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Abstract
Anumber of theoretical and computational problems formatrix polynomials are solved
by passing to linearizations. Therefore a perturbation theory, that relates perturbations
in the linearization to equivalent perturbations in the correspondingmatrix polynomial,
is needed. In this paper we develop an algorithm that finds which perturbation of
matrix coefficients of a matrix polynomial corresponds to a given perturbation of the
entire linearization pencil. Moreover we find transformation matrices that, via strict
equivalence, transform a perturbation of the linearization to the linearization of a
perturbed polynomial. For simplicity, we present the results for the first companion
linearization but they can be generalized to a broader class of linearizations.

Keywords Matrix polynomial · Matrix pencil · Linearization · Perturbation theory

Mathematics Subject Classification 65F30 · 15A22

1 Introduction

Nonlinear eigenvalue problems play an important role in mathematics and its applica-
tions, see e.g., the surveys [21,26,30]. In particular, polynomial eigenvalue problems
have been receiving much attention [3,14,15,22,24,25]. Recall that

P(λ) = λd Ad + · · · + λA1 + A0, Ai ∈ C
m×n, and i = 0, . . . , d (1.1)
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is a matrix polynomial and that the number d is called the grade of P(λ). If Ad �= 0
then the grade coincides with the degree of the polynomial. Frequently, complete
eigenstructures, i.e. elementary divisors and minimal indices of matrix polynomials
(for the definitions, see e.g., [6,14]) provide an understanding of the properties and
behaviour of the underlying physical system and thus are the actual objects of interest.
The complete eigenstructure is usually computed by passing to a (strong) linearization
which replaces a matrix polynomial by a matrix pencil, i.e. matrix polynomials of
degree d = 1, with the same finite (and infinite) elementary divisors and with the
known changes in the minimal indices, see [26] for more details. For example, a
classical linearization of (1.1), used in this paper, is the first companion form

C 1
P(λ) = λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0
−In

. . .

−In

⎤
⎥⎥⎥⎦ , (1.2)

where In is the n × n identity matrix and all nonspecified blocks are zeros.
In this paper, we findwhich perturbation of thematrix coefficients of a givenmatrix

polynomial corresponds to a given perturbation of the entire linearization pencil. To
be exact, we find such a perturbation of the matrix polynomial coefficients that the
linearization of this perturbed polynomial (2.2) has the same complete eigenstructure
as a given perturbed linearization (2.1). We also note that the existence of such a
perturbation (2.2)was proven before for Fiedler-type linearizations [8,14,32], and even
for a larger class of block-Kronecker linearizations [15]. Nevertheless, the problem
of finding this perturbation explicitly has been open until now. The main contribution
of this paper is an algorithm for finding this perturbation explicitly. Moreover, now
the existence of such perturbation also follows from the convergence of the algorithm
developed in this paper.

The results of this paper can be applied to a number of problems in numerical linear
algebra. One example is solving various distance problems for matrix polynomials if
the corresponding problems are solved for matrix pencils, e.g., finding a singular
matrix polynomial nearby a given matrix polynomial [4,18,20]. Another application
lies in the stratification theory [8,14]: constructing an explicit perturbation of a matrix
polynomial when a perturbation of its linearization is known. This will allow to say
which perturbation does a certain change to the complete eigenstructure of a given
polynomial. (In [11,16,17] the explicit perturbations for investigating such changes
for matrix pencils, bi- and sesquilinear forms are derived.) Moreover, our result may
also be useful for investigating the backward stability of the polynomial eigenvalue
problems solved by using the backward stable methods on the linearizations, see e.g.,
[29].
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Recovering a perturbation of a matrix polynomial from a… 71

2 Perturbations of matrix polynomials and their linearizations

Recall that for everymatrix X = [xi j ] its Frobenius norm is given by ‖X‖ := ‖X‖F =(∑
i, j |xi j |2

) 1
2
. Hereafter, unless otherwise stated, we use the Frobenius norm for

matrices. Let P(λ) be an m × n matrix polynomial of grade d and define a norm of
P(λ) as follows

‖P(λ)‖ :=
(

d∑
k=0

‖Ak‖2
) 1

2

.

Definition 2.1 Let P(λ) and E(λ) be two m × n matrix polynomials, with
grade P(λ) ≥ grade E(λ). The matrix polynomial P(λ) + E(λ) is a perturbation
of the m × n matrix polynomial P(λ).

In this paper ‖E(λ)‖ is typically small. Definition 2.1 is also applicable to matrix
pencils as a particular case of matrix polynomials.

The first companion form C 1
P(λ) of P(λ) is defined in (1.2) and is a well-known

way to linearize matrix polynomials, i.e. to substitute an investigation of a matrix
polynomial by an investigation of a certain matrix pencil with the same characteristics
of interest. Namely, P(λ) and C 1

P(λ) have the same finite and infinite elementary
divisors (the same finite and infinite eigenvalues and their multiplicities), the same left
minimal indices, and there is a simple relation between their right minimal indices
(those of C 1

P(λ) are greater by d − 1 than those of P(λ)), see [6] for the definitions
and more details. Define a (full) perturbation of the linearization of an m × n matrix
polynomial of grade d as follows

C 1
P(λ) + E := C 1

P(λ) + λE + Ẽ =λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0

−In 0 . . . 0
. . .

. . .
...

0 −In 0

⎤
⎥⎥⎥⎦

+ λ

⎡
⎢⎢⎢⎢⎢⎣

E11 E12 E13 . . . E1d

E21 E22 E23 . . . E2d

E31 E32 E33 . . . E3d
...

...
...

. . .
...

Ed1 Ed2 Ed3 . . . Edd

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

Ẽ11 Ẽ12 Ẽ13 . . . Ẽ1d

Ẽ21 Ẽ22 Ẽ23 . . . Ẽ2d

Ẽ31 Ẽ32 Ẽ33 . . . Ẽ3d
...

...
...

. . .
...

Ẽd1 Ẽd2 Ẽd3 . . . Ẽdd

⎤
⎥⎥⎥⎥⎥⎦

,

(2.1)

and define a structured perturbation of the linearization, i.e. a perturbation in which
only the blocks Ai , i = 0, 1, . . . , d are perturbed
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72 A. Dmytryshyn

C 1
P(λ)+E(λ) = λ

⎡
⎢⎢⎢⎣

Ad

In
. . .

In

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ad−1 Ad−2 . . . A0
−In 0 . . . 0

. . .
. . .

...

0 −In 0

⎤
⎥⎥⎥⎦

+λ

⎡
⎢⎢⎢⎣

Fd 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Fd−1 Fd−2 . . . F0
0 0 . . . 0
...

...
...

0 0 . . . 0

⎤
⎥⎥⎥⎦ . (2.2)

We also refer to (2.2) as the linearization of a perturbed matrix polynomial.
Recall that anm×nmatrix pencilλA1+A0 is called strictly equivalent toλB1+B0 if

there are non-singularmatrices Q and R such that Q−1A1R = B1 and Q−1A0R = B0.
Note that twom ×n matrix pencils have the same complete eigenstructure if and only
if they are strictly equivalent. Moreover, two m × n matrix polynomials of degree d,
P(λ) and Q(λ), have the same complete eigenstructure if and only if C 1

P(λ) and C
1
Q(λ)

are strictly equivalent. Now we can state one of our goals as finding a perturbation
E(λ) such thatC 1

P(λ) +E andC 1
P(λ)+E(λ) are strictly equivalent. The existence of such

a perturbation E(λ) is known and stated in Theorem 2.1, which is a slightly adapted
formulation of Theorem 2.5 in [10], see also Theorem 5.21 in [15] and [14,23,32].

Theorem 2.1 Let P(λ) be an m × n matrix polynomial of degree d and let C 1
P(λ) be

its first companion form. If C 1
P(λ) + E is a perturbation of C 1

P(λ) such that

‖E ‖ = ‖(C 1
P(λ) + E ) − C 1

P(λ)‖ <
π

12 d3/2
,

then there is some perturbation polynomial E(λ) such that C 1
P(λ) +E is strictly equiv-

alent to the linearization of the perturbed polynomial C 1
P(λ)+E(λ), i.e. there exist two

nonsingular matrices U and V (they are small perturbations of the identity matrices)
such that

U · (C 1
P(λ) + E ) · V = C 1

P(λ)+E(λ),

moreover,

‖C 1
P(λ)+E(λ) − C 1

P(λ)‖ ≤ 4 d (1 + ‖P(λ)‖F ) ‖E ‖ .

Theorem 2.1 guarantees the existence of the structured perturbation (2.2) and the
transformation matrices U and V but says nothing about how to find them. In the
following section we present an algorithm that, for a given perturbation (2.1), finds
such a structured perturbation (2.2) and transformation matrices explicitly.
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Recovering a perturbation of a matrix polynomial from a… 73

3 Reduction algorithm

In this section we describe our iterative algorithm (Algorithm 3.1) that, by strict equiv-
alence transformation, reduces a full perturbation of a linearization pencil (2.1) to a
structured perturbation of this pencil (2.2), i.e. a perturbation where only the blocks
that correspond to the matrix coefficients of a matrix polynomial are perturbed. The
corresponding transformation matrices are derived too. We also analyze important
characteristics of the proposed algorithm and its outputs.

Define an unstructured perturbation E u = λEu + Ẽu of the linearization C 1
P(λ) as

a perturbation (2.1) where the blocks E11, Ẽ11, Ẽ12, . . . , Ẽ1d are replaced by the zero
blocks of the corresponding sizes, namely:

E u = λEu + Ẽu

= λ

⎡
⎢⎢⎢⎢⎢⎣

0 E12 E13 . . . E1d
E21 E22 E23 . . . E2d
E31 E32 E33 . . . E3d
...

...
...

. . .
...

Ed1 Ed2 Ed3 . . . Edd

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0
Ẽ21 Ẽ22 Ẽ23 . . . Ẽ2d

Ẽ31 Ẽ32 Ẽ33 . . . Ẽ3d
...

...
...

. . .
...

Ẽd1 Ẽd2 Ẽd3 . . . Ẽdd

⎤
⎥⎥⎥⎥⎥⎦

.

E u consists of all the perturbation blocks that are not included in the structured
perturbation (2.2), i.e. E u consists of all the perturbations of the identity and zero
blocks of the linearization C 1

P(λ). In turn, the structured perturbation E
s is as follows

E s = λEs + Ẽs = λ

⎡
⎢⎢⎢⎣

E11 0 . . . 0
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Ẽ11 Ẽ12 . . . Ẽ1d
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤
⎥⎥⎥⎦.

In Sect. 3.1 we show that the unstructured part of the perturbation tends to zero
(entrywise) as the number of iterations of our algorithm grows; in Sect. 3.2 we derive
a bound on the norm of the resulting structured perturbation; in Sect. 3.3 we explain
how to construct the corresponding transformation matrices, i.e. matrices that reduce
a full perturbation to a structured one.

We note that the construction of the corresponding transformation matrices in this
paper is similar to the construction of the transformation matrices for the reduction
to miniversal deformations of matrices in [12,13], and that the evaluation of the
norm of the structured part has some similarities with the evaluation of the norm
of the miniversal deformation of (skew-)symmetric matrix pencils in [7,9], see also
[12,13]. These similarities are due to the fact that our structured perturbation is a
versal deformation (but not miniversal), see the mentioned papers for the definitions
and details.

Algorithm 3.1 Let C 1
P(λ) be a first companion linearization of a matrix polynomial

P(λ) and E1 be a full perturbation of C 1
P(λ).
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74 A. Dmytryshyn

Input: Matrix polynomial P(λ), perturbed matrix pencil C 1
P(λ) + E1, and the

tolerance parameter tol;
Initialization: U1 := I and V1 := I
Computation: While ‖E u

i ‖ > tol

– find the minimum norm least-squares solution to the coupled Sylvester equa-
tions:(
(C 1

P(λ) + E s
i )Xi + Yi (C 1

P(λ) + E s
i )

)u = −E u
i ;

– update the perturbation of the linearization (the updated perturbed lineariza-
tion remains strictly equivalent to the original one):

(C 1
P(λ) + Ei+1) := (I + Yi )(C 1

P(λ) + Ei )(I + Xi );
– update the transformation matrices:

Ui+1 := (I + Yi )Ui and Vi+1 := Vi (I + Xi );
– extract the new unstructured perturbation E u

i+1 to be eliminated;
– increase the counter: i := i + 1;

Output: A structurally perturbed linearization pencil C 1
P(λ)+E(λ) := C 1

P(λ) + Ek ,
where Ek is a structured perturbation (since ‖E u

k ‖ < tol), and the transformation
matrices U and V .

The system
(
(C 1

P(λ) + E s
i )Xi + Yi (C 1

P(λ) + E s
i )

)u = −E u
i , appearing at the compu-

tation step of Algorithm 3.1, has a solution since the space

{
(C 1

P(λ) + E s
i )X + Y (C 1

P(λ) + E s
i ) | X ∈ C

n×n,Y ∈ C
m×m

}

is transversal to the space of the first companion linearizations

{
C 1
Q(λ) | Q(λ) is an m × n matrix polynomial

}
,

i.e., these spaces add up to the whole space of matrix pencils of the corresponding
size, see e.g., [14,23,32].

Following Algorithm 3.1 we can explicitly write how the resulting perturbation of
the linearization C 1

P(λ) + Ek is constructed:

C 1
P(λ) + Ek = C 1

P(λ) + E s
1 + E u

1 +
(
(C 1

P(λ) + E s
1 )X1 + Y1(C

1
P(λ) + E s

1 )
)u

︸ ︷︷ ︸
=0

+
(
(C 1

P(λ) + E1)X1 + Y1(C
1
P(λ) + E1)

)s +
(
Y1(C

1
P(λ) + E1)X1

)s

+
(
E u
1 X1 + Y1E

u
1 +Y1(C

1
P(λ) + E1)X1

)u +
(
(C 1

P(λ) + E s
2 )X2 + Y2(C

1
P(λ) + E s

2 )
)u

︸ ︷︷ ︸
=0

+
(
(C 1

P(λ) + E2)X2 + Y2(C
1
P(λ) + E2)

)s +
(
Y2(C

1
P(λ) + E2)X2

)s
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Recovering a perturbation of a matrix polynomial from a… 75

+
(
E u
1 X2 + Y2E

u
1 +Y2(C

1
P(λ) + E2)X2

)u +
(
(C 1

P(λ) + E s
3 )X3 + Y3(C

1
P(λ) + E s

3 )
)u

︸ ︷︷ ︸
=0

+
(
(C 1

P(λ) + E3)X3 + Y3(C
1
P(λ) + E3)

)s + (
E u
1 X3 + Y3E

u
1

)u +Y3(C
1
P(λ) + E3)X3 + . . . ,

(3.1)

where

E2 = E s
1 +

(
(C 1

P(λ) + E1)X1 + Y1(C
1
P(λ) + E1)

)s + Y1(C
1
P(λ) + E1)X1,

E3 = E s
2 +

(
(C 1

P(λ) + E2)X2 + Y2(C
1
P(λ) + E2)

)s + Y2(C
1
P(λ) + E2)X2, . . .

In the rest of the paper we investigate properties of this algorithm and perform numer-
ical experiments.

3.1 Elimination of the unstructured perturbation

We start by deriving an auxiliary lemma that will be used to prove that in Algorithm 3.1
the unstructured perturbation converges to zero.

For a given matrix T , define κ(T ) := κF (T ) = ‖T ‖ · ‖T †‖ to be a Frobenius
condition number of T , e.g., see references [2,5,28]. We recall that the matrix T †

denotes the pseudoinverse (the Moore–Penrose inverse) of T , see e.g., [19].

Lemma 3.1 Let A, B,C, D, M, and N be m × n matrices and let the n × n matrix X
and the m ×m matrix Y be the minimum norm least-squares solution to the system of
coupled Sylvester equations

AX + Y B = M,

CX + Y D = N .
(3.2)

Then

‖X‖ · ‖Y‖ ≤ κ(T )2

2(n‖A‖2 + m‖B‖2 + n‖C‖2 + m‖D‖2)
(
‖M‖2 + ‖N‖2

)
, (3.3)

where T =
[
In ⊗ A BT ⊗ Im
In ⊗ C DT ⊗ Im

]
is the Kronecker product matrix associated with the

system (3.2).

Proof Using the Kronecker product we can rewrite the system of coupled Sylvester
equations as a system of linear equations T x = b, or explicitly

[
In ⊗ A BT ⊗ Im
In ⊗ C DT ⊗ Im

] [
vec(X)

vec(Y )

]
=

[
vec(M)

vec(N )

]
. (3.4)
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76 A. Dmytryshyn

The minimum norm least-squares solution to such system can be written as x = T †b,
implying ‖x‖ ≤ ‖T †‖ · ‖b‖ or more explicitly, and taking into account ‖x‖2 =
‖X‖2 + ‖Y‖2:

‖X‖2 + ‖Y‖2 ≤ ‖T †‖2
(
‖M‖2 + ‖N‖2

)
= κ(T )2

‖T ‖2
(
‖M‖2 + ‖N‖2

)

= κ(T )2(
n‖A‖2 + m‖B‖2 + n‖C‖2 + m‖D‖2)

(
‖M‖2 + ‖N‖2

)
,

(3.5)

where κ(T ) is the Frobenius condition number of T . Taking into account that

‖X‖ · ‖Y‖ ≤ 1

2

(
‖X‖2 + ‖Y‖2

)
,

we obtain

‖X‖ · ‖Y‖ ≤ κ(T )2

2(n‖A‖2 + m‖B‖2 + n‖C‖2 + m‖D‖2)
(
‖M‖2 + ‖N‖2

)
.

�	
The bounding expression in (3.3) depends on the conditioning of the problem (3.4) as
well as on how small (normwise) the right-hand side of (3.4) (or, equivalently, (3.2))
is, compared to the matrix coefficients in the left-hand side. The conditioning of (3.2)
may actually be better than the conditioning of (3.4). Thus for very ill-conditioned
problems and large perturbations, it may be reasonable to use a solver for (3.2) instead
of passing to the Kronecker product matrices.

In the following theorem we prove that Algorithm 3.1 eliminates the unstructured
perturbation, i.e. we show that the norm of the unstructured part of the perturbation
tends to zero as the number of iterations grows.

Theorem 3.1 LetC 1
P(λ)+E1 be a perturbation of the linearization and let α‖E1‖ < 1,

where

α := α
(
C 1
P(λ),E1

)

= sup
i

⎧⎨
⎩
2

3
2 κ(Ti ) (n + m)

1
2
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) 1
2 +κ(Ti )2‖W + Ei‖√

2 (n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) ,

2
3
2 κ(Ti ) (n + m)

1
2
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) 1
2 +κ(Ti )2‖W̃ + Ẽi‖√

2 (n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

)
⎫⎬
⎭ ,

(3.6)

with the pencils C 1
P(λ) + Ei = λ(W + Ei ) + (W̃ + Ẽi ) from Algorithm 3.1, and the

Kronecker product matrices

Ti =
[
Ind ⊗ (W + Ei ) (W + Ei )

T ⊗ Im+n(d−1)

Ind ⊗ (W̃ + Ẽi ) (W̃ + Ẽi )
T ⊗ Im+n(d−1)

]
. (3.7)
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Recovering a perturbation of a matrix polynomial from a… 77

Then E u
i = λEu

i + Ẽu
i in Algorithm 3.1 satisfies ‖E u

i ‖ → 0 when i → ∞.

Proof We start by proving a bound for the norm of the unstructured part of a pertur-
bation at the (i + 1)-st step of the algorithm, using the norm of the unstructured part
of a perturbation at the i-th step of the algorithm. Define C 1

P(λ) = λW + W̃ .
Following Algorithm 3.1 we obtain matrices Xi and Yi by solving the system of

coupled Sylvester matrix equations:

((W + Ei )Xi + Yi (W + Ei ))
u = −Eu

i ,(
(W̃ + Ẽi )Xi + Yi (W̃ + Ẽi )

)u = −Ẽu
i .

(3.8)

Using the solution Xi and Yi to the system (3.8) we compute

W + Ei+1 := (I + Yi )(W + Ei )(I + Xi ),

W̃ + Ẽi+1 := (I + Yi )(W̃ + Ẽi )(I + Xi ),

or equivalently,

Ei+1 := Es
i + (

Eu
i + (W + Ei )Xi + Yi (W + Ei )

) + Yi (W + Ei )Xi ,

Ẽi+1 := Ẽs
i + (

Ẽu
i + (W̃ + Ẽi )Xi + Yi (W̃ + Ẽi )

) + Yi (W̃ + Ẽi )Xi .

Since Xi and Yi are a solution to (3.8) we have

Ei+1 = Es
i + ((W + Ei )Xi + Yi (W + Ei ))

s + (
Eu
i Xi + Yi E

u
i

)u +Yi (W + Ei )Xi ,

Ẽi+1 = Ẽs
i + (

(W̃ + Ẽi )Xi + Yi (W̃ + Ẽi )
)s + (

Ẽu
i Xi + Yi Ẽ

u
i

)u +Yi (W̃ + Ẽi )Xi .

Splitting the perturbation into the structured and unstructured parts we obtain

Es
i+1 = Es

i + ((W + Ei )Xi + Yi (W + Ei ))
s + (Yi (W + Ei )Xi )

s ,

Ẽs
i+1 = Ẽs

i + (
(W̃ + Ẽi )Xi + Yi (W̃ + Ẽi )

)s + (
Yi (W̃ + Ẽi )Xi

)s
,

Eu
i+1 = (

Eu
i Xi + Yi E

u
i

)u + (Yi (W + Ei )Xi )
u ,

Ẽu
i+1 = (

Ẽu
i Xi + Yi Ẽ

u
i

)u + (
Yi (W̃ + Ẽi )Xi

)u
.

In general, Eu
i+1 and Ẽu

i+1 are not zero matrices but we show that they tend to zero
(entrywise) when i → ∞. In (3.9)–(3.12) below Ti is the Kronecker product matrix
defined in (3.7) and associated with the system of coupled Sylvester equations (3.8).
Using the bound (3.5) we have:

‖ (Eu
i Xi + Yi E

u
i

)u ‖ ≤ (‖Xi‖ + ‖Yi‖) · ‖Eu
i ‖ ≤

(
2
(
‖Xi‖2 + ‖Yi‖2

)) 1
2 · ‖Eu

i ‖

≤
√
2κ(Ti )

(n + m)
1
2
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) 1
2

‖E u
i ‖2, (3.9)
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78 A. Dmytryshyn

respectively, using the bound (3.3) we have:

‖ (Yi (W + Ei )Xi )
u ‖ ≤ ‖Yi (W + Ei )Xi‖ ≤ ‖Xi‖ · ‖Yi‖ · ‖W + Ei‖

≤ κ(Ti )2‖W + Ei‖
2 (n + m)

(‖W + Ei‖2 + ‖W̃ + Ẽi‖2
) ‖E u

i ‖2. (3.10)

Combining (3.9) and (3.10) we obtain the following bound on the Frobenious norm
of ‖Eu

i+1‖:

‖Eu
i+1‖ ≤ ‖ (Eu

i Xi + Yi E
u
i
)u + (Yi (W + Ei )Xi )

u ‖
≤ ‖ (Eu

i Xi + Yi E
u
i
)u ‖ + ‖ (Yi (W + Ei )Xi )

u ‖

≤
2
3
2 κ(Ti ) (n + m)

1
2

(
‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) 1
2 + κ(Ti )

2‖W + Ei‖
2 (n + m)

(‖W + Ei‖2 + ‖W̃ + Ẽi‖2
) ‖E u

i ‖2,
(3.11)

similarly, for the matrix ‖Ẽu
i+1‖,

‖Ẽu
i+1‖ ≤

∥∥∥(Ẽu
i Xi + Yi Ẽ

u
i
)u + (

Yi (W̃ + Ẽi )Xi
)u∥∥∥ ≤ ‖Ẽu

i Xi + Yi Ẽ
u
i +Yi (W̃ + Ẽi )Xi‖

≤ (‖Xi‖ + ‖Yi‖) · ‖Ẽu
i ‖+‖Xi‖ · ‖Yi‖ · ‖W̃ + Ẽi‖

≤
2
3
2 κ(Ti ) (n + m)

1
2

(
‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) 1
2 +κ(Ti )

2‖W̃ + Ẽi‖
2 (n + m)

(‖W + Ei‖2 + ‖W̃ + Ẽi‖2
) ‖E u

i ‖2.
(3.12)

Using α, defined in (3.6), we can write the bounds on the unstructured part of the
perturbation for both coefficients of the matrix pencil at the step i + 1 as follows

‖Eu
i+1‖ ≤ α√

2
‖E u

i ‖2 and ‖Ẽu
i+1‖ ≤ α√

2
‖E u

i ‖2. (3.13)

Note that the supremum in the definition of α is finite since κ(Ti ) and the norms of
the corresponding matrices are finite. This results into the bound for the whole pencil:

‖E u
i+1‖ =

(
‖Eu

i+1‖2 + ‖Ẽu
i+1‖2

) 1
2 ≤ α‖E u

i ‖2. (3.14)

Using the bounds (3.13) and (3.14) at each step we get

max
{‖Eu

k ‖, ‖Ẽu
k ‖} ≤

(
α√
2

)2k−1−1

‖E u
1 ‖2k−1

and ‖E u
k ‖ ≤ α2k−1−1‖E u

1 ‖2k−1
.

(3.15)

If α‖E1‖ < 1 then the norm of the unstructured part of the perturbation tends to zero
as the number of iterations grows. �	
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Remark 3.1 In our case we should exclude some rows from (3.7), since we want to
eliminate only the unstructured part of the perturbation Ei . Therefore, the norm of
the solution of such least-squares problem will be less than or equal to ‖x‖, where
x = T †b. Clearly, the bounds from Lemma 3.1 remain valid.

The sharpness of the bounds (3.15) depends on the value of α and on the size of
the initial perturbation: the better conditioned the problem is and the smaller initial
perturbation is, the better the bounds (3.15) are. Even if the problem is ill-conditioned
we can still guarantee the convergence for small enough perturbations. Note that a
proper scaling of a matrix polynomial improves the conditioning of the problem, see
e.g., [15]. Moreover, in practice, Algorithm 3.1 converges to a structured perturbation
verywell and requires only a small number of iterations, see the numerical experiments
in Sect. 4. The numerical experiments also suggest that we have the quadratic order
of convergence, and this can indeed be verified using (3.15).

3.2 Bound on the norm of the structured perturbation

In this section we find a bound on the resulting structured perturbation. Similarly to
the analysis in Sect. 3.1 we have a dependence on the conditioning of the problem
as well as on the norm of an original perturbation. Therefore, we need to make an
assumption that these quantities are small enough.

Theorem 3.2 Let C 1
P(λ) + E1 be a perturbation of the linearization C 1

P(λ), ‖E1‖ = ε,

and αε < 1, where α = α(C 1
P(λ),E1) is defined in (3.6). Define also β :=

supi
√

2
(n+m)

κ(Ti ) and

γ := γ
(
C 1
P(λ),E1

)
= sup

i

{
κ(Ti )2‖W + Ei‖√

2 (n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) ,

κ(Ti )2‖W̃ + Ẽi‖√
2 (n + m)

(‖W + Ei‖2 + ‖W̃ + Ẽi‖2
)
}

,

(3.16)

with the pencils C 1
P(λ) + Ei = λ(W + Ei ) + (W̃ + Ẽi ) from Algorithm 3.1, and the

Kronecker product matrix Ti in (3.7). Then ‖E s‖ ≤ ε(1 + β)/(1 − γ ε).

Proof For the inputC 1
P(λ) +E1, following Algorithm 3.1 step by step, we can build the

resulting perturbation as explained in (3.1). Skipping writing the eliminated unstruc-
tured parts of (3.1) we have:

C 1
P(λ) + E s = C 1

P(λ) + E s
1

+
(
(C 1

P(λ) + E1)X1 + Y1(C
1
P(λ) + E1)

)s +
(
Y1(C

1
P(λ) + E1)X1

)s

+
(
(C 1

P(λ) + E2)X2 + Y2(C
1
P(λ) + E2)

)s +
(
Y2(C

1
P(λ) + E2)X2

)s + . . .
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+
(
(C 1

P(λ) + Ei )Xi + Yi (C
1
P(λ) + Ei )

)s +
(
Yi (C

1
P(λ) + Ei )Xi

)s + . . .

We start by evaluating the structured part of the perturbation coming from the
coupled Sylvester equations using the bounds (3.5):

∥∥∥
(
(C 1

P(λ) + Ei )Xi + Yi (C
1
P(λ) + Ei )

)s∥∥∥ ≤ ‖C 1
P(λ) + Ei‖ (‖Xi‖ + ‖Yi‖)

≤ ‖C 1
P(λ) + Ei‖

√
2(‖Xi‖2 + ‖Yi‖2) ≤

√√√√2κ(Ti )2
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

) ‖E u
i ‖2

(n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

)

=
√
2κ(Ti )2‖E u

i ‖2
(n + m)

=
√
2κ(Ti )√
(n + m)

‖E u
i ‖ ≤ β ‖E u

i ‖. (3.17)

Recall that κ(Ti ) and the norms of the corresponding perturbations are finite and
thus the supremum in the definition of β is finite. We use the bounds in (3.10), see

also (3.12), for
∥∥∥
(
Yi (C 1

P(λ) + Ei )Xi

)s∥∥∥ since
∥∥∥
(
Yi (C 1

P(λ) + Ei )Xi

)s∥∥∥ ≤ ‖Yi (C 1
P(λ)+

Ei )Xi‖. Thus we can evaluate the norm of ‖E s
i ‖ using (3.15) and (3.17) as well as

noting that ‖E s
i ‖ and ‖E u

i ‖ are less than or equal to ‖Ei‖:

‖E s‖ ≤ ‖E s
1 ‖ +

∥∥∥
(
(C 1

P(λ) + E1)X1 + Y1(C
1
P(λ) + E1)

)s∥∥∥ +
∥∥∥
(
Y1(C

1
P(λ) + E1)X1

)s∥∥∥
+
∥∥∥
(
(C 1

P(λ) + E2)X2 + Y2(C
1
P(λ) + E2)

)s∥∥∥ +
∥∥∥
(
Y2(C

1
P(λ) + E2)X2

)s∥∥∥ + . . .

+
∥∥∥
(
(C 1

P(λ) + Ei )Xi + Yi (C
1
P(λ) + Ei )

)s∥∥∥ +
∥∥∥
(
Yi (C

1
P(λ) + Ei )Xi

)s∥∥∥ + . . .

≤ ε + β‖E u
1 ‖ + γ ‖E u

1 ‖2 + β‖E u
2 ‖ + γ ‖E u

2 ‖2 + β‖E u
3 ‖ + γ ‖E u

3 ‖2 + . . .

+β‖E u
i ‖ + γ ‖E u

i ‖2 + . . .

= ε + βε + γ ε2 + βγ ε2 + γ 3ε4 + βγ 3ε4 + γ 7ε8 + . . .

+βγ 2i−1−1ε2
i−1 + γ 2i−1ε2

i + . . .

= ε(1 + β)
(
1 + γ ε + (γ ε)3 + . . . + (γ ε)2

i−1−1 + . . .
)

= ε(1 + β)

( ∞∑
i=0

(γ ε)2
i−1

)
≤ ε(1 + β)

1 − γ ε
. (3.18)

In (3.18) we used that γ ε < 1 which is true since by the assumption of the theorem
αε < 1, and γ < α. �	
The bound in Theorem3.2 is not very tight if γ ε is close to 1 but it is better for small γ ε.
For example, Theorem 3.2 says that for γ ε < 1/n we get ‖E s‖ ≤ nε(1+β)/(n− 1),
and in particular, for γ ε < 1/2 we get ‖E s‖ ≤ 2(1 + β)ε.

3.3 Construction of the transformationmatrices

In this section we investigate the transformation matrices that bring a full perturbation
of the linearization to a structured perturbation of the linearization. Following Algo-
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rithm 3.1, we observe that the transformationmatrices are constructed as the following
infinite products:

U = lim
i→∞ (Im + Yi ) · · · (Im + Y2)(Im + Y1) and

V = lim
i→∞ (In + X1)(In + X2) · · · (In + Xi ).

The convergence of these infinite products to nonsingular matrices is proven in The-
orem 3.3. Note that, for small initial perturbations, such transformation matrices are
small perturbations of the identity matrices.

Theorem 3.3 Let C 1
P(λ) + E1 be a perturbation of the linearization C 1

P(λ), and

α‖E1‖ < 1, where α = α(C 1
P(λ),E1) is defined in (3.6). Let also Xi and Yi be a

solution to (3.8) for the corresponding index i , and Im and In be the m ×m and n× n
identity matrices. Then

lim
i→∞ (Im + Yi ) · · · (Im + Y2)(Im + Y1) and lim

i→∞ (In + X1)(In + X2) · · · (In + Xi )

(3.19)

exist and are nonsingular matrices.

Proof By [31, Theorem 4] the limits in (3.19) exist and are nonsingular matrices if the
sums

‖X1‖ + ‖X2‖ + ‖X3‖ + · · · =
∞∑
i=1

‖Xi‖ and ‖Y1‖ + ‖Y2‖ + ‖Y3‖ + · · ·

=
∞∑
i=1

‖Yi‖, (3.20)

respectively, absolutely converge.
Using the bound (3.5) for a solution of coupled Sylvester equations and noting that

‖X‖2 ≤ ‖X‖2 + ‖Y‖2, we have the following bound for both ‖Xi‖2 and ‖Yi‖2:

‖Xi‖2 ≤ κ(Ti )2

(n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

)‖E u
i ‖2 ≤ α‖E u

i ‖2 ≤ α2i−1−1‖E u
1 ‖2i−1

,

‖Yi‖2 ≤ κ(Ti )2

(n + m)
(‖W + Ei‖2 + ‖W̃ + Ẽi‖2

)‖E u
i ‖2 ≤ α‖E u

i ‖2 ≤ α2i−1−1‖E u
1 ‖2i−1

.

(3.21)

Bounds (3.21) together with our assumption α‖E1‖ < 1 (‖E u
1 ‖ ≤ ‖E1‖) allow us to

conclude that the sums in (3.20) absolutely converge. �	
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Fig. 1 The whisker plots illustrates the elimination of the unstructured part of the perturbation ‖E u‖ for
1000 perturbed random polynomials of size 8×8 and degree 4. In a the Frobenius norms of the unstructured
parts of the perturbations are plotted on the vertical axis and the iterations are on the horizontal axis. In b
the same data is presented in whisker plot with a logarithmic scale on the vertical axis

4 Numerical experiments

All the numerical experiments are performed on a MacBook Pro (processor: 2.6 GHz
Intel Core i7, memory: 32 GB 2400 MHz DDR4), using Matlab R2019a (64-bit). We
consider a large number of randomly generated matrix polynomials, matrix polyno-
mials coming from real world applications, and matrix polynomials crafted specially
for testing the limits of the proposed algorithm.

Example 4.1 Consider 1000 random polynomials of size 8 × 8 and degree 4. The
entries of the matrix coefficients of these polynomials are generated from the normal
distributionwithmeanμ = 0 and standard deviationσ = 10 (varianceσ 2 = 100). The
polynomials are normalized to have the Frobenius norm equal to 1. Each polynomial
is perturbed by adding a matrix polynomial whose matrix coefficients have entries
that are uniformly distributed numbers on the interval (0, 0.01). At most 6 iterations
are needed for the norm of the unstructured part of a perturbation to be of order 10−16

(10−16 is the tolerance we require). In Fig. 1 we present the results in whisker plots
(box plots).

In the following two examples we consider two quadratic matrix polynomials com-
ing from applications. Both matrix polynomials belong to the NLEVP collection [3].

Example 4.2 Consider the 5×5 quadratic matrix polynomial Q(λ) = λ2M+λD+K
arising frommodelling a two-dimensional three-linkmobilemanipulator [3]. The 5×5
coefficient matrices are

M =
[
M0 0
0 0

]
, D =

[
D0 0
0 0

]
, and K =

[
K0 −FT

0
F0 0

]
,
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Fig. 2 The norm of the unstructured part of the perturbation ‖E u‖ of 5 × 5 quadratic matrix polynomial
Q(λ) = λ2M +λD+K arising frommodelling a two-dimensional three-link mobile manipulator (vertical
axis) at each iteration (horizontal axis) is plotted in (a). The same data but with a logarithmic scale on the
vertical axis is plotted in (b)

with

M0 =
⎡
⎣

18.7532 −7.94493 7.94494
−7.94493 31.8182 −26.8182
7.94494 −26.8182 26.8182

⎤
⎦ , D0 =

⎡
⎣

−1.52143 −1.55168 1.55168
3.22064 3.28467 −3.28467

−3.22064 −3.28467 3.28467

⎤
⎦ ,

K0 =
⎡
⎣

67.4894 69.2393 −69.2393
69.8124 1.68624 −1.68617

−69.8123 −1.68617 −68.2707

⎤
⎦ , F0 =

[
1 0 0
0 0 1

]
.

In Fig. 2 we present the decay of the norm of the unstructured part of the perturbation
inAlgorithm 3.1. The changes in the norm of the structured part of the perturbation and
in the norms of the transformationmatrices are presented in Figs. 3 and 4 , respectively.

Example 4.3 Consider a 21×16 quadratic matrix polynomial arising from calibration
of a surveillance camera using a human body as a calibration target [3,27]. Note
that the polynomial is rectangular. In Fig. 5 we present the decay of the norm of the
unstructured part of the perturbation. The changes in the norm of the structured part
of the perturbation and in the norms of the transformation matrices are presented in
Figs. 6 and 7, respectively.

In the following example we tune the conditioning of the problem and the value of
the initial perturbation to test the limits of Algorithm 3.1.

Example 4.4 Consider the 5 × 5 quadratic matrix polynomial from Example 4.2. We
scale the matrix coefficients of this polynomial and increase the initial perturbation
to achieve the following goals: (a) making the structured perturbation much larger
compared to the initial perturbation and (b) forcing Algorithm 3.1 to diverge. Notably,
if (a) is achieved, i.e. the limit perturbation is much larger than the original one, then
we may still have the convergence. We summarize the results of our experiment in
Table 1. In the last column we underline the word “yes” if the convergence is also
provable by Theorem 3.1, e.g., in the first and the second experiments the values of
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Fig. 3 The norm of the structured part of the perturbation ‖E s‖ (vertical axis) at each iteration (horizontal
axis): awhen we do not normalize the original matrix polynomial; bwhen we normalize the original matrix
polynomial (notably, in b we have that α‖E1‖ = 0.29 < 1 thus Theorem 3.2 is applicable and gives us
‖E s‖ ≤ 2.27)

1 2 3 4 5 6 7 8 9 10
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1 2 3 4 5 6 7 8 9 10
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1.15

1.2

1.25

1.3

1.35

(a) (b)

Fig. 4 The 2-norm of the transformation matricesU and V (vertical axis) at each iteration (horizontal axis)
are plotted in (a) and (b), respectively. Recall that U · (C 1

P(λ)
+ E1) · V = C 1

P(λ)+E(λ)
. Note that, ‖U‖2

and ‖V ‖2 are close to 1 (‖I‖2 = 1)

1 2 3 4 5 6 7 8 9 1010-16
10-14
10-12
10-10
10-8
10-6
10-4
10-2
100
102

1 2 3 4 5 6 7 8 9 10
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

(a) (b)

Fig. 5 The normof the unstructured part of the perturbation ‖E u‖ of the 21×16 quadraticmatrix polynomial
arising from calibration of a surveillance camera (vertical axis) at each iteration (horizontal axis) is plotted
in (a). The same convergence data but with a logarithmic scale on the y-axis is plotted in (b)
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Fig. 6 The norm of the structured part of a perturbation (vertical axis) at each iteration (horizontal axis):
a when we do not normalize the original matrix polynomial; b when we normalize the original matrix
polynomial (notably, in b we have that α‖E1‖ = 0.37 < 1 thus Theorem 3.2 is applicable and gives us
‖E s‖ ≤ 7.7)
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Fig. 7 The 2-norm of the transformation matricesU and V (vertical axis) at each iteration (horizontal axis)
are plotted in (a) and (b), respectively. Recall that U · (C 1

P(λ)
+ E1) · V = C 1

P(λ)+E(λ)

α‖E1‖ are 7.75e-05 and 0.98, respectively; in experiments 3,5,6, and 8 the value of
α‖E1‖ is larger than 1 thus Theorem 3.1 is not applicable, nevertheless we still observe
convergence numerically. In experiments 9 and 10 we do not have even the numerical
convergence and of course the value of α‖E1‖ is larger than 1.

5 Future work

The method developed in this paper can be directly generalized to the other lineariza-
tions, e.g., Fiedler linearizations [1,6,14] or even block-Kronecker linearizations [15].
Such a generalization may also cover structure-preserving linearizations, see e.g., [8].
The existence of structured perturbations for these broader classes of linearizations
follows, e.g., from [8,14,15]. Such a generalizationwill require solving the correspond-
ing structured coupled Sylvester equations, or at least the corresponding structured
least-squares problem.
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Table 1 We show how the choice of the scalars αi , i = 0, 1, 2 in the matrix polynomial Q(λ) = α2A2λ
2 +

α1A1λ + α0A0 and the initial perturbation E1 change the norm of the resulting structured perturbation E s

and the convergence of the algorithm

α2 α1 α0 ‖E1‖ ‖E s‖ ‖E s‖/‖E 1‖ ‖U‖2 ‖V ‖2 conv.

Entries of E1 are equidistributed in (0, 5.0e-06):

1 1/‖Q(λ)‖ 1/‖Q(λ)‖ 1/‖Q(λ)‖ 4.05e-05 2.5e-05 0.61 1.000 1.000 yes

2 1 1 1 4.04e-05 0.0014 34 1.000 1.000 yes

3 10 1 1 4.21e-05 0.007 161 1.0004 1.0001 yes

Entries of E1 are equidistributed in (0, 0.001):

4 1/‖Q(λ)‖ 1/‖Q(λ)‖ 1/‖Q(λ)‖ 0.008 0.0047 0.58 1.0008 1.0017 yes

5 1 1 1 0.0083 0.33 40 1.016 1.002 yes

6 10 1 1 0.0083 22 2661 1.122 1.024 yes

Entries of E1 are equidistributed in (0, 0.1):

7 1/‖Q(λ)‖ 1/‖Q(λ)‖ 1/‖Q(λ)‖ 0.83 0.35 0.42 1.07 1.14 yes

8 1 1 1 0.85 62 73 1.62 1.47 yes

9 10 1 1 0.82 – – – – no

Entries of E1 are equidistributed in (0, 2):

10 1/‖Q(λ)‖ 1/‖Q(λ)‖ 1/‖Q(λ)‖ 17 – – – – no

Relaxing the conditions in Theorems 3.1 and 3.2, to have provable convergence
and bounds for a broader class of examples, is another possible line of future research.
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