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Abstract
ADeuflhard-type exponential integrator sine pseudospectral (DEI-SP) method is pro-
posed and analyzed for solving the generalized improvedBoussinesq (GIBq) equation.
The numerical scheme is based on a second-order exponential integrator for time
integration and a sine pseudospectral discretization in space. Rigorous analysis and
abundant experiments show that the method converges quadratically and spectrally in
time and space, respectively. Finally the DEI-SP method is applied to investigate the
complicated and interesting long-time dynamics of the GIBq equation.

Keywords Error estimate · Exponential integrator · Improved Boussinesq equation ·
Long-time dynamics · Sine pseudospectral method

Mathematics Subject Classification 35Q53 · 65M15 · 65M70

1 Introduction

The Boussinesq equation was originally proposed by Boussinesq in 1870s to describe
the nonlinear wave propagations in multiple directions [5,6]. Similar to the Korteweg-
de Vries (KdV) equation, which was derived in 1895 to describe the wave moving in
the positive direction [18], the Boussinesq equation describes a wide class of nonlinear
dispersivewave phenomena and is applied inmany fields. For instance, the Boussinesq
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equation models the simulation of water waves in shallow seas and harbors in coastal
engineering, and propagation of ion-sound waves in a uniform isotropic plasma [20].
Generally, the Boussinesq equation has the form

ztt = zxx + qzxxxx + (z2)xx , (1.1)

which for q = 1 gives the bad or ill-posed Boussinesq (BBq) equation [8], while
for q = −1 the good or well-posed Boussinesq (GBq) equation [21]. For the well-
posed GBq equation, there have been extensive literature on the well-posedness and
numerical studies (see [15,17,21,23,24] and references therein). As was shown in [3],
the BBq equation is unstable under short wave perturbation and there is no local well-
posedness result. However, the BBq equation could be approached by the improved
Boussinesq (IBq) equation by replacing the term zxxxx with zxxtt ,

ztt = zxx + zxxtt + (z2)xx , (1.2)

which is physically stable and well suited for mathematical modelling work [3,20].
In fact, the IBq equation is applied to describe the propagation of acoustic waves on
elastic rods [26] and the propagation of plasma waves at right angles to the magnetic
field [2]. Furthermore, the IBq equation satisfies some conservation laws, e.g., mass
and energy [30]:

M =
∫
R

z dx, H =
∫
R

(
v2 + z2 + 2

3
z3 + (zt )

2) dx, (1.3)

where zt = vx .
The IBq equation has been investigated theoretically and numerically in recent

years. Yang [31] studied the local, global well-posedness and non-existence of global
solutions to the initial and boundary value problem for the IBq equation. The existence
of the global classical solutions and the blow-up of the solution for the initial and
boundary value problem were also studied in [11]. Furthermore, the authors in [32]
investigated the existence and uniqueness of the generalized solution of IBq equation
for the initial and boundary value problem using a Galerkin approximation scheme
combined with the continuation of solutions step by step and the Fourier transform
method. They also proved that the solution blows up in finite time under appropriate
conditions on initial data. Recently, the controllability of the IBq equation posed on
a bounded or periodic domain was considered in [9]. For the numerical part, there
have been a large amount of works in the literature for the IBq equation, ranging
from finite difference methods [7,8], finite element methods [16,19], spectral method
[4], meshless method [25], Runge-Kutta type exponential integrators [22] and energy-
preserving methods [28,30]. Different methods were applied to investigate abundant
dynamics of the IBq equation, however, there are quite fewworks on the rigorous error
estimates for the corresponding numerical methods. Most of the time, the authors only
gave some stability analysis or conservation properties. The convergence of the semi-
discrete scheme for a Fourier pseudospectral method was proved in [4].
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In this work, we consider the IBq equation with general nonlinearity (GIBq):

{
ztt = zxx + zxxtt + ( f (z))xx ,

z(x, 0) = z0(x), zt (x, 0) = z1(x),
(1.4)

where f ∈ C∞(R, R). The cubic nonlinearity was proposed and the corresponding
dynamicswas investigated in [12] to study the acousticwaves on elastic rods,where the
equation for cubic nonlinearity was called the modified improved Bousssinesq equa-
tion. We’ll apply a second-order exponential integrator sine pseudospectral method to
solve (1.4) and give an unconditional convergence in a general energy norm.

The rest of this paper is organized as follows. In Sect. 2, we propose a Deuflhard-
type exponential integrator sine pseudospectral method for the GIBq equation. The
main error estimate is carried out in Sect. 3. Section 4 is devoted to presenting some
numerical results to illustrate the convergence result and to show rich dynamics of the
GIBq equation. Finally, some concluding remarks are drawn in Sect. 5. Throughout
this paper, C denotes a generic constant independent of the mesh size and the time
step, and C(p, q) means C depends on p and q.

2 Exponential integrator sine pseudospectral method

In this section, we present the exponential integrator sine pseudospectral method for
the GIBq equation, based on a Deuflhard-type exponential integrator combined with a
sine pseudospectral discretization in space. For practical implementation, we truncate
the GIBq equation on a bounded domain Ω = (a, b) with homogeneous boundary
conditions (here |a| and b are chosen large enough such that the truncation error is
negligible):

⎧⎪⎨
⎪⎩
ztt (x, t) = zxx (x, t) + zxxtt (x, t) + ( f (z))xx (x, t), x ∈ Ω, t > 0,

z(x, 0) = z0(x), zt (x, 0) = z1(x),

z(a, t) = z(b, t) = 0, zxx (a, t) = zxx (b, t) = 0, t ≥ 0,

(2.1)

where f ∈ C∞(R, R).
For the full discretization of (2.1), we introduce some discrete spaces firstly. The

interval [a, b] is divided into M equal subintervals with grid spacing h = (b− a)/M ,
with M a positive integer. The spatial grid points are given by x j = a + jh, j =
0, 1, 2, . . . , M . The time interval [0, T ] is divided into N equal subintervals with time
step τ = T /N and temporal grid points tn = nτ , n = 0, . . . , N . Denote

XM := {u = (u0, u1, . . . , uM ) ∈ R
M+1|u0 = uM = 0},

YM := span{sin(μl(x − a)), l = 1, 2, . . . , M − 1},

with μl = lπ
b−a . For a general function u(x) on Ω = [a, b] and a vector u ∈ XM , let

PM : L2(Ω) → YM be the standard L2-projection operator and IM : C0(Ω) → YM

or IM : XM → YM be the trigonometric interpolation operator as
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(PMu)(x) =
M−1∑
l=1

ûl sin(μl(x − a)), (IMu)(x) =
M−1∑
l=1

ũl sin(μl(x − a)),

(2.2)

where ûl and ũl are the sine and discrete sine transform coefficients, respectively,
defined as

ûl = 2

b − a

∫ b

a
u(x) sin(μl(x − a))dx, ũl = 2

M

M−1∑
j=1

u j sin

(
jlπ

M

)
, (2.3)

with u j = u(x j ) when involved.
The sine pseudospectral discretization is to find zM (x, t) ∈ YM , i.e.,

zM (x, t) =
M−1∑
l=1

ẑl(t) sin(μl(x − a)), (2.4)

such that

∂t t zM = ∂xx zM + ∂xxtt zM + ∂xx PM ( f (zM )). (2.5)

Substituting (2.4) into (2.5) and noticing the orthogonality of sin(μl(x −a)), we have
for tn = nτ and s ∈ R,

(1 + μ2
l )

d2

ds2
ẑl(tn + s) + μ2

l ẑl(tn + s) + μ2
l (̂ f

n
M )l(s) = 0, (2.6)

where f nM (x, s) = f (zM (x, tn + s)). By using the variation of constants formula, we
get

ẑl(tn + s) = cos(θl s)ẑl(tn) + sin(θl s)

θl
ẑl

′(tn) − θl

∫ s

0
(̂ f nM )l(w) sin(θl(s − w))dw,

(2.7)

where θl = μl/

√
1 + μ2

l . Differentiating (2.7) with respect to s, we obtain

ẑl
′(tn + s) = −θl sin(θl s)ẑl(tn) + cos(θl s)ẑl

′(tn) − θ2l

∫ s

0
(̂ f nM )l(w) cos(θl(s − w))dw.

(2.8)
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Substituting s = τ in (2.7) and (2.8), followed by applying the standard trapezoidal
rule or the Deuflhard-type quadrature [13] for approximating the integrations, we get

ẑl(tn+1) ≈ cos(θlτ)ẑl(tn) + sin(θlτ)

θl
ẑl

′(tn) − θlτ

2
sin(θlτ)(̂ f nM )l(0),

ẑl
′(tn+1) ≈ −θl sin(θlτ)ẑl(tn) + cos(θlτ)ẑl

′(tn)

− θ2l τ

2

[
cos(θlτ)(̂ f nM )l(0) + (̂ f nM )l(τ )

]
. (2.9)

In practice, computing the continuous sine coefficients is difficult from the inte-
gration formula given in (2.9). Therefore, we replace the continuous sine coefficients
by the discrete sine coefficients as in (2.3). A detailed Deuflhard-type exponential
integrator sine pseudospectral (DEI-SP) method reads as follows. Denote znj and
żnj ( j = 0, 1, . . . , M, n = 0, 1, . . .) by the approximations to z(x j , tn) and ∂t z(x j , tn),

respectively. Setting z0j = z0(x j ), ż0j = z1(x j ), then for n ≥ 0,

zn+1
j =

M−1∑
l=1

˜zn+1
l sin

(
jlπ

M

)
, żn+1

j =
M−1∑
l=1

˜żn+1
l sin

(
jlπ

M

)
, (2.10)

where

˜zn+1
l = cos(θlτ)z̃nl + sin(θlτ)

θl

˜̇znl − θlτ

2
sin(θlτ) f̃ nl ,

˜żn+1
l = −θl sin(θlτ)z̃nl + cos(θlτ)˜̇znl − θ2l τ

2

[
cos(θlτ) f̃ nl + ˜f n+1

l

]
,

(2.11)

with

z̃nl = 2

M

M−1∑
j=1

znj sin

(
jlπ

M

)
, ˜̇znl = 2

M

M−1∑
j=1

żnj sin

(
jlπ

M

)
,

f̃ nl = 2

M

M−1∑
j=1

f (znj ) sin

(
jlπ

M

)
.

The scheme is explicit and very efficient due to the fast discrete sine transform. The
memory cost is O(M) and the computational cost per time step is O(M lnM). We
remark here that a Deuflhard-type exponential integrator Fourier/cosine pseudospec-
tral scheme can be derived if the homogeneous boundary condition here is replaced
by periodic/homogeneous Neumann boundary condition.
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3 Error estimates

In this section, we give the convergence theorem for the fully discretized scheme
(2.11). We denote Hm(Ω) by the standard Sobolev space. Introduce its subspace as

H̃m(Ω) = {u ∈ Hm(Ω) : u(2k)(a) = u(2k)(b) = 0, k ∈ N, 0 ≤ 2k < m},

for some integer m ≥ 1. For any function u(x) =
∞∑
l=1̂

ul sin(μl(x − a)) ∈ H̃m(Ω), we

define its norm as

‖u‖2m =
∞∑
l=1

(1 + |μl |2)m |̂ul |2. (3.1)

It can be clearly seen that the norm ‖ · ‖m is equivalent to the classical Sobolev
norm in the space Hm . Particularly, for m = 0, the space is exactly L2(Ω) and the
corresponding norm is denoted as ‖ · ‖.

For simplicity of notation, we denote the interpolations of the numerical solutions
by

znI (x) = IM (zn)(x), żnI (x) = IM (żn)(x), x ∈ (a, b),

and the error functions by

en(x) = z(x, tn) − znI (x), ėn(x) = ∂t z(x, tn) − żnI (x), x ∈ (a, b).

In order to obtain the convergence of the fully discrete scheme, we need the fol-
lowing auxiliary lemmas.

Lemma 3.1 [34] For any 0 ≤ μ ≤ k with k > 1/2, there exists a constant C such that

‖u − PMu‖μ ≤ Chk−μ‖u‖k, ‖u − IMu‖μ ≤ Chk−μ‖u‖k, ∀u ∈ H̃ k(Ω).

(3.2)

Lemma 3.2 [10] For any function g ∈ C∞(C, C) and σ > 1/2, there exists a nonde-
creasing function χg : R

+ → R
+ such that

‖g(u)‖σ ≤ ‖g(0)‖σ + χg(‖u‖L∞)‖u‖σ , ∀u ∈ Hσ . (3.3)

For all v,w ∈ Bσ
R := {u ∈ Hσ : ‖u‖σ ≤ R}, we have

‖g(v) − g(w)‖σ ≤ α(g, R)‖v − w‖σ , (3.4)

where α(g, R) = ‖g′(0)‖σ +Rχg′(cR) is nondecreasing with respect to R, with c > 0
being the constant for the Sobolev imbedding ‖ · ‖L∞ ≤ c‖ · ‖σ .
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Theorem 3.1 Let the solution of the GIBq equation (2.1) satisfy the regularity prop-
erties z ∈ C1([0, T ]; H̃m+σ ) ∩ C2([0, T ]; H̃m)(m > 1/2, σ > 0). Then there exist
h0 > 0, τ0 > 0 such that when τ ≤ τ0 and h ≤ h0, the numerical solutions zn and
żn obtained from the DEI-SP scheme (2.10)–(2.11) converge to the solution of the
problem (2.1) with the convergence rate

‖en‖m + ‖ėn‖m ≤ C( f , T , K1, K2, K3)τ
2 + C( f , T , R1, R2)h

σ , n = 0, 1, . . . , N ,

(3.5)

where Ki := ‖∂ i−1
t z‖L∞([0,T ];Hm ) (i = 1, 2, 3) and Ri := ‖∂ i−1

t z‖L∞([0,T ];Hm+σ )

(i = 1, 2). Furthermore, we have

‖znI ‖m ≤ K1 + 1, ‖żnI ‖m ≤ K2 + 1. (3.6)

Proof We give the proof for (3.5) and (3.6) by induction. For n = 0, noticing that
e0 = z0 − IM (z0), ė0 = z1 − IM (z1), applying Lemma 3.1, one gets

‖e0‖m + ‖ė0‖m ≤ C(R1, R2)h
σ .

Hence triangle inequality gives (3.6) when h ≤ h1 = 1/C(R1, R2), which completes
the proof of (3.5) and (3.6) for n = 0.Assume (3.5) and (3.6) are true for n ≤ k < T /τ ,
next we show that (3.5) and (3.6) are valid for n = k + 1. For n ≥ 1, denote

enM (x) = PM (en(x)) =
M−1∑
l=1

ênl sin(μl(x − a)),

ėnM (x) = PM (ėn(x)) =
M−1∑
l=1

̂̇enl sin(μl(x − a)),

by the projected error functions, where the corresponding coefficients in the frequency
satisfy

ênl = ẑl(tn) − z̃nl ,
̂̇enl = ẑl

′(tn) − ˜̇znl .
By the triangle inequality and Lemma 3.1,

‖en‖m + ‖ėn‖m ≤ ‖enM‖m + ‖ėnM‖m + ‖z(·, tn) − PM (z(·, tn))‖m
+ ‖∂t z(·, tn) − PM (∂t z(·, tn))‖m

≤ ‖enM‖m + ‖ėnM‖m + C(R1, R2)h
σ , (3.7)

it suffices to show

‖enM‖m + ‖ėnM‖m ≤ C(τ 2 + hσ ). (3.8)

123



1404 C. Su, G. M. Muslu

Denote the local truncation errors by

ξn(x) =
M−1∑
l=1

ξ̂nl sin(μl(x − a)), ξ̇n(x) =
M−1∑
l=1

̂̇ξnl sin(μl(x − a)), (3.9)

where

ξ̂nl = ẑl (tn+1) − cos(θlτ)ẑl (tn) − sin(θlτ)

θl
ẑl

′(tn) + θlτ

2
sin(θlτ) f̂ nl (0),

̂̇ξnl = ẑl
′(tn+1) + θl sin(θlτ)ẑl (tn) − cos(θlτ)ẑl

′(tn)

+ θ2l τ

2

[
cos(θlτ) f̂ nl (0) + f̂ nl (τ )

]
,

(3.10)

with f̂ nl (s) = ̂f (z(tn + s))l . Subtracting (2.11) from (3.10), we have

̂en+1
l = cos(θlτ)ênl + sin(θlτ)

θl

̂̇enl + ξ̂nl − θlτ

2
sin(θlτ)η̂nl ,

̂ėn+1
l = −θl sin(θlτ)ênl + cos(θlτ)̂̇enl + ̂̇ξnl − θ2l τ

2

(
cos(θlτ)η̂nl + ̂

ηn+1
l

)
,

(3.11)

where η̂nl = f̂ nl (0) − f̃ nl . Inserting (2.9) into (3.10) yields

ξ̂nl = −θl

∫ τ

0
f̂ nl (w) sin(θl(τ − w))dw + θlτ

2
sin(θlτ) f̂ nl (0),

̂̇ξnl = −θ2l

∫ τ

0
f̂ nl (w) cos(θl(τ − w))dw + θ2l τ

2

[
cos(θlτ) f̂ nl (0) + f̂ nl (τ )

]
.

Note that the error formula of the trapezoidal rule for the function g ∈ C2[0, τ ] is
given by

∫ τ

0
g(s)ds − τ

2
[g(0) + g(τ )] = −1

2

∫ τ

0
g′′(s)s(τ − s)ds. (3.12)

It follows that

ξ̂nl = θl

2

∫ τ

0
s(τ − s)[sin(θl(τ − s)) f̂ nl (s)]′′ds = θl

2

∫ τ

0
s(τ − s)Pn

l (s)ds,

̂̇ξnl = θ2l

2

∫ τ

0
s(τ − s)[cos(θl(τ − s)) f̂ nl (s)]′′ds = θ2l

2

∫ τ

0
s(τ − s)Qn

l (s)ds,

where

Pn
l (s) = −θ2l sin(θl (τ − s)) f̂ nl (s) − 2θl cos(θl (τ − s))( f̂ nl )′(s) + sin(θl (τ − s))( f̂ nl )′′(s),
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Qn
l (s) = −θ2l cos(θl (τ − s)) f̂ nl (s) + 2θl sin(θl (τ − s))( f̂ nl )′(s) + cos(θl (τ − s))( f̂ nl )′′(s).

Applying the Hölder’s inequality and Minkowski’s inequality, we get

|ξ̂nl | ≤ θl

2

( ∫ τ

0
s2(τ − s)2ds

)1/2( ∫ τ

0
|Pn

l (s)|2ds
)1/2 ≤ τ 5/2

( ∫ τ

0
|Pn

l (s)|2ds
)1/2

≤ Cτ 5/2
[( ∫ τ

0
| f̂ nl (s)|2

)1/2 +
( ∫ τ

0
|( f̂ nl )′(s)|2

)1/2 +
( ∫ τ

0
|( f̂ nl )′′(s)|2

)1/2]
,

| ̂̇ξnl | ≤ θ2l

2

( ∫ τ

0
s2(τ − s)2ds

)1/2( ∫ τ

0
|Qn

l (s)|2ds
)1/2 ≤ τ 5/2

( ∫ τ

0
|Qn

l (s)|2ds
)1/2

≤ Cτ 5/2
[( ∫ τ

0
| f̂ nl (s)|2

)1/2 +
( ∫ τ

0
|( f̂ nl )′(s)|2

)1/2 +
( ∫ τ

0
|( f̂ nl )′′(s)|2

)1/2]
.

Thus by using Lemma 3.2, the bilinear inequality [1]

‖vw‖σ ≤ C‖v‖σ ‖w‖σ , σ > 1/2,

we get

‖ξn‖2m + ‖ξ̇n‖2m =
M−1∑
l=1

(1 + μ2
l )

m(|ξ̂nl |2 + | ̂̇ξnl |2)

≤ Cτ 5
∫ τ

0

M−1∑
l=1

(1 + μ2
l )

m
(
|( f̂ nl )(s)|2 + |( f̂ nl )′(s)|2 + |( f̂ nl )′′(s)|2

)
ds

≤ Cτ 5
∫ τ

0

[
‖ f (z(tn + s))‖2m + ‖ f ′(z(tn + s))∂t z(tn + s)‖2m

+‖ f ′′(z(tn + s))(∂t z(tn + s))2‖2m + ‖ f ′(z(tn + s))∂t t z(tn + s)‖2m
]
ds

≤ Cτ 5
∫ τ

0

[
(χ f (‖z(tn + s)‖∞))2‖z(tn + s)‖2m + ‖ f ′(z(tn + s))‖2m‖∂t z(tn + s)‖2m

+‖ f ′′(z(tn + s))‖2m‖∂t z(tn + s)‖4m + ‖ f ′(z(tn + s))‖2m‖∂t t z(tn + s)‖2m
]
ds

≤ C( f , K1, K2, K3)τ
6. (3.13)

Multiplying the equations in (3.11) on both sides by themselves and applying the
Cauchy’s inequality, we get that

θ2l

∣∣∣̂en+1
l

∣∣∣2 +
∣∣∣∣̂ėn+1
l

∣∣∣∣
2

≤ (1 + τ)

∣∣∣θl cos(θlτ)ênl + sin(θlτ) ̂̇enl
∣∣∣2 + (1 + 1

τ
)θ2l

∣∣∣ξ̂nl − θlτ

2
sin(θlτ)η̂nl

∣∣∣2

+ (1 + τ)

∣∣∣ − θl sin(θlτ)ênl + cos(θlτ) ̂̇enl
∣∣∣2
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+
(
1 + 1

τ

) ∣∣∣ ̂̇ξnl − θ2l τ

2
(cos(θlτ)η̂nl + ̂

ηn+1
l )

∣∣∣2

≤ (1 + τ)
[
θ2l |ênl |2 + | ̂̇enl |2

]
+

(
1 + 1

τ

) [
2θ2l |ξ̂nl |2 + 2| ̂̇ξnl |2 + θ4l τ2

(|η̂nl |2 + |̂ηn+1
l |2)].

Denote

E n =
M−1∑
l=1

(1 + μ2
l )

m(θ2l |ênl |2 + |̂̇enl |2). (3.14)

Noticing that θl ≤ 1 and θl ≥ θ1 = π√
π2+(b−a)2

, this implies that

E n+1 − E n ≤ τE n + 2

(
1 + 1

τ

)(
‖ξn‖2m + ‖ξ̇n‖2m

)
+ τ2

(
1 + 1

τ

)
(‖ηn‖2m + ‖ηn+1‖2m),

(3.15)

where

ηn(x) =
M−1∑
l=1

η̂nl sin(μl(x − a)).

By induction (3.6), we clearly see that znI , z(·, tn) ∈ Bm
K1+1. Employing (3.3) and (3.4),

we get

‖ηn‖m = ‖IM ( f (znI )) − PM ( f (z(·, tn)))‖m
≤ ‖IM ( f (znI ) − f (z(·, tn)))‖m + ‖IM ( f (z(·, tn))) − PM ( f (z(·, tn)))‖m
≤ C‖ f (znI )) − f (z(·, tn))‖m + Chσ ‖ f (z(·, tn))‖m+σ

≤ Cα( f , K1 + 1)‖znI − z(·, tn)‖m + Chσ χ f (‖z(·, tn)‖L∞)‖z(·, tn)‖m+σ

≤ Cα( f , K1 + 1)[(E n)1/2 + hσ R1] + Chσ χ f (cK1)R1,

which implies that

‖ηn‖2m ≤ C( f , K1)E
n + C( f , R1)h

2σ .

Next we show that zn+1
I is bounded in Hm . It follows from (2.11), the induction (3.6)

and (3.3) that

‖zn+1
I ‖m ≤ ‖znI ‖m + ‖żnI ‖m + τ/2‖IM ( f (znI ))‖m

≤ K1 + K2 + 2 + Cτ‖ f (znI )‖m
≤ K1 + K2 + 2 + Cτχ f (c‖znI ‖m)‖znI ‖m ≤ C( f , K1, K2).
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Hence similarly we have

‖ηn+1‖2m ≤ C( f , K1, K2)E
n+1 + C( f , K2, R1)h

2σ .

This together with (3.15) and (3.13) yields that

E n+1 − E n

≤ τE n + C( f , K1, K2, K3)τ
5 + τC( f , K1, K2)(E

n + E n+1) + τC( f , K2, R1)h
2σ .

Summing the above inequality for n = 0, 1, . . . , k, one yields

E k+1 − E 0 ≤ C( f , K1, K2, K3)τ
4 + C( f , K2, R1)h

2σ + τC( f , K1, K2)

k+1∑
n=0

E n .

Noticing that

E 0 ≤ ‖e0M‖2m + ‖ė0M‖2m ≤ C(R1, R2)h
2σ + ‖e0‖2m + ‖ė0‖2m ≤ C(R1, R2)h

2σ ,

we derive when τ ≤ τ1 = 1
2C( f ,K1,K2)

,

E k+1 ≤ C( f , K1, K2, K3)τ
4 + C( f , K2, R1)h

2σ + τC( f , K1, K2)

k∑
n=0

E n .

Using the discrete Gronwall’s inequality, we get

E k+1 ≤ C( f , T , K1, K2, K3)τ
4 + C( f , T , R1, K2)h

2σ .

Recalling the definition of E n [cf. (3.14)], one immediately derives (3.8). Finally
(3.5) can be obtained by (3.7). Setting τ0 = min{τ1, 1/√2C( f , T , K1, K2, K3)},
h0 = min{h1, 1/(2C( f , T , R1, R2))

1/2σ }, then (3.6) is established by the triangle
inequality and (3.5) when h ≤ h0 and τ ≤ τ0. The proof is completed. �
Remark 3.1 As is seen from Theorem 3.1, the DEI-SP method is convergent with-
out any CFL-type condition required, although it is fully explicit. This could be
understood as follows. As is similar to the Klein-Gordon equation, in which case
the Deuflhard-type exponential integrator is equivalent to a time-splitting method for
temporal approximations [29,34], here the proposedDEI-SP scheme (2.10)–(2.11) can
also be derived from a time-splitting pseudospectral discretization approach. Specifi-
cally, denote v = zt , then the GIBq equation can be written as a first-order system

⎧⎪⎨
⎪⎩
zt (x, t) = v(x, t),

vt (x, t) − vt xx (x, t) = zxx (x, t) + ( f (z))xx (x, t),

z(x, 0) = z0(x), v(x, 0) = z1(x).

123



1408 C. Su, G. M. Muslu

We decompose it into the following two subproblems

A :

⎧⎪⎨
⎪⎩
zt (x, t) = v(x, t),

vt (x, t) − vt xx (x, t) = zxx (x, t),

z(x, 0) = z0(x), v(x, 0) = z1(x),

B :

⎧⎪⎨
⎪⎩
zt (x, t) = 0,

vt (x, t) − vt xx (x, t) = ( f (z))xx (x, t),

z(x, 0) = z0(x), v(x, 0) = z1(x).

Then the linear problem A can be solved exactly in phase space and the corresponding

evolution operator is denoted by

(
z(·, t)
v(·, t)

)
= χ t

A

(
z0
z1

)
. Similarly, the nonlinear

problem B can also be integrated exactly in phase space due to the fact that z(x, t)keeps

invariant and denote the associated evolution operator by

(
z(·, t)
v(·, t)

)
= χ t

B

(
z0
z1

)
.

By using the second-order Strang splitting χ
τ/2
B χτ

Aχ
τ/2
B combined with the spectral

discretization in space, we arrive at the same numerical scheme as (2.11). Noticing
that each subproblem is integrated exactly in phase space, this enables the CFL-type
condition to be exempted.

4 Numerical experiments

In this section, we firstly show some numerical results to testify the accuracy of the
proposed DEI-SPmethod and compare the numerical results to those of other methods
in the literature. Then the method is applied to investigate long time dynamics of the
GIBq equation, e.g., propagation of a single solitary wave, interaction of two solitary
waves. For all the numerical experiments, we choose the commonly used nonlinearity
f (u) = u p with p = 2 or p = 3.

4.1 Accuracy test

In this subsection we present some numerical results to confirm the convergence and
compare our method with some other methods proposed in the literature. Denote zτ,h
and żτ,h by the numerical solutions obtained by the DEI-SP method with time step τ

and mesh size h. To quantify the numerical error, we define the error function as

eτ,h := ‖IM (zτ,h) − z(·, t)‖1 + ‖IM (żτ,h) − ∂t z(·, t)‖1.

Example 1 Solitary wave solutions of the generalized GIBq equation are given in the
form [3,20,26]

z(x, t) = A sech
2

p−1

( p − 1

2c

√
c2 − 1(x − x0 − ct)

)
, c = ±

√
1 + 2Ap−1

p + 1
,

(4.1)
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Fig. 1 Spatial (left) and temporal (right) errors of the DEI-SP scheme for the soliton solution under different
mesh size and time step size

where A is the amplitude and c is the velocity of the pulse centered at x0 initially
with c2 > 1. Noticing that the solitary wave decays drastically in the far field, this
enables us to approach the GIBq equation on a bounded intervalΩ = (a, b)with zero
boundary conditions when |a| and b are sufficiently large. Here we choose A = 1/2,
x0 = 0 and the domain Ω = (−300, 300).

Figure 1 displays the spatial and temporal errors of the DEI-SP method (2.10)–
(2.11) for the solitary wave solution with p = 2 and p = 3 at t = 5 under different
choices of τ and h. To testify the spatial accuracy, we take a tiny time step τ = 5.0E−5
such that the temporal error is negligible; for temporal error analysis, we set the mesh
size h = 1/8 such that the spatial error can be ignorable. It can be clearly observed
that the scheme converges quadratically in time, which agrees with the theoretical
result in Theorem 3.1. For spatial convergence, the error decays very rapidly when
the number of grid points increases and then saturates when temporal discretization
error dominates. This suggests that the method converges spectrally in space, which
coincides with the analysis in Theorem 3.1.

Next we investigate the long time behavior of the DEI-SP method. Figure 2 shows
the difference of mass (1.3) for the numerical solitary wave solution (left) and the long
time error of the DEI-SP scheme (right), where the computations are performed on the
domain Ω = (−300, 300) with h = 1/8 and τ = 0.001 and the integral M (t) (1.3)
is approximated by Simpson’s quadrature. It can be clearly observed that although
the DEI-SP method fails to satisfy the mass conservation law exactly, it preserves the
mass very well, even for long time dynamics. On the other hand, the right plot of Fig. 2
shows that the error increases mildly and almost linearly with respect to time, which
together with the left plot suggests that the DEI-SP method is reliable for long time
dynamics.

For a comparisonwith other numericalmethods, we choose the quadratic nonlinear-
ity (p = 2), and the corresponding initial conditions of the solitary wave solution (4.1)
with different A as were used in literature [7,8,16,25]. Table 1 displays the l∞-errors
of different numerical methods at t = 72 with the same mesh size h = 0.1 and time
step τ = 0.001. Here we compare the present DEI-SP method with the second-order
implicit finite difference method (IFDM) [8], the predictor-corrector (P-C) scheme
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Fig. 2 Conservation of mass (left) and long-time errors of the DEI-SP method (right)

Table 1 Comparison of error for the DEI-SP method and other methods in literature

A DEI-SP RBFs [25] M4 [16] IFDM [8] P-C [7]

0.25 1.53E–9 1.86E–7 1.80E–7 1.79E–4 –

0.5 1.42E–8 7.93E–7 7.50E–7 4.19E–4 4.19E–4

0.75 5.10E–8 1.88E–6 1.89E–6 2.90E–3 2.90E–3

0.9 8.99E–8 2.97E–6 2.96E–6 1.35E–2 1.35E–2

Table 2 Comparison of efficiency between the DEI-SP method and other methods in literature

A DEI-SP CPU time RBFs [25] CPU time IFDM [8] CPU time

0.25 203 3.29E+4 3.86E+4

0.5 201 3.35E+4 3.96E+4

0.75 202 3.36E+4 4.00E+4

0.9 201 3.32E+4 4.03E+4

[7], a variant of finite element method (M4) applied in [16] and a third-order meshless
method based on collocation and approximating the solution by radial basis functions
(RBFs) proposed in [25]. It can be clearly seen that our numerical method is much
more accurate than those presented in [7,8,16]. DEI-SP method is even competitive
with the third-order scheme [25], which is much time-consuming due to the iteration
for solving a nonlinear system in each time step. We also compare the CPU time for
some numerical methods with the same mesh size h = 0.1 and time step τ = 0.001
in Table 2, where we compute till t = 72. The numerical comparison suggests that
our DEI-SP scheme is much more efficient.
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Fig. 3 Time evolution of the static solitary wave (4.2) for different A: A = 0.6, 3.5, 3.8 (from top to bottom)

4.2 Single-wave splitting

Example 2 In this experiment, we use the initial data for p = 2:

z0(x) = A sech2
(√

A

6

x − x0
c

)
, z1(x) = 0, c =

√
1 + 2A

3
, (4.2)

and p = 3:

z0(x) = A sech
( A√

2

x − x0
c

)
, z1(x) = 0, c =

√
1 + A2

2
, (4.3)

which has ever been applied for studying the single-wave splitting for p = 2 in
the literature [28,33]. For both sets of initial data, computations are carried out with
h = 1/8 and τ = 0.001 on the interval Ω = (−400, 400).

Figure 3 displays the dynamics of the soliton with null initial velocity and different
amplitudes A = 0.6, 3.5, 3.8 for p = 2 [cf. (4.2)]. We find that the soliton splits into
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Fig. 4 Time evolution of the negative static solitary wave (4.3) for different A: A = −0.6 (above) and
A = −3.5 (bellow)

two symmetric pulses moving in opposite directions. Besides the two main solitons,
some oscillating tail is emitted between the two main waves, which is different from
that of the “Good” Boussinesq equation where the emitting oscillations are beyond the
main solitons [27]. From the figure for A = 3.5, we can see how the oscillations are
emitted clearly. There is always a small pulse staying in the original location besides the
splitting outspreadingwaves. As time evolves, the pulse oscillates up and down, breaks
into new symmetric waves spreading outside in each period such that the amplitude
of the pulse staying in the original site gets smaller and smaller. Furthermore, for
soliton with initial amplitude large enough, the solution blows up in finite time, e.g.,
for A = 3.8, the solution blows up quickly after t = 18.5. Here blow-up means that
the numerical solution goes to infinity quickly. For instance, for A = 3.8, when the
computation is performed on Ω = (−400, 400) with h = 1/8 and τ = 0.001, the
solution goes to infinity at t = 19 exactly.When the computational domain is enlarged,
the blow-up time is invariant. When the mesh size or time step is reduced, the exact
blow-up time might change a little bit, for instance, when h = 1/16 and τ = 0.0001,
the blow-up phenomenon occurs at t = 18.91. Anyway, the computational parameters
don’t affect the blow-up property. By the way, this blow-up phenomena has not been
revealed in e.g., [14,28,33].

Figure 4 displays the dynamics of the negative static soliton with different ampli-
tudes A = −0.6,−3.5 for p = 3 (4.3). It can be observed that the dynamics is similar
to the case for p = 2 when the amplitude is small. However, as the amplitude gets
larger, the dispersion between the two main splitting waves gets more and more com-
plicated (cf. Fig. 5). Furthermore, no finite time blow-up is found even for very large
amplitude A = −12 (cf. Fig. 5), which is different from the case for p = 2 (cf. Fig. 3
bottom).

123



An exponential integrator sine pseudospectral method... 1413

Fig. 5 Time evolution of the negative static solitary wave (4.3) for different A: A = −5 (left) and A = −12
(right)

4.3 Interaction of two solitary waves

In this subsection, we present some results to investigate the interaction of two solitary
waves. The initial conditions are set as

z0(x) =
2∑

i=1

Ai sech
2

p−1
( p − 1

2ci

√
c2i − 1(x − xi )

)
, ci = ±

√
1 + 2Ap−1

i /(p + 1),

z1(x) =
2∑

i=1

Ai

√
c2i − 1 sech

2
p−1

( p − 1

2ci

√
c2i − 1(x − xi )

)
tanh

( p − 1

2ci

√
c2i − 1(x − xi )

)
,

(4.4)

with p = 2 or p = 3. It represents two solitary waves located initially at the positions
x = x1 and x = x2, respectively, moving to the right or left depending on the sign
of the velocity ci . The experiments in this subsection are performed by the DEI-SP
method over the interval Ω = (−400, 400) with h = 1/8 and τ = 0.001.

Firstly we set p = 2 and consider the following cases for the initial data:
(1) Inelastic collision (c1 > 0, c2 < 0):

(i) x1 = −x2 = 40, A1 = 0.2, A2 = 0.3;
(ii) x1 = −x2 = 40, A1 = 2.5, A2 = 2;

(2) Blow-up phenomenon (c1 > 0, c2 < 0):

(iii) x1 = −x2 = 40, A1 = A2 = 2.55;
(iv) x1 = −x2 = 40, A1 = A2 = 2.56;
(v) x1 = −x2 = 40, A1 = 3.35, A2 = 2;
(vi) x1 = −x2 = 40, A1 = 3.36, A2 = 2;

(3) Overtaking interaction (c1 > 0, c2 > 0):

(vii) x1 = −60, x2 = −10, A1 = 5, A2 = 0.3.

Figure 6 shows the evolution of z(x, t) for inelastic collision [Cases (i)–(ii)].We see
that the two solitons which are initially located at the positions x1 = −40 and x2 = 40
moving towards each other with velocities c1 and c2, respectively. As time progresses
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Fig. 6 Inelastic collision of two solitons for Cases (i)–(ii) (from top to bottom)

they collide, stick together and split after collision. Different from the discussions in
most references [25,28,30], where the authors concluded that the collision is elastic
when the initial amplitudes are small and inelastic collision occurs only when the
maximumof the initial amplitudes is large,we’d prefer to say that the collision between
two solitary waves for the GIBq equation is always inelastic, which means small
radiation is created after the interaction. Specifically, for Case (i), the collision occurs
at around t = 36.7 with the largest amplitude 0.4643, which is smaller than the
summation of the two initial amplitudes. Small secondary waves are emitted after the
interaction and can be seen clearly via a more careful observation. This small emission
was ignored in the literature [25,28,30]. Furthermore, the collision here is completely
different from the elastic collision for the “Good” Boussinesq equation [27], where
the solitons retain their amplitudes and shape after the interaction and no displacement
is observed.

Figure 7 reveals the blow-up phenomenon for the head-on collision. For two solitary
waves with the same initial amplitude A1 = A2 = A, there exists Ac ∈ (2.55, 2.56)
such that the solution blows up in finite time when A1 = A2 > Ac. For A1 =
A2 = 2.56, the solution blows up quickly after t = 40. Similar blow-up occurs for
x1 = −x2 = 10, which means Ac does not depend on the relative locations of the
initial solitons. For fixed A2 = 2, there exists Ac ∈ (3.35, 3.36) such that the solution
blows up in finite time when A1 > Ac. This suggests that there exists some instability
for this kind of initial data. As far as we know, this blow-up phenomena after collision
has never been investigated in literature.

Figure 8 shows the overtaking interaction of two solitons moving in the same
direction with different velocities. It can be observed that the faster wave overtakes
the slower one at around t = 49.3 with decreased amplitude and leaves it behind as
time evolves. Furthermore, small waves are emitted during the overtaking process and
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Fig. 7 Collision of two solitons for Cases (iii)–(vi) (from top to bottom, from left to right)
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Fig. 8 Overtaking interaction of two solitons traveling in the same direction

some of these small waves propagate in the opposite direction, which is different from
the case for the “Good” Boussinesq equation where no secondary waves are created
during the interaction [27].

For p = 3, it is possible to choose negative A which corresponds to antisolitary
waves. Next we investigate the interaction between solitary waves or between solitary
and antisolitary waves for the GIBq equation with cubic nonlinearity (p = 3). We
choose the following sets of initial conditions:
(1) Inelastic collision (c1 > 0, c2 < 0):

(i) x1 = −x2 = 40, A1 = −0.2, A2 = 0.3;
(ii) x1 = −x2 = 40, A1 = 2.5, A2 = −2;
(iii) x1 = −x2 = 40, A1 = A2 = 8;
(iv) x1 = −x2 = 40, A1 = 12, A2 = 5;

(2) Overtaking interaction (c1 > 0, c2 > 0):

(v) x1 = −60, x2 = −10, A1 = 5, A2 = −2.
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Fig. 9 Head-on collision between solitary and antisolitary waves for p = 3: Cases (i)–(ii) (from top to
bottom)

Fig. 10 Head-on collision between two solitons with large amplitudes for p = 3: Case (iii) (left) and Case
(iv) (right)

Figure 9 shows the head-on interaction between solitary and antisolitary waves
[Cases (i)–(ii)]. We see that the collision is inelastic and the interaction is similar to
that of p = 2. For Case (i), the collision occurs at around t = 39.9 with the smallest
amplitude 0.1068, which is larger than the difference of the initial amplitudes between
the two original waves.

Figure 10 shows the head-on collision between two solitons with large amplitudes.
Different from the case for p = 2 where blow-up occurs in finite time (cf. Fig. 7), no
finite time explosion is found here, at least for solitary waves with initial amplitudes as
large as A1 = A2 = 8 or A1 = 12, A2 = 5. However, the dynamics of the secondary
emitting waves are definitely more and more complicated.

Figure 11 displays the overtaking interaction of a solitary wave and an antisoli-
tary wave moving in the same direction with different velocities. Similarly, the faster
wave overtakes the slower one and small solitary waves are emitted during the over-
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Fig. 11 Overtaking interaction of a solitary wave and an antisolitary wave for p = 3

taking interaction. Noticing that the overtaking takes place at around t = 25 with
the maximum amplitude as A = 5.5818, which is different from the case when it
occurs between two solitary or two antisolitary waves where the amplitude attains the
minimum during the interaction.

5 Conclusions

ADeuflhard-type exponential integrator sine pseudospectral method was proposed for
the generalized improved Boussinesq (GIBq) equation based on a sine pseudospectral
discretization in space and aDueflhard-type exponential integrator for time integration.
The method was shown to unconditionally converge at the second order in time and
spectrally in space. The convergence was confirmed by extensive numerical experi-
ments. Comparisonwith othermethods show its superiority in efficiency and accuracy.
With this efficientmethod, some interestingnumerical experiments are performed, e.g.,
single-wave splitting, head-on/overtaking interaction and blow-up phenomena. The
numerical results suggest that there exists some essential difference on the dynamics
of the GIBq equation with quadratic and cubic nonlinearities.
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