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Abstract
This paper presents a sequence of deferred correction (DC) schemes built recursively
from the implicit midpoint scheme for the numerical solution of general first order
ordinary differential equations (ODEs). It is proven that each scheme is A-stable,
satisfies a B-convergence property, and that the correction on a scheme DC2j of order
2j of accuracy leads to a scheme DC2j+2 of order 2j+2. The order of accuracy is
guaranteed by a deferred correction condition. Numerical experiments with standard
stiff and non-stiff ODEs are performed with the DC2, …, DC10 schemes. The results
show a high accuracy of the method. The theoretical orders of accuracy are achieved
together with a satisfactory stability.
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1 Introduction

In [10,20], Gustafsson andKress introduced a new version of deferred correction (DC)
strategy for the numerical solution of linear systems of ordinary differential equations
(ODE) [10] and initial boundary value problems [20], under a monotonicity condition.
Numerical experiments with one-dimensional linear parabolic and hyperbolic equa-
tions were performed and showed that the method is effective (orders 2, 4 and 6 of
accuracy are achieved). We propose to extend the method from [10,20] to the time-
discretization of more general time-evolution partial differential equations (PDEs). In
this paper, we restrict to the case of the initial value problem (IVP)

{ du

dt
= F(t, u), t ∈ [0, T ],

u(0) = u0,
(1.1)

where the unknown u is from [0, T ] into a Banach space X , u0 is a given data and
F is a sufficiently differentiable function such that u exists and is sufficiently dif-
ferentiable. The main objective is to show the properties of the numerical method
(consistency, stability, convergence and order of accuracy). A complete analysis of
the DCmethod applied to reaction-diffusion equations leads to an arbitrary high order
and unconditionally stable method (see [18]).

The DC method is used to improve the order of accuracy of numerical methods
of lower order. This method is explored by many authors, e.g. [1,2,6,7,10,12,21,23].
The method in [6] is an application of iterative deferred correction (IDC). The authors
proved that an asymptotic improvement of order p can be accomplished, froma scheme
of order p, at each step of the IDC procedure, provided suitable finite difference oper-
ators are employed. Numerical experiments are performed with the IDC applied to the
trapezoidal rule, Taylor-2 and Adams-Bashforth of order 2. The results are promising
even though they point out some difficulties of the proposed algorithms: inaccuracy
for “large” time step and no asymptotic improvement for high levels of correction. The
approaches in [1,2,7,10,12,21] are quite similar and consist in a linear perturbation
of a low order scheme. However, solving stiff problems (problems extremely hard to
solve by standard explicit methods [25]) is a challenge unfavorable for these methods.
In particular, the method in [21], concerning a highly accurate solver for stiff ODEs,
requires sufficiently small time steps for moderately stiff problems while convergence
is reduced to order 2 for “very stiff” problems.

Our schemes are based on nonlinear perturbations (corrections) of the implicit mid-
point rule and inherit the A-stable property of the trapezoidal rule [5] at any stage of

the correction. Starting from an approximation
{
u2,n

}N
n=0 of the exact solution u by the

implicit midpoint rule on a uniform partition 0 = t0 < t1 < · · · < tN = T of [0, T ],
at the stage j = 1, 2, . . . of the correction we obtain an approximation

{
u2 j+2,n

}N
n=0

of u, expected to be of order 2 j + 2 of accuracy, on the same partition. Each approxi-

mate solution
{
u2 j,n

}N
n=0 to be corrected is subject to a deferred correction condition

(DCC) which guarantees the improvement of the order of accuracy. We prove that if{
u2 j,n

}N
n=0 satisfies the DCC and its correction

{
u2 j+2,n

}N
n=0 converges to u at the
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discrete points 0 = t0 < t1 < · · · < tN = T (or is simply bounded, when X is

finite dimensional) then
{
u2 j+2,n

}N
n=0 approximates u with order 2 j + 2. Moreover,

provided the function F is Lipschitz with respect to its second variable or satisfies a

one-sided Lipschitz condition, each
{
u2 j,n

}N
n=0 satisfies the DCC and then converges

with order 2 j of accuracy, for arbitrary positive integer j . We also prove that each DC

scheme involving
{
u2 j,n

}N
n=0 is B-stable. The theory is illustrated by numerical tests,

for the schemes of order 2, 4, …, 10.
The paper is organized as follows: in Sect. 2 we recall some basic results from

finite difference approximations and present the DC schemes; Sect. 3 deals with the
consistency of the method; the analysis of convergence and order of accuracy together
with a B-convergence result are given in Sect. 4; absolute stability is proved in Sect. 5,
and Sect. 6 is devoted to numerical experiments.

2 Deferred correction schemes for the implicit midpoint rule

We suppose that F ∈ C2p+2 ([0, T ] × X , X), for a positive integer p, so that (1.1) has
a unique solution u ∈ C2p+3 ([0, T ], X). We simply denote by ‖ · ‖, the norm in the
Banach space X . For a time step k > 0, we denote tn = nk and tn+1/2 = (n + 1/2)k,
for each integer n. This implies that t0 = 0. We consider the time steps k such that
0 = t0 < t1 < · · · < tN = T is a partition of [0, T ], for a non-negative integer N . The
centered, forward and backward difference operators D, D+ and D−, respectively,
related to k and applied to u, are defined as follows:

Du(tn+1/2) = u(tn+1) − u(tn)

k
,

D+u(tn) = u(tn+1) − u(tn)

k
,

and

D−u(tn) = u(tn) − u(tn−1)

k
, n ≥ 1.

The average operator is denoted by E :

Eu(tn+1/2) = û(tn+1) = u(tn+1) + u(tn)

2
.

The composition of D+ and D− is defined recursively. They commute, that is
(D+D−)u(tn) = (D−D+)u(tn) = D−D+u(tn), and satisfy the identities

(D+D−)mu(tn) = k−2m
2m∑
i=0

(−1)i
(
2m

i

)
u(tn+m−i ), (2.1)
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and

D−(D+D−)mu(tn) = k−2m−1
2m+1∑
i=0

(−1)i
(
2m + 1

i

)
u(tn+m−i ), (2.2)

for each integer m ≥ 1 such that 0 ≤ tn−m−1 ≤ tn+m ≤ T . We have the estimate

∥∥Dm1+ Dm2− u(tn)
∥∥ ≤ max

0≤t≤T

∥∥∥∥dm1+m2u

dtm1+m2
(t)

∥∥∥∥ , (2.3)

provided [tn−m2 , tn+m1 ] ⊂ [0, T ] and m1 + m2 ≤ 2p + 3 (see [15, p. 249] or [17]).
If {un}n is a sequence of approximation of u at the discrete points tn , the finite

difference operators apply to {un}n , and we define

Dun+1/2 = D+un = D−un+1 = un+1 − un

k
,

and

Eun+1/2 = ûn+1 = un+1 + un

2
.

From the centered finite difference approximation (see [17, Thm 5] or [3,4,13]) we
have

du

dt
(tn+1/2) = u(tn+1) − u(tn)

k
−

j∑
i=1

c2i+1k2i (D+D−)i Du(tn+1/2)) + O(k2 j+2)

(2.4)
and

u(tn+1/2) = u(tn+1) + u(tn)

2
−

j∑
i=1

c2i k
2i (D+ D−)i Eu(tn+1/2) + O(k2 j+2), (2.5)

for each integer j = 1, 2, . . . , p. These approximations lead to the schemes

un+1 − un

k
−

j∑
i=1

c2i+1k2i (D+D−)i Dun+1/2

= F

⎛
⎝tn+1/2,

un+1 + un

2
−

j∑
i=1

c2i k
2i (D+D−)i Eun+1/2

⎞
⎠ .

(2.6)

The schemes (2.6) are multi-steps and prone to stability restrictions. We resort to DC
method to transform them into a sequence of one step schemes as follows: For j = 0,
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we have the implicit midpoint rule

u2,n+1 − u2,n

k
= F

(
tn+1/2,

u2,n+1 + u2,n

2

)
, u2,0 = u0. (2.7)

For j ≥ 1,

u2 j+2,n+1 − u2 j+2,n

k
−

j∑
i=1

c2i+1k2i (D+D−)i Du2 j,n+1/2

= F

⎛
⎝tn+1/2,

u2 j+2,n+1 + u2 j+2,n

2
−

j∑
i=1

c2i k
2i (D+D−)i Eu2 j,n+1/2

⎞
⎠ ,

(2.8)

u2 j+2,0 = u0. (2.9)

The scheme (2.8)–(2.9) has unknowns u2 j+2,n , n = 1, 2, . . . , N , and is deduced from
(2.6) by substituting the unknown un under the summation symbols by u2 j,n . The index
2 j indicates that

{
u2 j,n

}
n is expected to be an approximation of the exact solution

u with order 2 j of accuracy. We call the schemes (2.8)–(2.9) Deferred Correction of
order 2 j + 2 for the implicit midpoint rule, denoted DC2j+2.

Remark 2.1 The scheme (2.8)–(2.9), for n = 1, 2, 3, . . . , j , should involve unknowns
u2 j,−1, . . . , u2 j,− j which represent approximate solutions of (1.1) at the discrete
points t = −k, . . . ,− jk, respectively. To avoid those approximations for t <

0, we propose the following scheme which is efficient for the computation of
u2 j+2,1, . . . , u2 j+2, j , using only points within the solution interval [0, T ].

u2 j+2,n+1 − u2 j+2,n

k
− k−1

j∑
i=1

c j
2i+1k2i+1

j (D+D−)i Dū2 j,(2 j+1)n+ j+1/2

= F

⎛
⎝tn+1/2, Eu2 j+2,n+1/2 −

j∑
i=1

c j
2i k

2i
j (D+D−)i Eū2 j,(2 j+1)n+ j+1/2

⎞
⎠ ,

(2.10)

u2 j+2,0 = u0. (2.11)

The finite difference operator in (2.10) are related to the time step k j = k/(2 j + 1).
The approximations

{
u2 j,m}

m and
{
u2 j,n

}
n are computed from the same scheme,

(2.7) or (2.8)–(2.9), but for the time steps k j and k, respectively. The scheme (2.10)
results from the finite difference approximations

u′(tn+1/2) = u(tn+1) − u(tn)

k
− 1

k

j∑
i=1

c j
2i+1k2i+1

j D(D+D−)i u(τ j+1/2) + O(k2 j+2
j )

(2.12)
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Table 1 Coefficients of the
approximations (2.12)–(2.13)
for j = 1, 2, 3, 4

j c j
2 c j

3 c j
4 c j

5 c j
6 c j

7 c j
8 c j

9

1 9
8

9
8

2 25
8

125
24

125
128

125
128

3 49
8

343
24

637
128

13,377
1920

1029
1024

1029
1024

4 81
8

243
8

1917
128

17,253
640

7173
1024

64,557
7168

32,733
32,768

32,733
32,768

and

u(tn+1/2) = u(tn+1) + u(tn)

2
−

j∑
i=1

c j
2i k

2i
j (D+D−)i Eu(τ j+1/2)+ O(k2 j+2

j ), (2.13)

where tn = τ0 < τ1 < . . . < τ2 j+1 = tn+1, with τm = tn + mk j , for m =
1, 2, . . . , 2 j + 1. Table 1 gives the coefficients c j

i for j = 1, 2, 3, 4.

Remark 2.2 Each u2 j+2,n+1, n ≥ j , can be obtained by solving iteratively the system

x − a j
n − k F(tn+1/2, 0.5x + b j

n) = 0, (2.14)

where x is the unknown, and a j
n and b j

n are constants depending on u2 j+2,n and
u2 j,n+1+ j , u2 j,n+ j , . . . , u2 j,n− j . The total number of vectors (in the solution space
X ) stored for the computation of u2 j+2,n+1 is j2 + 3 j + 1: u2 j+2,n and the u2i,q , for
i = 1, 2, . . . , j , and n + ( j − i +1)( j + i)/2−2i ≤ q ≤ n +1+ ( j − i +1)( j + i)/2.

Remark 2.3 From Remark 2.2, only the implicit midpoint rule, DC2, and the DC
schemes of the form (2.10)–(2.11) used at startup are implicit Runge-Kutta (RK)
methods. Starting with DC4, all the DC2j methods of the form (2.8)–(2.9) are not RK
methods. For instance, u4,n+1 depends on u4,n and some of the u2,i , which u2,i evolve
independently and are not stages computed from u4,n . As we will see in Sect. 5, the
analysis of A-stability, in particular the proof of lemma 5.2, shows that it is impossible
to write a recurrence u2 j+2,n+1 = R(z) u2 j+2,n from (2.8) when j ≥ 1, as one would
get by applying any RK method to Dahlquist equation. This is the main ingredient
behind the A-stability of our DC2j methods independently of the order of accuracy.

3 Deferred correction condition (DCC)

In this section we give a sufficient condition for the scheme (2.8)–(2.9) to achieve
order 2 j + 2 of accuracy. Hereafter, the letter C will denote any constant independent
from k, and that can be calculated explicitly in terms of known quantities. The exact
value of C may change. We have the following definition:
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Definition 3.1 (Deferred Correction Condition) Let u be the exact solution of the
Cauchy problem (1.1). Given a positive integer j , a sequence

{
u2 j,n

}N
n=0 of approx-

imations of u, at the discrete points 0 = t0 < · · · < tN = T , is said to satisfy the

Deferred Correction Condition (DCC) for the implicit midpoint rule if
{
u2 j,n

}N
n=0

approximates u with order 2 j of accuracy, and we have

‖(D+ D−)D(u2 j,n+1/2−u(tn+1/2))‖+‖D+ D−(u2 j,n+1−u(tn+1))‖ ≤ Ck2 j , (3.1)

for n = 1, 2, . . . , N − 2 and k ≤ k0, where k0 > 0 is fixed and C is a constant
independent from k.

Remark 3.1 Condition (3.1) is equivalent to

∥∥∥∥∥∥
j∑

i=1

c2i k
2i (D+D−)i

(
u2 j,n − u(tn)

)∥∥∥∥∥∥ ≤ Ck2 j+2, (3.2)

and ∥∥∥∥∥∥
j∑

i=1

(c2i+1 − c2i )k
2i (D+D−)i D

(
u2 j,n+1/2 − u(tn+1/2)

)∥∥∥∥∥∥ ≤ Ck2 j+2, (3.3)

for n = j, j + 1, . . . , N − j . This is due to the transform

k2i (D+ D−)i
(

u2 j,n − u(tn)
)

= k2
i−1∑
l=0

(−1)l
(
2i − 2

l

)
D+D−

(
u2 j,n − u(tn)

)

and a similar transform for ki (D+ D−)i D
(
u2 j,n+1/2 − u(tn+1/2)

)
.

We have the following result:

Theorem 3.1 Let u be the exact solution of (1.1) and
{
u2 j,n

}N
n=0, j = 1, . . . , p, a

sequence of approximations of u satisfying DCC for the implicit midpoint rule. Let{
u2 j+2,n

}N
n=0 be the solution of (2.8)–(2.9) built from

{
u2 j,n

}N
n=0. We suppose that

u2 j+2,1, . . . , u2 j+2, j are given and satisfy

‖u2 j+2,n − u(tn)‖ ≤ Ck2 j+2, for n = 1, 2, . . . , j, (3.4)

where C is a constant independent from k. Furthermore, we suppose that one of the
following four conditions holds:

(i) F is Lipschitz with respect to the second variable x: there exists μ ≥ 0 such that

‖F(t, x) − F(t, y)‖ ≤ μ‖x − y‖, ∀(t, x, y) ∈ [0, T ] × X × X . (3.5)
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(ii) X is finite dimensional, and
{
u2 j+2,n

}N
n=0 remains close to u in the sense that

there exists M > 0 such that

‖u2 j+2,n − u(tn)‖ ≤ M, for each n = 0, 1, . . . , N . (3.6)

(iii) X is infinite dimensional, and
{
u2 j+2,n

}
n converges to the exact solution u.

(iv) X is a Hilbert space with inner product (., .), and F satisfies the following so-
called one-sided Lipschitz condition, with a one-sided Lipschitz constant β ∈ R:

(F(t, x) − F(t, y), x − y) ≤ β‖x − y‖2, ∀(t, x, y) ∈ [0, T ] × X × X . (3.7)

Then
{
u2 j+2,n

}
n approximates u with order 2 j + 2 of accuracy, that is

‖u2 j+2,n − u(tn)‖ ≤ Ck2 j+2, for each n = 0, 1, . . . , N , (3.8)

where C is a constant depending only on j , T , DCC, a Lipschitz constant on F
and the derivatives of u up to order 2 j + 3, for time steps k sufficiently small.

Proof 1. First we consider the case where the function F = F(t, x) is Lipschitz
with respect to the second variable x . Combining (1.1) and (2.8), we obtain the
identity

DΘ2 j+2,n+1/2 = σ 2 j+2,n+1/2 + (Λ j − Γ j )D
(

u2 j,n+1/2 − u(tn+1/2)
)

+ F
(

tn+1/2, û2 j+2,n+1 − Γ j û2 j,n+1
)

− F
(

tn+1/2, û(tn+1) − Γ j û(tn+1)
)

,

(3.9)
whereΛ j andΓ j are finite difference operators defined for arbitrary integer j ≥ 1
by

Λ j u(tn) =
j∑

i=1

c2i+1k2i (D+D−)i u(tn),

and

Γ j u(tn) =
j∑

i=1

c2i k
2i (D+D−)i u(tn),

provided u(tn±i ) exists for i = 0, 1, 2, . . . , j . We have defined

Θ2 j+2,n =
(

u2 j+2,n − u(tn)
)

− Γ j
(

u2 j,n − u(tn)
)

, (3.10)
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and

σ 2 j+2,n+1/2 =
[
u′(tn+1/2) − Du(tn+1/2) + Λ j Du(tn+1/2)

]
−
[

F(tn+1/2, u(tn+1/2)) − F(tn+1/2, û(tn+1) − Γ j û(tn+1))
]
.

From (2.4) we have∥∥∥u′(tn+1/2) − Du(tn+1/2) + Λ j Du(tn+1/2)

∥∥∥ ≤ Ck2 j+2,

and, since F is differentiable and u is sufficiently regular, we deduce from the
mean value theorem and the approximation (2.5) that∥∥∥F(tn+1/2, u(tn+1/2)) − F(tn+1/2, û(tn+1) − Γ j û(tn+1))

∥∥∥ ≤ Ck2 j+2,

for each n = 0, 1, . . . , N , where C is a constant depending only on j , T , a
Lipschitz constant from F and the derivatives of u up to order 2 j + 3. The last
two inequalities imply that∥∥∥σ 2 j+2,n+1/2

∥∥∥ ≤ Ck2 j+2. (3.11)

Since the sequence
{
u2 j,n

}
n satisfies DCC, from Remark 3.1 we have

∥∥∥(Λ j − Γ j
)

D
(

u2 j,n+1/2 − u(tn+1/2)
)∥∥∥ ≤ Ck2 j+2. (3.12)

From the Lipschitz condition on F we have∥∥∥F
(

tn+1/2, û2 j+2,n+1 − Γ j û2 j,n+1
)

− F
(

tn+1/2, û(tn+1) − Γ j û(tn+1)
)∥∥∥

≤ μ‖Θ̂2 j+2,n+1‖.
(3.13)

Substituting inequalities (3.11)–(3.13) in the identity (3.9), we deduce that

‖DΘ2 j+2,n+1/2‖ ≤ Ck2 j+2 + μ‖Θ̂2 j+2,n+1‖,

and it follows from the triangle inequality that

‖Θ2 j+2,n+1‖ ≤ C
k2 j+3

2 − μk
+ 2 + μk

2 − μk
‖Θ2 j+2,n‖,

for 0 ≤ μk < 2. We then deduce by induction on n that

‖Θ2 j+2,n‖ ≤ C
1

2 − μk

(
2 + μk

2 − μk

)n− j−1

k2 j+2 +
(
2 + μk

2 − μk

)n− j

‖Θ2 j+2, j‖.
(3.14)

123



148 S.-C. E. R. Koyaguerebo-Imé, Y. Bourgault

From hypothesis (3.4) and the DCC we have

‖Θ2 j+2, j‖ ≤ ‖u2 j+2, j − u(t j )‖ +
∥∥∥Γ j (u2 j, j − u(t j ))

∥∥∥ ≤ Ck2 j+2, (3.15)

where C is a constant independent from k. Moreover, the sequence
{(

2+μk
2−μk

)n}
n

is bounded above by exp(2μT /(2 − ε)), for 0 ≤ μk ≤ ε < 2. Whence

‖Θ2 j+2,n‖ ≤ Ck2 j+2.

Finally, by the triangle inequality, identity (3.10) and DCC, we have

‖u2 j+2,n − u(tn)‖ ≤ ‖Θ2 j+2,n‖ +
∥∥∥Γ j (u2 j,n − u(tn))

∥∥∥ ≤ Ck2 j+2,

where C is a constant depending only on j , T , the DCC constant, μ and the
derivatives of u up to order 2 j + 3.

2. Suppose that
{
u2 j+2,n

}N
n=0 satisfies (3.6) and X is finite dimensional. We can

write

F
(

tn+1/2, û2 j+2,n+1 − Γ j û2 j,n+1
)

− F
(

tn+1/2, û(tn+1) − Γ j û(tn+1)
)

=
∫ 1

0
du F

(
tn+1/2, û(tn+1) − Γ j û(tn+1) + sΘ̂2 j+2,n+1

) (
Θ̂2 j+2,n+1

)
ds.

From (3.6) and the DCC there exists k1 > 0 such that 0 < k ≤ k1 ≤ k0 implies

‖Θ̂2 j+2,n+1‖ ≤ M + Ck2 j+2 ≤ M + 1.

On the other hand, we have

‖û(tn+1) − Γ j û(tn+1)‖ =
∥∥∥∥∥∥û(tn+1) −

j∑
i=1

2i∑
l=0

(−1)l c2i

(
2i

l

)
u(tn+i−l)

∥∥∥∥∥∥ ≤ R j+1,

(3.16)
where

R j+1 := ( j + 1) max
0≤t≤T

‖u(t)‖ ≥
⎛
⎝1 +

j∑
i=1

22i |c2i |
⎞
⎠ max

0≤t≤T
‖u(t)‖. (3.17)

It follows (3.13) for

μ = sup
0≤t≤T ,‖x‖≤M+R j+1+1

‖dx F(t, x)‖ .
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Since F is differentiable and the set
{

x ∈ X : ‖x‖ ≤ M + R j+1 + 1
}
is compact

in the finite dimensional linear space X , the supremum exists and is finite. The
theorem is then deduced from the case (i).

3. If
{
u2 j+2,n

}
n converges to the exact solution u, taking the DDC and the finite

difference formula (2.5) into account, we have

(
û(tn+1) − Γ j û(tn+1) + sΘ̂2 j+2,n+1

)
− u(tn+1/2) → 0, as k → 0, for 0 ≤ s ≤ 1.

It follows from the continuity of u 
→ du F(t, u) that there exists 0 < k2 ≤ k0
such that 0 < k ≤ k2 implies

‖du F(tn+1/2 ,̂u(tn+1) − Γ û(tn+1) + τΘ̂2 j+2,n+1)‖ ≤ 1 + max
0≤t≤T

‖du F (t, u(t)) ‖.

The theorem, in this case, follows by taking μ = 1 + max0≤t≤T ‖du F (t, u(t)) ‖
in (i).

4. Here we consider the case where X is a Hilbert space and F satisfies the mono-
tonicity condition (3.7). Then, taking the inner product of the identity (3.9) with
Θ̂2 j+2,n+1, we deduce the inequality

(
DΘ2 j+2,n+1/2, Θ̂2 j+2,n+1

)
≤
(
σ 2 j+2,n+1/2, Θ̂2 j+2,n+1

)
+ β‖Θ̂2 j+2,n+1‖2(

(Λ j − Γ j )D(u2 j,n+1/2 − u(tn+1/2)), Θ̂
2 j+2,n+1

)
(3.18)

since, according to (3.7), we have

(
F
(

tn+1/2, û2 j+2,n+1 − Γ û2 j,n+1
)

− F
(
tn+1/2, û(tn+1) − Γ û(tn+1)

)
, Θ̂2 j+2,n+1

)
≤ β

∥∥∥Θ̂2 j+2,n+1
∥∥∥2 .

Inequalities (3.11)–(3.12) together with the Cauchy-Schwartz inequality yield

∣∣∣(σ 2 j+2,n+1/2, Θ̂2 j+2,n+1
)∣∣∣ ≤ Ck2 j+2‖Θ̂2 j+2,n+1‖,

and∣∣∣((Λ j − Γ j )D(u2 j,n+1/2 − u(tn+1/2)), Θ̂
2 j+2,n+1

)∣∣∣ ≤ Ck2 j+2‖Θ̂2 j+2,n+1‖,

where C is a constant depending only on j , T , a Lipschitz constant on F and the
derivatives of u up to order 2 j + 3. Substituting the last three inequalities into
(3.18), we obtain

(
DΘ2 j+2,n+1/2, Θ̂2 j+2,n+1

)
≤ Ck2 j+2‖Θ̂2 j+2,n+1‖ + β‖Θ̂2 j+2,n+1‖2,
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and we deduce from the identity

(
DΘ2 j+2,n+1/2, Θ̂2 j+2,n+1

)
= 1

2k

(
‖Θ2 j+2,n+1‖2 − ‖Θ2 j+2,n‖2

)

and the inequality

‖Θ̂2 j+2,n+1‖ ≤ 1

2

(
‖Θ2 j+2,n+1‖ + ‖Θ2 j+2,n‖

)

that

‖Θ2 j+2,n+1‖ ≤ C
k2 j+3

2 − βk
+ 2 + βk

2 − βk
‖Θ2 j+2,n‖.

The conclusion follows from the case (i), for −2 ≤ βk < 2.
��

Remark 3.2 Theorem 3.1 shows that the correction may be applied for any other
scheme satisfying DCC.

4 Convergence and order of accuracy

The aim of this section is to prove the following theorem:

Theorem 4.1 Let u ∈ C2p+3 ([0, T ], X) be the exact solution of the problem (1.1).
Suppose that one of the four conditions (i)–(iv) of Theorem 3.1 holds, with condition

(ii) or (iii) holding for all j = 0, 1, . . . , p + 1. Then each sequence
{
u2 j,n

}N
n=0,

j = 1, 2, . . . , p + 1, solution of the scheme (2.7) or (2.8)–(2.9), approximates u with
order 2 j of accuracy. Furthermore, we have the estimate

‖(D+D−)m D(u2 j,n+1/2 − u(tn+1/2))‖ + ‖(D+D−)m(u2 j,n+1 − u(tn+1))‖ ≤ Ck2 j

(4.1)
for m = 0, 1, . . . , p − j and n = m + j − 1, m + j, . . . , N − j − m, where C
is a constant depending only on p, T , and the derivatives of u and F up to order
2m + 2 j + 1 and 2m + 2 j − 1, respectively.

To prove this theorem we need Theorem 3.1 and the the following lemma:

Lemma 4.1 Let
{
u2,n

}N
n=0 be the solution of the scheme (2.7). Suppose that one of the

conditions (i), (iii) or (iv) of Theorem 3.1 holds, or
{
u2,n

}N
n=0 is bounded in the sense

of the condition (ii) of this theorem. Then
{
u2,n

}N
n=0 approximates u with order 2 of

accuracy, and we have the inequality

‖(D+D−)m D(u2,n+1/2 − u(tn+1/2))‖ + ‖(D+D−)m(u2,n+1 − u(tn+1))‖ ≤ Ck2,
(4.2)
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for m = 0, 1, . . . , p and n = m, m + 1, . . . , N − m − 1, where C is a constant
depending only on p, T , and the derivatives of u and F up to order 2m + 3 and
2m + 1, respectively.

Proof (Proof of Lemma 4.1) For the sake of simplification we suppose that F = F(x).
The general case can be handled by transforming (1.1) to an autonomous system. From

the hypotheses of the Lemma, Theorem 3.1 implies that
{
u2,n

}N
n=0 approximates u

with order two of accuracy:

‖u(tn) − u2,n‖ ≤ Ck2, for each n = 0, 1, 2, . . . , N , (4.3)

where C is a constant depending only on T , F and the derivatives of u up to order 3.
To establish (4.2) we proceed by induction on the integer m = 0, 1, . . . , p.

1. Inequality (4.2) for m = 0.
As in Theorem 3.1, we combine (1.1) and (2.7) and deduce the identity

DΘ2,n+1/2 =
[

F
(

û2,n+1
)

− F (̂u(tn+1))
]

+ σ 2,n+1/2, (4.4)

where

Θ2,n = u2,n − u(tn),

and

σ 2,n+1/2 = [
u′(tn+1/2) − Du(tn+1/2)

]− [
F
(
u(tn+1/2

)− F (̂u(tn+1))
]
.

From Taylor’s formula with integral remainder and the estimate (2.3), there exists
a function g such that

σ 2,n+1/2 = k2g(tn+1),

with
‖Dm1+ Dm2− g(tn+1)‖ ≤ C, for m2 − 1 ≤ n ≤ N − m1 − 1, (4.5)

for each nonnegative integers m1 and m2 such that m1 + m2 ≤ 2p, where C is a
constant depending only on T , F , and the derivatives of u up to orderm1+m2+3.
We can write

F
(

û2,n+1
)

− F (̂u(tn+1)) =
∫ 1

0
d F

(
K n+1
1

)
(Θ̂2,n+1)dτ1,

where

K n+1
1 = û(tn+1) + τ1Θ̂

2,n+1.
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The last identities substituted into (4.4) yield

DΘ2,n+1/2 =
∫ 1

0
d F

(
K n+1
1

)
(Θ̂2,n+1)dτ1 + k2g(tn+1). (4.6)

Proceeding as in Theorem 3.1, we deduce from (4.3) and the regularity of u that

∥∥∥∥
∫ 1

0
d F

(
K n+1
1

)
(Θ̂2,n+1)dτ1

∥∥∥∥ ≤ C‖Θ̂2,n+1‖.

Therefore, taking the norm on both sides of (4.6), we deduce by the triangle
inequality and the inequalities (4.3) and (4.5), for m1 = m2 = 0, that

‖DΘ2,n+1/2‖ ≤ C‖Θ̂2,n+1‖ + k2‖g(tn+1)‖ ≤ Ck2, (4.7)

where C is a constant depending only on T and the derivatives of u and F up to
order 3 and 1, respectively. The last inequality combined with (4.3) implies that
(4.2) holds for m = 0.

2. Here we are going to prove that inequality (4.2) remains true for m + 1, assuming
that it holds for an arbitrary integer m such that 0 ≤ m ≤ p − 1.
We apply (D+D−)m D+ to (4.6) and obtain

(D+D−)m+1 Θ2,n+1 = (D+D−)m D+h(tn+1) + k2 (D+D−)m D+g(tn+1),

(4.8)
where we set

h(tn+1) =
∫ 1

0
d F

(
K n+1
1

)
(Θ̂2,n+1)dτ1.

The main difficulty is to bound (D+D−)m D+h(tn+1) = D2m+1+ h(tn+1−m). We
have

D+h(tn) =
∫ 1

0
d F

(
K n+1
1

)
(D+Θ̂2,n)dτ1 +

∫ 1

0

∫ 1

0
d2F

(
K n
2

) (
D+K n

1 , Θ̂2,n) dτ1dτ2,

D2+h(tn) =
∫ 1

0
d F(K n+2

1 )(D2+Θ̂2,n)dτ1 +
∫ 1

0

∫ 1

0
d2F(K n+1

2 )(D+K n+1
1 , D+Θ̂2,n)dτ 2

+
∫ 1

0

∫ 1

0
d2F(K n+1

2 )(D2+K n
1 , Θ̂2,n+1)dτ 2

+
∫ 1

0

∫ 1

0
d2F(K n+1

2 )(D+K n
1 , D+Θ̂2,n)dτ 2

+
∫ 1

0

∫ 1

0

∫ 1

0
d3F

(
K n
3

) (
D+K n

2 , D+K n
1 , Θ̂2,n) dτ 3,
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where dτ i = dτ1 . . . dτi , and

K n
i+1 = K n

i + τi+1(K n+1
i − K n

i ) = K n
1 +

i∑
l=1

∑
2≤i1<···<il≤i+1

τi1 · · · τil k
l Dl+K n

1 .

(4.9)
It follows the general formula

Dq
+h(tn) =

q+1∑
i=1

∑
|αi |=q

Ln,q
i,αi

, for q = 1, 2, . . . , 2p + 1, and n ≤ N − q, (4.10)

where αi = (α1
i , . . . , αi−1

i , αi
i ) ∈ {1, 2, . . . , q}i−1 × {0, 1, . . . , q − i + 1}, and

Ln,q
i,αi

is a linear combination, with properly chosen coefficients, of the quantities

Ln,q
i,αi ,βi

=
∫

[0,1]i
di F(K n+q+1−i

i )

(
D

αi−1
i+ K

n+βi−1
i

i−1 , . . . , D
α1

i+ K
n+β1

i
1 , D

αi
i+ Θ̂2,n+βi

i

)
dτ i ,

where βi = (β1
i , . . . , β i−1

i , β i
i ) ∈ {1, 2, . . . , q}i−1 × {0, 1, . . . , q − i + 1} with

βl
i + αl

i ≤ q − l + 1, for l = 1, . . . , i . From (4.9) and (4.3) we have

K n+1
i = u(tn+1/2) + O(k), for i = 1, 2, . . . , 2p + 2,

and we deduce that there exists k3 > 0 such that 0 < k ≤ k3 implies∥∥∥di F
(
K n

i

)∥∥∥ ≤ Ci , for i = 1, 2, . . . , 2p + 2, and n = 0, 1, . . . , N − i + 1,

(4.11)
where Ci is a constant depending only on k3, T , and the derivatives of u and F up
to order 3 and i , respectively. From the inductions hypothesis (4.2) and inequality
(2.3) we have

‖Dr+K n
i ‖ ≤ C, for 1 ≤ r ≤ i ≤ 2m + 3, 1 ≤ n ≤ N − i − r + 1, (4.12)

and
‖Dr+Θ̂2,n‖ ≤ Ck2, for 1 ≤ r ≤ 2m + 1, 1 ≤ n ≤ N − r , (4.13)

where C is a constant depending only on m, T , and the derivatives of u and F up
to order r + 2 and r , respectively. Each Ln,q

i,αi ,βi
being multilinear continuous, we

deduce from (4.11)–(4.13) and the relation βl
i + αl

i ≤ q − l + 1, for l = 1, . . . , i ,
that

‖Ln,q
i,αi ,βi

‖ ≤ Ck2, for 1 ≤ i ≤ q + 1 ≤ 2m + 2, n ≤ N − q.

It follows by the triangle inequality that (4.10) for q = 2m + 1 yields

‖ (D+ D−)m D+h(tn+1)‖ =
∥∥∥D2m+1+ h(tn+1−m)

∥∥∥ ≤ Ck2,
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for n = m, m +1, . . . , N − (m +1)−1, where C is a constant depending only on
p, T , and the derivatives of u and F up to order 2m +4 and 2m +2, respectively .
Passing to the norm in identity (4.8), we deduce from (4.5) and the last inequality
that

‖ (D+D−)m+1 Θ2,n+1‖ ≤ Ck2. (4.14)

Otherwise, applying D− to (4.8), inequalities (4.11)–(4.13) and (4.14) yield

‖ (D+D−)m+1 h(tn+1)‖ =
∥∥∥D2m+2+ h(tn−m)

∥∥∥ ≤ Ck2,

for n = m, m +1, . . . , N − (m +1)−1, where C is a constant depending only on
p, T , and the derivatives of u and F up to order 2m + 5 and 2m + 3, respectively.
Therefore, passing to the norm in the identity obtained by applying D− to (4.8),
we deduce from (4.8) and the last inequality that

‖D− (D+ D−)m+1 Θ2,n+1‖ ≤ Ck2, (4.15)

for n = m, m + 1, . . . , N − (m + 1) − 1, with the constant C depending only on
p, T , and the derivatives of u and F up to order 2m + 5 and 2m + 3, respectively.
Inequalities (4.14) and (4.15) imply that the induction hypothesis is also true for
m + 1, and we deduce that (4.2) is true for each integer m = 0, 1, . . . , p.

��
Proof (Proof of Theorem 4.1) We proceed by induction on j = 1, 2, . . . , p + 1. The

case j = 1 is immediate from Lemma 4.1. Suppose that
{
u2 j,n

}N
n approximates u

with order 2 j of accuracy and satisfies (4.1), for an arbitrary j such that j ≤ p. We

are going to prove that
{
u2 j+2,n

}N
n approximates u with order 2 j + 2 of accuracy and

(4.1) holds substituting j by j + 1.
From the induction hypothesis,

{
u2 j,n

}
n satisfies DCC. Because

{
u2 j,n

}
n and{

u2 j,m}
m are computed from the same scheme DC2j, but for different time steps,{

u2 j,m}
m also satisfiesDCC. Therefore, as in 3.14, Theorem 3.1 applied to the approx-

imation
{
u2 j+2,n

} j
n=0, built from

{
u2 j,m}

m , yields

‖Θ2 j+2,n‖ ≤ C
1

2 − μk

(
2 + μk

2 − μk

)n−1

k2 j+2 +
(
2 + μk

2 − μk

)n

‖Θ2 j+2,0‖,

where

Θ
2 j+2,n =

(
u2 j+2,n − u(tn)

)
− Γ j

(
u2 j,(2 j+1)n+ j − u(t(2 j+1)n+ j )

)
, for 1 ≤ n ≤ j .

According to the DCC and the condition u2 j+2,0 = u(t0) = u0, we have∥∥∥Θ2 j+2,0
∥∥∥ =

∥∥∥Γ j
(

u2 j, j − u(t j )
)∥∥∥ ≤ Ck2 j+2.
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By the triangle inequality and the DCC, the last two inequalities yield

‖u2 j+2,n − u(tn)‖ ≤ Ck2 j+2, for n = 0, 1, . . . , j . (4.16)

From the DCC on
{
u2 j,n

}
n and the inequality (4.16), Theorem 3.1 again implies

that
{
u2 j+2,n

}N
n=0 approximates the exact solution u with order 2 j + 2 of accuracy.

Therefore, it is enough to establish (4.1) for j + 1, j ≤ p. To this end we rewrite
identity (3.9) as follows

DΘ2 j+2,n+1/2 = H(tn+1) + σ 2 j+2,n+1/2 + (Λ j − Γ j )D(u2 j,n+1/2 − u(tn+1/2)),

(4.17)
with

H(tn+1) =
∫ 1

0
du F

(
tn+1/2, û(tn+1) − Γ j û(tn+1) + τ1Θ̂

2 j+2,n+1
) (

Θ̂2 j+2,n+1
)

dτ1,

where Θ2 j+2,n and σ 2 j+2,n+1/2 are as in Theorem 3.1. Proceeding as in Lemma 4.1
and taking the finite difference formulae (2.4) and (2.5) into account, we can write

σ 2 j+2,n+1/2 = k2 j+2ε1(tn+1),

where

‖Dm1+ Dm2− ε1(tn+1)‖ ≤ C, for m1 + m2 ≤ 2p − 2 j and m2 − 1 ≤ n ≤ N − m1 − 1,

C is a constant depending only on p, T , and the derivatives of u and F . According to
the inequality (4.1) from the induction hypothesis, we may write

(Λ j − Γ j )D(u2 j,n+1/2 − u(tn+1/2)) = k2 j+2ε2(tn+1),

where

‖Dm1+ Dm2− ε2(tn+1)‖ ≤ C, for m1+m2 ≤ 2p−2 j +2 and m2−1 ≤ n ≤ N −m1−1.

Therefore, writing (4.17) as follows

D−Θ2 j+2,n+1 = H(tn+1) + k2 j+2G(tn+1),

with

G(tn+1) = ε1(tn+1) + ε2(tn+1),

the induction hypothesis and the reasoning fromLemma 4.1, substituting the functions
h and g, respectively, by H and G, Θ̂2,n+1 by Θ̂2 j+2,n+1, and k2 by k2 j+2, yields

‖(D+D−)m DΘ̂2 j+2,n+1/2‖ + ‖(D+D−)mΘ̂2 j+2,n+1‖ ≤ Ck2 j+2,
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for m = 0, 1, . . . , p − j and n = m + j − 1, m + j, . . . , N − j − m, where C
is a constant depending only on p, T , and the derivatives of u and F up to order
2(m + j +1)+1 and 2(m + j)+1, respectively. Inequality (4.1) holds for

{
u2 j+2,n

}
n

by the triangle inequality from the last inequality. ��
We end this section by the following corollary that gives an important convergence

property of the DCmethod. This property is useful for a time-steppingmethod to solve
stiff and large dimensional differential equations arising from the space discretization
of time-dependent PDEs.

Corollary 4.1 Suppose that the function F is from R
s → R

s , for a positive integer s,
and satisfies the one-sided Lipschitz condition (3.7). Then, each approximate solution{
u2 j,n

}N
n=0 from DC2 j satisfies the inequality

|u2 j,n − u(tn)| ≤ Ck2 j , for each k ∈ (0, k0), (4.18)

where C is a constant independent from any global Lipschitz constant on F, and either
k0 = 2/β for β > 0 or k0 = +∞ for β ≤ 0.

Proof From the regularity assumption on F and u and the one sided-Lipschitz con-

dition, we deduce from Theorem 4.1 that each
{
u2 j,n

}N
n=0, j = 1, 2, . . ., satisfies

DCC. Therefore, inequality (4.18) is immediate from the part 4 of Theorem 3.1. The
constant C depends only on the derivatives of u up to order 2 j + 1 and, according to
(3.16)–(3.17) and the mean value theorem, on the bound of the Jacobian Fy on the
compact set [0, T ] × {

y ∈ R
s : |y| ≤ R j

}
. ��

Remark 4.1 The convergence property satisfied by the schemes DC2 j in Corollary 4.1
is in fact B-convergence (see, e.g., [9,19]) since the constant C of the global error in
(4.18) is independent from any global Lipschitz constant of the function F . Neverthe-
less, since in the definition of B-convergence the constant C depends on high order
derivatives of the exact solution u, the identity

u′′(t) = Ft (t, u(t)) + Fu(t, u(t)) · u′(t)

can make any requirement on the independence of the constant C with respect to
Fu somewhat artificial. The numerical test on Bernoulli ODE in Sect. 6 gives an
application of Corollary 4.1.

Remark 4.2 From part 4 of the proof of Theorem 3.1, the global error for an approx-
imate solution by a DC2j+2 method, j = 0, 1, 2, . . ., of the IVP (1.1) under the
one-sided Lipschitz condition (3.7) takes the form

‖u2 j+2,n − u(tn)‖ ≤ C

(
2 + βk

2 − βk

)n

k2 j+2, (4.19)

whenever −2 ≤ βk < 2. The constant C depends on the derivatives of the function F
up to order 2 j + 2 and can be very large in magnitude. However, if β < 0 and k is not
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necessarily small, the factor
(
2+βk
2−βk

)n
sharply decreaseswith n, so thatC

(
2+βk
2−βk

)n
<<

1, leading to accurate approximate solutions. As the time step k gets larger, 2+βk
2−βk gets

smaller and accuracy occurs from the first iterations. Nevertheless, when k is very

small,
(
2+βk
2−βk

)n
is close to 1 for smaller values of n, so that the global error bound of

our DC methods reduces to C k2 j+2 shortly after startup. This occurs when k is in the
asymptotic region kμ < 2, where μ is the global Lipschitz constant of F , μ large.
For such small k, non B-convergent methods can also be used and may be competitive
with our B-convergent DCmethods, at least during this time interval following startup.
This situation will be illustrated with the Bernoulli equation in Sect. 6.

5 Absolute stability

In this section we prove the absolute stability of the DC schemes. The notion of
absolute stability is introduced by Dahlquist [5] to characterize methods able to solve
stiff ODEs. Considering the following IVP,

{
u′ = λu

u(0) = 1,
(5.1)

where λ is a complex number, we have the following definition (see [5,22]):

Definition 5.1 A numerical method is said to be absolutely stable if the corresponding
solution for the problem (5.1) for fixed k > 0 and some Re(λ) < 0 is such that

lim
n→+∞ |un| = 0. (5.2)

The region of absolute stability of a numerical method is defined as the subset of the
complex plane

A = {z = λk ∈ C : (5.2) is satisfied } . (5.3)

If A ∩ C− = C−, C− = {λ ∈ C : Re(λ) < 0}, the numerical method is said to be
A-stable.

Before establishing absolute stability results for the deferred correction schemes
(2.7) and (2.8)–(2.9), we recall the following result.

Lemma 5.1 (See [27, formula (6)]) Let Pm be a polynomial of degree m in one
variable. Then the sum

∑n
i=0 Pm(i) is a polynomial of degree m +1 in the variable n.

Lemma 5.2 Suppose that F(t, u) = λu and u0 = 1 in the initial value problem (1.1),
where λ is a complex number with negative real part (λ ∈ C−). Then the corresponding
approximate solutions from the schemes (2.7) and (2.8)–(2.9) can be written as follows

u2 j+2,n =
(
2 + λk

2 − λk

)n− j

Pj (n) , for j = 0, 1, 2, . . . , and n ≥ j, (5.4)
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where Pj (n) is a polynomial of degree j in the variable n.

Proof We suppose that λk �= −2, otherwise we trivially have u2 j,n+1 = 0, for n ≥ j .
Since F(t, u) = λu, we can rewrite (2.8) as follows

u2 j+2,n+1 = 2 + λk

2 − λk
u2 j+2,n + 2

2 − λk

(
k D−Λ j u2 j,n+1 − λkΓ j û2 j,n+1

)

where, according to formulae (2.1) and (2.2), we have

k D−Λ j u2 j,n =
j∑

i=1

c2i+1k2i+1D−(D+D−)i u2 j,n

=
j∑

i=1

2i+1∑
m=0

c2i+1(−1)m
(
2i + 1

m

)
u2 j,n+i−m,

and

Γ j û2 j,n =
j∑

i=1

c2i k
2i (D+D−)i û2 j,n =

j∑
i=1

2i∑
m=0

c2i (−1)m
(
2i

m

)
û2 j,n+i−m .

Combining the last three identities, we deduce that

u2 j+2,n+1 = 2 + λk

2 − λk
u2 j+2,n + 2

2 − λk

2 j+1∑
i=0

α j,i (λk)u2 j,n+1+ j−i , for n ≥ j ≥ 1,

(5.5)
where α j,i is affine in λk. Under the hypothesis of the lemma, (2.7) matches the
trapezoidal rule, and we have

u2,n =
(
2 + λk

2 − λk

)n

,

that is (5.4) is true for j = 0. Suppose that (5.4) holds for an arbitrary integer j ≥ 0.
From (5.5) we have

u2 j+4,n = 2 + λk

2 − λk
u2 j+4,n−1 + 2

2 − λk

2 j+3∑
i=0

α j+1,i (λk)u2 j+2,n+1+ j−i ,

with n ≥ j + 2, and, substituting each u2 j+2,n+1+ j−i by the formula given by the
induction hypothesis (5.4), we deduce that

u2 j+4,n = 2 + λk

2 − λk
u2 j+4,n−1 +

(
2 + λk

2 − λk

)n− j−1

Q j (n),
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where

Q j (n) = 2

2 − λk

2 j+2∑
i=0

α j+1,i (λk)

(
2 + λk

2 − λk

) j+2−i

Pj (n + 1 + j − i).

It follows that

u2 j+4,n =
(
2 + λk

2 − λk

)n− j−1
⎛
⎝u2 j+4, j+1 +

n∑
i= j+2

Q j (i)

⎞
⎠ .

It is clear that Q j (n) is a polynomial of degree j in the variable n as Pj (n). Therefore,
according to the Lemma 5.1,

∑n
i= j+2 Q j (i) is a polynomial of degree ( j + 1) in the

variable n. Whence,

u2 j+4,n =
(
2 + λk

2 − λk

)n− j−1

Pj+1(n), n ≥ j + 1,

where

Pj+1(n) = u2 j+4, j+1 +
n∑

i= j+2

Q j (i)

is a polynomial of degree j + 1 in the variable n. We then deduce by induction that
the lemma is true for arbitrary non-negative integer j . ��
Theorem 5.1 Each of the deferred correction schemes (2.7) and (2.8)–(2.9) is A-stable.

Proof From Lemma 5.2 we have, for Re(λk) < 0,

lim
n→+∞ |u2 j+2,n| = lim

n→+∞

∣∣∣∣∣
(
2 + λk

2 − λk

)n− j

Pj (n)

∣∣∣∣∣ = lim
n→+∞ |Pj (n) |e(n− j)ln

∣∣∣ 2+λk
2−λk

∣∣∣ = 0

since, under the condition Re(λk) < 0, we have
∣∣∣ 2+λk
2−λk

∣∣∣ < 1. ��

6 Numerical experiments

In this section we evaluate the accuracy and order of convergence of the schemes
DC2, DC4, . . . , DC10, implemented using the Scilab programming language. The
starting values are computed using the scheme (2.10)–(2.11).

We choose six standard problems for the evaluation. The first problem concerns
B-convergence by considering a Bernoulli equation. The second problem is about
long term integration with an oscillatory solution of large amplitude. The four other
problems are about stiffness. The third and fourth problems (B5 modified and E5,
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respectively) both involve complex eigenvalues of negative real parts, where the imag-
inary parts of the eigenvalues for the third problem have larger magnitudes while those
from the fourth problem have smaller magnitudes. The fifth problem (Robertson) is
nonlinear and stiff with real negative eigenvalues, and it also addresses B-convergence.
The sixth problem is the van der Pol oscillator, which is stiff with arbitrary complex
eigenvalues.

The first three problems have analytic solutions. For problems (6.4), (6.5) and
(6.6) that do not have an analytic solution, we consider a small time step such that
the approximate solutions with DC6, . . . , DC10 are almost identical [to machine
precision for problem (6.5)], and we choose one of the approximate solutions as
reference solution.

For solutions u = (u1, . . . , ud) : [0, T ] → R
d , 1 ≤ d ≤ 6, the absolute error on

the approximate solutions
{
u2 j,n

}
0≤n≤N , 1 ≤ j ≤ 5, is computed with the norm

‖u2 j
i − ui‖ = max

0≤n≤N
|u2 j,n

i − ui (tn)|, 1 ≤ i ≤ d.

For very large N we extract solutions at 2 × 106 or 3 × 106 discrete times evenly
spread over the interval [0, T ].

For a comparison of accuracy, we implement in Scilab the backward differentiation
formulae (BDF) of order 2, 4 and 6, and the explicit Runge-Kutta (RK) of order 4.
The implemented BDF are run with exact starting values for the first three problems
that have analytic solutions, while for problems four and five the starting values are
provided by the function stiff (implementingBDFwith adaptive steps) of the solver
ode from Scilab. For the van der Pol oscillator, the comparison of our DC methods is
done only with the solutions from stiff and rkf from the solver ode. For each of
the problems, we give a table of absolute errors and orders of convergence for pairs of
two consecutive time steps, for the approximate solutions with the DC methods. We
denote by kmax the maximal time step allowed to compute an approximate solution
with the solver stiff or rkf (see [8] for a discussion on maximal time steps).

6.1 Bernoulli differential equation

u′(t) = F(t, u) = −0.1u(t) − 1000u20(t), u(0) = 1, t ∈ [0, 10]. (6.1)

Table 2 gives the absolute error and the order of convergence for each pair of consecu-
tive time steps, in the case of DC, BDF and RK4 methods. The dash for RK4 indicates
that the method is unstable for the corresponding time steps.

This problem addresses B-convergence since the function F is one-sided Lips-
chitz with β = −0.1, when positive solutions are considered. The problem is strongly
nonlinear with the magnitude of derivatives of the right hand side function F exponen-
tially increasing with the order of the derivatives. Such derivatives of large magnitude
generally limit the accuracy of high order methods that are not B-convergent. In fact,
B-convergence provides at least two main advantages to time-stepping methods. First,
when β < 0, the error estimate for our B-convergent methods remains valid for large
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k > 0, as stated in our Corollary 4.1, and the error can be small even for relatively
large time step k, as discussed in Remark 4.2. As seen in Table 2, DCmethods provide
accurate approximate solutions for large time steps, and their accuracy increases with
the order of the method. However, the order of convergence of the DC methods is
suboptimal in this range of time steps. BDF methods are stable for large time steps,
but they are less accurate than their corresponding DC methods (except for BDF2).
As expected, RK4 is unstable for k ≥ k0 ≈ 2.03 × 10−3.

A second main advantage of B-convergence is the relatively small size of the error
constant that depends on β (among others) instead of the potentially much larger two-
side Lipschitz constant μ, see Remarks 4.1 and 4.2. This should result in lower error
when comparing a B-convergent method with a non B-convergent method of the same
order for the same time step, in the range of small time steps. Table 2 suggests that
the error constants are, respectively, about 10, 100, 1000 smaller for DC2, DC4, DC6
compared to BDF2, BDF4, BDF6 methods. Of course, care is needed when doing
such crude comparisons of errors. For instance, some non B-convergent method may
happen to be competitive on a specific problem for very small time steps, as discussed
in Remark 4.2. For the smallest time steps, RK4 is more accurate than DC4 and any
of the BDF methods, but as expected DC6-10 achieve better accuracy.

Finally, we note that DC4 and DC6 almost achieve their proper order for k ≤
5 × 10−6, and the order of convergence of DC8 and DC10 are not observed since
these methods quickly achieve machine accuracy.

6.2 Oscillatory problem [14]

u′ = λu cos(t), u(0) = 1, T = 106, λ = 10. (6.2)

The exact solution is u(t) = eλ sin(t). The original problem is set with λ = 1 in [14].
The author in [16] solved this problem with Runge-Kutta methods of orders 4 and 8,
for λ = 2 and T = 2580π , to “illustrate the need of higher ordermethodswhen a long-
term integration problem is considered”. Table 3 gives the absolute error and the order
of convergence for each pair of consecutive time steps. The BDFmethods are run only
for the smallest time step. The solvers rkf and stiff use adaptive time stepping
with a maximal time step kmax = 0.1 and tolerances r tol = 100 × atol = 10−10.

The magnitude of the exact solution u(t) = e10 sin(t) of the modified oscillatory
problem is large, resulting in a relatively large absolute error obtained by the DC
schemes (absolute errors of about 10−7 is possible for a good choice of stepsize).
Moreover, the long term integration influences the accuracy of these schemes since
they achieve absolute errors of about 10−9 when the solution interval is reduced to
[0, 1000]. Nevertheless, each DC scheme converges with its proper order. The DC
methods are considerably more accurate than standard methods (both with fixed and
variable stepsizes) which are inaccurate for this problem. For instance, for BDF2 and
rkf, the solutions remain bounded with bounds close to the maximal amplitude of
the exact solution but the phase of the oscillation is completely wrong.
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Table 3 Absolute error (order of convergence) for the oscillatory problem

k DC2 DC4 DC6 DC8 DC10

5.00e−2 3418 456.26 42.665 3.2350 0.2132

2.50e−2 790.2 (2.1) 25.351 (4.2) 0.5959 (6.2) 1.17e−2 (8.1) 1.9e−4 (10.1)

1.25e−2 193.8 (2.0) 1.5493 (4.0) 9.17e−3 (6.0) 5.28e−5 (7.8) 2.79e−6 (6.1)

6.25e−3 48.23 (2.0) 9.67e−2 (4.0) 1.4e−4 (5.99) 2.78e−6 (0.0) 2.78e−6 (0.0)

1.56e−3 3.010 (2.0) 3.8e−4 (3.99) 4.72e−6 (2.5) 4.67e−6 (-0.3) 4.7e−6 (-0.3)

k BDF2 BDF4 BDF6 rkf stiff

1.56e−3 22,026.46 14,836.76 5578.40 22,026.46 2636.00

6.3 Problem B5modified [8], stiff with complex eigenvalues of negative real parts
and larger (in magnitude) imaginary parts

y′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

−10 α 0 0 0 0
−α −10 0 0 0 0
0 0 −4 0 0 0
0 0 0 −1 0 0
0 0 0 0 −0.5 0
0 0 0 0 0 −0.1

⎤
⎥⎥⎥⎥⎥⎥⎦

y, y(0) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎦

, α = 5000, T = 20. (6.3)

This problem, originally set with α = 100, is an illustration of ODEs resulting from
a semi-discretization by finite element methods of parabolic PDEs [26]. We choose
α = 5000 to make the problem a little more difficult. Table 4 gives the absolute
errors for the first component of the approximate solutions which is similar for the
second component. The absolute errors for the others components quickly achieve
machine precision. The solvers stiff and rkf are run with kmax = 2 × 10−5 and
atol = 10 × r tol = 10−15.

Table 4 Absolute error (order of convergence) for the first component of the solution for B5 modified

k DC2 DC4 DC6 DC8 DC10

2.000e−5 0.2152 6.51e−2 2.22e−2 8.00e−3 2.98e−3

5.000e−6 1.35e−2 (2) 2.59e−4 (4) 5.59e−6 (6) 1.27e−7 (8) 2.97e−9 (10)

2.500e−6 3.38e−3 (2) 1.62e−5 (4) 8.74e−8 (6) 4.9e−10 (8) 2.9e−12 (10)

1.250e−6 8.47e−4 (2) 1.01e−6 (4) 1.36e−9 (6) 1.9e−12 (8) 7.4e−14 (5.3)

3.125e−7 5.29e−5 (2) 4.00e−9 (4) 3.6e−13 (6) 7e−14 (2.4) 6.3e−14

6.250e−8 2.11e−6 (2) 6.3e−12 (4) 6.02e−13 2.33e−13 1.19e−13

k BDF2 BDF4 BDF6 rkf stiff

1.25e−6 3.38e−3 7.94e−8 2.3e−12 2.36e−6 6.6e−10
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The imaginary parts of the Jacobian eigenvalues of the modified B5 problem are
large. Even though the real parts of the eigenvalues are negative, we observe that
smaller time steps are required by DC schemes to obtain accurate approximations.
DC schemes achieve their proper order of convergence, but BDF methods perform
better for this problem than DC schemes.

6.4 Problem E5 [8], stiff with complex eigenvalues of negative real parts and
smaller (in magnitude) imaginary parts

y′
1 = −7.89 × 10−10y1 − 1.1 × 107y1y2

y′
2 = 7.89 × 10−10y1 − 1.13 × 109y2y3

y′
3 = 7.89 × 10−10y1 − 1.1 × 107y1y2 + 1.13 × 103y4 − 1.13 × 109y2y3

y′
4 = 1.1 × 107y1y2 + 1.13 × 103y4

y(0) = (1.76 × 10−3, 0; 0; 0)t , T = 1000.
(6.4)

A reference solution is computed with DC10 for k = 10−3. The solution of this
problem has small magnitude in [1.618× 10−3, 1.76× 10−3] × [0, 1.46× 10−10] ×
[0, 8.27×10−12]×[0, 1.38×10−10] and the eigenvalues of the Jacobianmatrix d F(y)

along the solution curve belong to the region [−20490, 3.68 × 10−12] × [−9.17 ×
10−5, 9.17×10−5] of the complex plane. Table 5 gives the absolute errors and order of
convergence for the four components of the approximate solutions. For BDF, RK4 and
stiff, the absolute errors are provided only for the first component. The absolute
error on the other components is smaller by 2 (RK4) to 5 (stiff) orders ofmagnitude,
as we should expect from themagnitude of the solution components. The implemented
BDF methods are run with starting values deduced from the solver stiff. The
implemented RK4 is unstable for time steps k ≥ 2 × 10−4, and the absolute error is
reported for k = 10−4 in Table 5. The solver stiff is run with kmax = 10−3 and
r tol = 108 × atol = 10−15.

Imaginary parts of eigenvalues for the problem E5 are smaller, and larger time steps
allowDC schemes to produce very accurate approximations, compared to themodified
B5 problem. DC schemes perform better for this problem than BDF methods. They
achieve their proper order of convergence but on a relatively small range of time steps,
for higher order DCmethods, since the solution is already very accurate for large time
steps.

6.5 Robertson (1966) [11], stiff with real negative eigenvalues

y′
1 = −0.04y1 + 104y2y3

y′
2 = 0.04y1 − 104y2y3 − 3.107y22

y′
3 = 3.107y22

y(0) = (1, 0, 0)t , T = 105. (6.5)
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This is one of the three problems considered as stiffest in [11].We compute a reference
solution with DC10 for the time step k = 1/6000. The solution belongs to the region
[1.78×10−2, 1.00]×[0, 3.58×10−5]×[0, 0.983] and the eigenvalues of the Jacobian
dF(y) along the solution curve belong to [−9825.744, 0]. Table 6 gives absolute errors
and orders of convergence ofDCmethods for each component of the solution. For other
methods, we give only the maximal errors on the three components of the approximate
solutions. The solver stiff is run with kmax = 1/600 and r tol = 100 × atol =
10−15. The solver rkf fails in solving this problem for various tolerances and kmax ,
and Scilab reported: “it is likely that rkf45 is inefficient for solving this problem”.
The implemented BDF methods are run with starting values deduced from the solver
stiff using the preceding tolerances.

The Robertson problem is stiff and addresses B-convergence since its Jacobian
matrix has real negative eigenvalues with some having large magnitude. For this prob-
lem, DC schemes produce accurate approximate solutions even for large time steps,
and high order DC methods can be avoided (DC6 is enough). The convergence is
slow for k > 1/300, but faster convergence happens for k in the asymptotic region
(k < 1/300). The DC schemes perform better than BDF methods at equal order and
time step. A comparison of the errors for k = 1/600 suggests that the error constants
might be 3 to 5 orders of magnitude smaller for DC than BDF methods.

6.6 van der Pol oscillator [8,24], stiff with arbitrary complex eigenvalues

y′
1 = y2

y′
2 = μ(1 − y21 )y2 − y1

y1(0) = 2, y2(0) = 0, T = 3000, μ = 1000. (6.6)

This problem was initially proposed for T = 1 and μ = 5 in [8]. The actual version
results from a suggestion by Shampine [24]. We compute a reference solution with
DC8 for k = 1.875 × ×10−6. The solution belong to the region [−2, 2.000073] ×
[−1323.04, 1231.35] of the real plane and the eigenvalues along the solution curve
belong to the region [−3000.29, 1123.17] × [−1158.48, 1158.48] of the complex
plane. Table 7 gives the absolute errors and orders of convergence. For rkf and
stiff, we use kmax = 7.5 × 10−5 and r tol = 10, atol = 10−16.

The van der Pol oscillator is stiff and the solution has a large magnitude. DC6 and
DC8 reached their order of convergence. This shows that theDC strategyworkswell in
spite of the fact that DC2 and DC4 would require much smaller time steps to produce
reasonably accurate solutions. The order of convergence for DC10 is not observed,
though the solutions obtained are accurate.

6.7 Discussion of the numerical results

In general, a careful assessment of the proof of Theorem 3.1 points out to the fact
that, for a system with complex eigenvalues λ = λ1 + iλ2, we only need a time step k
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Table 7 Absolute error (order of convergence) for the van der Pol’s equation

k DC2 DC4 DC6 DC8 DC10

3.75e−5 3.0089 2.9999 2.9440 0.1838 3.12e−3

1322.9 1327.5 1320.6 197.79 3.26792

1.50e−5 2.9769 (0) 2.9999 (0) 0.1080 (3.6) 1.90e−4 (7.5) 5.1e−5 (4.5)

1333.3 (0) 1330.3 (0) 113.69 (2.7) 0.18281 (7.6) 5.1e−2 (4.5)

7.50e−6 2.8706 (0) 2.6947 (0) 1.60e−3 (6.0) 1.74e−6 (6.7) 1.27e−5 (1.9)

1327.4 (0) 1286.5 (0) 1.6349 (6.1) 1.80e−3 (6.7) 1.29e−2 (1.9)

1.875e−6 0.74(0.9) 0.339 (1.5) 2.50e−7 (6.3) – 2.88e−7 (2.7)

659. (0.5) 373.2 (0.9) 2.91e−4 (6.2) – 2.92e−4 (2.7)

– stiff rkf

2.16e−6 3.54e−2

3.48e−3 64.76

such that k max {λ1, |λ2|} < 2 for a good accuracy (faster convergence happens when
−λ1 >> |λ2|). These situations are well illustrated by the test cases of Sects. 6.3
and 6.4, where the required time step for accuracy is much smaller for modified B5
than E5. However, time steps k such that kμ � k|λ| < 2, μ � max

0≤t≤T
‖du F (t, u(t)) ‖,

is necessary for an asymptotic convergence with proper order. For example, in the case
of the Bernoulli equation we have λ � −20,000.1 < 0 andμ = 20,000.1. Large time
steps provide accurate approximations (as expected from B-convergent methods), but
asymptotic convergences are observed only for kμ < 2.

For the computational effort of the DC methods, we recall that to compute an
approximate solution on discrete points 0 = t0 < t1 < · · · < tN = T , DC2 solves
N nonlinear systems while DC2 j , j ≥ 2, solves j × N systems. In the case of the
Bernoulli equation, for example, DC10 achieves the maximal error of about 1.1 ×
10−11 by solving approximately 5×106 nonlinear systemswhile themaximal absolute
error for DC2 is about 8.9 × 10−7 for N = 5 × 106. We did not report any CPU
time since our code is written in Scilab, an interpreted language. All methods that
we implemented are consequently interpreted, while rkf and stiff provided with
Scilab are compiled. Nevertheless, themain burden in implicit time-stepping solvers is
the resolution of nonlinear systems, and we have shown that higher order DCmethods
give the most accurate approximations by solving fewer systems of equations. This
gives a clue on the CPU time required and the efficiency of these methods. High order
DC methods should be competitive in situations where using fully implicit methods
is unavoidable.

7 Conclusions

We have presented a new approach of deferred correction methods for the numerical
solution of general first order ordinary differential equations. Proofs for consistency,
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order of convergence and stability of the method are given, which rely on a recursive
argument using a new deferred correction condition. The numerical experiments com-
plywith the theory and showahigh accuracy of themethod and its satisfactoryA-stable
property and B-convergence. Globally, each DC scheme reaches its proper order of
convergence and applies to any category of problem, providing accurate approxima-
tions for time steps not necessarily small. The accuracy of the DC schemes increases
with the level of correction.

References

1. Auzinger, W.: Defect correction methods. In: Engquist, B. (ed.) Encyclopedia of Applied and Compu-
tational Mathematics, pp. 323–332. Springer, Berlin (2015)

2. Christlieb, A., Ong, B., Qiu, J.M.: Integral deferred correction methods constructed with high order
Runge–Kutta integrators. Math. Comput. 79, 761–783 (2010)

3. Chung, T.: Computational Fluid Dynamics, 2nd edn. Cambridge University Press, Cambridge (2010)
4. Dahlquist, G., Björck, A.K.: Numerical Methods in Scientific Computing, vol. I. SIAM, Philadelphia

(2008)
5. Dahlquist, G.G.: A special stability problem for linear multistep methods. Nordisk Tidskr. Informa-

tionsbehandling (BIT) 3, 27–43 (1963)
6. Daniel, J.W., Pereyra, V., Schumaker, L.L.: Iterated deferred corrections for initial value problems.

Acta Cient. Venezolana 19, 128–135 (1968)
7. Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential

equations. BIT 40, 241–266 (2000)
8. Enright, W.H., Hull, T., Lindberg, B.: Comparing numerical methods for stiff systems of O.D.E:s. BIT

15, 10–48 (1975)
9. Frank, R., Schneid, J., Ueberhuber, C.W.: The concept of B-convergence. SIAM J. Numer. Anal. 18(5),

753–780 (1981)
10. Gustafsson, B., Kress, W.: Deferred correction methods for initial value problems. BIT 41, 986–995

(2001)
11. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic

Problems, vol. 14. Springer, Berlin (1991)
12. Hansen, A.C., Strain, J.: On the order of deferred correction. Appl. Numer. Math. 61, 961–973 (2011)
13. Hildebrand, F.B.: Introduction to Numerical Analysis. McGraw-Hill, New York (1974)
14. Hull, T.E., Enright, W.H., Fellen, B.M., Sedgwick, A.E.: Comparing numerical methods for ordinary

differential equations. SIAM J. Numer. Anal. 9, 603–637 (1972)
15. Isaacson, E., Keller, H.B.: Analysis of Numerical Methods. Wiley, New York (1966)
16. Karouma, A.: A class of contractivity preserving Hermite–Birkhoff–Taylor high order time discretiza-

tion methods. Ph.D. thesis, Université d’Ottawa/University of Ottawa (2015)
17. Koyaguerebo-Imé, S.C.E., Bourgault, Y.: Finite difference and numerical differentiation: General for-

mulae from deferred corrections. arXiv preprint arXiv:2005.11754 (2020)
18. Koyaguerebo-Imé, S.C.R., Bourgault, Y.: Arbitrary high-order unconditionally stable methods

for reaction-diffusion equations via deferred correction: Case of the implicit midpoint rule.
arXiv:2006.02962v2 (2020)

19. Kraaijevanger, J.: B-convergence of the implicit midpoint rule and the trapezoidal rule. BIT 25(4),
652–666 (1985)

20. Kress, W., Gustafsson, B.: Deferred correction methods for initial boundary value problems. J. Sci.
Comput. 17(1–4), 241–251 (2002)

21. Kushnir, D., Rokhlin, V.: A highly accurate solver for stiff ordinary differential equations. SIAM J.
Sci. Comput. 34, A1296–A1315 (2012)

22. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics, vol. 37, 2nd edn. Springer, Berlin (2007)
23. Schild, K.H.: Gaussian collocation via defect correction. Numer. Math. 58, 369–386 (1990)
24. Shampine, L.F.: Evaluation of a test set for stiff ODE solvers. ACM Trans. Math. Softw. 7, 409–420

(1981)

123

http://arxiv.org/abs/2005.11754
http://arxiv.org/abs/2006.02962v2


170 S.-C. E. R. Koyaguerebo-Imé, Y. Bourgault

25. Spijker, M.N.: Stiffness in numerical initial-value problems. J. Comput. Appl. Math. 72, 393–406
(1996)

26. Stewart, K.: Avoiding stability-induced inefficiencies in BDF methods. J. Comput. Appl. Math. 29,
357–367 (1990)

27. Tuenter, H.: The Frobenius problem, sums of powers of integers, and recurrences for the Bernoulli
numbers. J. Number Theory 117, 376–386 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Arbitrary high order A-stable and B-convergent numerical methods for ODEs via deferred correction
	Abstract
	1 Introduction
	2 Deferred correction schemes for the implicit midpoint rule
	3 Deferred correction condition (DCC)
	4 Convergence and order of accuracy
	5 Absolute stability
	6 Numerical experiments
	6.1 Bernoulli differential equation
	6.2 Oscillatory problem hull1972comparing
	6.3 Problem B5 modified enright1975comparing, stiff with complex eigenvalues of negative real parts and larger (in magnitude) imaginary parts
	6.4 Problem E5 enright1975comparing, stiff with complex eigenvalues of negative real parts and smaller (in magnitude) imaginary parts
	6.5 Robertson (1966) wanner1991solving, stiff with real negative eigenvalues
	6.6 van der Pol oscillator enright1975comparing,shampine1981evaluation, stiff with arbitrary complex eigenvalues
	6.7 Discussion of the numerical results

	7 Conclusions
	References




