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Abstract
Various applications in numerical linear algebra and computer science are related
to selecting the r × r submatrix of maximum volume contained in a given matrix
A ∈ R

n×n .We propose a new greedy algorithm of costO(n), for the case A symmetric
positive semidefinite (SPSD) and we discuss its extension to related optimization
problems such as the maximum ratio of volumes. In the second part of the paper
we prove that any SPSD matrix admits a cross approximation built on a principal
submatrix whose approximation error is bounded by (r +1) times the error of the best
rank r approximation in the nuclear norm. In the spirit of recent work by Cortinovis
and Kressner we derive some deterministic algorithms, which are capable to retrieve
a quasi optimal cross approximation with cost O(n3).

Keywords Maximum volume · Cross approximation · Symmetric positive definite
matrices

1 Introduction

Given A ∈ R
n×n and r ∈ N, this work is mainly concerned with the selection of

row and column subsets of indices I , J ⊂ {1, . . . , n} of cardinality r with one of the
following features:

(i) A(I , J ) is a maximum volume submatrix that is

V(A(I , J )) = max
|̂I |=|̂J |=r

V(A(̂I , ̂J )), V(A(I , J )) := | det(A(I , J ))|,
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(ii) given another matrix B ∈ R
n×n , (I , J ) is a maximum point of

V(A(I , J ))

V(B(I , J ))
= max

|̂I |=|̂J |=r

V(A(̂I , ̂J )

V(B(̂I , ̂J ))
,

(iii) AI J := A(:, J )A(I , J )−1A(I , :) is a quasi optimal cross approximation, i.e.,
it verifies

‖A − AI J‖ ≤ p(r) · min
rk(C)=r

‖A − C‖,

for a low-degree polynomial p(·) and a matrix norm ‖·‖.
A connection between problems (i) and (i i i) is given by a result of Goreinov and

Tyrtyshnikov [16], which says that if A(I , J ) has maximum volume then the cross
approximation AI J satisfies the bound

‖A − AI J‖max ≤ (r + 1)σr+1(A), (1)

with σk(·) indicating the k-th singular value and ‖·‖max denoting the maximum mag-
nitude among the entries of the matrix argument. We remark that, in general being a
quasi optimal cross approximation does not imply any connection between the volume
of A(I , J ) and the maximum volume. Indeed, while (i) is an NP hard problem, it has
been recently shown that a quasi optimal approximation with respect to the Frobenius
norm always exists [33] and can be found in polynomial time [6].

Maximum volume. Problem (i) finds application in a varied range of fields that
highlight how the maximum volume concept is multifaceted. For instance, identifying
the optimal nodes for polynomial interpolation on a given domain, the so called Fekete
points, can be recast as selecting the maximum volume submatrix of Vandermonde
matrices on suitable discretization meshes [29]. In the optimal experimental design
of linear regression models, it is of interest to select the subset of experiments, which
is influenced the least by the noise in the measurements. To pursue this goal, the D-
optimality criterion suggests to look at the covariance matrix of the model and find its
principal subblock of maximum volume [22]. Other fields where (i) arises are rank
revealing factorizations [17,18], preconditioning [1] and tensor decompositions [25].

Finding a submatrix with either exact or approximate maximum volume are both
NP hard problems [5,31]. Despite this downside there has been quite some effort in the
development of efficient heuristic algorithms for volume maximization. A central tool
for our discussion is one of these methods: the Adaptive Cross Approximation (ACA)
[2,20]. ACA is typically presented as a low-rankmatrix approximation algorithm but it
can be interpreted as a greedymethod for maximizing the volume.When used for low-
rank approximation, ACA is equivalent to a Gaussian elimination process with rook
pivoting, and it returns an incomplete LU factorization. In particular, the approximant
computed by ACA is of the form in (1) although there is no clear relation between the
maximum volume submatrix and the submatrix selected by ACA. On the other hand,
the latter can be used as starting guess for procedures that “locally maximize” the
volume, e.g., [15,24]. These algorithms guarantee that the volume of the submatrix
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that they return can not be increased with a small cardinality change of either its row
or column index set. See also [26] for an analysis of these techniques.

In many situations the matrix A is symmetric positive semidefinite (SPSD). For
instance, this setting arises in kernel-based interpolation [13], low-rank approximation
of covariance matrices [20,23] and discretization of operators involving convolution
with a positive semidefinite kernel function [3]. The SPSD structure comes with a
major benefit: the submatrix of maximum volume is always attained for a principal
submatrix [7]. Although this does not cure the NP hardness of the task, it reduces
significantly the search space by adding the constraint I = J .

In Sect. 2.2 we propose a new efficient procedure for the local maximization of the
volume over the set of principal submatrices. More specifically, our algorithm returns
an r × r principal submatrix whose volume is maximal over the set of principal
submatrices that can be obtained with the replacement of one of the selected indices.
Implementation details and complexity analysis are discussed inSect. 2.2.2.Numerical
tests are reported in Sect. 2.4.

Maximum ratio of volumes. To the best of our knowledge, there is no reference to
problem (i i) in the literature and there are no direct links with either (i) or (i i i) when
generic matrices A, B are considered. Nevertheless, we might think at the following
situation: suppose that A is SPSD, B is banded and symmetric positive definite and that
we want to compute a cross approximation of E := T−�

B AT−1
B —where TB indicates

the Cholesky factor of B—without forming E . Since E is SPSD it would make sense
to apply ACA with diagonal pivoting. However, this requires to evaluate the diagonal
of E , which is as expensive as forming the whole matrix. Our idea is to replace the
diagonal pivoting with the solution of (i i) as heuristic strategy for finding a cross
approximation for E .

Indeed, the Binet-Cauchy theorem tells us that a principal minor of E satisfies

det(E(J , J )) =
∑

|H |=|K |=r

det(T−�
B (J , H)) det(A(H , K )) det(T−1

B (K , J ))

= det(T−�
B (J , J )) det(A(J , J )) det(T−1

B (J , J ))

+
∑

(H ,K ) �=(J ,J )

det(T−�
B (J , H)) det(A(H , K )) det(T−1

B (K , J )).

If B is banded and well conditioned, then TB is banded and the magnitude of the
entries of T−1

B decays exponentially with the distance from the main diagonal [9].
Under these assumptions we might have

det(E(J , J )) ≈ det(T−�
B (J , J )) det(A(J , J )) det(T−1

B (J , J )) ≈ det(A(J , J ))

det(B(J , J ))
.

(2)
Based on this argument we propose to select J via a greedy algorithm for (i i) and
return EJ := E(:, J )E(J , J )E(J , :) as approximation of E . Note that, forming the
factors of EJ only requires to solve r linear systems with TB and to compute r matrix
vector products with A.
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198 S. Massei

In Sect. 2.3 we describe how to extend the ACA based techniques for addressing (i)
to deal with (i i). We conclude by testing the approximation property of the approach
in Sect. 2.4.

Quasi optimal cross approximations. In contrast to the typical robustness of ACA and
its simple formulation, very little can be said a priori on the quality of the cross approx-
imation that it returns. Even for structured cases, a priori bounds for the approximation
error contain factors that grow exponentially with r [20,21], with the only exception
of the doubly diagonally dominant case [7].

Recently, Zamarshkin and Osinsky proved in [33] the existence of quasi optimal
cross approximations with respect to the Frobenius norm by means of a probabilistic
method. Derandomizing the proof of this result, Cortinovis and Kressner have shown
in [6] how to design an algorithm that finds a quasi optimal cross approximation in
polynomial time.

In Sect. 3.1 we describe how to modify the technique used in [33] to prove that
for an SPSD matrix A there exists a quasi optimal cross approximation with respect
to the nuclear norm which is built on a principal submatrix, i.e., I = J . This is of
particular interest in uncertainty quantification: if A is the covariance matrix of a
Gaussian process, then the nuclear norm of the error bounds the Wasserstein distance
with respect to another Gaussian process that can be efficiently sampled [23].

In Sects. 3.2–3.3 we propose two algorithms, obtained with the method of con-
ditional expectations, which are able to retrieve quasi optimal cross approximations
of SPSD matrices in polynomial time. We conclude by discussing the algorithmic
implementation and reporting, in Sect. 3.4, numerical experiments illustrating the
performances of the methods.

Notation. In this work we use Matlab-like notation for denoting the submatrices. The
identity matrix of dimension n is indicated with Idn and we use e j to denote the j-th
column of the identity matrix, whose dimension will be clear from the context. The
symbols ‖·‖∗, ‖·‖F indicate the nuclear and Frobenius norm, respectively.

2 Maximizing the volume and the ratio of volumes

Given r ∈ N, an SPSD matrix A ∈ R
n×n and a symmetric positive definite matrix

B ∈ R
n×n , the ultimate goal of this section is to discuss some numerical methods for

dealing with the following optimization problems:

max
̂J⊂{1,...,n}, |̂J |=r

V(A(̂J , ̂J )), (3)

max
̂J⊂{1,...,n}, |̂J |=r

V(A(̂J , ̂J ))

V(B(̂J , ̂J ))
. (4)

When B = Idn , (4) reduces to (3); moreover (3) corresponds to the maximum volume
problem because for an SPSDmatrix, themaximum is attained at a principal submatrix
[7]. We start by recalling a well known greedy strategy to deal with (3), the so-called
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Adaptive Cross Approximation (ACA) [20]. Then, we will see how to generalize ACA
for addressing (4).

2.1 Adaptive cross approximation

The selection of high volume submatrices of A is intimately related with the low-rank
approximation of A. The link is the cross approximation [2,32], which associates with
a given subset of indices J = { j1, . . . , jr }, or equivalently with an invertible submatrix
A(J , J ), the rank r matrix approximation1

AJ := A(:, J )A(J , J )−1A(J , :). (5)

Cross approximations are attractive because to build AJ only requires a partial eval-
uation of the entries of A, which is crucial when considering large scale matrices.
Moreover, since the residual matrix RJ := A − AJ is SPSD, the approximation error
can be cheaply estimated as

trace(RJ ) = ‖RJ‖∗ ≥ ‖RJ‖F ≥ ‖RJ‖2 ≥ trace(RJ )

n
. (6)

When J is a maximum point of (3), AJ yields a quasi optimal approximation error
with respect to the maximum norm [16]. However, solving (3) is NP hard which paves
the way to the use of heuristic approaches such as ACA.

The ACA method selects J with a process analogous to Gaussian elimination
with complete pivoting. The algorithm begins by choosing j1 = argmax j A j j and
computes RJ1 = A − A(:, j1)A

−1
j1 j1

A( j1, :). Then, the procedure is iterated on the
residual matrices RJi , i = 1, . . . , r − 1 in order to retrieve r indices. The elements
(RJi ) ji+1 ji+1 correspond to the first r pivots selected by the Gaussian elimination with
complete pivoting on the matrix A, and we have the identity

det(A(J , J )) =
r−1
∏

i=0

(RJi ) ji+1 ji+1, (7)

where RJ0 := A. In particular, (7) explains that each step of ACA augments the set
of selected indices by following a greedy strategy with respect to the volume of the
selected submatrix. The whole procedure is reported in Algorithm 1. Note that, if one
stores the vectors u1, . . . , ur , then only the diagonal and the columns j1, . . . , jr , of
A, need to be evaluated. The efficient implementation of the algorithm replaces the
computation of the residual matrix at line 8 with the update of the diagonal of RJ .
Computing RJ (:, jk) = A(:, jk) − Uk−1Uk−1( jk, :)�, Uk−1 := [u1, . . . , uk−1], only
requires a partial access to A as well. In case the matrix A is not formed explicitly
and its entries are evaluated with a given handle function, Algorithm 1 requiresO(rn)

1 Cross approximation is generally associated with two subsets of indices, one for the rows and one for the
columns of the submatrix. In view of the positive definiteness of A we restrict to principal submatrices.
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200 S. Massei

storage and its computational cost is O((r + cA)rn) where cA denotes the cost of
evaluating one entry of A.

Algorithm 1 ACA for (3)
1: procedure aca(A, r )
2: Set RJ := A, J := ∅
3: for k := 1, 2, . . . , r do
4: jk := argmax j (RJ ) j j
5: J ← J ∪ { jk }
6: if k < r then
7: uk := RJ (:, jk )/

√

(RJ ) jk jk
8: RJ ← RJ − uku

�
k

9: end if
10: end for
11: return J
12: end procedure

Algorithm 2 ACA for (4)
1: procedure aca_ratio(A, B, r )

2: Set R(A)
J := A, R(B)

J := B, J := ∅
3: for k := 1, 2, . . . , r do
4: jk := argmax j (R

(A)
J ) j j /(R

(B)
J ) j j

5: J ← J ∪ { jk }
6: if k < r then

7: u(A)
k := R(A)

J (:, jk )/
√

(R(A)
J ) jk jk

8: R(A)
J ← R(A)

J − u(A)
k (u(A)

k )�

9: u(B)
k := R(B)

J (:, jk )/
√

(R(B)
J ) jk jk

10: R(B)
J ← R(B)

J − u(B)
k (u(B)

k )�
11: end if
12: end for
13: return J
14: end procedure

2.2 Local maximization

Let us suppose that a certain index set J = { j1, . . . , jr } is given. Inspired by [15], we
would like to knowwhether the volume of A(J , J ) is locally optimal, in the sense that
it cannot be increased with the replacement of just one of the indices in J . Practically,
this requires to check that:

det(A(̂J , ̂J ))

det(A(J , J ))
≤ 1, ∀̂J : |J ∩ ̂J | = r − 1, |̂J | = r . (8)

For the low-rank approximation problem in the maximum norm, a locally optimal
determinant is sufficient to reach a quasi optimal accuracy.
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Lemma 1 Let A ∈ R
n×n be an SPSD matrix and let J be an index set such that

condition (8) is verified. Then

‖A − AJ‖max ≤ (r + 1)σr+1(A).

Proof When n = r + 1 the submatrix A(J , J ) has maximum volume and we get
the claim simply applying the result of Goreinov and Tyrtyshnikov (equation (1)). For
n > r + 1, we remark that each diagonal entry of the residual matrix (RJ )hh is equal
to the Schur complement of A(J , J ) in A(˜J , ˜J ), for ˜J = J ∪ {h}. In view of (8),
A(J , J ) is the maximum volume r × r submatrix of A(˜J , ˜J ) that implies

(RJ )hh ≤ (r + 1)σr+1(A(˜J , ˜J )) ≤ (r + 1)σr+1(A).

Since R is SPSD, (r + 1)σr+1(A) also bounds its max norm. ��

In the following sections we describe an efficient procedure to iteratively increase
V(A(J , J )) based on the evaluation of the r(n− r) ratios in (8). An algorithm for the
analogous, yet simpler, task when the index replacement affects only the row or the
column index set has been proposed in [15].

2.2.1 Updating the determinant

Let us remark that each A(̂J , ̂J ) in (8) is a rank-2 modification of the matrix A(J , J ).
More precisely, if the index set ̂J is obtained by replacing ji ∈ J with h ∈ {1, . . . , n}\
I , then

A(̂J , ̂J ) = A(J , J ) +UWU�

where

U = [ei A(J , h) − A(J , ji )] , W =
[

Ahh + A ji ji − 2Ahji 1
1 0

]

,

and ei indicates the i-th vector of the canonical basis. Applying the matrix determinant
lemma yields

det(A(̂J , ̂J ))

det(A(J , J ))
= det(W−1) det(W−1 +U�A(J , J )−1U ),

with

W−1 =
[

0 1
1 2Ahji − Ahh − A ji ji

]

, det(W−1) = −1.
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202 S. Massei

By denoting with D := A(J , J )−1, B := A(:, J )D and with C := BA(J , :), we
have that

U�A(J , J )−1U =
[

Dii Bhi − 1
Bhi − 1 [B(h, :) − B( ji , :)][A(J , h) − A(J , ji )]

]

where we have used the identities

[A(h, J ) − A( ji , J )]A(J , J )−1 = B(h, :) − B( ji , :),
[B(h, :) − B( ji , :)]ei = Bhi − 1.

Putting all pieces together we get

W−1 +U�A(J , J )−1U =
[

Dii Bhi

Bhi Chh − Ahh

]

.

Then, we might think at the following greedy scheme for increasing the volume of a
starting submatrix A(J , J ):

1. Compute the Cholesky decomposition R�R = A(J , J ), O(r3),
2. Retrieve the quantities Dii by solving R�Rx = ei , i = 1, . . . , r , O(r3),
3. Compute B = A(:, J )(R�R)−1, O((r + cA)rn),
4. Compute Chh ∀h ∈ {1, . . . , n} \ J , O(r(n − r)),

5. Compute Vhi :=
∣

∣

∣

∣

det

([

Dii Bhi

Bhi Chh − Ahh

])∣

∣

∣

∣

∀ ji ∈ J , ∀h ∈ {1, . . . , n} \ J ,

O(r(n − r)),
6. Identify Vĥî = maxh,i Vhi . If Vĥî > 1+ tol—for a prescribed tolerance tol—then

update J by replacing jî with ĥ and repeat the procedure. Otherwise stop the
iteration.

We will discuss possible improvements to this algorithm in the next section.

2.2.2 Updating the quantities B, C and D

The previously sketched procedure requires, whenever the index set J is updated,
to recompute the quantities B, C and D. Here, we explain how to leverage the old
information to decrease the iteration cost. In the following, we assume that the new
index Jnew is obtained by replacing ji ∈ Jold with the index h ∈ {1, . . . , n} \ Jold.

The new matrix D is the inverse of a rank-2 modification of the old D, therefore it
can be obtained with the Woodbury identity:

Dnew ← Dold −
[

e�
i A(Jold, Jold)−1

B(h, :) − B( ji , :)
]� [

Dhh Bhi

Bhi Chh − Ahh

] [

e�
i A(Jold, Jold)−1

B(h, :) − B( ji , :)
]

︸ ︷︷ ︸

ΔD

.

(9)
The decomposition R�

newRnew = A(Jnew, Jnew), can be computed with cost O(r2)
by rewriting UWU� = ũ1ũ�

1 − ũ2ũ�
2 , i.e., as the difference of two rank-1 SPSD
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matrices, and performing a rank-1 update and a rank-1 downdate of the old Cholesky
factor [30, Chapter 4, Section 3]. For instance, these routines are implemented in the
Matlab command cholupdate.

The new matrix B is also a low-rank correction of the old B, given by

Bnew ← Bold + [A(:, h) − A(:, ji )]e�
i (R�

newRnew)−1 + A(:, Jold)ΔD
︸ ︷︷ ︸

ΔB

. (10)

Performing the updates of D and B with (9) and (10), respectively, brings down
the iteration cost to O(r2 + (r + cA)n), apart from the first iteration which remains
O(r3 + (r + cA)rn). The procedure is reported in Algorithm 3.

Since the use of theWoodbury identity is sometimes prone to numerical instabilities,
e.g, when the selected submatrix is nearly singular, we may switch off the updating
mechanism by setting the boolean variable do_update to false at line 3.

Algorithm 3 Local maximization of the volume
1: procedure local_maxvol(A, J , tol)
2: Set vol_ratio := +∞, k := 1
3: Set do_update :=true/false � Enable or disable the update of B and D
4: while vol_ratio > 1 + tol do
5: if k == 1 or do_update == false then
6: R = chol(A(J , J ))

7: B = A(:, J )(R�R)−1

8: Compute Dii by solving R�Rx = ei , ∀i = 1, . . . , r
9: else
10: R ← cholupdate(R,U ,W )

11: Update D via (9)
12: Update B via (10)
13: end if
14: Chh ← B(h, :)A(J , h), ∀h ∈ {1, . . . , n} \ J

15: Vhi =
∣

∣

∣

∣

det

([

Dii Bhi
Bhi Chh − Ahh

])∣

∣

∣

∣

∀ ji ∈ J , ∀h ∈ {1, . . . , n} \ J

16:
[

ĥ, î
]

← argmaxh,i Vh,i

17: vol_ratio ← Vĥî
18: J ← J ∪ {ĥ} \ { jî }, k ← k + 1
19: end while
20: return J
21: end procedure

Finally, we remark that updating the diagonal elements of C with the relation

Cnew ← Cold + Boldei [A(h, :) − A( ji , :)] + ΔBA(Jnew, :),

would reduce the cost of line 14 in Algorithm 3 of a factor r . However, since this does
not change the complexity of the iteration and requires to store additional intermediate
quantities, it is not incorporated in our implementation.
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2.2.3 A new algorithm for the maximum volume of SPSDmatrices

Quite naturally, we propose to apply Algorithm 3 to the index set returned by Algo-
rithm 1 as heuristic method for solving (3). The resulting procedure is ensured to
return a locally optimal principal submatrix of A— in the sense of Sect. 2.2—whose
volume is larger or equal than the one returned by ACA. For completeness, we report
the method in Algorithm 4.

By denoting with it the number of iterations performed by local_maxvol, we
have that the computational cost of Algorithm 4 is O((r + cA)(r + it)n).

We also show that it is possible to provide an upper bound for it that does not
depend on n. Finding the maximum volume submatrix of an SPSD matrix is in one to
one correspondence with selecting the columns of maximum volume in its Cholesky
factor TA such that A = T�

A TA [7, Section 2.1.1]. In particular, the greedy algorithm
for column selection, i.e. the partial QR with column pivoting, executed on TA returns
the same index set Jaca identified by aca(A, r ), as they are both based on greedy unit
augmentations of the index set. Moreover, the volume of TA(:, Jaca) is at least (r !)−1

times the maximum volume achievable with a subset of r columns [5, Theorem 11]
and is equal to the square root of det(A(Jaca, Jaca)). Then, we have

det(A(Jaca, Jaca)) ≥ det(A(Jbest, Jbest))

(r !)2 ,

where A(Jbest, Jbest) denotes the maximum volume r × r submatrix. This means that
when calling local_maxvol in Algorithm 3, the volume cannot be increased more
than a factor (r !)2. Since each iteration of local_maxvol increases the volume of
at least a factor 1 + tol, this yields the following bound on its number of iterations:

(1 + tol)it ≤ (r !)2 �⇒ it ≤ 2
log(r !)

log(1 + tol)
.

Finally, by means of the Stirling’s approximation, we get it ≤ 2 (r+1) log(r)−r+1
log(1+tol) =

O(r log(r)).

Algorithm 4
1: procedure maxvol(A, r , tol)
2: J = ACA(A, r )
3: J ← local_maxvol(A, J , tol)
4: end procedure

Algorithm 5
1: procedure maxvol_ratio(A, B, r , tol)
2: J = ACA_ratio(A, B, r )
3: J ← local_maxvol_ratio(A, B, J , tol)
4: end procedure
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2.3 Algorithms for maximizing the ratio of volumes

Let J = { j1, . . . , jr } be the index set at the current iteration of either Algorithms 1
or 3. The two algorithms compute the gain factor det(A(̂J , ̂J ))/ det(A(J , J )) for all
the modifications ̂J ∈ Jaca and ̂J ∈ Jlmvol, respectively, where

Jaca = {̂J ⊂ {1, . . . , n} : J ⊂ ̂J , |̂J | = r + 1},
Jlmvol = {̂J ⊂ {1, . . . , n} : |J ∩ ̂J | = r − 1, |̂J | = r}.

Therefore, Algorithm 1 and 3 can be adapted for the ratio of volume problem (4) with
the following idea: run in parallel the procedure for thematrices A, B and then identify
the maximum ratio of gain factors

det(A(̂J , ̂J )) det(B(J , J ))

det(A(J , J )) det(B(̂J , ̂J ))
∀̂J ∈ Jaca or ∀̂J ∈ Jlmvol.

For instance, the extension of ACA to (4) looks for argmax j (R
(A)
J ) j j/(R

(B)
J ) j j when

choosing the next pivot element; see Algorithm 2. Analogously, the version of Algo-
rithm 3 which deals with the ratio of volumes, identifies the pair of indices (h, i)
which maximizes V(A)

hi /V(B)
hi . We refer to the latter with local_maxvol_ratio and

— due to its length — we refrain to write its pseudocode. Finally, the extension of
Algorithm 4 to (4) is reported in Algorithm 5.

By denoting with it the number of iterations performed by local_maxvol_ratio,
we have that the computational cost of Algorithm 5 is O((r + cA + cB)(r + it)n),
where cB indicates the cost of evaluating one entry of B.

2.4 Numerical results

Algorithms 1–5 have been implemented in Matlab version R2020a and all the numer-
ical tests in this work have been executed on a Laptop with the dual-core Intel Core
i7-7500U 2.70 GHz CPU, 256 KB of level 2 cache, and 16 GB of RAM. The param-
eter tol used in Algorithm 4 and 5 has been set to 5 · 10−2 for all the experiments
reported in this manuscript. In the numerical tests involving the test matrix A3 and
Algorithm 3 the updating mechanism has been switched off by setting do_update to
false. Everywhere else, do_update has been set to true.

The code is freely available at https://github.com/numpi/max-vol.

Test matrices Let us define five SPSDmatrices A1, A2, A3, A4, A5 ∈ R
n×n which are

involved in the numerical experiments that we are going to present:

– (A1)i j := exp(−0.3 |i − j |/n),
– (A2)i j := min{i, j},
– (A3)i j := 1

i+ j−1 (Hilbert matrix),
– A4 := trid(1, 1, 1) ⊗ Id6 + Id n

6
⊗ trid(−0.34, 1.7,−0.34),

– A5 := Qdiag(d)Q�, di := ρi−1, ρ ∈ (0, 1), and Q is the eigenvector matrix of
trid(−1, 2,−1),
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with ⊗ indicating the Kronecker product. The aforementioned test matrices are repre-
sentative of various singular values distributions. A1, A2 have a subexponential decay,
A3, A5 have an exponential decay and A4, taken from [19], is banded and well con-
ditioned. We also indicate with T�

4 T4 = A4 the Cholesky factorization of A4. When
running the numerical algorithms, the matrices A1, A2, A3 and A4 are provided as
function handles. Instead, the matrix A5 is formed explicitly.

Test 1. As first experiment we run Algorithm 1 and 4 on A1, A2, A3, by setting
n = 1020 and varying the size r of the sought submatrix. For the matri-
ces A1, A2 we let r to range in {1, . . . , 100}. When experimenting on A3 we
consider r ∈ {1, . . . , 20} because of the small numerical rank of the Hilbert
matrix. We measure the timings required by the two methods and the gain fac-
tor | det(A(Jmaxvol, Jmaxvol))/ det(A(Jaca, Jaca))| which Algorithm 4 provides with
respect to Algorithm 1. From the results reported in Fig. 1, we see that the costs of
both algorithms scale quadratically with respect to the parameter r . For small values
of r maxvol struggles to increase the volume of the submatrix returned by aca. This
happen more often and more consistently for larger values of r . We mention that dis-
abling the updates based on the Woodbury identity generally increases of about 20%
the timings of Algorithm 4 for this test.

Test 2. The second numerical test considers maximizing the ratio of volumes (4). We
keep n = 1020 and we run Algorithm 2 and 5 using A1, A2, A3, as numerator and
A4 as denominator. The time consumption as the size r of the submatrix increases is
reported Fig. 2. Also in this case, quadratic complexity with respect to r is observed
for the computational cost. The gain factor | det(A(Jmaxvol_ratio, Jmaxvol_ratio))/

det(A(Jaca_ratio, Jaca_ratio))| is shown as well in the bottom right part of Fig. 2.

Test 3. Let us test the computational cost of aca, maxvol, aca_ratio and
maxvol_ratio as the size of the target matrices increases. We fix r = 40 and we
let n = 1020 · 2t , t = 0, . . . , 10. Then, we run aca, maxvol on A1 and maxvol,
aca_ratio on the pair (A1, A4). The timings reported in Fig. 3 confirm that the
computational time scales linearly with respect to n.

Test 4. Finally, we test the quality of the cross approximations returned by aca_ratio
and maxvol_ratio. More specifically, we compute the approximation error ‖Ei −
(Ei )J‖2, i = 1, 2, 3, 5, with Ei := (T�

4 )−1Ai T
−1
4 , n = 1020 and J chosen as either

Jaca_ratio or Jmaxvol_ratio. In Fig. 4 we compare the error curves, as r increases, of the
cross approximations with the ones associated with the truncated SVD, which repre-
sents the best attainable scenario. We see that the decay rate of the error of aca_ratio
is pretty similar to the one of the truncated SVD. maxvol_ratio performs also well
on the matrices which have a fast decay of the singular values, i.e., A3, A5. However,
its convergence deteriorates for the matrices A1 and A2 and the associated error is
worse than the one of aca_ratio. It turns out that in these cases the approximation
given in (2) is less accurate and the submatrix of (T�

4 )−1Ai T
−1
4 corresponding to

Jaca_ratio has a larger volume than the one corresponding to Jmaxvol_ratio.
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Fig. 1 Timings of Algorithm 1 and 4 on the test matrices A1 (top-left), A2 (top-right), A3 (bottom-left)
and measured gain factors (bottom-right)

3 Quasi optimal cross approximation in the nuclear norm

Adaptive cross approximation has a much lower cost than computing the truncated
SVD for the low-rank matrix approximation, although the latter provides an opti-
mal solution, in any unitarily invariant norm. Empirically, ACA typically returns an
approximant that is close, in terms of the associated approximation error, to the trun-
cated SVD. However, it appears difficult to ensure this property theoretically, e.g., see
the quite pessimistic bounds in [7,20,21]. On the other hand, there are some recent
results about cross approximations with quasi optimal approximation error.

Zamarashkin and Osinsky proved in [33, Theorem 1] that, given A ∈ C
m×n of rank

k, ∀r = 1, . . . , k there exist I = {i1, . . . , ir } ⊂ {1, . . . ,m} and J = { j1, . . . , jr } ⊂
{1, . . . , n}, such that A(I , J ) is invertible and

‖A − AI J‖F ≤ (r + 1)
√

∑

s≥r+1

σ 2
s , AI J := A(:, J )A(I , J )−1A(I , :). (11)
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Fig. 2 Timings of Algorithm 2 and 5 on the test matrices (A1, A4) (top-left), (A2, A4) (top-right), (A3, A4)
(bottom-left) and measured gain factors (bottom-right)

Fig. 3 Computational times of the algorithms as n increases for r = 40. On the left aca and maxvol
have been run on the matrix A1. On the right aca_ratio and maxvol_ratio have been run on the pair of
matrices (A1, A4)
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Fig. 4 Approximation of (T�
4 )−1Ai T

−1
4 for i = 1 (top-left), i = 2 (top-right), i = 3 (bottom-left), and

i = 5 (bottom-right), by means of the cross approximations associated with the outcome of Algorithm 2
and 5. All plots report the lower bound given by the error of the truncated SVD. The size of the matrices is
n = 1020

The authors of [33] uses a probabilistic argument: they define the probability measure

P(A(I , J )) = V(A(I , J ))2
∑

|̂I |=|̂J |=r V(A(̂I , ̂J ))2

on the set of r × r submatrices of A. Then, they show that E[‖A − AI J‖F ] ≤ (r +
1)
√

∑

s≥r+1 σ 2
s , which implies that there exists at least one choice of I , J that verifies

(11).
Cortinovis and Kressner proposed in [6] a polynomial time algorithm to find I and

J such that AI J is quasi optimal with respect to the Frobenius norm. Their approach,
inspired by [12], is based on the derandomization of the result by Zamarashkin and
Osinsky with the method of conditional expectations. More precisely, let t ≤ r and
assuming to have already selected the first t − 1 indices {i1, . . . , it−1}, { j1, . . . , jt−1}
of I and J , the pair (it , jt ) is chosen as the one which minimizes

E[‖A − AI J‖F | i1, . . . , it , j1, . . . , jt ]. (12)

Incrementally selecting all the indices with this criteria ensures that (I , J ) identifies
a cross approximation which verifies (11). Interestingly, (12) can be shown to be (r −
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t + 1) times the ratio of two consecutive coefficients in the characteristic polynomial
of the symmetrized residual matrix RIt Jt := (A − AIt Jt )(A − AIt Jt )

∗, with It :=
{i1, . . . , it } and Jt := { j1, . . . , jt }. The algorithm in [6] computes the coefficients of
the characteristic polynomial of RIt Jt for all possible choices of it and jt by updating
the characteristic polynomial of RIt−1 Jt−1 ; then, it chooses the pair of indices which
minimizes the aforementioned ratio.

In the next section, we analyze what can be achieved with cross approximations
built on principal submatrices, when A is SPSD.

3.1 Existence result

In view of [7, Theorem 1] it is tempting to replace a symmetric choice of indices
I = J in (11) when A is SPSD. However, such error bound it is not true in general
and it is not possible to get rid of the dependency on n in the multiplicative constant.
For instance, consider A = E + ε · Id for a small ε > 0 and with E denoting the
matrix of all ones; then, for the rank 1 approximation of A, the error of the truncated
SVD is ε

√
n − 1 while the one associated with any symmetric cross approximation is

approximately ε(n − 1). The following result shows that a quasi optimal error in the
nuclear norm can be obtained by restricting the search space to principal submatrices.
In view of the previous remark, this yields a sharp quasi optimal error in the Frobenius
norm, with a constant increased by a factor

√
n − r .

Theorem 1 Let A ∈ R
n×n be SPSD of rank k and r ∈ {1, . . . , k}. Then, there exists a

subset of indices J ∗ ⊂ {1, . . . , n}, |J ∗| = r such that A(J ∗, J ∗) is invertible and

‖A − AJ∗‖∗ ≤ (r + 1) ·
∑

s≥r+1

σs(A), and

‖A − AJ∗‖F ≤ √
n − r · (r + 1) ·

√

∑

s≥r+1

σs(A)2. (13)

Before going into the proof of Theorem 1, let us state and prove some properties
regarding the volume of principal submatrices.

Lemma 2 Let A ∈ R
n×n be SPSD and J := { j1, . . . , jr } ⊂ {1, . . . , n} such that

A(J , J ) is invertible. Then:

(i) ‖A − AJ‖∗ =∑|̂J |=r+1,J⊂̂J
V(A(̂J , ̂J ))
V(A(J , J ))

,

(ii)
∑

|J |=r V(A(J , J )) =∑1≤ j1<···< jr≤n σ j1(A) · · · σ jr (A),

(iii) for t ∈ {1, . . . , r} and J1 := { j1, . . . , jt } ⊂ J

∑

jt+1,..., jr

V(A(J , J )) = V(A(J1, J1)) · (r − t)! · cn−r+t (A − AJ1),

where (−1)n−r+t cn−r+t (A − AJ1) indicates the coefficient which multiplies
zn−r+t in the characteristic polynomial of A − AJ1 .
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Proof

(i) Let us remark that in the particular case J = {1, . . . , n − 1} we have

A =
[

A(J , J ) b
b� d

]

, A − AJ =
[

0 0
0 d − b�A(J , J )−1b

]

and specifically:

‖A − AJ‖∗ = ‖A − AJ‖F = V(A)

V(A(J , J ))
, (14)

where the second equality has been proved in [33, Lemma 1]. If J is generic
and A is SPSD, then A − AJ is SPSD and its nuclear norm is the sum of its
diagonal entries which are all Schur complements of the form given in (14);
this yields (i).

(ii) The volume of a principal submatrix of an SPSD matrix corresponds to its
determinant so that

∑

|J |=r V(A(J , J )) is equal cn−r (A). Since the singular
values of an SPSD matrix A are equal to its eigenvalues we have cn−r (A) =
∑

1≤ j1<···< jr≤n σ j1(A) · · · σ jr (A).

(iii) Let us denote B := A − AJ1 and J2 := J \ J1. Since B(J2, J2) is the Schur
complement of A(J , J ) with respect to A(J1, J1) we have V(A(J , J )) =
V(A(J1, J1))V(B(J2, J2)) so that

∑

jt+1,..., jr

V(A(J , J )) = V(A(J1, J1))
∑

jt+1,..., jr

V(B(J2, J2))

= V(A(J1, J1)) · (r − t)! · cn−r+t (B),

where the factor (r − t)! accounts the repetitions in the choice of J2.

��

Proof (Proof of Theorem 1) Let us denote byΩr the set of r ×r principal submatrices
of A. We show that (r + 1) ·∑t≥r+1 σt (A) is larger than the expected value of the
cross approximation error, with respect to the following probability distribution on
Ωr :

P(A(J , J )) = γ · V(A(J , J )), γ := 1
∑

B∈Ωr
V(B)

.

123



212 S. Massei

Indeed, we have:

E[‖A − AJ‖∗] =
∑

|J |=r

P(A(J , J ))‖A − AJ‖∗

Lemma 2 − (i) =
∑

|J |=r

∑

|̂J |=r+1,J⊂̂J
P(A(J , J ))

V(A(̂J , ̂J ))

V(A(J , J ))

= γ
∑

|̂J |=r+1

∑

|J |=r ,J⊂̂J
V(A(̂J , ̂J ))

= γ (r + 1)
∑

|̂J |=r+1

V(A(̂J , ̂J ))

Lemma 2 − (i i) = γ (r + 1)
∑

1≤ j1<···< jr+1≤n

σ j1(A) · · · σ jr+1(A)

= γ (r + 1)
∑

1≤ j1<···< jr≤n

σ j1(A) · · · σ jr (A)
∑

jr+1> jr

σ jr+1(A)

≤ γ (r + 1)(σr+1(A) + · · · + σn(A))
∑

1≤ j1<···< jr≤n

σ j1(A) · · · σ jr (A)

Lemma 2 − (i i) = (r + 1)(σr+1(A) + · · · + σn(A)),

where we used that once ̂J is fixed, there are r + 1 possible choices for J .
Finally, we have

‖A − A∗
J‖F ≤ ‖A − A∗

J‖∗ ≤ (r + 1)
∑

s≥r+1

σs(A) ≤ √
n − r(r + 1)

√

∑

s≥r+1

σs(A)2,

where the last inequality follows from the Cauchy–Schwarz inequality. ��

3.2 Derandomizing Theorem 1

Following the approach in [6], we obtain a deterministic algorithm for computing a
cross approximation, which verifies (13), by derandomizing Theorem 1. In order to
do so, we need to determine the conditional expectation of the cross approximation
error, with respect to a partial choice of the indices in J .

Theorem 2 Let A ∈ R
n×n be SPSD and Jt := { j1, . . . , jt } ⊂ {1, . . . , n} such that

A(Jt , Jt ) is invertible, then

E(‖A − AJ‖∗ | j1, . . . , jt ) = (r − t + 1)
cn−r+t−1(A − AJt )

cn−r+t (A − AJt )
.
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Proof

E(‖A − AJ‖∗ | j1, . . . , jt ) =
∑

jt+1,..., jr

‖A − AJ‖∗ P(A(J , J ) | j1, . . . , jt )

=
∑

jt+1,..., jr

‖A − AJ‖∗
P(A(J , J ))

P(A(Jt , Jt ))

=
∑

jt+1,..., jr

‖A − AJ‖∗
V(A(J , J ))
∑

jt+1,..., jr+1

V(A(J , J ))

Lemma 2 − (i) =
∑

jt+1,..., jr+1
V(A({J , jr+1}, {J , jr+1}))

∑

jt+1,..., jr V(A(J , J )

Lemma 2 − (i i i) = (r − t + 1)
cn−r+t−1(A − AJt )

cn−r+t (A − AJt )
.

��

Theorem 2 suggests to design an iterative scheme that in each step computes the
characteristic polynomial of A − AJt for all the possible choices of the last index jt
and select the one which minimizes

cn−r+t−1(A−AJt )

cn−r+t (A−AJt )
. Interpreting A − AJt as a rank-1

modification of A− AJt−1 , we may look at the problem of updating the coefficients of
the characteristic polynomial under a rank-1 change of the matrix. Since stable proce-
dures, such as the Summation Algorithm [28, Algorithm 1], compute the characteristic
polynomial from the eigenvalues, our task boils down to updating the eigenvalues of an
SPSDmatrix and in turn to computing the eigenvalues of a real diagonal matrix minus
a rank-1 symmetric matrix. The latter can be transformed into a symmetric tridiago-
nal eigenvalue problem with a standard bulge chasing procedure [14, Section 5] and
finally solved with Cuppen’s divide and conquer method [8]. Both tridiagonalization
and Cuppen’s method require O(n2) flops.

The certified cross approximation (CCA) obtained from the derandomization of
Theorem (1) is reported in Algorithm 6. Note that all the operations inside the inner
loop have at most a quadratic cost and computing the eigendecomposition at line 4 is
cubic. Therefore, the asymptotic computational cost is O(rn3).

3.3 Updating the characteristic polynomial via trace of powers

Each iteration ofAlgorithm6 requires to update the eigendecomposition of the residual
matrix, resulting in a computational cost O(rn3). Here we discuss how, in principle,
to reduce the complexity to O(r2nω) where 2 < ω < 3 is the exponent of the
computational complexity of the matrix-matrix multiplication. The idea is that, since
we need to update only a (small) portion of the characteristic polynomial we may
avoid to deal with the eigendecomposition.

The coefficients of the characteristic polynomial of a matrix A can be expressed
with the so called Plemelj-Smithies formula [27, Theorem XII 1.108]
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Algorithm 6 Certified cross approximation for SPSD matrices
1: procedure cca(A, r )
2: Set R := A, J := ∅.

3: for t = 1 . . . , r do
4: Compute the eigendecomposition R = QΛQ�
5: Compute the characteristic polynomial of R via [28, Algorithm 1]
6: min_ratio ← ∞
7: for j ∈ {1 . . . , n} \ J do
8: u j = R(:, j)/

√
R( j, j), ũ j = Q�u j

9: Reduce Λ − ũi ũ
�
j to a tridiagonal matrix T via bulge chasing

10: Compute the eigenvalues of T with Cuppen’s method
11: Compute the characteristic polynomial of R − u j u

�
j via [28, Algorithm 1]

12: ratio ← cn−r+t−1(R−u j u
�
j )

cn−r+t (R−u j u
�
j )

13: if ratio < min_ratio then
14: min_ratio ← ratio, j∗ ← j
15: end if
16: end for
17: R ← R − u j∗u�

j∗
18: J ← J ∪ { j∗}
19: end for
20: end procedure

cn−k(A) = (−1)k

k! det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

trace(A) k − 1
trace(A2) trace(A) k − 2

...
. . .

. . .
. . .

...
. . .

. . .
. . . 1

trace(Ak) . . . . . . trace(A2) trace(A)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

T(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (15)

so that
cn−(k+1)(A)

cn−k(A)
= − 1

k + 1

det(T(k+1))

det(T(k))
. (16)

Equation (15) says that for updating the (n − k)-th coefficient of the characteristic
polynomial it is sufficient to update the trace of the first k powers of A and to compute
the determinant of a k × k matrix. Interestingly, if trace(A), . . . , trace(Ak) are known
then the quantities trace(A−uu�), . . . , trace((A−uu�)k), for a vector u ∈ R

n , can be
computed with a Krylov projection method. More specifically, we have the following
property [4, Theorem 3.2]:

(A − uu�)k − Ak ∈ Kk(A, u) := span(u, Au, . . . , Ak−1u).
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Let Hk and ˜Hk := Hk − ‖u‖2e1e�
1 be the orthogonal projections of A and A − uu�

on Kk(A, u), then it holds

trace((A − uu�) j ) − trace(A j ) = trace(˜H j
k ) − trace(H j

k ), j = 1, . . . , k. (17)

Hence, to update the traces of the first k powers of A we may perform k steps of the
Arnoldimethod to get ˜Hk, Hk , compute the trace of their powers (via their eigenvalues)
and, finally, evaluate (17).

Updating the traces for a single low-rankmodification costsO(k ·matvec(A)+k2n);
so a procedure that naively applies this computation for the O(n) low-rank modifi-
cations still provides a cubic iteration cost — with respect to n — unless matvec(A)

has a subquadratic cost. In the case O(matvec(A)) = O(n2), we propose to carry
on the Arnoldi step simultaneously for all the O(n) low-rank modifications uiu�

i .
More specifically, if ui(h) denotes the h-th vector computed by the Arnoldi process for
Kk(A, ui ), then we perform all the Arnoldi steps together by computing the matrix-
matrix multiplication A · [u1(h)| . . . |un−k+1(h)]. Theoretically, this yields the iteration
cost O(knω). This has also practical benefits because of the use of highly optimized
BLAS3operations. The procedure for updating the trace of powers is reported inAlgo-
rithm 8; the certified cross approximation method (CCA2) that relies on Algorithm 8
is reported in Algorithm 7.

Algorithm 7 CCA via trace of powers
1: procedure cca2(A, r )
2: Compute t = (t j ) j=1,...,r+1, t j = trace(A j ) via r matrix-matrix multiplications
3: Set R := A, J := ∅
4: for k := 1, 2, . . . , r do
5: u jh = R(:, jh)/

√

R( jh , jh), jh /∈ J
6: U = [u j1 | . . . |u jn−r+1 ]
7: T ← update_traces(A, t,U , r − k + 2)
8: Set min_ratio=∞
9: for jh ∈ {1, . . . n} \ J do

10: r jh ← cn−(t+1)(RJ−u jh
u�
jh

)

cn−t (RJ−u jh
u�
jh

)
via (16)

11: if r jh < min_ratio then
12: min_ratio ← r jh , h

∗ ← h
13: end if
14: end for
15: t ← T (h∗, 1 : r − k + 1)
16: R ← R − u jh∗ u�

jh∗
17: J ← J ∪ { jh∗ }
18: end for
19: return J
20: end procedure

Unfortunately, Algorithm 7 suffers from the numerical instability of evaluating the
determinant in (15). More specifically, when the matrix T(k) becomes nearly singular
the use of standard techniques provide small singular values, which are accurate only
in an absolute sense. Methods that guarantee relative accuracy for singular values
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apply only to particular classes of matrices [10,11]; T(k) does not belong to any of
such classes. On top of that, we often observe that the matrix T(k) becomes nearly
singular quite fast as k increases; typically for k above 10 the computed ratio (16) has
no reliable digits. In the next section we propose a strategy to partially circumvent this
problem.

Algorithm 8 Update the trace of powers
1: procedure update_traces(A, t,U , k)
2: Set Vj = U (:, j)/‖U (:, j)‖2, � U ∈ R

n×s

3: for h = 1, . . . , k do
4: U ← A ·U
5: for j = 1, . . . s do
6: Hj (1 : h, h) = V�

j U (:, j)
7: U (:, j) ← U (:, j) − Vj Hj (1 : h, h)

8: Hj (h, h + 1) = ‖U (:, j)‖2
9: U (:, j) ← U (:, j)/Hj (h, h + 1)
10: Vj ← [Vj , U (:, j)]
11: end for
12: end for
13: for j = 1, . . . , s do
14: Hj ← Hj (1 : k, :)
15: ˘ = eig(Hj)

16: ˜˘ = eig(Hj − ‖u‖2e1e�1 )

17: ̂t = (̂t j ) j=1,...,k , t j =∑n
h=1(

˜λ
j
h − λ

j
h)

18: T ( j, :) = t +̂t
19: end for
20: return T
21: end procedure

3.3.1 A restarted algorithm

In view of the instability issues related to evaluating (16), we propose to combine
Algorithm 7 with a restarting mechanism. Let us assume that the rank of the sought
cross approximation is r and that r̄ < r is a small value forwhich (16) can be computed
with a sufficient accuracy.Wemight think at forming the index set J by the incremental
application of Algorithm 7 with input parameter r̄ . This means that we first compute a
certified cross approximation of rank r̄ of A. Then, we add to the latter a certified cross
approximation of rank r̄ of the residual matrix, and so on and so for. The procedure
stops when we reach an index set J of cardinality r . We call this method quasi certified
cross approximation (quasi_cca) and we report its pseudocode in Algorithm 9. The
asymptotic cost of quasi_cca is r/r̄ times the one of cca2 for a submatrix of size
r̄ × r̄ , that isO(r̄rnω). Even though the cross approximation returned by Algorithm 9
is not guaranteed to verify (13), it is usually the case, as we will see in the numerical
results.
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Algorithm 9
1: procedure quasi_cca(A, r , r̄ )
2: Set J = ∅
3: while r > 0 do
4: ̂J = cca2(A,min{r , r̄})
5: A ← A − A

̂J
6: J ← J ∪ ̂J
7: r = r − r̄
8: end while
9: return J
10: end procedure

3.4 Numerical results

Let us compare the performances ofAlgorithm6 and 9 on the testmatrices A1, A2, A3,

A5 introduced in Sect. 2.4. The bulge chasing procedure used in Algorithm 6 has
been implemented in Fortran and is called via a MEX interface. When executing
Algorithm 9, the parameter r̄ has been set to 5.

Test 5. We set n = 100, ρ = 0.85 and we measure the nuclear norm of the cross
approximation error, ‖A− AJ‖∗, obtained with cca and quasi_cca as the parameter
r increases. The results are shown in Fig. 5, where we also report the upper bound
provided by Theorem 1 and the lower bound g(r) := ∑

j≥r+1 σ j , corresponding to
the approximation error of the truncated SVD (TSVD). We see that, on all examples,
the accuracy of cca and quasi_cca is really close and often the convergence curves
are not distinguishable. In addition, in the examples where the decay of the singular
values is slow we notice that Theorem 1 tends to be pessimistic and the accuracy of
cca and quasi_cca is very close to the one of the TSVD.

Test 6. Finally, we test the computational cost of the proposed numerical proce-
dure. We fix r = 20, ρ = 0.85 and we run Algorithm 6 and 9 on A5 for
n ∈ {50, 100, 200, 400, 800, 1600}. The timings, reported in Fig. 6, confirm the cubic
complexity with respect to n of Algorithm 6. Although the complexity of the imple-
mentation of quasi_cca is cubic as well (no fast matrix multiplication algorithm has
been implemented), it results in a significant gain of computational time due to the
more intense use of BLAS 3 operations.

4 Outlook

We have proposed several numerical methods for the solution of problems related
to the selection of the maximum volume submatrix and the cross approximation of
symmetric definite matrices.

We remark that, the idea used for deriving Algorithm 2 and 5 extends easily to
combinatorial optimization problems of the form

max
J⊂{1,...,n}, |J |=r

f (V(A1(J , J ), . . . ,V(Ap(J , J ))
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Fig. 5 Nuclear norm of the error associated with the cross approximations returned by Algorithm 6 and 9
on the test matrices A1 (top-left), A2 (top-right), A3 (bottom-left) and A5 (bottom-right). All plots report
the upper bound provided by Theorem 1 and the lower bound given by the error of the truncated SVD

Fig. 6 Timings of Algorithm 6
and 9 on the test matrix A5 for
r = 20 and n ∈ {50, 100, 200,
400, 800, 1600}
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for a multivariate function f and SPSD matrices A1, . . . , Ap.
Also the second part of the manuscript can inspire some future works. For instance,

the fact that the maximum volume submatrix of a diagonally dominant matrix is
principal might suggest that a result analogous to Theorem 1 holds also for diagonally
dominant matrices. However, it is not straightforward to adjust the proof of Theorem 1
to this case because we lose the connection between the sum of the volumes of the
principal submatrices and the coefficients of the characteristic polynomial.

Another interesting point is to understand whether the ratio of determinants in (16)
can be computed with high relative accuracy. This would pave the way to the use of
cca2 without incorporating any restart mechanisms.

Finally, in the case of large scale matrices one might derive new scalable algorithms
for computing cross approximations by combining Algorithm 6–9 with heuristic tech-
niques for reducing the dependence on n in the computational cost.
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