic PDEs parameterizedwith random or unknown coef-
ficients (see Eqs. (1.4)–(1.5) below). When the matrices Ki andGi are sparse, then for
moderately large values of n1 and n2 it is feasible to solve (1.1) using standard iter-
ative methods. Indeed, in the case of parameterized PDEs, standard Krylov subspace
methods [34,35] andmultigrid methods [4,10,24] have been considered. However, the
dimensions of the system matrices can grow rapidly when the discretization is refined
and, in the case of parameterized PDEs, when the numberm of input random variables
is increased.

For large n1 and n2, direct application of standard iterative methods may be compu-
tationally prohibitive and storing or explicitly forming thematrixU may be prohibitive
in terms of memory. Motivated by this, we are interested in inexpensive computation
of approximate solutions of LMTMEs of the form (1.2) of low rank, using methods
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that do not require constructions of matrices of size n1 × n2. We begin by introducing
a factored representation of U ∈ R

n1×n2 ,

U = VW T,

where, if U is of full rank r := min(n1, n2), V ∈ R
n1×r and W ∈ R

n2×r . Our aim is
then to find a low-rank approximation to this factored matrix of the form

Up = VpW
T
p ∈ R

n1×n2 , (1.3)

where Vp = [v1, . . . , vp] ∈ R
n1×p and Wp = [w1, . . . , wp] ∈ R

n2×p and p � r ,
and we want to derive solution algorithms for computing Up that operate only on the
smaller factors Vp and Wp without explicitly forming the large matrix Up.

One such solution algorithm has been developed for matrix completion/sensing
problems [16,17], which, at the pth iteration, computes Vp andWp by alternately solv-
ing certain minimization problems. Although the algorithm computes highly accurate
approximations, it can become very expensive as p increases (see Sect. 2.4). Another
approach is to use successive rank-one approximations and successively compute pairs
of vectors {(vi ,wi )}pi=1 to build the factors Vp and Wp of (1.3) until a stopping cri-
terion is satisfied. The pth iteration starts with Vp−1 and Wp−1 and constructs vp

and wp as the solutions of certain minimization problems. This approach for solving
parameterized PDEs is one component of amethodology known as ProperGeneralized
Decomposition (PGD) [30,31,46]. As observed in those works, using only successive
rank-one approximations is less expensive but may not be practical because it typically
results in approximations with an unnecessarily large value of p.

Our goal in this study is to develop solution algorithms that preserve only the
good properties of the above two types of solution strategies, i.e., algorithms that
compute an accurate low-rank approximate solution in a computationally efficient
way. In developing such algorithms, we take our cue from PGD methods, in which,
to improve accuracy, the successive rank-one constructions are supplemented with an
updating procedure that is performed intermittently during the iteration. Inspired by
this approach, we propose a solution algorithm that adaptively computes approximate
solutions in an inexpensive way via the successive rank-one approximation method.
This is supplemented by an enhancement procedure, which effectively improves the
accuracy of the resulting approximate solutions. We propose two novel enhancement
procedures developed by modifying some ideas in [17] used for matrix completion
problems [38]. An algebraic formulation of PGD methods corresponds to alternating
minimizations of errors in a particular norm, e.g., the energy norm or the �2 norm.
Since we are considering linear systemswith symmetric and positive definite matrices,
we use the energy norm, and refer to the resulting methods as alternating energy
minimization (AEM) methods.

Some other rank-adaptive approaches for approximating solutions of LMTMEs in
low-rank format are as follows. An approach close to the ideas considered in this
paper is a greedy low-rank algorithm, developed in [20], where the successive rank-
one algorithm is followed by an enhancement procedure. This method is also used
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in [23] for a regression problem arising in a neuroscientific model of synaptic con-
nections. A method in [5], called the AMEn algorithm, uses AEM techniques in
combination with tensor-train (TT) decompositions [32]; AMEn is designed for high-
dimensional problems with multiple terms in the Kronecker product format. Another
class of approaches includes incrementally computing rank-p solution pairs by solv-
ing a residual minimization problem, an approach known as alternating least-squares
(ALS). This has been used to compute low-rank approximate solutions of parame-
terized PDEs in [6,7], and to solve matrix recovery problems, matrix sensing and
completion problems, [15–17,38]. In [36], an adaptive iterative procedure to solve
LMTMEs (1.2) associated with SGFEM discretizations is given, which incrementally
computes a set of orthonormal basis vectors to form Vp which represents the spatial
part of the solution. Two other classes of iterative low-rank algorithms are low-rank
Krylov subspace methods [2,3,21,22,29,33,40,45] and low-rank multigrid methods
[12,44]. These methods operate on iterates represented in Kronecker product format
(e.g.,

∑ p̃
i=1 wi ⊗ vi for representing a vector with p̃ terms) and employ so-called

truncation operators (e.g., based on singular value decomposition) to keep the iterates
in low rank. See also [43] for a comprehensive overview of computational approaches
for solving linear matrix equations.

Although we only exploit the abstract structure (1.2) to derive solution algorithms,
we are motivated by the need to solve LMTMEs associated with SGFEM discretiza-
tions of parameterized PDEs arising in forward uncertainty quantification. Here we
brieflymention their key features; more details are given in Sect. 4. Consider themodel
problem

−∇ · (a(x, ξ)∇u(x, ξ)) = f (x) (x, ξ) ∈ D × Γ , (1.4)

where D ⊂ R
2,3 is the spatial domain and the diffusion coefficient has the form

a(x, ξ) = a0(x) +
m∑
i=1

ai (x)ξi , (1.5)

where ξ = [ξ1, . . . , ξm] is a vector of m independent random variables taking values
in a parameter domain Γ ⊂ R

m . In the SGFEM approach, the solution u(x, ξ) to (1.4)
is approximated in a finite-dimensional space with tensor product structure Xh ⊗ Sd
where Xh is a standard finite element space associated with D and Sd is a space of
(usually, global) polynomials on Γ . Applying such a scheme leads to a LMTME (1.2)
in which the Ki matrices are associated with the chosen finite element discretization,
and the Gi matrices are associated with the polynomial approximation on the m-
dimensional parameter domain. In particular, Ki is a finite element stiffness matrix
weighted by the coefficient ai (x) appearing in (1.5). Thesematrices are ill-conditioned
with respect to the mesh parameter h, and due to the properties of the coefficients in
(1.5), they have decaying importance in terms of their contribution to the sum in (1.1).
Moreover, the first term G0 ⊗ K0 usually dominates and serves as an effective and
computationally efficient preconditioner [35]. We will exploit this fact in numerical
experiments in Sect. 4.

123



Enhanced alternating energy minimization methods for stochastic... 969

An outline of the rest of the paper is as follows. In Sect. 2, we introduce and
derive alternating energyminimization (AEM)methods for (1.2) using thewell-known
general projection framework and discuss a collection of methods developed for con-
structing low-rank approximate solutions of the form (1.3). In Sect. 3, we discuss
enhancement procedures and derive two new approaches for performing such updates.
In Sect. 4, we perform extensive numerical experiments and measure the effective-
ness and the efficiency of the enhanced AEM methods for LMTMEs associated with
SGFEMdiscretizations of parameterized elliptic PDEs of the form (1.4).We also com-
pare our methods with the greedy low-rank algorithm [20] on the same benchmark
problems as that method shares many features with the proposed methods and can
easily be described within the enhanced AEM framework. Finally, in Sect. 5, we draw
some conclusions.

2 Alternating energyminimization (AEM)methods

In this section, we derive AEM methods for solving the matrix Eq. (1.2) from the
optimal projection framework and review two variants of such methods. We first
introduce some notation. Upper-case and lower-case letters are used to denotematrices
and vectors, respectively. An inner product between two matrices X ,Y ∈ R

n1×n2 is
defined as 〈X ,Y 〉 ≡ tr(XTY ) = tr(XY T) = ∑

i, j Xi j Yi j , where tr is the trace operator,
and tr(X) = ∑n

i=1 xii if X ∈ R
n×n . The norm induced by 〈·, ·〉 is the Frobenius norm

‖X‖F = √〈X , X〉. For shorthand notation, we introduce a linear operator A (X) =∑m
i=0 Ki XGT

i for X ∈ R
n1×n2 . Using this, we can define the weighted inner product

〈X ,Y 〉A = 〈A (X),Y 〉 = 〈X ,A (Y )〉 and the induced A-norm ‖ · ‖A. Finally, vec
denotes a vectorization operator, vec(X) = x , where X = [x1, . . . , xn2 ] ∈ R

n1×n2

and x = [xT1 , . . . , xTn2 ]T ∈ R
n1n2 , for xi ∈ R

n1 , i = 1, . . . , n2.

2.1 General projection framework

For the computation ofVp andWp in (1.3),we rely on the classical theory of orthogonal
(Galerkin) projection methods [39]. Let K ⊂ R

n1×n2 be a search space in which an
approximate solution Up ∈ R

n1×n2 is sought, and let L be a constraint space onto
which the residual B − A (Up) is projected. Following [39, Proposition 5.2], if the
system matrix A is symmetric positive definite andL = K , then a matrix U∗

p is the
result of an orthogonal projection onto L if and only if it minimizes the A-norm of
the error over K , i.e.,

U∗
p = argmin

Up∈K
JA(Up),

where the objective function is

JA(Up) = 1

2
‖U −Up‖2A. (2.1)
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Because we seek a factored representation of Up, we slightly modify (2.1) to give

JA(Vp,Wp) = 1

2
‖U − VpW

T
p‖2A, (2.2)

and a new minimization problem

min
Vp∈Rn1×p,Wp∈Rn2×p

JA(Vp,Wp). (2.3)

Since JA is quadratic, gradients with respect to Vp and Wp can be easily obtained as

∇Vp JA =
(
A (VpW

T
p) − B

)
Wp =

m∑
i=0

(KiVpW
T
pG

T
i )Wp − BWp, (2.4)

∇Wp JA =
(
A (VpW

T
p) − B

)T
Vp =

m∑
i=0

(KiVpW
T
pG

T
i )

TVp − BTVp. (2.5)

Employing the first-order optimality condition on (2.4)–(2.5) (i.e., setting (2.4) and
(the transpose of) (2.5) to be zero) results in the set of equations

m∑
i=0

(KiVpW
T
pG

T
i )Wp = BWp ∈ R

n1×p, (2.6)

m∑
i=0

V T
p (KiVpW

T
pG

T
i ) = V T

p B ∈ R
p×n2 . (2.7)

These equations can be interpreted as projections of the residual B −A (VpW T
p) onto

the spaces spanned by the columns of Wp and Vp, respectively.
Given (2.6)–(2.7), a widely used strategy for solving the minimization problem

(2.3) is to compute each component of the solution pair (Vp,Wp) alternately [5–
7,15–17]. That is, one can fix Wp and solve the system of equations of order n1 p
in (2.6) for Vp, and then one can fix Vp and solve the system of equations of order
n2 p in (2.7) for Wp. However, in this approach, suitable choices of p for satisfying
a fixed error tolerance are typically not known a priori. Thus, adaptive schemes that
incrementally compute solution pairs (vi ,wi ) have been introduced [17,30,31,46]. All
of these schemes are based on alternately solving two systems of equations for two
types of variables in an effort to minimize a certain error measure. In this study, we
employ alternating methods for minimizing the energy norm of the error (2.3) and,
thus, we refer to approaches of this type as alternating energy minimization (AEM)
methods. In the following sections, we present two adaptive variants of AEMmethods:
a Stage-p AEM method and a successive rank-one AEM method.
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2.2 Stage-p AEMmethod

In [17], anALSmethod that entails solving a sequenceof least-squares problemswhose
dimensions increase with p was developed for solving matrix-recovery problems [15–
17]. We adapt this approach to the energy minimization problem (2.3) and refer to it
as the Stage-p AEM method. It is an iterative method that runs until an approximate
solution satisfies a stopping criterion (e.g., the relative difference of two consecutive
iterates ‖VpW T

p−Vp−1W T
p−1‖F ≤ ε‖VpW T

p‖F with a user-specified stopping tolerance
ε.) At the pth iteration, called a “stage” in [17], this method seeks p-column factors
Vp and Wp determining an approximate solution by initializing W (0)

p and solving the
following systems of equations in sequence:

m∑
i=0

(Ki )V
(k)
p (W (k−1)

p
TGiW

(k−1)
p )T = BW (k−1)

p , (2.8)

m∑
i=0

(V (k)
p

TKiV
(k)
p )W (k)

p
T(GT

i ) = V (k)
p

TB, (2.9)

for k = 1, . . . , kmax, where the superscript indicates the number of alternations
between the two systems of Equations (2.8)–(2.9). Note that the method can also
begin by initializing V (0)

p and alternating between (2.9) and (2.8). Algorithm 1 sum-
marizes the entire procedure. The CheckConvergence procedure (line 9) is detailed
in Sect. 3. Terms of the form Vp−1 or Wp−1 that appear in several places for p = 1
(for example, in line 3 of Algorithm 1) correspond to null or “zero-column” matrices.

Algorithm 1 Stage-p AEM method
INPUT: pmax: the maximum number of solution pairs,

kmax: the maximum number of alternations in each stage,
ε: a parameter for checking convergence,

1: function StagepAEM(pmax, kmax, ε)
2: for p = 1, . . . , pmax do
3: Set a random initial guess for w

(0)
p and W (0)

p ← [Wp−1, w
(0)
p ]

4: for k = 1, . . . , kmax do
5: V (k)

p ← solve (2.8)

6: W (k)
p ← solve (2.9)

7: end for
8: Vp ← V (k)

p and Wp ← W (k)
p

9: Vp,Wp ← CheckConvergence(Vp,Wp, ε)
10: end for
11: end function

Systems of equations for “vectorized” versions of the matrix factors Vp and Wp

can be derived1 from (2.8) and (2.9) as follows

1 The left-hand sides of (2.10)–(2.11) are derived using vec(KUGT) = (G ⊗ K )vec(U ). Note that (2.11)
is derived by first transposing (2.9) and then vectorizing the resulting equation.
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972 K. Lee et al.

m∑
i=0

[(W (k−1)
p

TGiW
(k−1)
p ) ⊗ Ki ] vec(V (k)

p ) = vec(BW (k−1)
p ), (2.10)

m∑
i=0

[(V (k)
p

TKiV
(k)
p ) ⊗ Gi ] vec(W (k)

p ) = vec(BTV (k)
p ). (2.11)

Thus, solving (2.8) entails solving a linear systemof dimension n1 p×n1 p, and solving
(2.9) entails solving a system of dimension n2 p× n2 p. Both systems are smaller than
the original system (1.2) when p is small. However, the blocks of the reduced matrices
of size p× p such as (W T

pGiWp and V T
p Ki Vp) are dense, even if the original ones are

sparse, and so as p increases, the computational costs for solving (2.8)–(2.9) increase
and the Stage-p AEM method may be impractical for large-scale problems.

2.3 Successive rank-one AEMmethod

We now describe a successive rank-one (S-rank-1) approximation method which,
at each iteration, adds a rank-one correction to the current iterate. This is a basic
component of PGD methods [30,31,46] for solving parameterized PDEs. The method
only requires solutions of linear systems with coefficient matrices of size n1 × n1 and
n2 × n2 rather than coupled systems like those in the Stage-p AEMmethod that grow
in size with the step counter p.

Assume that p−1 pairs of solutions are computed, giving Vp−1 andWp−1. The next
step is to compute a new solution pair (vp, wp) by choosing the objective function

JA(vp, wp) = 1

2
‖U − Vp−1W

T
p−1 − vpw

T
p‖2A,

and solving the following minimization problem

min
vp∈Rn1 ,wp∈Rn2

JA(vp, wp).

The gradients of JA with respect to vp and wp are

∇vp JA =
(
A (vpw

T
p) + A (Vp−1W

T
p−1) − B

)
wp, (2.12)

∇wp JA =
(
A (vpw

T
p) + A (Vp−1W

T
p−1) − B

)T
vp. (2.13)

Employing the first-order optimality conditions (setting (2.12) and (the transpose
of) (2.13) to zero) results in systems of equations for which, in a succession of steps
k = 1, . . . , kmax, vp is updated using fixed wp and then wp is updated using fixed vp:

m∑
i=0

(Ki )v
(k)
p (w(k−1)

p
TGiw

(k−1)
p )T = Bw(k−1)

p − A (Vp−1W
T
p−1)w

(k−1)
p , (2.14)
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Algorithm 2 Successive rank-one AEM method
INPUT: pmax, kmax, and ε

1: function SrankoneAEM(pmax, kmax, ε)
2: for p = 1, . . . , pmax do
3: Set a random initial guess for w

(0)
p .

4: for k = 1, . . . , kmax do
5: v

(k)
p ← solve (2.14)

6: w
(k)
p ← solve (2.15)

7: end for
8: vp ← v

(k)
p and wp ← w

(k)
p

9: Add to solution matrices, Vp ← [Vp−1, vp], Wp ← [Wp−1, wp]
10: Vp,Wp ← CheckConvergence(Vp,Wp, ε)
11: end for
12: end function

m∑
i=0

(v(k)
p

TKiv
(k)
p )w(k)

p
T(GT

i ) = v(k)
p

TB − v(k)
p

TA (Vp−1W
T
p−1). (2.15)

Algorithm 2 summarizes this procedure, which randomly initializes w
(0)
p and then

alternately solves (2.14)–(2.15). Like the Stage-p AEM method, the algorithm can
start with either w

(0)
p or v

(0)
p .

2.4 Algebraic interpretation of themethods

Algorithms 1 and 2 both entail an “outer iteration” with counter p and an “inner
iteration” with counter k, and both are designed to minimize the objective function
(2.2). It is instructive to see the difference between the two methods in vectorized
format. To this end, let

Aw(wi , w j ) =
m∑
l=0

Kl (w
T
j G

T
l wi ) ∈ R

n1×n1 , Av(vi , v j ) =
m∑
l=0

Gl (v
T
j K

T
l vi ) ∈ R

n2×n2 ,

and let us assume p = 2 for simplifying the presentation.
Both methods seek solution pairs (V2,W2) = ([v1, v2] , [w1, w2]) satisfying the

systems of Eqs. (2.6)–(2.7), which can be written in a vectorized form:

[
Aw(w1, w1) Aw(w1, w2)

Aw(w2, w1) Aw(w2, w2)

] [
v1
v2

]
=

[
Bw1
Bw2

]
, (2.16)[

Av(v1, v1) Av(v1, v2)

Av(v2, v1) Av(v2, v2)

] [
w1
w2

]
=

[
BTv1
BTv2

]
. (2.17)

In the second outer iteration, the Stage-pAEMmethod alternately solves fully coupled
linear systems (2.8)–(2.9) specified by W (k−1)

2 and V (k)
2 , respectively , which can be
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974 K. Lee et al.

written in vectorized form as in (2.16) and (2.17), respectively:

[
Aw(w

(k−1)
1 , w

(k−1)
1 ) Aw(w

(k−1)
1 , w

(k−1)
2 )

Aw(w
(k−1)
2 , w

(k−1)
1 ) Aw(w

(k−1)
2 , w

(k−1)
2 )

] [
v

(k)
1

v
(k)
2

]
=

[
Bw

(k−1)
1

Bw
(k−1)
2

]
,

[
Av(v

(k)
1 , v

(k)
1 ) Av(v

(k)
1 , v

(k)
2 )

Av(v
(k)
2 , v

(k)
1 ) Av(v

(k)
2 , v

(k)
2 )

] [
w

(k)
1

w
(k)
2

]
=

[
BTv

(k)
1

BTv
(k)
2

]
. (2.18)

In contrast, the S-rank-1 method seeks approximate solutions of (2.16)–(2.17) by
solving systems of equations associated with the diagonal blocks. In the first outer
iteration, the method alternates between the following equations to find v1 and w1:

[
Aw(w

(k−1)
1 , w

(k−1)
1 )

] [
v

(k)
1

]
=

[
Bw

(k−1)
1

]
,[

Av(v
(k)
1 , v

(k)
1 )

] [
w

(k)
1

]
=

[
BTv

(k)
1

]
.

In the second outer iteration, the method alternately solves the systems of equations
in the second rows of the following equations to find v2 and w2:

[
Aw(w1, w1)

Aw(w
(k−1)
2 , w1) Aw(w

(k−1)
2 , w

(k−1)
2 )

] [
v1

v
(k)
2

]
=

[
Bw1

Bw
(k−1)
2

]
,

[
Av(v1, v1)

Av(v
(k)
2 , v1) Av(v

(k)
2 , v

(k)
2 )

] [
w1

w
(k)
2

]
=

[
BTv1

BTv
(k)
2

]
.

Because v1 and w1 are fixed, the (2,1)-block matrices are multiplied by v1 and w1 and
the resulting vectors are moved to the right-hand sides. Then solving the equations
associated with the (2,2)-block matrices gives v

(k)
2 and w

(k)
2 . As illustrated in this

example, the S-rank-1 AEM method approximately solves (2.16)–(2.17) by taking
the matrices in the lower-triangular blocks to the right-hand sides and solving only
the systems associated with the diagonal blocks, as opposed to solving fully coupled
systems as in the Stage-p AEM method.

The system matrices that arise in Algorithm 1 have reduced components that are
dense but small (of size p × p) whereas the “non-reduced” components are large but
sparse. In Algorithm 2, the system matrices are sparse and of order n1 and n2 (as
the reduced components are of size 1 × 1). Thus in both cases, we may use Krylov
subspace methods to solve the systems. Then, with the iteration counter p, the cost
of the Stage-p AEM method grows quadratically (since the reduced components are
dense), whereas that of the S-rank-1 AEMmethod grows linearly with p. Thus, using
the Stage-p AEM method can be impractical for large-scale applications. On the
other hand, as the S-rank-1 AEM method employs only the lower-triangular part of
the system matrices, convergence tends to be slow and the level of accuracy that can
be achieved in a small number of steps is limited. To overcome these shortcomings,
we will consider several ways to modify and enhance them to improve accuracy.
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Remark 2.1 TheStage-pAEMandS-rank-1AEMmethods can be seen as two extreme
versions of AEM methods. The former solves fully coupled systems and the latter
sequentially solves systems associated with the diagonal blocks. Although it has not
been explored in this study, in an intermediate approach, more than one consecu-
tive pair of solution vectors ({vp, . . . , vp+�}, {wp, . . . , wp+�}), with � ∈ N, can be
computed in a coupled manner at each outer iteration.

3 Enhancements

We now describe variants of the S-rank-1AEM method that perform extra computa-
tions to improve accuracy. The general strategy is to compute an enhancement of the
approximate solution at every nupdate outer iterations as specified in Algorithms 3–5.

Algorithm 3 Enhanced AEM method
INPUT: pmax, kmax, nupdate, and ε

1: function EnhancedAEM(pmax, kmax, nupdate, ε)
2: for p = 1, . . . , pmax do
3: vp, wp ← RankOneCorrection(Vp−1,Wp−1, kmax)
4: Add to solution matrices, Vp ← [Vp−1, vp], Wp ← [Wp−1, wp]
5: if p mod nupdate == 0 then
6: Vp,Wp ← Enhancement(Vp,Wp)
7: end if
8: Vp,Wp ← CheckConvergence(Vp,Wp, ε)
9: end for
10: end function

Algorithm 4 Rank one correction
INPUT: Vp−1,Wp−1, and kmax

1: function RankOneCorrection(Vp−1,Wp−1,kmax)

2: Set a random initial guess for w
(0)
p .

3: for k = 1, . . . , kmax do
4: v

(k)
p ← solve (2.14)

5: w
(k)
p ← solve (2.15)

6: end for
7: vp ← v

(k)
p and wp ← w

(k)
p

8: end function

We present three enhancement procedures, one taken from the literature and two
new ones. These are (i) a procedure adopted from an updating technique developed in
[46, Section 2.5], which defines one variant of PGD methods; (ii) a refined version of
this approach, which only solves systems associated with the diagonal blocks of the
system matrices but incorporates information (upper-triangular blocks) in a manner
similar to Gauss-Seidel iterations; and (iii) an adaptive enhancement of the Stage-p
AEM method that decreases costs with negligible impact on accuracy. In discussing
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Algorithm 5 Checking for convergence
INPUT: Vp,Wp , and ε

1: function CheckConvergence(Vp ,Wp ,ε)
2: if ‖VpW T

p − Vp−1W
T
p−1‖F ≤ ε‖VpW T

p‖F then

3: Vp,Wp ← Enhancement(Vp,Wp)
4: if ‖VpW T

p − Vp−1W
T
p−1‖F ≤ ε‖VpW T

p‖F then Stop
5: end if
6: end if
7: end function

these ideas, we distinguish updated solutions using the notation, vi , wi (for vectors),
and V p = [v1, . . . , v p], W p = [w1, . . . , w p] (for matrices). In addition, we also
review the method proposed in [23].

Before we detail each method, we first elaborate on the CheckConvergence
procedure in Algorithm 5. This checks the relative difference between the current
iterate and the previous iterate ‖VpW T

p−Vp−1W T
p−1‖F ≤ ε‖VpW T

p‖F in the Frobenius
norm.To compute ‖VpW T

p‖2F while avoiding explicitly forming the largematrixVpW T
p ,

we form X = (V T
p Vp) � (W T

pWp) ∈ R
p×p, where � is the Hadamard product, and

then sum up all the elements of X . The product VpW T
p is never explicitly formed. If this

condition is met, we apply the Enhancement procedure and check the convergence
with the same criterion. The purpose of this extra enhancement is to help prevent
Algorithm 3 from terminating prematurely (i.e., the stopping condition can be met
when Algorithm 3 stagnates).

3.1 PGD-updated AEM

Suppose the factors Vp and Wp obtained from RankOneCorrection do not satisfy
the first-order optimality conditions (2.6)–(2.7). An enhancement like that of the PGD
update [30,31,46] modifies one of these factors (e.g., the one corresponding to the
smaller dimension n1 or n2) by solving the associated minimization problem for Vp

(given Wp, when n1 < n2) or for Wp (given Vp when n1 > n2) so that one of
the first-order conditions holds. We outline the procedure for approximating Wp;
the procedure for Vp is analogous. The basic procedure is to solve the optimization
problemminWp∈Rn2×p JA

(
Vp,Wp

)
everynupdate steps. In place ofVp , an orthonormal

matrix Ṽp is used, so that the construction entails solving

W p = argmin
Wp∈Rn2×p

JA
(
Ṽp,Wp

)
, (3.1)

where JA is the quadratic objective function defined in (2.2). The gradient of the
objective function JA with respect to Wp can be computed as

∇Wp JA =
(
A (ṼpW

T
p) − B

)T
Ṽp =

m∑
i=0

(Ki ṼpW
T
pG

T
i )

TṼp − BTṼp.
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Algorithm 6 PGD-update enhancement
Input: Vp and Wp

1: function PGDupdate(Vp,Wp)
2: if n1 < n2 then
3: W̃p ← orthonormalize Wp .
4: V p ← solve

∑m
i=0(Ki )V p(W̃ T

pGi W̃p)
T = BW̃p

5: Vp ← V p
6: else
7: Ṽp ← orthonormalize Vp .

8: W p ← solve
∑m

i=0(Ṽ
T
p Ki Ṽp)W

T
p(G

T
i ) = Ṽ T

p B

9: Wp ← W p
10: end if
11: end function

Thus, solving the minimization problem (3.1) by employing the first-order optimality
condition is equivalent to solving a system of equations similar in structure to (2.7),

m∑
i=0

(Ṽ T
p Ki Ṽp)W

T
p(G

T
i ) = Ṽ T

p B ∈ R
p×n2 . (3.2)

Compared to the original system (1.2), the dimension of this matrix is reduced via
a “single-sided” reduction; in (3.2), the reduction is on the side of the first dimension,
i.e., n1 is reduced to p. The vectorized form of this system, for p = 2, is

[
Av(ṽ1, ṽ1)Av(ṽ1, ṽ2)

Av(ṽ2, ṽ1)Av(ṽ2, ṽ2)

] [
w1
w2

]
=

[
BTṽ1
BTṽ2

]
,

which has structure like that of the second system in (2.18) of the Stage-p AEM
method. We summarize this single-sided enhancement method in Algorithm 6.

Remark 3.1 Another approach for computing a set of orthonormal basis vectors and
computing a low-rank solution by solving a reduced system of type (3.2) is given
in [36]. The MultiRB method of [36] incrementally computes a set of orthonormal
basis vectors for the spatial part of the solution (i.e., Ṽp ∈ R

n1×p) using rational
Krylov subspace methods and solves a reduced system for W p and, consequently,

Up = ṼpW
T
p.

3.2 PGD/Gauss–Seidel-updated AEM

The second strategy for enhancement, like Algorithm 2 (and in contrast to PGD-
updated AEM), only requires solutions of linear systems with coefficient matrices of
dimensions n1 × n1 and n2 × n2, independent of p. As observed in Sect. 2.4, the S-
rank-1 AEMmethod loosely corresponds to solving lower block-triangular systems of
equations. We modify these computations by using more information (from the upper
triangular part), as soon as it becomes available. This leads to a method that resembles
the (block) Gauss–Seidel method for linear systems [14]. Suppose {(vi , wi )}pi=1 are
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Algorithm 7 PGD/GS enhancement
Input: Vp and Wp

1: function PGD/GS(Vp,Wp)
2: for l = 1, . . . , p do
3: vl ← solution of Eq. (3.3)
4: wl ← solution of Eq. (3.4)
5: end for
6: Vp ← V p , Wp ← W p
7: end function

obtained from p iterations of Algorithm 3. When the condition on line 5 of Algo-
rithm 3 is met, these quantities will be updated in sequence to produce {(vi , wi )}pi=1
using the most recently computed quantities. In particular, suppose the updated pairs
{(vi , wi )}l−1

i=1 have been computed. Then the lth pair (vl , wl) is updated as follows.
First, given wl , the update vl is computed by solving

Aw(wl , wl)vl = Bwl −
l−1∑
i=1

Aw(wl , wi )vi −
p∑

i=l+1

Aw(wl , wi )vi . (3.3)

Then given vl , wl is computed by solving

Av(vl , vl)wl = BTvl −
l−1∑
i=1

Av(vl , vi )wi −
p∑

i=l+1

Av(vl , vi )wi . (3.4)

With p = 2 as an example, in vector format, the first step of this enhancement is
to update (v1, w1) to (v1, w1) by solving the following equations:

[
Aw(w1, w1) Aw(w1, w2)

] [
v1
v2

]
= [

Bw1
]
,

[
Av(v1, v1) Av(v1, v2)

] [
w1
w2

]
= [

BTv1
]
,

and the second step is to update (v2, w2) to (v2, w2) by solving the second row of the
following equations:

[
Aw(w1, w1) Aw(w1, w2)

Aw(w2, w1) Aw(w2, w2)

] [
v1
v2

]
=

[
Bw1
Bw2

]
,[

Av(v1, v1) Av(v1, v2)

Av(v2, v1) Av(v2, v2)

] [
w1
w2

]
=

[
BTv1
BTv2

]
.

This strategy,whichwe call the PGD/GS enhancement, is summarized inAlgorithm
7. It is an alternative to Algorithm 6 and is also applied every nupdate outer iterations.
For a comparison of Algorithms 6 and 7, note that Algorithm 6 (PGD-update) works
with a larger system but it can exploit the matricized representation (3.2). Once the
system matrices G̃i = W̃ T

pGi W̃p or K̃i = Ṽ T
p Ki Ṽp are formed, if it is not too large,
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the system in (3.2) (of order n2 p in this example) can be approximately solved using
an iterative method such as the preconditioned conjugate gradient (PCG) method. In
contrast, Algorithm 7 (PGD/GS) requires sequential updates of individual components
in Eqs. (3.3)–(3.4), but with smaller blocks, of order n1 and n2. As we will show in
Sect. 4, the PGD/GS-updated AEMmethod exhibits better performance in some error
measures.

We have found that in practice, the enhancement procedure can be improved by
updating only a chosen subset of solution pairs rather than all the solution pairs
{(vi , wi )}pi=1. We discuss a criterion to choose such a subset next.

3.3 Reduced stage-p AEMmethod

The third enhancement procedure excerpts and modifies certain computations in the
Stage-p AEM method (Lines 5 and 6 in Algorithm 1) in a computationally efficient
way. The procedure adaptively chooses solution pairs to be updated and solves reduced
systems to update only those pairs. Let us assume for now that a subset of the solution
pairs to be updated has been chosen. Denote the set of indices of those solution pairs
by �(p) ⊆ {1, . . . , p−1} and the remaining indices by �c(p) = {1, . . . , p−1}\�(p).
Then the update is performed by solving the following equations for V �(p) andW �(p):

m∑
i=0

(Ki )V �(p)(W̃
T
�(p)Gi W̃�(p))

T = BW̃�(p) −
m∑
i=0

(Ki )V�c(p)(W̃
T
�(p)GiW�c(p))

T,

(3.5)

where W̃�(p) is obtained by orthonormalizing the columns of W�(p), and

m∑
i=0

(Ṽ T
�(p)Ki Ṽ�(p))W

T
�(p)(G

T
i ) = Ṽ T

�(p)B −
m∑
i=0

(Ṽ T
�(p)KiV�c(p))W

T
�c(p)(G

T
i ), (3.6)

where Ṽ�(p) is obtained by orthonormalizing the columns of V �(p). Then, V�(p) and
W�(p) are updated to V �(p) and W �(p), while V�c(p) and W�c(p) remain the same.

We now describe a criterion to choose a subset of the solution pairs to be updated.
Let us assume that p − 1 iterations of Algorithm 3 have been performed, and Vp−1
and Wp−1 have been computed. The pth solution pair (vp, wp) is then computed via
Algorithm 4. If pmod nupdate = 0, then a subset of the previous p − 1 solution pairs
is chosen by inspecting the angles between vp and the columns of Vp−1 and similarly
for wp and Wp−1. We normalize all vectors ṽi = vi‖vi‖2 and compute βV = Ṽ T

p−1ṽp ∈
R

p−1 (the vector of cosines of the angles), and an analogous vector βW using wp

and Wp−1. The entries of βV and βW indicate how far from orthogonal all previous
vectors are to vp and wp. Ideally, we want the method to compute p left and right
singular vectors of the solution U (i.e.,βV =βW =0). As the aim is to find good basis
vectors for approximating U , it is undesirable to keep vectors that are far from being
orthogonal to vp and wp. To resolve this, we choose a subset of columns of Vp−1 and
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Algorithm 8 Reduced stage-p enhancement
Input: Vp , Wp , and τ

1: function Rstagep(Vp,Wp, τ )
2: Normalize the columns: ṽi = vi‖vi ‖2 , w̃i = wi‖wi ‖2 for i = 1, . . . , p

3: Compute βV = Ṽ T
p−1ṽp , βW = W̃ T

p−1w̃p

4: Select �(p) = {i ∈ [1, . . . , p − 1] | |[βV ]i | > τ or |[βW ]i | > τ }
5: W̃�(p) ← orthonormalize W�(p)

6: V �(p) ← solve (3.5)

7: Ṽ�(p) ← orthonormalize V �(p)

8: W �(p) ← solve (3.6)

9: V�(p) = V �(p), W�(p) = W �(p)
10: end function

Wp−1 for which the entries of βV and βW are too large; we fix τ > 0 and choose

�(p) = {i ∈ {1, . . . , p − 1} | |[βV ]i | > τ or |[βW ]i | > τ }. (3.7)

Algorithm 8 summarizes the resulting reduced stage-p (R-stage-p) enhancement.

3.4 PGD-greedy AEM

As a baseline for comparison, we review the greedy low-rank method proposed in [20]
and further examined in [23], which can be interpreted as another variant of the S-rank-
1AEM method with Enhancement. We denote this method as PGD-greedy AEM
in this study. The method seeks an approximate solution in a three-factor form Up =
Ṽp Z pW̃ T

p , where the columns of Ṽp and W̃p are orthonormal; this can be achieved
by (i) slightly modifying RankOneCorrection (Algorithm 4) and (ii) employing a
particular enhancement procedure. The modified version of RankOneCorrection
computes a new basis pair (ṽp, w̃p), where each vector has unit norm, by setting w̃

(0)
p

to have unit norm and alternately performing the following procedure:

Solve Aw(w̃
(k−1)
p , w̃

(k−1)
p )v

(k)
p = Bw̃

(k−1)
p −A (UT

p−1)w̃
(k−1)
p , ṽ

(k)
p ← v

(k)
p /‖v(k)

p ‖2,
Solve Av(ṽ

(k)
p , ṽ

(k)
p )w

(k)
p = BTṽ

(k)
p −A (UT

p−1)
Tv

(k)
p , w̃

(k)
p ← w

(k)
p /‖w(k)

p ‖2.

This inner iteration continues until a stopping criterion
∣∣∣‖v(k)

p ‖2/‖w(k)
p ‖2 − 1

∣∣∣ ≤ δ is

satisfied,where δ is a stopping tolerance. Then (at each outer iteration) the approximate
solution Up is computed by solving a reduced linear system of equations, which is
obtained via a “double-sided” reduction, for Z p such that

Ṽ T
pA (Ṽp Z pW̃

T
p)W̃p = Ṽ T

p BW̃p ∈ R
p×p. (3.8)

We refer readers to [20,23] for more details on this method.
At the pth outer iteration, this double-sided reduction technique requires the com-

putation of the solution of Eq. (3.8) which is of size p × p, whereas the PGD-update
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method employs a single-sided reduction requiring the computation of solutions of
Eq. (2.7) which are of size min(n1, n2)× p. The R-stage-pmethod, on the other hand,
updates only the solution pairs chosen based on the criterion (3.7) and, thus, the size
of problems arising in that approach is affected by the value of τ .

4 Numerical experiments

In this section, we present the results of numerical experiments with the algorithms
described in Sects. 2 and 3. For benchmark problems, we consider stochastic diffusion
problems, where the stochasticity is assumed to be characterized by a prescribed
set of m real-valued random variables. We apply suitable SGFEM discretizations to
these problems, resulting in LMTMEs of the form (1.2) whose system matrices are
symmetric positive-definite. All experiments are performed on an Intel 3.1 GHz i7
CPU, with 16 GB RAM, using Matlab R2019b.

4.1 Stochastic diffusion problems

Let (Ω,F , P) be a probability space and let D = [0, 1]×[0, 1] be the spatial domain.
Next, let ξi : Ω → Γi ⊂ R, for i = 1, . . . ,m, be independent and identically
distributed random variables and define ξ = [ξ1, . . . , ξm]. Then, ξ : Ω → Γ where
Γ ≡ ∏m

i=1 Γi denotes the image. Given a second-order random field a : D×Γ → R,
we consider the following boundary value problemwith constant forcing term f (x) =
1. Find u : D × Γ → R such that

{ −∇ · (a(x, ξ)∇u(x, ξ)) = f (x) in D × Γ ,

u(x, ξ) = 0 on ∂D × Γ ,
(4.1)

where a(x, ξ) has the form (1.5) and the ξi are chosen to be independent uniform
random variables. Note that (1.5) has the same structure as a truncated Karhunen-
Loève (KL) expansion [27]. If we denote the joint probability density function of ξ by
ρ(ξ) then the expected value of a randomfunctionv(ξ)onΓ is 〈v〉ρ = ∫

Γ
v(ξ)ρ(ξ)dξ.

For the discretization, we consider the stochastic Galerkin method [1,13,28,47],
which seeks an approximation to the solution of the following weak formulation of
(4.1): Find u(x, ξ) in V = H1

0 (D) ⊗ L2
ρ(Γ ) such that

〈∫
D
a(x, ξ)∇u(x, ξ) · ∇v(x, ξ)dx

〉
ρ

=
〈∫

D
f (x)v(x, ξ)dx

〉
ρ

, ∀v ∈ V . (4.2)

In particular,we seek an approximationof form ũ(x, ξ) = ∑nξ

s=1

∑nx
r=1 ursφr (x)ψs(ξ),

where {φr }nxr=1 is a set of standard finite element basis functions, which arises from
using continuous piecewise bilinear approximation on a uniform mesh of square ele-
ments (Q1 elements) and nx is related to the refinement level of the spatial mesh (our
implementation uses the Incompressible Flow & Iterative Solver Software (IFISS)
[11,42]). In addition, {ψs}nξ

s=1 is chosen to be a finite subset of the set of orthonor-
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mal polynomials that provides a basis for L2
ρ(Γ ) (also known as a generalized

polynomial chaos (gPC), [48]). As the random variables are uniformly distributed,
we use m-variate normalized Legendre polynomials {ψs}nξ

s=1, which are constructed
as products of univariate Legendre polynomials, ψs(ξ) = ∏m

i=1 πdi (s)(ξi ). Here,
d(s) = (d1(s), . . . , dm(s)) is a multi-index and πdi (s) is the di (s)-order univariate
Legendre polynomial in ξi . A set of multi-indices {d(s)}nξ

s=1 is specified as a set
Λm, dtot = {d(s) ∈ N

m
0 : ‖d(s)‖1 ≤ dtot}, where N0 is the set of non-negative

integers, and ‖d(s)‖1 = ∑m
j=1 d j (s). With this construction, span({ψs(ξ)}nξ

s=1)

is the set of polynomials in ξ of total degree dtot or less, and with dimension
nξ =dim(Λm, dtot)= (m+dtot)!

m!dtot! .
Galerkin projection of (4.2) onto the chosen finite-dimensional space (i.e., using

the same test basis functions as the trial basis functions), with the coefficients of the
solution expansion ordered as u = [u11, . . . , unx1, u12, . . . , unxnξ ]T results in(

m∑
i=0

Gi ⊗ Ki

)
u = g0 ⊗ f0, (4.3)

where the system matrices are defined as

[G0]st = 〈ψs(ξ)ψt (ξ)〉ρ , [K0]k� =
∫
D
a0(x)∇φk(x) · ∇φ�(x)dx,

[Gi ]st = 〈ξi ψs(ξ)ψt (ξ)〉ρ , [Ki ]k� =
∫
D
ai (x)∇φk(x) · ∇φ�(x)dx,

for i = 1, . . . , m, s, t = 1, . . . , nξ and k, � = 1, . . . nx . Due to the deterministic
forcing term f (x) = 1, the right-hand side has a rank-one structure (i.e., m̂ = 0 in
(1.1)), with [ f0]k = ∫

D f (x)φk(x)dx, and [g0]s = 〈ψs(ξ)〉ρ . Matricizing (4.3) gives
an LMTME of the form (1.2) with n1 = nx and n2 = nξ , where m is the number of
terms in Eq. (1.5), andwe can now apply theAEMmethods to compute an approximate
solution.

4.2 Benchmark problem 1: separable exponential covariance

In this problem, we assume that the random field a(x, ξ) is a truncated KL expansion

a(x, ξ) = μ + σ

m∑
i=1

√
λiϕi (x)ξi , (4.4)

whereμ is the mean of a(x, ξ), {(ϕi (x), λi )}mi=1 are eigenpairs of the integral operator

associated with the covariance kernel C(x, y) ≡ exp
(
−|x1−y1|

c − |x2−y2|
c

)
, c is the

associated correlation length, and σ 2 is the variance of the untruncated random field.
In addition, each ξi ∼ U (−√

3,
√
3) and so has mean zero and variance one.

In the following sections, we compare the sixAEMvariants: Stage-p (Algorithm1),
S-rank-1 (Algorithm 2), PGD-updated (Algorithm 6), PGD/GS-updated (Algorithm
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7), reduced stage-p (Algorithm 8), and PGD-greedy from [20,23]. For orthonormal-
ization in PGD-updated (Algorithm 6) and reduced stage-p (Algorithm 8), we use
Matlab’s qr function to implement the so-called skinny QR method. For assessing
performance, we explore two key aspects. The first is the accuracy of the computed
solutions, which we assess by computing two error metrics: cosines of angles between
the truth singular vectors and the columns of the computed factors (Sect. 4.2.1), and
errors between the truth solution and the computed solution measured in three differ-
ent norms (Sect. 4.2.2). The second aspect is timings and scalability (Sect. 4.2.3). As
the assessment of the first aspect requires the ground truth solution of (4.3), which
is computed using Matlab’s backslash operator, and its singular vectors, we choose
small-sized problems in Sects. 4.2.1–4.2.2. When making comparisons with the truth
solution, we force all the AEM methods to execute pmax = min(nx , nξ ) = 56 iter-
ations. Larger problems are considered in Sect. 4.2.3, where scalability matters and
finding the truth solution is impossible with the available resources.

In producing experimental results in Sects. 4.2.1–4.2.2, we attempt to see each
method’s best possible results without considering the computational costs. Hence,
we set kmax = 5, nupdate = 1 (i.e., enhancements are performed at every outer iteration)
in Algorithm 3. For the same reason, we set PGD/GS to update all the solution pairs
and, for R-stage-p, we set τ = .001. For PGD-greedy we use δ = .1 (the inner
iteration stopping tolerance) following [23].2 All linear systems that arise in each
AEM method are solved using PCG. The stopping criterion for these iterations is
for the relative residual to be less than the stopping tolerance 10−12. We also apply
so-called mean-based preconditioners, which we will discuss in detail in Sect. 4.2.3.

4.2.1 Relation to singular vectors

We begin by exploring how the factors in the approximate solutions constructed by
each of themethods comparewith the left and right singular vectors of the true solution
matrix U . This is important because (i) singular vectors represent the most effective
choice with respect to the Frobenius norm for approximating a matrix U . That is,
the minimum error over all rank-p approximations is ‖U − ṼpΣpW̃ T

p‖F, where U =
ṼΣW̃ T is the singular value decomposition [8], and (ii) in some applications such
as collaborative filtering for recommendation systems, computing singular vectors
accurately is very important for precise predictions [17,19,49]. For these tests, the
diffusion coefficient is given by (4.4) with (μ, σ ) = (1, .1) and c = 2. We use a
spatial discretization with grid level 4 (i.e., grid spacing 1

24
, and nx = 225) and we

truncate the expansion (4.4) at m = 5. For the SGFEM approximation, we choose
dtot = 3 which gives nξ = 56.

For any approximation of the form (1.3), let Ṽp and W̃p be normalized versions
of the factors, i.e., each column of Ṽp and W̃p is scaled to have unit norm. From the
ground truth solutionU , the matrices V ∗ andW ∗ of left and right singular vectors are
computed. The entries of V ∗TṼp, the cosines of the angles between the left singular
vectors of the true solution and the left vectors defining the approximate solution,

2 We also tested a variant of PGD-greedy that performed kmax = 5 inner iteration steps (as done for the
other EnhancedAEM methods) and observed only minor differences.
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(a) (b) (c)

(d) (e) (f)

Fig. 1 Cosines of angles (plotted in log scale) between the left singular vectors V ∗ and Ṽp , where Ṽp
are computed using the Stage-p and S-rank-1 AEM methods, and the EnhancedAEM methods with PGD-
update, PGD/GS, R-stage-p enhancements, and PGD-greedy

together with the analogous angles for the right vectors,W ∗TW̃p, give insight into the
quality of the approximate solution. Figs. 1a and 2a and Figs. 1b and 2b depict the
cosines of the angles between the singular vectors and the columns of Ṽp and W̃p

computed using the Stage-p AEM and S-rank-1 AEMmethods discussed in Sect. 2. It
can be seen from these results (in Figs. 1a and 2a) that the Stage-p AEMmethod does
a good job of approximating the singular vectors of the solution. That is, the values of
the diagonal entries are close to one and the values of the off-diagonal entries are close
to zero. On the other hand, the S-rank-1 AEMmethod (see Figs. 1b and 2b) is far less
effective. The 2 × 2 blocks on the diagonals in Figs. 1a and 1a reflect the presence of
equal singular values.

Figures 1c–f and 2c–f show analogous results for the four enhanced AEMmethods.
With PGD-update, the spatial component gets reduced (i.e., we form K̃i = Ṽ T

p Ki Ṽp)
andWp is updated. Figures 1c and 2c show that this computation improves the quality
of the resulting factorWp (and Vp as well) as approximate singular vectors, compared
to those obtainedwith the S-rank-1method. It is evident that PGD/GS further improves
the quality of Ṽp and W̃p (Figs. 1d and 2d) as approximate singular vectors, and R-
stage-p is nearly as effective as Stage-p (Figs. 1e and 2e). The PGD-greedy AEM
method is less effective in finding the left and the right singular vectors (Figs. 1f and
2f) than PGD/GS and R-stage-p.

123



Enhanced alternating energy minimization methods for stochastic... 985

(a) (b) (c)

(d) (e) (f)

Fig. 2 Cosines of angles (plotted in log scale) between the right singular vectors W∗ and W̃p , where
W̃p are computed using the Stage-p and S-rank-1 AEM methods, and the EnhancedAEM methods with
PGD-update, PGD/GS, R-stage-p enhancements, and PGD-greedy

4.2.2 Assessment of solution accuracy

We now compare the convergence behavior of the variants of the AEM methods
introduced in Sects. 2 and 3. We use two different settings for the stochastic diffusion
coefficient: [exp1] (μ, σ ) = (1, .1), c = 2 and [exp2] (μ, σ ) = (1, .2), c = .5. We
again truncate the series (4.4) at m = 5 and, for the Legendre basis polynomials, we
consider dtot = 3 which gives nξ = 56. We deliberately keep the same value for m
and dtot for both settings so that we can keep the dimensions of the problem the same
and, thus, directly compare the behavior of each method in different problem settings.

For each method, the approximate solution Up is computed and we measure the
accuracy compared to the reference solution U . We did this using three different
metrics: the energy norm error ‖U−Up‖A, the error in the Frobenius norm ‖U−Up‖F,
and the residual in the Frobenius norm ‖B −A (Up)‖F. Note that direct computation
of the residual norm is only possible due to the small size of the problem. See [22]
for a method to compute this norm using skinny QR factorization in cases where m,
p and m̂ are not too large. Here, we only report the energy norm errors (in Fig. 3),
as behavior for the other two metrics is virtually identical. For comparison, a rank-p
reference solution (referred to as “full” in Fig. 3) is obtained directly from the first p
singular values and singular vectors of U .

For both settings, as expected, the convergence behavior of the S-rank-1 AEM
method is significantly worse than that of the rank-p reference solution, whereas
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(a) Energy norm - Exp1 (b) Energy norm - Exp2

Fig. 3 Solution errors measured in the energy norm

that of the Stage-p AEM method is virtually the same as for the full direct solver.
The EnhancedAEM method with PGD-update converges well until a certain level of
accuracy is achieved, but it fails to achieve a high level of accuracy. TheEnhancedAEM
methods with PGD/GS and R-stage-p enhancement are more effective than with the
PGD-update. The accuracy that those two methods achieve is virtually the same as
that of the Stage-p AEM method and the full direct solver.

4.2.3 Computational timings

The above results do not account for computational costs; we now investigate timings
under various experimental settingswith amore practical outer stopping criterion. This
is important for large-scale applications, and so we now consider a finer spatial grid,
with grid level 6 (i.e., grid spacing 1

26
, and nx = 3969), as well as larger parameter

spaces, with m = {20, 24} (the number of random variables in (4.4)) and dtot = 4,
which results in nξ = {10626, 20475}. We use the same settings for the stochastic
diffusion coefficient [exp1] (μ, σ ) = (1, .1), c = 2 and [exp2] (μ, σ ) = (1, .2),
c = .5. Again, we set m and dtot to be the same for both problems, as we want to keep
the dimensions fixed so that we can make direct and fair comparisons.

Beforewe present these results, we summarize the systems of equations to be solved
for each of the EnhancedAEM methods and the adjustable parameters that affect the
performances of the methods.3 We first describe how we solve the systems arising
at the pth outer iteration when the condition for applying the enhancement is met,
as well as the systems arising in RankOneCorrection (Algorithm 4). We use PCG
to solve each system of equations using mean-based preconditioners [35], which are

3 The results of using the Stage-p and S-rank-1 AEM methods are not reported because the Stage-p AEM
method is computationally too expensive and the S-rank-1AEMmethod exhibits poor convergence behavior
and, indeed, fails to satisfy the given convergence criterion.
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Table 1 System matrices and preconditioners for each Enhancement procedure

Name X K̃i G̃i Mx Mξ Eqs

S-rank-1 vp Ki wT
pGiwp K0 1 (2.14)

(Alg. 4) wT
p vTpKivp Gi 1 G0 (2.15)

PGD-update Vp Ki W̃ T
pGi W̃p K0 W̃ T

pG0W̃p

(Alg. 6) W T
p Ṽ T

p Ki Ṽp Gi Ṽ T
p K0 Ṽp G0 (3.2)

PGD/GS vl Ki wT
l Giwl K0 1 (3.3)

(Alg. 7) wT
l v̄Tl Ki v̄l Gi 1 G0 (3.4)

R-stage-p V�(p) Ki W̃ T
�(p)Gi W̃�(p) K0 W̃ T

�(p)G0W̃�(p) (3.5)

(Alg. 8) W T
�(p) Ṽ T

�(p)Ki Ṽ�(p) Gi Ṽ T
�(p)K0 Ṽ�(p) G0 (3.6)

PGD-greedy Z Ṽ T
p Ki Ṽp W̃ T

pGi W̃p Ṽ T
p K0 Ṽp W̃ T

pG0W̃p (3.8)

constructed using reduced versions of the matrices K0 and G0, that are adapted to
each method. For all systems, each PCG iteration requires matrix-vector products in
the matricized form (see [2,22,26] for detailed matrix operations)

m∑
i=0

(M−1
x K̃i )X(M−1

ξ G̃i )
T,

where X is a quantity to be updated, K̃i and G̃i are reduced matrices, and Mx and Mξ

are the preconditioner factors. Table 1 summarizes each system matrix and precondi-
tioner.4

Now, we discuss adjustable parameters. The EnhancedAEM methods (Algorithms
3–5) require parameters pmax, kmax, nupdate, and ε. We set pmax = 1000 to prevent
excessive computations. We found that choosing kmax > 2 results in negligible dif-
ference in accuracy, but requires extra computations and, thus, we use kmax = {1, 2}.
For nupdate, which determines how often the enhancement procedure is called, we vary
nupdate as {5, 10, 20, 30}. Next, we use ε to check the convergence of the outer iteration
inAlgorithm 5), andwe vary ε as {10−10, 10−9, 10−8, 10−7}. Finally, for PGD/GS and
R-stage-p, we empirically found that choosing τ > 0.05 results in decreased accuracy
in the approximate solution and, thus, we set τ = 0.05. Again, for PGD-greedy we
use δ = .1 (the inner iteration stopping tolerance) following [23].

Next, we set parameters for the PCGmethod. For all systems, the stopping criterion
uses the relative residual in the Frobenius norm.We use two different tolerances: τbasis
for solving systems that arise in RankOneCorrection and PGD/GS, and τcoupled
for solving systems that arise in PGD-update, R-stage-p, and PGD-greedy. Table 2
summarizes the parameters used for the experiments. We found that larger values of

4 Note that, for PGD-update, one can always choose the smallest solution component to update. In practice,
however, updating theWp component (i.e., reduction in {Ki }mi=0) always requires the smallest computational
costs and, thus, we only report the result of updating Wp .

123



988 K. Lee et al.

Table 2 Parameters used in the experiments for measuring timings

The maximum number of outer iterations pmax = 1000

The maximum number of inner iterations kmax = {1, 2}
The frequency of the enhancement procedure nupdate = {5, 10, 20, 30}
The stopping tolerance for outer iterations ε={10−10, 10−9, 10−8, 10−7}
PCG stopping tolerance for RankOneCorrection and PGD/GS τbasis = 10−5

PCG stopping tolerance for PGD-update and R-stage-p τcoupled = 102ε

the tolerances τbasis and τcoupled led to poor performance and smaller values did not
improve accuracy.

In Fig. 4, we plot elapsed time (in seconds) against the relative residual error
in the Frobenius norm of the final iterate for both [exp1] and [exp2]. Recall that
we use the stopping condition in Algorithm 5 for the outer iteration, which has a
lower computational cost and lower storage requirements. Here, we compute the final
relative residual error in a separate post-processing step, simply for comparison. For
these experiments, the relative residual error is observed to be up to three orders of
magnitude larger than the value of ε used for the chosen stopping condition (see
Algorithm 5). A discussion about using the relative residual error and the backwards
error as stopping criteria for smaller-scale stochastic Galerkin matrix equations is
given in [37].

Results obtained with the EnhancedAEM methods with PGD-update, PGD/GS,
R-stage-p, and PGD-greedy are marked in red, green, blue, and magenta respectively,
and each configuration of nupdate and kmax is marked with a different symbol. It can
be seen from the figures that

– the costs of R-stage-p and PGD/GS are less sensitive to nupdate and kmax than those
of PGD-update;

– the costs of PGD-greedy, which solves a reduced system at every outer iteration,
tend to be larger then other methods;

– R-stage-p is more efficient for smaller values of nupdate whereas PGD/GS and
PGD-update are better with larger nupdate;

– for PGD-update and PGD/GS, relatively large nupdate > 10 and kmax = 2 results
in better performances, and, for R-stage-p, relatively small nupdate ≤ 10 and
kmax = 1 results in better performances.

Table 3 reports the number of outer iterations p required to achieve the stopping tol-
erance ε for problems [exp1] and [exp2] when PGD-update, PGD/GS, and R-stage-p
are used. The benefit of using R-stage-p becomes more pronounced as we seek highly
accurate solutions with smaller ε. Our general observation is that among the four
enhancement approaches, the R-stage-p method is less sensitive to the choice of algo-
rithm parameter inputs, scales better for larger problem sizes, and is the most effective
of the four approaches.

We now briefly consider a second benchmark problem whose solution matrix has
different rank characteristics and for which low-rank solvers ought to perform well.
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(a) (b)

(c) (d)

Fig. 4 Computational timings (in seconds) of four EnhancedAEM methods for varying kmax and nupdate.
Timings of each method with each parameter set-up are averaged over 5 testing runs

4.3 Benchmark problem 2: fast decay coefficients

We define the random field a(x, ξ) as in (1.5) but now we choose ξi ∼ U (−1, 1)
and the functions ai (x) have coefficients that decay more rapidly than in the first
benchmark problem. The details of this problem can be found in [9]. Specifically, the
coefficients of the expansion are

a0 = 1, ai (x) = αi cos(2π�1(i)x1) cos(2π�2(i)x2), i = 1, 2, . . . ,m
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Table 3 The number of outer iterations p required to achieve the stopping tolerance ε for solving the
problems [exp1] and [exp2] when PGD-update, PGD/GS, and R-stage-p are used. The reported values of p
are computed by averaging values of p obtained with the eight different combinations of nupdate and kmax
shown in the legend of Fig. 4

[exp1] m = 20 m = 24

PGD-update PGD/GS R-stage-p PGD-update PGD/GS R-stage-p

ε = 10−7 163.8 160.4 152.9 184.9 177.8 173.0

ε = 10−8 264.6 273.9 259.5 306.6 312.3 296.7

ε = 10−9 356.3 363.7 340.1 415.0 421.5 397.3

ε = 10−10 531.1 520.6 486.0 609.4 593.7 563.9

[exp2] m = 20 m = 24

PGD-update PGD/GS R-stage-p PGD-update PGD/GS R-stage-p

ε = 10−7 293.1 287.7 282.1 344.0 334.9 330.6

ε = 10−8 414.6 422.7 397.7 492.8 506.7 478.3

ε = 10−9 569.8 544.6 511.6 673.7 640.5 616.7

ε = 10−10 821.6 716.4 677.1 933.1 848.1 810.1

where αi = ᾱi−σ with σ > 1 and ᾱ satisfies 0 < ᾱ < 1/ζ(σ ), where ζ is the Riemann
zeta function. Furthermore, �1(i) = i − k(i)(k(i) + 1)/2 and �2(i) = k(i) − �1(i)
where k(i) = �−1/2 + √

1/4 + 2i�. For computing the coefficients, we use the
Matlab software package S- IFISS [41]. In the following experiment, we choose
m = 20, σ = 4 and ᾱ = 0.832. The parameter σ controls the rate of algebraic decay
of the coefficients. The specific choice σ = 4 leads to fast decay and this causes the
true solution matrix to have a lower rank than in the first benchmark problem.

We investigate computational timings of the EnhancedAEMmethods with the same
experimental settings used in Sect. 4.2.3. Here, we vary the stopping tolerance for the
outer iterations as ε = {10−9, 10−8, 10−7, 10−6} and we choose the same values of
nupdate and kmax as before. Figure 5 reports elapsed time (in seconds) against relative
residual error. In nearly all cases, our observations agree with the findings in Fig.
4. However, the impact of nupdate is slightly less clear for these tests. The R-stage-p
method is generally still less sensitive than the other two methods to the choices of
nupdate and kmax, with one exception, indicated by the blue triangle marker, which
is located to the far right in Fig. 5. With nupdate = 30, kmax = 2, and ε = 10−9

(giving the right-most blue triangle), the R-stage-pmethod does not meet the stopping
criterion until p ≈ 125, which is larger than the value p ≈ 90 needed for the other
choices of algorithm inputs.We attribute this to the large number of steps (30) between
enhancements; in this case, the method fell just short of the stopping criterion after
90 steps. Finally, we report the number of outer iterations p required to achieve the
stopping tolerance ε in Table 4. As the true solution matrix has an intrinsic low-rank
structure, the reported values of p are much smaller than those shown in Table 3.

Remark 4.1 We found the solvers to be largely insensitive to the choice of the param-
eters kmax and nupdate; a similar observation was made in [30].
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Fig. 5 Computational timings (in seconds) of four EnhancedAEM methods for varying kmax and nupdate.
Timings of each method with each parameter set-up are averaged over 5 testing runs

Table 4 The number of outer iterations p required to achieve the stopping tolerance ε for solving the second
benchmark problemwhenPGD-update, PGD/GS,R-stage-p, and PGD-greedy are used. The reported values
of p are computed by averaging values of p obtained with the eight different combinations of nupdate and
kmax shown in the legend of Fig. 5

PGD-update PGD/GS R-stage-p PGD-greedy

ε = 10−6 43.7 49.0 30.1 44.8

ε = 10−7 58.3 68.3 41.4 73.0

ε = 10−8 81.7 91.7 61.3 102.8

ε = 10−9 130.9 121.6 91.6 162.8

4.4 Further extensions

We tested all the AEM methods on matrix equations obtained from SGFEM dis-
cretizations of stochastic convection-diffusion problems [26, Section 5.2], where the
randomness is in the diffusion coefficient as inSect. 4.2.Although the energynormcan-
not be defined for this problem as it has a non-symmetric operator, the same projection
framework described herein can be applied to compute approximate solutions. Exper-
iments (not reported here) were conducted similar to the ones in Sects. 4.2.1–4.2.2.
We observed that the R-stage-p method produces qualitatively better approximate
factors Vp and Wp, as measured in the error metrics used in Sects. 4.2.1–4.2.2, than
the S-rank-1 AEM method and the other two EnhancedAEM methods. We also note
that for problems with a non-symmetric operator, rank-one update ALS algorithms
such as the ones in [20,23] can be used.
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5 Conclusions

In this study,we have investigated several variants of alternatingminimizationmethods
to compute low-rank solutions of matrix equations that arise from SGFEM discretiza-
tions of parameterized elliptic PDEs. Using a general formulation of alternating
minimization of errors in the energy norm, derived from the well-known general
projection method, our starting point was a variant of the stagewise ALS method, a
technique for building rank-p approximate solutions developed for matrix completion
and matrix sensing. Our main contribution consists of a combination of this approach
with so-called enhancement procedures of the type used for PGD methods [30,31] in
which rank-one approximate solutions are enhanced by adaptive use of higher-rank
quantities that improve solution quality but limit costs by adaptively restricting the
rank of updates. Experimental results demonstrate that the proposed PGD/GS and
R-stage-p methods produce accurate low-rank approximate solutions built from good
approximations of the singular vectors of the matricized parameter-dependent solu-
tions. Moreover, the results show that the R-stage-p method scales better for larger
problems, is less sensitive to algorithm inputs, and produces approximate solutions in
the fastest times.

Funding This work was supported by the U.S. Department of Energy Office of Advanced Scientific Com-
puting Research, Applied Mathematics program under award DE-SC0009301 and by the U.S. National
Science Foundation under grant DMS1819115
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