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Abstract
The rates of strong convergence for various approximation schemes are investigated
for a class of stochastic differential equations (SDEs) which involve a random time
change given by an inverse subordinator. SDEs to be considered are unique in two
different aspects: (i) they contain two drift terms, one driven by the random time
change and the other driven by a regular, non-random time variable; (ii) the standard
Lipschitz assumption is replaced by that with a time-varying Lipschitz bound. The
difficulty imposed by the first aspect is overcome via an approach that is significantly
different from a well-known method based on the so-called duality principle. On the
other hand, the second aspect requires the establishment of a criterion for the existence
of exponential moments of functions of the random time change.

Keywords Stochastic differential equation · Numerical approximation · Rate of
convergence · Inverse subordinator · Random time change · Time-changed Brownian
motion

Mathematics Subject Classification 65C30 · 60H10

1 Introduction

Let B = (Bt )t≥0 be a standard Brownian motion and E = (Et )t≥0 be a stochas-
tic process defined by the inverse of a stable subordinator D = (Dt )t≥0 withindex
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β ∈ (0, 1), independent of B. The composition process B ◦ E = (BEt )t≥0, called a
time-changed Brownian motion, and its various generalizations have been widely used
to model “subdiffusions” arising in many different areas of science; see e.g. Chapter
1 of [27]. There are a number of characteristics of the time-changed Brownian motion
which make it fundamentally different from the regular Brownian motion. For exam-
ple, B ◦ E is non-Markovian and its variance is E[B2

Et
] = ctβ for some c > 0, which

shows that in large time scales particles represented by B ◦ E diffuse more slowly
than the regular Brownian particles. Moreover, each of these subdiffusive particles
frequently gets trapped and becomes immobile for some time. Further, the densities of
B ◦ E satisfy the time-fractional heat equation ∂

β
t u(t, x) = (1/2)Δu(t, x), where ∂

β
t

denotes the Caputo fractional derivative of order β. Various extensions of B ◦ E and
their associated fractional order partial differential equations have been investigated,
including time-changed fractional Brownian motions (see [5,6,18]).

This paper investigates stochastic differential equations (SDEs) of the form

dXt = H(Et , Xt ) dt + F(Et , Xt ) dEt + G(Et , Xt ) dBEt with X0 = x0. (1.1)

One of the main difficulties of handing this SDE is the simultaneous presence of the
two drift coefficients H and F , with the former driven by the regular, non-random
time variable and the latter driven by the random time change. Detailed analysis of
the “time-changed SDE” (1.1) with Lévy noise terms added first appeared in [13],
and since then, the time-changed SDE (1.1) and its extensions have drawn more and
more attention. For example, Nane and Ni [21,22] and Wu [28] established stability
in various senses of solutions of time-changed SDEs; to overcome the difficulty of the
simultaneous presence of the two drifts, they utilized extensions of the time-changed
Itô formula derived in [13]. On the other hand, the main contribution of this paper
is to establish the rates of convergence for numerical approximation schemes for the
time-changed SDE (1.1) with H(Et , Xt ) = H(Et ), which is extremely important
both theoretically and practically.

Let us suppose for the moment that H ≡ 0. Then the time-changed SDE can be
effectively analyzed via the so-called duality principle in Theorem 4.2 of [13], which
connects (1.1) with H ≡ 0 with the classical Itô SDE

dYt = F(t, Yt ) dt + G(t, Yt ) dBt with Y0 = x0 (1.2)

in the following manner: if Yt solves (1.2), then Xt := YEt solves (1.1), while if
Xt solves (1.1), then Yt := X Dt solves (1.2), where D is the original subordinator.
Indeed, Hahn et al. [7] employed this one-to-one correspondence to establish a time-
fractional pseudo-differential equation associated with a time-changed SDE involving
jumps. The duality principle was also used in [10] to discuss Euler–Maruyama-type
approximation for SDE (1.1) with H ≡ 0 under the standard Lipschitz assumption on
the coefficients. The same approach was also employed in the more recent paper [3]
for semi-implicit Euler–Maruyama-type approximation for SDEs with superlinearly
growing coefficients.

Let us now assume H �≡ 0. This paper derives extensions of the strong convergence
result in [10] while investigating the following non-trivial question:
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Strong approximation of time-changed SDEs 831

(A) If H �≡ 0 and the coefficients F , G and H satisfy the Lipschitz assumption with a
time-varying Lipschitz bound (as in AssumptionH1 in Sect. 3), can we still obtain
a convergence result similar to the one derived in [10]?

Let us emphasize that the duality principle becomes powerless in the simultaneous
presence of the two drifts H and F, even with the standard Lipschitz assumption. This
is because the corresponding classical SDE (1.2) would involve a term driven by D,
and hence, Y would depend on E , making the discussions provided in the above-cited
papers [3,7,10] no longer valid.

To overcome the difficulty, this paper utilizes a Gronwall-type inequality with a
stochastic driver to control the moments of the error processes, which is intrinsically
different from the approach taken in the above-mentioned papers [21,22,28] in han-
dling the simultaneous presence of the two drifts. Our method builds upon and extends
the ideas presented in [9] in dealing with a different type of time-changed SDEs of the
form dXt = F(t, Xt ) dEt + G(t, Xt ) dBEt . However, to answer Question (A) on the
time-changed SDE (1.1), we must appropriately modify that approach in order to deal
with (i) the simultaneous presence of the two drifts H and F and (ii) the generalized
Lipschitz assumption. To handle (ii), we derive a useful criterion for the existence of
the exponential moments of functions of Et in Theorem 2.1. The criterion generalizes
Theorem 1 of [9] and may be of independent interest to some readers.

We further investigate the following question:

(B) Can we improve the rate of convergence for the time-changed SDE (1.1) using an
Itô–Taylor-type approximation scheme?

Even though we give a positive answer to this question only in the one-dimensional
case and under the assumption that H ≡ 0, it is still a non-trivial generalization of
the result established in [10]. Indeed, Remark 3.2(4) of [10] points out that a simple
modification of their argument by using the duality principle together with the Itô–
Taylor scheme would not lead to any improvement of the rate of convergence. It turns
out that the approach taken for Question (A), which completely avoids the use of the
duality principle, enables us to tackle Question (B) effectively.

The rest of the paper is organized as follows. Section 2 defines the wide class of
random time changes to be considered in this paper and derives criteria for the exis-
tence and non-existence of various moments of the time changes. Section 3 discusses
the meaning of the time-changed SDE (1.1) and derives sufficient conditions for the
existence of moments of the SDE solution. Using these results, Sects. 4 and 5 estab-
lish the main theorems which answer Questions (A) and (B). Section 6 is devoted to
numerical examples which verify the statements derived in Sect. 4.

2 Inverse subordinators and their moments

Throughout the paper, (Ω,F ,P) denotes a complete probability space, E denotes
the expectation under P, and all stochastic processes are defined on (Ω,F ,P). Let
D = (Dt )t≥0 be a subordinator starting at 0 with Laplace exponent ψ with killing
rate 0, drift 0, and Lévy measure ν; i.e. D is a one-dimensional nondecreasing Lévy
process with càdlàg paths starting at 0 with Laplace transform E[e−s Dt ] = e−tψ(s),
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Fig. 1 Sample paths of a 0.9-stable subordinator D and the corresponding inverse E

where ψ(s) = ∫∞
0 (1 − e−sy) ν(dy) with the condition

∫∞
0 (y ∧ 1) ν(dy) < ∞.

We focus on the case when the Lévy measure ν is infinite (i.e. ν(0,∞) = ∞). Let
E = (Et )t≥0 be the inverse (or hitting time process) of D defined by

Et := inf{u > 0; Du > t}, t ≥ 0.

Wecall E an inverse subordinator. If the subordinator D is stablewith indexβ ∈ (0, 1),
then ψ(s) = sβ and E is called an inverse β-stable subordinator. The assumption that
ν(0,∞) = ∞ implies that D has strictly increasing paths with infinitely many jumps
(see e.g. [25]), and therefore, E has continuous, nondecreasing paths starting at 0.
Also, the inverse relation between D and E implies {Et > x} = {Dx < t} for all
t, x ≥ 0; see Fig. 1. Note that the jumps of D correspond to the (random) time intervals
on which E is constant, and during those constant periods, any time-changed process
of the form X ◦ E = (X Et )t≥0 also remains constant. If B is a standard Brownian
motion independent of D, we can regard particles represented by the time-changed
Brownian motion B ◦ E as being trapped and immobile during the constant periods;
see Fig. 2. Note that even though B ◦ D is a Lévy process, B ◦ E is not even a Markov
process (see [19,20]).

Todescribe thewide class of inverse subordinators E to be discussed in this paper, let
us introduce the notion of regularly varying and slowly varying functions. A function
f : (0,∞) → (0,∞) is said to be regularly varying at ∞ with index p ∈ R if
lims→∞ f (cs)/ f (s) = cp for any c > 0. Let RVp(∞) denote the class of regularly
varying functions at ∞ with index p. A function � : (0,∞) → (0,∞) is said to be
slowly varying at ∞ if � ∈ RV0(∞) (i.e. � ∈ RVp(∞) with p = 0). Every f ∈
RVp(∞) is represented as f (s) = s p�(s) with � ∈ RV0(∞). Note that the following
two Laplace exponents are regularly varying at ∞ with index β ∈ (0, 1): ψ(s) = sβ ,
which corresponds to a stable subordinatorwith indexβ, andψ(s) = (s+κ)β−κβ with
κ > 0, which corresponds to an exponentially tempered (or tilted) stable subordinator
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Fig. 2 Sample paths of an inverse 0.8-stable subordinator E (dash-dotted) and the corresponding time-
changed Brownian motion B ◦ E (solid), compared to the sample path of the underlying Brownian motion
B (dotted)

with index β and tempering factor κ . On the other hand, ψ(s) = log(1 + s), which
corresponds to a Gamma subordinator, is slowly varying at ∞.

For the reader’s convenience, we list some properties of regularly varying functions
that are used throughout this paper (see Propositions 1.5.1 and 1.5.7 of [1]). Let
f (0) := lims→0 f (s) and f (∞) := lims→∞ f (s) for a given function f defined on
(0,∞).

Lemma 2.1 (i) Given f ∈ RVp(∞), f (∞) = ∞ if p > 0, and f (∞) = 0 if p < 0.
(ii) If fi ∈ RVpi (∞) for i = 1, 2 and f2(∞) = ∞, then f1 ◦ f2 ∈ RVp1 p2(∞).
(iii) If fi ∈ RVpi (∞) for i = 1, 2, then f1 · f2 ∈ RVp1+p2(∞).

In Proposition 2.1 and Theorem 2.1 below, we provide important criteria for the
existence and non-existence of various moments concerning inverse subordinators,
which play key roles in the proofs of the statements to be established in Sects. 3–5.
Proposition 2.1 states that any inverse subordinator with the underlying Lévy measure
being infinite has exponential moment; for proofs, see [10,17].

Proposition 2.1 Let E be the inverse of a subordinator with infinite Lévy measure.
Then E[eλEt ] < ∞ for any λ > 0 and t > 0. Consequently, if f : (0,∞) →
(0,∞) is a measurable function regularly varying at ∞ with index p > 0 such that
sups≤s0 f (s) < ∞ for any s0 < ∞, then E[ f (Et )] < ∞ for any t > 0.

Even though Et has exponential moment, its power E p
t with p > 1 may or may

not have exponential moment. For instance, if E is an inverse β-stable subordinator,
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then E[eλE2
t ] exists if 1/2 < β < 1 while it does not if 0 < β < 1/2. When β = 1/2,

whether the expectation exists or not depends on the relationship between λ and t . For
details, see Remark 6(2) of [9]. The following theorem generalizes Theorem 1 of [9].

Theorem 2.1 Let E be the inverse of a subordinator D whose Laplace exponent ψ

is regularly varying at ∞ with index β ∈ [0, 1). If β = 0, assume further that
ψ(∞) = ∞ and ψ ′ is regularly varying at ∞ with index −1. Suppose f : (0,∞) →
(0,∞) is a measurable function regularly varying at ∞ with index p > 0 such that
sups≤s0 f (s) < ∞ for any 0 < s0 < ∞. Fix t > 0.

(i) If p < 1/(1 − β), or equivalently, β > (p − 1)/p, then E[e f (Et )] < ∞.
(ii) If p > 1/(1 − β), or equivalently, β < (p − 1)/p, then E[e f (Et )] = ∞.

Proof For any fixed M > 0,
∫ M
0 e f (u)

P(Et ∈ du) ≤ esupu≤M f (u) < ∞ by assump-
tion. Hence, for large enough M > 0, the integrability of E[e f (Et )] coincides with
that of

∫∞
M e f (u)

P(Et ∈ du).
If p < 1/(1 − β), then there exist q ∈ (p, 1/(1 − β)) and M1 > 0 such that

f (u) < uq for all u ≥ M1. Indeed, for q > p, since f (u)u−q ∈ RVp−q(∞), it
follows from Lemma 2.1(i) that f (u)u−q → 0 as u → ∞. Then

∫∞
M1

e f (u)
P(Et ∈

du) ≤ ∫∞
M1

euq
P(Et ∈ du) ≤ E[eEq

t ], which is finite due to Theorem 1(1) of [9], so

E[e f (Et )] < ∞. On the other hand, if p > 1/(1 − β), then again by Lemma 2.1(i),
there exist q ∈ (1/(1 − β), p) and M2 > 0 such that f (u) > uq for all u ≥ M2.
SinceE[eEq

t ] = ∞ due to Theorem 1(2) of [9], it follows that
∫∞

M2
e f (u)

P(Et ∈ du) ≥
∫∞

M2
euq

P(Et ∈ du) = ∞. Thus, E[e f (Et )] = ∞. �
Theorem 2.2 below concerning the moments of negative orders of Et (i.e.E[1/E p

t ]
for p > 0) can be regarded as a counterpart of Proposition 2.1 and Theorem 2.1. To
state the theorem in a more general setting, note that a function f : (0,∞) → (0,∞)

is called regularly varying at 0 with index p ∈ R if lims↓0 f (cs)/ f (s) = cp for any
c > 0, which is equivalent to the statement that f̃ ∈ RV−p(∞)with f̃ (x) := f (1/x).
The proof is based on the small ball probability of Et that is established in [14] or
obtained immediately from a result in [24]. Note that for any t > 0 and f : (0,∞) →
(0,∞), it follows that f (Et ) is well-defined and positive a.s. since Et > 0 a.s. (or
otherwise, the underlying subordinator D would not start at 0).

Theorem 2.2 Let E be the inverse of a subordinator with infinite Lévy measure ν.
Suppose f : (0,∞) → (0,∞) is a measurable function regularly varying at 0 with
index p > 0 such that infs≥s0 f (s) > 0 for any 0 < s0 < ∞. Fix t > 0.

(i) If p < 1, then E[1/ f (Et )] < ∞.
(ii) If p > 1 and ν[t,∞) > 0, then E[1/ f (Et )] = ∞.

Proof We first prove the statement in the special case when f (u) = u p for u > 0.
Observe that E

[
1/E p

t
]
can be expressed as

∫ ∞

0
P

(
1

E p
t

> x

)

dx =
∫ ∞

0
P(Et < x−1/p)dx =

∫ ∞

0
pu−p−1

P(Et ≤ u)du,
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Strong approximation of time-changed SDEs 835

where we used the fact that the function u �→ P(Et ≤ u) is a distribution function
and hence P(Et < u) = P(Et ≤ u) for a.e. u. Since

∫∞
u0

pu−p−1
P(Et ≤ u) du ≤

∫∞
u0

pu−p−1 du = u−p
0 < ∞ for any fixed u0 > 0, it suffices to discuss the con-

vergence and divergence of the integral
∫ u0
0 pu−p−1

P(E ≤ u) du for small enough
u0 > 0. On the other hand, by Corollary 4.14 of [24] (also see Proposition 1 of [14]),

P(Et ≤ u) ∼ ν[t,∞)u as u ↓ 0.

(If ν[t,∞) = 0, this is interpreted as P(Et ≤ u) = o(u).) Thus, if 0 < p < 1, then∫ u0
0 pu−p−1

P(Et ≤ u) du ≤ (ν[t,∞) + ε)
∫ u0
0 pu−p du < ∞ for some ε > 0 and

u0 > 0, thereby yielding (i). In contrast, if p ≥ 1 and ν[t,∞) > 0, then for some ε ∈
(0, ν[t,∞)) and u0 > 0,

∫ u0
0 pu−p−1

P(Et ≤ u)du ≥ (ν[t,∞) − ε)
∫ u0
0 pu−pdu =

∞, from which (ii) follows.
Now, consider a general regularly varying function f stated in the theorem. For

any fixed u1 > 0,
∫∞

u1
(1/ f (u))P(Et ∈ du) ≤ 1/[infu≥u1 f (u)] < ∞ by assumption.

Hence, the integrability of E[1/ f (Et )] coincides with that of
∫ u1
0 (1/ f (u))P(Et ∈

du) for small enough u1 > 0. Since f̃ (x) ∈ RV−p(∞) with f̃ (x) := f (1/x), by
Lemma 2.1(i), limu↓0 f (u)u−α = ∞ if α > p. Thus, if 0 < p < 1, then there exist
α ∈ (p, 1) and u1 > 0 such that f (u) > uα for u ≤ u1. For this α, by the special case
above, ∞ > E[1/Eα

t ] ≥ ∫ u1
0 (1/uα)P(Et ∈ du) ≥ ∫ u1

0 (1/ f (u))P(Et ∈ du), which
yields (i).

On the other hand, if p > 1, then since limu↓0 f (u)u−α = 0 if α < p, there
exist α ∈ (1, p) and u2 > 0 such that f (u) < uα for u ≤ u2. For this α, by
the special case above, E[1/Eα

t ] = ∞, and hence, ∞ = ∫ u2
0 (1/uα)P(Et ∈ du) ≤∫ u2

0 (1/ f (u))P(Et ∈ du), which yields (ii). �

Remark 2.1 (1) The proof of Theorem 2.2(ii) implies that, in the case when p = 1, if
ν[t,∞) > 0 and there exists c > 0 such that f (s) ≤ cs for all s small enough,
then E[1/ f (Et )] = ∞.

(2) A simple application of Theorem 2.2 provides an insight into the one-sided exit
problem for a time-changed Brownian motion B ◦ E , where B is a Brownian
motion independent of the inverse subordinator E . By (8.3) in Chapter 2 of
[11], the running maximum MT := max0≤t≤T Bt of the Brownian motion has

density fMT (x) = √
2/(πT ) exp (−x2/2T ) with x > 0, so

√
2/(πT )e− 1

2T ≤
P(max0≤t≤T Bt ≤ 1) ≤ √

2/(πT ) for any fixed T > 0. SinceP(max0≤t≤T BEt ≤
1) = P(max0≤r≤ET Br ≤ 1), a simple conditioning yields

√
2

π
E

[

E
− 1

2
T e

− 1
2ET

]

≤ P

(

max
0≤t≤T

BEt ≤ 1

)

≤
√

2

π
E

[

E
− 1

2
T

]

,

where thefiniteness of the lower andupper bounds is guaranteed byTheorem2.2(i).
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3 Stochastic differential equations involving a random time change
and associated Lp bounds

Throughout the rest of the paper, let (Ft )t≥0 be a filtration on the probability space
(Ω,F ,P) satisfying the usual conditions and B be an m-dimensional (Ft )-adapted
Brownianmotionwhich is independent of an (Ft )-adapted subordinator D with infinite
Lévy measure. Since B and D are assumed independent, it is possible to set them
up on a product probability space in the following manner. Let B = B(ω1) be a
Brownian motion defined on a probability space (ΩB,FB,PB) and D = D(ω2)

be a subordinator defined on another probability space (ΩD,FD,PD). Consider B
and D to be defined on the measurable space (ΩB × ΩD,FB × FD) by simply
setting B(ω1, ω2) := B(ω1) and D(ω1, ω2) := D(ω2) for (ω1, ω2) ∈ ΩB × ΩD .
Then B and D, regarded as processes on the product probability space (Ω,F ,P) :=
(ΩB × ΩD,FB × FD,PB × PD), are independent. Let EB , ED and E denote the
expectations under the probability measures PB , PD and P, respectively. Namely, for
a given random element Z on the product space, let

EB[Z ] :=
∫

ΩB

Z(ω1, · ) dPB(ω1), ED[Z ] :=
∫

ΩD

Z( · , ω2) dPD(ω2),

and

E[Z ] :=
∫

Ω

Z(ω1, ω2) dP(ω1, ω2).

Clearly, if Z ≥ 0 or Z is P-integrable, then ED[EB[Z ]] = E[Z ]. We use this setting
in the remainder of the paper.

Let E be the inverse of the subordinator D. Consider a stochastic differential equa-
tion (SDE)

Xt = x0 +
∫ t

0
H(Er , Xr )dr +

∫ t

0
F(Er , Xr )dEr +

∫ t

0
G(Er , Xr )dBEr , t ∈ [0, T ],

(3.1)
where x0 ∈ R

d is a non-random constant, T > 0 is a fixed time horizon, and H , F :
[0,∞) × R

d → R
d and G : [0,∞) × R

d → R
d×m are jointly continuous functions

such that the following assumptions hold: there exists a continuous, nondecreasing
function h(u) : [0,∞) → [0,∞) such that for all u ≥ 0 and x, y ∈ R

d ,

H1 : |H(u, x)− H(u, y)|+|F(u, x)− F(u, y)|+|G(u, x)−G(u, y)| ≤ h(u)|x − y|;
H2 : |H(u, x)| + |F(u, x)| + |G(u, x)| ≤ h(u)(1 + |x |),
where | · | denotes the Euclidean norms of appropriate dimensions. In the remainder of
the paper, we assume that m = d = 1; extensions of the results established in Sects. 3
and 4 to a multi-dimensional case are straightforward, whereas the presentation in
Sect. 5 is restricted to the one-dimensional case. Examples of coefficients satisfying
the above assumptions include H(u, x) = F(u, x) = G(u, x) = u px for some
p > 0. We make the bounds in Assumptions H1 and H2 time-dependent since our
convergence results for approximation schemes of SDE (3.1) rely on the relationship

123



Strong approximation of time-changed SDEs 837

between the growth of the bound h(u) and that of the Laplace exponent ψ(s) of
the underlying subordinator D. Moreover, the inclusion of the function h(u) will
reveal how the information about random time changes is generally retained when
moments of the SDE solution are estimated. Note that this paper often assumes that the
nondecreasing bound h(u) is regularly varying at∞with positive index, inwhich case,
the monotonicity assumption of h(u) can be dropped; indeed, we can always replace
h(u) by the running maximum h̄(u) := supt∈[0,u] h(t), which is also regularly varying
at ∞ with the same index due to Theorem 1.5.3 of [1]. We assume the monotonicity
solely for simplicity of discussions in proofs.

For each fixed t ≥ 0, the random time Et is an (Ft )-stopping time, and therefore, the
time-changed filtration (FEt )t≥0 is well-defined.Moreover, since the time change E is
an (FEt )-adapted process with continuous, nondecreasing paths and the time-changed
Brownian motion B ◦ E is a continuous (FEt )-martingale, SDE (3.1) is understood
within the framework of stochastic integrals driven by continuous semimartingales
(see [13] for details). The following lemma confirms that a unique strong solution of
SDE (3.1) exists. Its proof is analogous to the proof of Lemma 4.1 in [13].

Lemma 3.1 SDE (3.1) satisfying Assumption H1 has a unique strong solution which
is a continuous (FEt )-semimartingale.

Proof Let D denote the space of (FEt )-adapted processes with càdlàg paths on
(Ω,F ,P). Define operators F1, F2, F3 : D → D by (F1(X ·))t := H(Et , Xt ),
(F2(X ·))t := F(Et , Xt ), and (F3(X ·))t := G(Et , Xt ) for X ∈ D and t ≥ 0. Then by
the joint continuity of H , F and G, for each i = 1, 2, 3, it follows that Xσ− = Y σ−
implies (Fi (X ·))σ− = (Fi (Y·))σ− for any X , Y ∈ D and (FEt )-stopping time σ ,
where Zσ−

t := Zt if t < σ and Zσ−
t := Zσ− if t ≥ σ . Also, for all X , Y ∈ D and

t ≥ 0, |(Fi (X ·))t − (Fi (Y·))t | ≤ Kt |Xt − Yt | with Kt := h(Et ). Since (Kt )t≥0 is an
(FEt )-adapted, continuous process, each operator Fi is process Lipschitz, and there-
fore, by Theorem 7 of Chapter V in [23], a unique solution of SDE (3.1) exists and is
an (FEt )-semimartingale. The continuity of the solution follows by the continuity of
the driving process of the SDE. �

Both E and B ◦ E start at 0, and for quadratic variations, [B ◦ E, B ◦ E] = E
and [E, E] = [B ◦ E, E] = [B ◦ E, m] = [E, m] = 0, where m denotes the identity
map. For example, d[X , X ]t = G2(Et , Xt ) dEt for the solution X of SDE (3.1). For
details about stochastic calculus for more general time-changed semimartingales, see
Section 4 in [13].

The remainder of this section is devoted to the derivation of sufficient conditions
for the existence of the pth moment of sup0≤r≤T |Xr |, where X is the solution of SDE
(3.1). The conditions are necessary to establish the main theorems of this paper in
Sects. 4 and 5. Let us recall the Burkholder–Davis–Gundy (BDG) inequality, which
states that for any p > 0, there exists a constant bp > 0 such that

E

[

sup
0≤t≤S

|Mt |p

]

≤ bpE

[
[M, M]p/2

S

]
(3.2)
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838 S. Jin, K. Kobayashi

for any stopping time S and any continuous localmartingale M with quadratic variation
[M, M]. The constant bp can be taken independently of S and M ; see Proposition 3.26
and Theorem 3.28 of Chapter 3 of [11].

Proposition 3.1 Let X be the solution of SDE (3.1) satisfying Assumptions H1 and
H2. Assume further that one of the following two conditions holds:

(a) h is constant;
(b) h is continuous, nondecreasing, and regularly varying at ∞ with index q ≥ 0,

and the Laplace exponent ψ of D is regularly varying at ∞ with index β ∈
(2q/(2q + 1), 1).

Then E[Y (p)
T ] < ∞ for any p ≥ 1, where Y (p)

t := 1 + sup0≤r≤t |Xr |p.

Proof Since a similar approach will be taken several times in Sects. 4 and 5, we will
provide a detailed proof of this proposition. Recall the notations PB, PD, P, EB, ED

and E introduced in the beginning of this section.
Let S� := inf{t ≥ 0 : Y (p)

t > �} for � ∈ N. Since the solution X has continuous
paths, Y (p)

t < ∞ for each t ≥ 0, and hence, S� ↑ ∞ as � → ∞. For PD-a.e. path,
we first apply a Gronwall-type inequality to the function t �→ EB[Y (p)

t∧S�
] for a fixed

� and then let t = T and � → ∞ in the obtained inequality to establish a bound for
EB[Y (p)

T ]. Note that due to the definition of S�,
∫ t
0 EB[Y (p)

r∧S�
] dEr ≤ �Et < ∞, which

allows us to safely apply the Gronwall-type inequality.
Assume p ≥ 2 since the result for 1 ≤ p < 2 follows immediately from the result

for p ≥ 2 with Jensen’s inequality. By the Itô formula, X p
s = x p

0 + Is + Js + Ks ,
where

Is :=
∫ s

0
pX p−1

r H(Er , Xr )dr; Js :=
∫ s

0
pX p−1

r G(Er , Xr )dBEr ;

Ks :=
∫ s

0

{

pX p−1
r F(Er , Xr ) + 1

2
p(p − 1)X p−2

r G2(Er , Xr )

}

dEr .

Fix t ∈ [0, T ] and � ∈ N. By Assumption H2 and the inequality (x + y + z)p ≤
cp(x p + y p + z p) for x, y, z ≥ 0 with cp = 3p−1,

EB

[

sup
0≤s≤t∧S�

|Is |
]

≤ EB

[∫ t∧S�

0
ph(Er )|Xr |p−1(1 + |Xr |)dr

]

≤ pcph(ET )

∫ t∧S�

0
EB[Y (p)

r ]dr . (3.3)

Similarly,

EB

[

sup
0≤s≤t∧S�

|Ks |
]

≤
(

pcph(ET ) + 1

2
p(p − 1)cph2(ET )

)∫ t∧S�

0
EB[Y (p)

r ]dEr .
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Since (Js)s≥0 is a local martingale, applying the BDG inequality (3.2) yields

EB
[
sup0≤s≤t∧S�

|Js |
] ≤ b1EB

[(∫ t∧S�

0 p2X2p−2
r G2(Er , Xr )dEr

)1/2], and hence,

EB
[

sup
0≤s≤t∧S�

|Js |
] ≤ b1EB

[

pcph(ET )

(

Y (p)
t∧S�

∫ t∧S�

0
Y (p)

r dEr

)1/2]

≤ 1

2
EB[Y (p)

t∧S�
] + 2b21 p2c2ph2(ET )

∫ t∧S�

0
EB[Y (p)

r ]dEr ,

where the last inequality follows from the elementary inequality (ab)1/2 ≤ a/λ + λb
valid for any a, b, λ > 0, with λ := 2b1 pcph(ET ). (Note that h(ET ) > 0 due to the
discussion given right above Theorem 2.2.)

Now, note that
∫ t∧S�

0 Lr dEr ≤ ∫ t
0 Lr∧S�

dEr for any nonnegative process (Lt )t≥0.
Indeed, the inequality obviously holds if t ≤ S�, while if t > S�, then

∫ t
0 Lr∧S�

dEr =
∫ S�

0 Lr dEr + ∫ t
S�

L S�
dEr ≥ ∫ t∧S�

0 Lr dEr . Thus, by the above estimates for Is , Js

and Ks ,

EB [Y (p)
t∧S�

] ≤ 2(1 + |x0|p) + 2pcph(ET )

∫ t

0
EB [Y (p)

r∧S�
]dr + 2ξ(ET )

∫ t

0
EB [Y (p)

r∧S�
]dEr ,

where ξ(u) := pcph(u) +
(

p(p − 1)cp/2 + 2b21 p2c2p
)

h2(u).

With theGronwall-type inequality inChapter IX.6a, Lemma6.3 of [8],EB[Y (p)
t∧S�

] ≤
2(1+|x0|p)e2ET ξ(ET )+2pcp T h(ET ). Setting t = T , letting � → ∞while recalling ξ(u)

does not depend on �, and using the monotone convergence theorem yields

EB[Y (p)
T ] ≤ 2(1 + |x0|p)e2ET ξ(ET )+2pcp T h(ET ). (3.4)

If h is constant, then the right hand side of (3.4) takes the form cecET , so taking ED

on both sides gives E[Y (p)
T ] ≤ E[cecET ] < ∞ due to Proposition 2.1. On the other

hand, if h ∈ RVq(∞) with q ≥ 0 is continuous and nondecreasing, then since ξ(u) ∈
RV2q(∞), the right hand side of (3.4) takes the form ce f (ET ) with f (u) ∈ RV2q+1(∞)

due to Lemma 2.1(ii)(iii). So taking ED on both sides gives E[Y (p)
T ] ≤ E[ce f (ET )].

By Theorem 2.1, the latter is finite provided that 2q + 1 < 1/(1−β), or equivalently,
β ∈ (2q/(2q + 1), 1). �
Remark 3.1 (1) The key part in the above proof is to derive an estimate for EB[Y (p)

t∧S�
]

rather than E[Y (p)
t∧S�

]. This makes estimations such as (3.3) possible. Indeed, if
we consider E[sup0≤s≤t∧S�

|Is |] instead of EB[sup0≤s≤t∧S�
|Is |] in (3.3), then the

expectation and integral signs are no longer interchangeable and h(ET ) cannot
be taken out of the integral sign, which makes the Gronwall-type inequality inap-
plicable. This approach is completely different from the one employed in [10]. It
also gives rise to the factor h(ET ) in the exponent of the right hand side of (3.4),
which must be handled by Theorem 2.1.
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840 S. Jin, K. Kobayashi

(2) The introduction of the localizing sequence {S�} in the above proof essentially
allows us to consider the process (Y (p)

t )t∈[0,T ] to be bounded by a non-random
constant. This, in particular, guarantees that the argument based on the Gronwall-
type inequality with the stochastic driver dEt be meaningful. On the other hand,
in the proofs of Theorems 4.1, 4.2, 5.1 and 5.2 in Sects. 4 and 5, we will use
a different localizing sequence given by S� := inf{t ≥ 0 : sup0≤s≤t {|Xs −
X δ

s |} > �}, where X δ denotes the approximation process, in order to make the
Gronwall-type inequality applicable again. However, to clarify the main ideas of
the proofs, we suppress S� and simply give arguments assuming that the process
(sup0≤s≤t {|Xs − X δ

s |})t∈[0,T ] is bounded by a non-random constant.

4 Rate of convergence for a Euler–Maruyama-type schemewhen
H �≡ 0

This section discusses the rate of strong convergence of a Euler–Maruyama-type
approximation scheme for the solution of SDE (3.1) with H(u, x) = H(u) under
two different sets of assumptions on the SDE coefficients in addition to Assumptions
H1 andH2. The different settings result in different rates of convergence. The results
we prove here answer Question (A) raised in Sect. 1 and provide generalizations of
Theorem 3.1 of [10] to cases when the two drifts H and F simultaneously appear.
However, as discussed in Sect. 1, the approach we take in this paper is completely
different from that in [10] as the duality principle is never used.

Let us first describe an approximation process for an inverse subordinator E given
in [15,16]. Fix an equidistant step size δ ∈ (0, 1) and a time horizon T > 0. To
approximate E on the interval [0, T ],wefirst simulate a sample path of the subordinator
D, which has independent and stationary increments, by setting D0 = 0 and then
following the rule Diδ := D(i−1)δ+Zi , i = 1, 2, 3, . . . ,with an i.i.d. sequence {Zi }i∈N
distributed as Zi =d Dδ . We stop this procedure upon finding the integer N satisfying
T ∈ [DNδ, D(N+1)δ). Note that the N ∪ {0}-valued random variable N indeed exists
since Dt → ∞ as t → ∞ a.s. To generate the random variables {Zi }, one can use
algorithms presented in Chapter 6 of [2]. Next, let Eδ

t := (
min{n ∈ N; Dnδ > t}−1

)
δ.

The sample paths of Eδ = (Eδ
t )t≥0 are nondecreasing step functions with constant

jump size δ and the i th waiting time given by Zi = Diδ − D(i−1)δ . Indeed, it is easy
to see that for n = 0, 1, 2, . . . , N ,

Eδ
t = nδ whenever t ∈ [Dnδ, D(n+1)δ).

In particular, Eδ
T = Nδ. The process Eδ efficiently approximates E as established in

[10,16]; namely, a.s.,

Et − δ ≤ Eδ
t ≤ Et for all t ∈ [0, T ]. (4.1)

Now, for n = 0, 1, 2, . . . , N , let

τn = Dnδ.
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Strong approximation of time-changed SDEs 841

By the independence assumption between B and D, we can approximate the Brownian
motion B over the time steps {0, δ, 2δ, . . . , Nδ}. With this in mind, define a discrete-
time process (X δ

τn
)n∈{0,1,2,...,N } by X δ

0 := x0 and for n = 0, 1, 2, . . . , N − 1,

X δ
τn+1

:= X δ
τn

+ H(Eδ
τn

)(τn+1 − τn) + F(Eδ
τn

, X δ
τn

)(Eδ
τn+1

− Eδ
τn

)

+ G(Eδ
τn

, X δ
τn

)(BEδ
τn+1

− BEδ
τn

), (4.2)

which, due to the relationship Eδ
τn

= nδ, is equivalent to

X δ
τn+1

:= X δ
τn

+H(nδ)(τn+1 − τn)+F(nδ, X δ
τn

)δ+G(nδ, X δ
τn

)(B(n+1)δ − Bnδ).

(4.3)

In particular, if H ≡ F ≡ 0 and G ≡ 1, then (X δ
τn

)n∈{0,1,2,...,N } becomes a discretized
time-changed Brownian motion whose sample path is generated as in Fig. 2. Note
that even though expression (4.3) might look as though non-random time steps were
taken, we indeed take the random time steps τ0, τ1, τ2, . . . , τN to discretize the driving
processes E = (Et )t≥0 and B ◦ E = (BEt )t≥0 as indicated in (4.2); thus, the key
characteristic of the random trapping events of the time-changed process (which give
rise to constant periods) is in fact captured by the random step sizes τn+1 − τn =
D(n+1)δ − Dnδ =d Dδ . Note also that we do not discretize the SDE via non-random
time steps; that would be practically difficult since the driving processes E and B ◦ E
have neither independent nor stationary increments.

To define a continuous-time process (X δ
t )t∈[0,T ], we adopt the continuous interpo-

lation; i.e. whenever s ∈ [τn, τn+1),

X δ
s := X δ

τn
+
∫ s

τn

H(Eτn ) dr +
∫ s

τn

F(Eτn , X δ
τn

) dEr +
∫ s

τn

G(Eτn , X δ
τn

) dBEr .

(4.4)

Let

nt = max{n ∈ N ∪ {0}; τn ≤ t} for t ≥ 0.

Then clearly τnt ≤ t < τnt +1 for any t > 0. Using (4.3) and the identity X δ
s − x0 =

∑ns−1
i=0 (X δ

τi+1
− X δ

τi
) + (X δ

s − X δ
τns

), we can express X δ
s − x0 as

ns−1∑

i=0

[
H(Eτi )(τi+1−τi )+F(Eτi , X δ

τi
)δ+G(Eτi , X δ

τi
)(B(i+1)δ−Biδ)

]+(X δ
s −X δ

τns
),
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where we used iδ = EDiδ = Eτi . Using (4.4) and the fact that τi = τnr for any
r ∈ [τi , τi+1), we can rewrite the latter in the convenient form

X δ
s = x0 +

∫ s

0
H(Eτnr

) dr +
∫ s

0
F(Eτnr

, X δ
τnr

) dEr +
∫ s

0
G(Eτnr

, X δ
τnr

) dBEr .

(4.5)

We are now ready to state the first main theorem of this paper, where we assume
that there exist constants K > 0 and θ ∈ (0, 1] such that for all u, v ≥ 0 and x ∈ R,

H3 : |H(u)−H(v)|+|F(u, x)−F(v, x)|+|G(u, x)−G(v, x)| ≤ K |u−v|θ (1+|x |).
Recall that an approximation process X δ with step size δ > 0 is said to converge
strongly to the solution X uniformly on [0, T ] with order η ∈ (0,∞) if there exist finite
positive constants C and δ0 such that for all δ ∈ (0, δ0), E

[
sup0≤t≤T |Xt − X δ

t |
] ≤

Cδη.

Theorem 4.1 Let X be the solution of SDE (3.1) with H(u, x) = H(u) for all (u, x) ∈
[0, T ] × R such that Assumptions H1, H2 and H3 hold. Assume that the Laplace
exponent ψ of D is regularly varying at ∞ with index β ∈ (0, 1) and that one of the
following conditions holds:

(a) h is constant and β ∈ (1/2, 1);
(b) h is continuous, nondecreasing, and regularly varying at ∞ with index q ≥ 0, and

β ∈ ((2q + 1)/(2q + 2), 1) .

Let X δ be the approximation process of Euler–Maruyama-type defined in (4.3), (4.4).
Then there exists a constant C > 0 not depending on δ such that for all δ ∈ (0, 1),
E
[
sup0≤s≤T |Xs − X δ

s |
] ≤ Cδmin{θ,1/2}. Thus, X δ converges strongly to X uniformly

on [0, T ] with order min{θ, 1/2}.
The proof of this theorem relies on the following lemma, which can be viewed as

a generalization of Lemma 3.2 in [10] to cases when H �≡ 0. Recall the notations
PB, PD, P, EB, ED and E defined in the beginning of Sect. 3.

Lemma 4.1 Under the assumptions of Theorem 4.1, for any t ≥ s ≥ 0,

EB[|Xt − Xs |] ≤ √
2h(Et )EB[Y (2)

t ]1/2{(t − s) + (Et − Es)
1/2 + (Et − Es)

}
,

where Y (2)
t is defined in Proposition 3.1.

Proof By the Cauchy–Schwartz inequality, EB[|Xt − Xs |] is dominated above by

EB

[∫ t

s
|H(Er )|dr

]

+EB

[∫ t

s
|F(Er , Xr )|dEr

]

+EB

[∣
∣
∣
∣

∫ t

s
G(Er , Xr )dBEr

∣
∣
∣
∣

2
]1/2

≤ (t − s)h(Et ) + (Et − Es)h(Et )EB[Y (1)
t ] + √

2(Et − Es)
1/2h(Et )EB[Y (2)

t ]1/2.

Jensen’s inequality gives the desired bound. �
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Now we are ready to prove Theorem 4.1, where the localizing sequence S� :=
inf{t ≥ 0 : sup0≤s≤t {|Xs − X δ

s |} > �} allows us to consider the process
(sup0≤s≤t {|Xs − X δ

s |})t∈[0,T ] to be bounded. However, as stated in Remark 3.1(2),
in order to clarify the main ideas of the proof, we suppress S� and simply give argu-
ments assuming the boundedness. The same argument applies to the proofs of all the
statements in Sects. 4 and 5.

Proof of Theorem 4.1 Let Zt := sup0≤s≤t |Xs − X δ
s | for t ∈ [0, T ]. Then by the

representations of X and X δ in (3.1) and (4.5), respectively, Zt ≤ I1 + I2 + I3, where

I1 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
(H(Er ) − H(Eτnr

))dr

∣
∣
∣
∣ ;

I2 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
(F(Er , Xr ) − F(Eτnr

, X δ
τnr

))dEr

∣
∣
∣
∣ ;

I3 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
(G(Er , Xr ) − G(Eτnr

, X δ
τnr

))dBEr

∣
∣
∣
∣ .

In terms of I1, recall that τnr ≤ r < τnr +1 and 0 ≤ Er −Eτnr
≤ (nr +1)δ−nrδ = δ.

This, together with the Cauchy-Schwartz inequality and AssumptionH3, yields

I 21 ≤ t
∫ t

0
(H(Er ) − H(Eτnr

))2dr ≤ K 2T 2δ2θ . (4.6)

As for I2, note that EB[I 22 ] ≤ Et
∫ t
0 EB

[
(F(Er , Xr ) − F(Eτnr

, X δ
τnr

))2
]
dEr by

the Cauchy-Schwartz inequality. Assumptions H1 and H3 together with the inequal-
ity |F(Er , Xr ) − F(Eτnr

, X δ
τnr

)| ≤ |F(Er , Xr ) − F(Eτnr
, Xr )| + |F(Eτnr

, Xr ) −
F(Eτnr

, Xτnr
)| + |F(Eτnr

, Xτnr
) − F(Eτnr

, X δ
τnr

)| yield

EB[I 22 ]
≤ 3ET

∫ t

0
EB

[
K 2δ2θ (1 + |Xr |)2 + h2(Eτnr

)|Xr − Xτnr
|2 + h2(Eτnr

)Z2
τnr

]
dEr

≤ 6E2
T K 2δ2θEB[Y (2)

T ]
+ 3ET h2(ET )

{∫ t

0
EB[|Xr − Xτnr

|2]dEr +
∫ t

0
EB[Z2

r ]dEr

}

. (4.7)

Now, for any r ∈ [0, t], by Lemma 4.1 and the fact that 0 ≤ Er − Eτnr
≤ δ,

EB[|Xr − Xτnr
|2] ≤ 6h2(ET )EB[Y (2)

T ]{(r − τnr )
2 + δ + δ2

}
. (4.8)

Moreover,

∫ t

0
(r − τnr )

2dEr =
nt −1∑

i=0

∫ τi+1

τi

(r − τi )
2dEr +

∫ t

τnt

(r − τnt )
2dEr
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≤ δ

(nt −1∑

i=0

(τi+1 − τi )
2 + (t − τnt )

2

)

≤ 2T δ

(nt −1∑

i=0

(τi+1 − τi ) + (t − τnt )

)

≤ 2T 2δ. (4.9)

Combining (4.8) and (4.9) with (4.7) and recalling that δ < 1 gives

EB[I 22 ] ≤ ξ1(ET )EB[Y (2)
T ]δmin{2θ,1} + 3ET h2(ET )

∫ t

0
EB[Z2

r ]dEr , (4.10)

where ξ1(u) := 36u2h4(u) + 36uh4(u)T 2 + 6u2K 2.
In terms of I3, the BDG inequality (3.2) and a calculation similar to the previous

paragraph yield

EB[I 23 ] ≤ ξ2(ET )EB[Y (2)
T ]δmin{2θ,1} + 3b2h2(ET )

∫ t

0
EB[Z2

r ]dEr , (4.11)

where ξ2(u) := b2ξ1(u)/u.
Putting together estimates (4.6), (4.10) and (4.11) gives

EB[Z2
t ] ≤ ξ3(ET )EB[Y (2)

T ]δmin{2θ,1} + 9(ET + b2)h
2(ET )

∫ t

0
EB[Z2

r ]dEr ,

where ξ3(u) := 3ξ1(u) + 3ξ2(u) + 3K 2T 2. Using the Gronwall-type inequality in
Chapter IX.6a, Lemma 6.3 of [8] and setting t = T gives

EB[Z2
T ] ≤ ξ3(ET )EB[Y (2)

T ]e9ET (ET +b2)h2(ET )δmin{2θ,1}.

Taking ED on both sides and using the Cauchy-Schwartz inequality,

E[Z2
T ] ≤ E[ξ43 (ET )]1/4E[(Y (2)

T )4]1/4E
[
e18ET (ET +b2)h2(ET )

]1/2
δmin{2θ,1}. (4.12)

The desired result follows upon showing the expectations on the right hand side of
(4.12) are finite. Now, suppose h is constant. Then it follows from Propositions 2.1
and 3.1 that E[ξ43 (ET )] < ∞ and E[(Y (2)

T )4] ≤ 8E[Y (8)
T ] < ∞. In terms of

E
[
e18ET (ET +b2)h2(ET )

]
, the exponent takes the form f (ET ) with f ∈ RV2(∞) due to

Lemma 2.1, so the expectation is finite if 2 < 1/(1−β) (or equivalently, β ∈ (1/2, 1))
due to Theorem 2.1.

On the other hand, if h ∈ RVq(∞)with q ≥ 0, then by Propositions 3.1,E[Y (8)
T ] <

∞ if β ∈ (2q/(2q + 1), 1). Since the exponent of E
[
e18ET (ET +b2)h2(ET )

]
takes the

form f (ET ) with f ∈ RV2q+2(∞), the expectation is finite if 2q + 2 < 1/(1 − β)

(or equivalently, β ∈ ((2q + 1)/(2q + 2), 1)) due to Theorem 2.1. Consequently, the
result follows as long as β ∈ ((2q + 1)/(2q + 2), 1). �
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Remark 4.1 (1) The method used in the above proof provides a general idea of how
to analyze the rates of strong convergence of approximation schemes for possibly
larger classes of SDEs involving random time changes.

(2) The above proof would not work if we allowed the coefficient H to depend on x as
well. Indeed, that case would require an estimation of EB[I 21 ] in a way similar to
(4.7), giving rise to the integral

∫ t
0 EB[|Xr − Xτnr

|2] dr . This integral, due to (4.8),
could be dominated above by a quantity involving the integral

∫ t
0 (r − τnr )

2 dr .
However, unlike (4.9), the latter integral would not yield a bound containing δ.

(3) Although we interpolated the discretized process (X δ
τn

)n∈{0,1,2,...,N } via the con-
tinuous interpolation in (4.4), it is also possible to adopt the piecewise constant
interpolation X δ

t := X δ
τnt

as in [9] when H ≡ 0. In the latter case, the bound
for Zt will additionally contain the suprema of integrals over [τns , s], including
I5 := sup0≤s≤t | ∫ s

τns
G(Er , Xr ) dBEr |. Estimation of EB[I 25 ] can be carried out

with the help of a result on modulus of continuity of stochastic integrals estab-
lished in [4], which only yields the convergence order 1/2− ε for any ε > 0. See
Remark 9(3) of [9] for details.

(4) The above proof shows that the parameter β plays an important role in determining
the finiteness of the upper bound for E[Z2

T ]. On the other hand, β does not affect
the rate of convergence for X δ , which is due to the fact that we constructed the
discretized time change Eδ in such a way that Eδ converges to E with order 1
regardless of the value of β, as indicated by (4.1). The above argument shows that
the rate of convergence for X δ could possibly involve β if the rate of convergence
for Eδ depended on β.

We now consider SDE (3.1) when not only H(u, x) but also G(u, x) is independent
of x . The orderof convergence cannot be increased if we use the Euler–Maruyama-type
approximation since the term EB[I 22 ] in the proof of Theorem 4.1 remains the same
and gives a bound containing δmin{2θ,1}. In order to estimate EB[I 22 ] in a way that a
bound involves the better rate δmin{2θ,2} (= δ2θ ), we employ aMilstein-type approach,
which assumes some differentiability on F and uses the Itô formula to expand it. In
addition to AssumptionsH1 andH2, we assume that there exist constants K > 0 and
θ ∈ (0, 1] and a continuous, nondecreasing function k(u) : [0,∞) → (0,∞) such
that for all u, v ≥ 0 and x ∈ R,

H4: • F ∈ C1,2;
• |H(u) − H(v)| + |G(u) − G(v)| ≤ K |u − v|θ ;
• |Fu(u, x)| + |Fx H(u, x)| + |Fx F(u, x)| + |Fx G(u, x)| + |Fxx G2(u, x)|
≤ k(u)(1 + |x |).

Here, we introduce a new function k(u) in addition to the already given function h(u)

since k(u) and h(u)will differently affect the range of β values for which our argument
works. Note that even though our approach is of Milstein-type, since Gx (u, x) ≡ 0
when G(u, x) does not depend on x , the approximation scheme itself is no different
from the Euler–Maruyama-type scheme. In this restrictive setting with θ > 1/2, the
order of strong convergence improves as the following theorem shows.
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Theorem 4.2 Let X be the solution of SDE (3.1)with H(u, x) = H(u) and G(u, x) =
G(u) for all (u, x) ∈ [0, T ]×R such that Assumptions H1, H2 and H4 hold. Assume
further that one of the following conditions holds:

(a) h and k are constant;
(b) h and k are continuous and nondecreasing, h and log k are regularly varying at

∞ with indices q ≥ 0 and q̃ ≥ 0, respectively, and the Laplace exponent ψ

of D is regularly varying at ∞ with index β ∈ ((q∗ − 1)/q∗, 1), where q∗ :=
max{2q + 1, q̃}.

Let X δ be the approximation process of Euler–Maruyama-type defined in (4.3)–(4.4).
Then there exists a constant C > 0 not depending on δ such that for all δ ∈ (0, 1),
E
[
sup0≤s≤T |Xs − X δ

s |
] ≤ Cδθ . Thus, X δ converges strongly to X uniformly on [0, T ]

with order θ .

Proof Using (3.1) and expanding the integrand of the dEr integral via the Itô formula,

Xτn+1 = Xτn +
∫ τn+1

τn

H(Er )dr +
∫ τn+1

τn

F(Eτn , Xτn )dEr +
∫ τn+1

τn

G(Er )dBEr

+ R(τn ,τn+1);

R(a,b) :=
∫ b

a

∫ r2

a
Fx Hdr1dEr2 +

∫ b

a

∫ r2

a

(

Fu + Fx F + 1

2
Fxx G2

)

dEr1dEr2

+
∫ b

a

∫ r2

a
Fx GdBEr1

dEr2 ,

with all the integrands evaluated at (Er1 , Xr1). This representation together with rep-
resentation (4.5) for X δ gives Zt := sup0≤s≤t |Xs − X δ

s | ≤ I1 + I2 + I3 + I4, where

I1 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
{H(Er ) − H(Eτnr

)}dr

∣
∣
∣
∣ ;

I2 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
{F(Eτnr

, Xτnr
) − F(Eτnr

, X δ
τnr

)}dEr

∣
∣
∣
∣ ;

I3 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
{G(Er ) − G(Eτnr

)}dBEr

∣
∣
∣
∣ ; I4 := sup

0≤s≤t

∣
∣
∣
∣
∣

ns−1∑

i=0

R(τi ,τi+1) + R(τns ,s)

∣
∣
∣
∣
∣
.

It is easy to observe that

I1 ≤ K T δθ ; EB[I2] ≤ h(ET )

∫ t

0
EB[Zr ]dEr ; EB[I3] ≤ EB[I 23 ]1/2 ≤ 2K ET δθ .

(4.13)

The main technical part concerns the remainder term I4, which contains double inte-
grals involving three different integrators: dr1dEr2 , dEr1dEr2 and dBEr1

dEr2 . Wewill
deal with them one by one below.
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In terms of the term driven by dr1dEr2 , by AssumptionH4 and a discussion similar
to (4.9),

EB

[

sup
0≤s≤t

∣
∣
∣
∣
∣

∫ s

0

∫ r2

τnr2

Fx H(Er1 , Xr1)dr1dEr2

∣
∣
∣
∣
∣

]

≤ k(ET )EB[Y (1)
T ]

∫ t

0
(r2 − τnr2

)dEr2

≤ T k(ET )EB[Y (1)
T ]δ, (4.14)

where Y (1)
T is defined in Proposition 3.1. Similarly, as for the second integrator

dEr1dEr2 ,

EB

[

sup
0≤s≤t

∣
∣
∣
∣
∣

∫ s

0

∫ r2

τnr2

{
Fu(Er1,Xr1)+Fx F(Er1,Xr1)+

1

2
Fxx G2(Er1,Xr1)

}
dEr1dEr2

∣
∣
∣
∣
∣

]

≤ 5

2
k(ET )EB[Y (1)

T ]
∫ t

0

∫ r2

τnr2

dEr1dEr2 ≤ 5

2
ET k(ET )EB[Y (1)

T ]δ. (4.15)

On the other hand, the term driven by dBEr1
dEr2 requires a careful discussion. We

need to estimate EB[sup0≤s≤t |Mns + Us |], where M0 := 0, Mn := ∑n−1
i=0 Li for

n ≥ 1,

Li:=
∫ τi+1

τi

∫ r2

τi

Fx G(Er1 , Xr1)dBEr1
dEr2; Us:=

∫ s

τns

∫ r2

τns

Fx G(Er1 , Xr1)dBEr1
dEr2 .

We first verify that the stochastic integrals Li , i = 0, 1, . . . , nt − 1, are uncorre-
lated with respect to PB . Let i < j , so that τi+1 ≤ τ j . Observe that EB[Li L j ] =
EB[LiEB[L j |FEτ j

]]. By assumption and estimate (3.4),

EB

⎡

⎣
∫ τ j+1

τ j

∣
∣
∣
∣
∣

∫ r2

τ j

Fx G(Er1 , Xr1)dBEr1

∣
∣
∣
∣
∣

2

dEr2

⎤

⎦ ≤ δ2k2(Et )EB[Y (2)
t ] < ∞.

Thus, EB[L j |FEτ j
] = ∫ τ j+1

τ j
EB

[∫ r2
τ j

Fx G(Er1 , Xr1)dBEr1

∣
∣FEτ j

]
dEr2 = 0 due to the

conditional Fubini theorem (Theorem 27.17 in [26]) and the martingale property,
thereby yielding the uncorrelatedness. On the other hand, since E has continu-
ous paths, the change-of-variables formula (Theorem 3.1 in [13]) implies that Mn

can be expressed as
∑n−1

i=0

∫ (i+1)δ
iδ

∫ Er2
iδ Fx G(r1, X Dr1−)dBr1dr2. The latter repre-

sentation, together with the proofs of Lemmas 5.7.1 and 10.8.1 of [12], shows that
the discrete-time process (Mn)n≥0 is a square-integrable, ((Fnδ)n≥0,PB)-martingale
starting at 0. Therefore, by the BDG inequality (3.2) and the uncorrelatedness of Li ’s,
EB[sup0≤s≤t M2

ns
] ≤ b2

∑nt −1
i=0 EB[L2

i ]; hence, by the Cauchy-Schwartz inequality,
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EB

[

sup
0≤s≤t

M2
ns

]

≤ b2δ
nt −1∑

i=0

∫ τi+1

τi

EB

[∫ r2

τi

∣
∣Fx G(Er1 , Xr1)

∣
∣2 dEr1

]

dEr2

≤ 2b2δk2(ET )EB[Y (2)
T ]

nt −1∑

i=0

∫ τi+1

τi

(Er2 − Eτi )dEr2 ≤ 2b2ET k2(ET )EB[Y (2)
T ]δ2.
(4.16)

On the other hand,

EB

[

sup
0≤s≤t

U 2
s

]

≤ EB

[

sup
0≤s≤t

(Es − Eτns
)

∫ s

τns

∣
∣
∣
∣
∣

∫ r2

τns

Fx G(Er1 , Xr1)dBEr1

∣
∣
∣
∣
∣

2

dEr2

]

≤ δ

∫ t

0
EB

⎡

⎣ sup
s∈[r2,t]

∣
∣
∣
∣
∣

∫ r2

τns

Fx G(Er1 , Xr1)dBEr1

∣
∣
∣
∣
∣

2
⎤

⎦ dEr2 . (4.17)

Since {(τns , r2) : r2 ≤ s ≤ t} ⊂ {(τnr2
, u) : τnr2

≤ u ≤ r2}, the integrand

EB
[
sups∈[r2,t]

∣
∣
∫ r2
τns

Fx G(Er1 , Xr1)dBEr1

∣
∣2] is less than or equal to

EB

[

sup
u∈[τnr2

,r2]

∣
∣
∣
∣

∫ u

τnr2

Fx G(Er1 , Xr1)dBEr1

∣
∣
∣
∣

2]

≤ b2EB

[∫ r2

τnr2

|Fx G(Er1 , Xr1)|2dEr1

]

≤ 2b2k2(ET )EB[Y (2)
T ]δ.

Hence, (4.17) is dominated above by 2b2ET k2(ET )EB[Y (2)
T ]δ2. Putting this together

with (4.16) yields

EB

[

sup
0≤s≤t

|Mns + Us |2
]

≤ 8b2ET k2(ET )EB[Y (2)
T ]δ2. (4.18)

By estimates (4.14), (4.15) and (4.18),

EB[I4] ≤
{

TEB[Y (1)
T ] + 5

2
ETEB[Y (1)

T ] + (8b2ETEB[Y (2)
T ])1/2

}

k(ET )δ. (4.19)

Now, combining (4.13) and (4.19) with EB[Y (1)
T ] ≤ √

2EB[Y (2)
T ]1/2 yields

EB[Zt ] ≤ ξ4(ET )EB[Y (2)
T ]1/2δθ + h(ET )

∫ t
0 EB[Zr ]dEr , where ξ4(u) := K T +

2K u + (
√
2T + (5

√
2/2)u + (8b2u)1/2)k(u). Applying the Gronwall-type inequality,

taking ED on both sides, and using the Cauchy-Schwartz inequality gives

E[ZT ] ≤ E[ξ44 (ET )]1/4E[(Y (2)
T )2]1/4E[e2ET h(ET )]1/2δθ .
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Strong approximation of time-changed SDEs 849

If h and k are constant, then the latter bound is finite due to Propositions 2.1 and 3.1,
thereby yielding the desired result. Suppose now that h and log k are regularly varying
and note that the function k4(u) involved in ξ44 (u) can be expressed as e4 log k(u). Then
Theorem 2.1 and Proposition 3.1 together guarantee the finiteness of the latter bound
provided that β > q/(q + 1), β > (q̃ − 1)/q̃ and β > 2q/(2q + 1), which requires
the value of β be restricted as stated in the theorem. �
Remark 4.2 In the above proof when h and log k are regularly varying, analyzing the
first momentEB[Zr ] instead of the second momentEB[Z2

r ] is crucial since estimation
of EB[Z2

r ] would give us a similar convergence result with q∗ replaced by the larger
value q̄∗ = max{2q + 2, q̃}, yielding the result with a narrower range of β values.
Indeed, if we attempted to deal with the second moment EB[Z2

r ], we would rely on
the estimate EB[I 22 ] ≤ ET h2(ET )

∫ t
0 EB[Z2

r ]dEr instead of the estimate for EB[I2]
appearing in (4.13). This would eventually lead to a bound for E[Z2

r ] containing a

quantity of the form E[ecE2
T h2(ET )], which is finite for β > (2q + 1)/(2q + 2) only.

5 Rates of convergence for Itô–Taylor-type schemes when H ≡ 0

This section answers Question (B) raised in Sect. 1. The presentation is restricted
to the one-dimensional case since extensions to a multi-dimensional case are not
straightforward; the non-commutativity of noises makes a significant difference in
the analysis. We consider the time-changed SDE (3.1) in which a drift with the non-
random integrator is not present (i.e. H ≡ 0) but in which the coefficient G(u, x)

depends on x , unlike Theorem 4.2. Theorem 3.1 of [10] established that the rate of
strong convergence for the Euler–Maruyama-type scheme for such an SDE is 1/2− ε

for any small ε. A natural question to ask next is whether we can improve the rate of
convergence by adopting an approximation scheme of Milstein-type or more general
Itô–Taylor-type (see Chapters 5 and 10 of [12] for theMilstein and Itô–Taylor schemes
for classical Itô SDEs). As briefly explained in Sect. 1, the method based on the
duality principle between SDEs (1.2) and (1.1) with H ≡ 0 does not help improve
the rate of convergence. This is because that method relies on an error estimate for
the approximation of E , which would remain unchanged even with a higher order
scheme; see Remark 3.2(4) of [10] for details.

Below we employ the approach used in the previous section to establish the rate of
strong convergence of an Itô–Taylor-type scheme. This is done by directly estimating
the error for the approximation of X , thereby avoiding the separate analysis of the error
for the approximation of E . However, we first discuss a Milstein-type scheme (which
is a special case of the Itô–Taylor-type scheme) in the hope that the simplest case
gives the reader a clear understanding of the complicated notations and discussions
of the more general case. Since the arguments we give in this section are similar to
the ones given in the proof of Theorem 4.2, we only provide a sketch for the proof of
each theorem. We also continue to use the notations EB, ED and E introduced in the
beginning of Sect. 3.

In addition to Assumptions H1 and H2, assume that there exists a continuous,
nondecreasing function k : [0,∞) → (0,∞) such that for all x, y ∈ R and u ≥ 0,
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H5: • F, G, GGx ∈ C1,2;
• |(GGx )(u, x) − (GGx )(u, y)| ≤ h(u)|x − y|;
• |(GGx )(u, x)| ≤ h(u)(1 + |x |);
• | fα(u, x)| ≤ k(u)(1 + |x |),

where h is the function appearing in Assumptions H1 and H2, and fα reads each
integrand appearing in (5.3) below. First, approximate E by Eδ as in Sect. 4. Next,
define a discrete-time process (X δ

τn
)n∈{0,1,2,...,N } by X δ

0 := x0 and

X δ
τn+1

:= X δ
τn

+ F(nδ, X δ
τn

)δ + G(nδ, X δ
τn

)(B(n+1)δ − Bnδ)

+ 1

2
(GGx )(nδ, X δ

τn
)
(
(B(n+1)δ − Bnδ)

2 − (τn+1 − τn)
)
. (5.1)

We adopt continuous interpolation as is (4.4) butwith an additional term corresponding
to the integral of GGx included. As in representation (4.5) for the Euler–Maruyama-
type scheme, the Milstein-type scheme defined by (5.1) satisfies

X δ
s = x0 +

∫ s

0
F(Eτnr

, X δ
τnr

)dEr +
∫ s

0
G(Eτnr

, X δ
τnr

)dBEr

+
∫ s

0

∫ r2

τnr2

(GGx )(Eτnr2
, X δ

τnr2
)dBEr1

dBEr2
. (5.2)

Theorem 5.1 Let X be the solution of SDE (3.1) with H ≡ 0 such that Assumptions
H1, H2 and H5 hold. Assume that the Laplace exponent ψ of D is regularly varying
at ∞ with index β ∈ (0, 1) and that one of the following conditions holds:

(a) h and k are constant and β ∈ (1/2, 1);
(b) h and k are continuous and nondecreasing, h and log k are regularly varying

at ∞ with indices q ≥ 0 and q̃ ≥ 0, respectively, and β ∈ ((q∗∗ − 1)/q∗∗, 1),
where q∗∗ := max{2q + 2, q̃}.

Let X δ be the approximation process of Milstein-type defined in (5.1) with continuous
interpolation. Then there exists a constant C > 0 not depending on δ such that for all
δ ∈ (0, 1),E

[
sup0≤s≤t |Xs − X δ

s |
] ≤ Cδ. Thus, X δ converges strongly to X uniformly

on [0, T ] with order 1.

Proof By SDE (3.1) with H ≡ 0 and the Itô formula,

Xτn+1 = Xτn +
∫ τn+1

τn

F(Eτn , Xτn )dEr +
∫ τn+1

τn

G(Eτn , Xτn )dBEr

+
∫ τn+1

τn

∫ r2

τn

(GGx )(Eτn , Xτn )dBEr1
dBEr2

+ R(τn ,τn+1);

R(a,b) :=
∫ b

a

∫ r2

a

(

Fu + Fx F + 1

2
Fxx G2

)

dEr1dEr2 +
∫ b

a

∫ r2

a
Fx GdBEr1

dEr2

+
∫ b

a

∫ r2

a

(

Gt + Gx F + 1

2
G2Gxx

)

dEr1dBEr2
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+
∫ b

a

∫ r3

a

∫ r2

a

(

(Gx G)t + (Gx G)x F + 1

2
(Gx G)xx G2

)

dEr1dBEr2
dBEr3

+
∫ b

a

∫ r3

a

∫ r2

a
(Gx G)x GdBEr1

dBEr2
dBEr3

, (5.3)

with all the integrands for R(a,b) evaluated at (Er1 , Xr1). From this representation
together with representation (5.2) for X δ , it follows that Zt := sup0≤s≤t |Xs − X δ

s | ≤
I1 + I2 + I3 + I4, where

I1 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
{F(Eτnr

, Xτnr
) − F(Eτnr

, X δ
τnr

)}dEr

∣
∣
∣
∣ ;

I2 := sup
0≤s≤t

∣
∣
∣
∣

∫ s

0
{G(Eτnr

, Xτnr
) − G(Eτnr

, X δ
τnr

)}dBEr

∣
∣
∣
∣ ;

I3 := sup
0≤s≤t

∣
∣
∣
∣
∣

∫ s

0

∫ r2

τnr2

{
GGx (Eτnr2

, Xτnr2
) − GGx (Eτnr2

, X δ
τnr2

)
}
dBEr1

dBEr2

∣
∣
∣
∣
∣
;

I4 := sup
0≤s≤t

∣
∣
∣
∣
∣

ns−1∑

i=0

R(τi ,τi+1) + R(τns ,s)

∣
∣
∣
∣
∣
.

Arguments as in the proofs of Theorems 4.1 and 4.2 yield

EB[I 21 ] ≤ ET h2(ET )

∫ t

0
EB[Z2

r ]dEr ; EB[I 22 ] ≤ b2h2(ET )

∫ t

0
EB[Z2

r ]dEr ;

EB[I 23 ] ≤ b2δh2(ET )

∫ t

0
EB[Z2

r ]dEr ; EB[I 24 ] ≤ ξ5(ET )EB[Y (2)
T ]δ2,

where ξ5(u) := c(u + u2)k2(u) with some constant c > 0 and Y (2)
T is defined in

Proposition 3.1. (To estimate EB[I 24 ], recall the methods used for obtaining (4.15) and
(4.18).)

Thus,EB[Z2
t ] ≤ 4ξ5(ET )EB[Y (2)

T ]δ2+4h2(ET )(ET +2b2)
∫ t
0 EB[Z2

r ]dEr ,which

implies EB[Z2
T ] ≤ 4ξ5(ET )EB[Y (2)

T ]e4h2(ET )(ET +2b2)ET δ2. The desired result now
follows as in the last part of the proof of Theorem 4.2. �

To discuss a general Itô–Taylor-type scheme, we recall Chapters 5 and 9 of [12]
and introduce shorthand notations for the following operators:

L0 := ∂

∂u
+ F

∂

∂x
+ 1

2
G2 ∂2

∂x2
; L1 := G

∂

∂x
.

For a multi-index α = ( j1, . . . , j�) with ji ∈ {0, 1} for i = 1, . . . , � and � ≥ 1, let

fα := L j1 · · · L jl−1G jl if � ≥ 2 and fα := G j1 if � = 1,
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where G0 := F and G1 := G. Define the multiple integral of the function fα by

Iα( fα(E·, X ·))a,b :=
∫

a≤r1≤···≤r�≤b
fα(Er1 , Xr1)dB( j1)

Er1
· · · dB( j�)

Er�

with dB(0)
Er

:= dEr and dB(1)
Er

:= dBEr . Let v denote the multi-index with length
� = 0, and let fv(u, x) = x and Iv( f )a,b = f (a). Also, for each γ such that 2γ is a
positive integer (so that γ = 0.5, 1, 1.5, 2, . . .), let

Aγ :=
{

α : �(α) + n(α) ≤ 2γ or �(α) = n(α) = γ + 1

2

}

,

where �(α) denotes the length of α and n(α) denotes the number of the zero compo-
nents of α.

Define a discrete-time process (X δ
τn

)n∈{0,1,2,...,N } by X δ
0 := x0 and

X δ
τn+1

:= X δ
τn

+
∑

α∈Aγ \{v}
Iα( fα(Eτn , X δ

τn
))τn ,τn+1 , (5.4)

with continuous interpolation as in the Milstein-type scheme but with some additional
terms included. For the solution X of SDE (3.1) with H ≡ 0, a repeated use of the Itô
formula yields

Xt = x0 +
∑

α∈Aγ \{v}

(nt −1∑

i=0

Iα( fα(Eτi , Xτi ))τi ,τi+1 + Iα( fα(Eτnt
, Xτnt

))τnt ,t

)

+
∑

α∈R(Aγ )

(nt −1∑

i=0

Iα( fα(E·, X ·))τi ,τi+1 + Iα( fα(E·, X ·))τnt ,t

)

,

where R(Aγ ) is the remainder set of multi-indices given by

R(Aγ ) := {α /∈ Aγ , and − α := ( j2, · · · , j�) ∈ Aγ }.

We also let α− := ( j1, . . . , j�−1).
Assume that there exist two families of continuous, nondecreasing functions {hα :

[0,∞) → [0,∞) : α ∈ Aγ \v} and {kα : [0,∞) → (0,∞) : α ∈ R(Aγ )} such that
for all u ∈ [0, T ] and x, y ∈ R,

H6:• f−α ∈ C1,2 for α ∈ Aγ ∪ R(Aγ )\v;
• | fα(u, x) − fα(u, y)| ≤ hα(u)|x − y| for α ∈ Aγ \v;
• | fα(u, x)| ≤ hα(u)(1 + |x |) for α ∈ Aγ \v;
• | fα(u, x)| ≤ kα(u)(1 + |x |) for α ∈ R(Aγ ).

Theorem 5.2 Let X be the solution of SDE (3.1) with H ≡ 0 such that Assumption H6
holds with hα and log kα being regularly varying at ∞ with indices qα ≥ 0 and q̃α ≥ 0,
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respectively. Assume further that the Laplace exponent ψ of D is regularly varying
at ∞ with index β ∈ (0, 1). Let X δ be the approximation process of Itô–Taylor-type
defined in (5.4) with continuous interpolation. If β ∈ ((q∗∗∗ − 1)/q∗∗∗, 1), where

q∗∗∗ := max
{
maxα∈Aγ \v(2qα + 2), maxα∈R(Aγ ) q̃α

}
, then there exists a constant

C > 0 not depending on δ such that for all δ ∈ (0, 1),E
[
sup0≤s≤t |Xs − X δ

s |
] ≤ Cδγ .

Thus, X δ converges strongly to X uniformly on [0, T ] with order γ . Moreover, if both
hα and kα are constant for all α ∈ Aγ \v and α ∈ R(Aγ ), respectively, the same
conclusion holds as long as β ∈ (1/2, 1).

Our proof for this theorem relies on the following two lemmas that help determine
a bound for an integral involving fα with α ∈ R(Aγ ) in the way in which EB[I4]
in the proof of Theorem 4.2 was estimated. The two lemmas can be regarded as
generalizations of Lemmas 5.7.3 and 10.8.1 in [12], respectively, and we omit the
proofs since they are similar to the ones given in [12]. Note that we will only need
the second lemma in order to prove Theorem 5.2, but we list the first lemma as well
since it plays an important role in proving the second lemma. In the statements of the
lemmas, we assume f is a given function for which all multiple integrals appearing
in the proofs are well-defined.

Lemma 5.1 For any multi-index α and r ≥ 0,

EB

[

sup
τnr≤σ≤r

Iα( f (E·, X ·))2τnr ,σ

]

≤ EB

[

sup
τnr ≤σ≤r

| f (Eσ , Xσ )|2
]

b�(α)−n(α)
2 δ�(α)+n(α).

Lemma 5.2 For any multi-index α and t ≥ 0,

EB

⎡

⎣ sup
0≤s≤t

∣
∣
∣
∣
∣

ns−1∑

i=0

Iα( f (E·, X ·))τi ,τi+1 + Iα( f (E·, X ·))τns ,s

∣
∣
∣
∣
∣

2⎤

⎦

≤ (4b�(α)−n(α)+1
2 + Et )δ

φ(α)

∫ t

0
EB

[

sup
0≤σ≤r

| f (Eσ , Xσ )|2
]

dEr ,

where φ(α) := �(α)+n(α)−1 if �(α) �= n(α), and φ(α) := 2�(α)−2 if �(α) = n(α).

Proof of Theorem 5.2 Let Z2
t := sup0≤s≤t |Xs − X δ

s |2. By the Cauchy–Schwartz
inequality,

Z2
t ≤ 2|Aγ |

∑

α∈Aγ \v
sup

0≤s≤t

∣
∣
∣
∣

ns−1∑

i=0

Iα
(

fα(Eτi , Xτi ) − fα(Eτi , X δ
τi
)
)
τi ,τi+1

+Iα
(

fα(Eτns
, Xτns

) − fα(Eτns
, X δ

τns
)
)

τns ,s

∣
∣
∣
∣

2

+2|R(Aγ )|
∑

α∈R(Aγ )

sup
0≤s≤t

∣
∣
∣
∣

ns−1∑

i=0

Iα ( fα(E·, X ·))τi ,τi+1
+ Iα ( fα(E·, X ·))τns ,s

∣
∣
∣
∣

2

.
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By Assumption H6, sup0≤σ≤r | fα(Eσ , Xσ ) − fα(Eσ , X δ
σ )|2 ≤ h2

α(Er )Z2
r for all

α ∈ Aγ \v and sup0≤σ≤r | fα(Eσ , Xσ )|2 ≤ 2k2α(Er )Y
(2)
r for all α ∈ R(Aγ ). By an

argument analogous to the one given for obtaining (4.15) and (4.18), together with
Lemma5.2 and the inequality �(α)−n(α)+1 ≤ 2γ +2 valid for anyα ∈ Aγ ∪R(Aγ ),

EB[Z2
t ] ≤ 2(4b2γ+2

2 + ET )|Aγ |
∑

α∈Aγ \v
h2

α(Et )δ
φ(α)

∫ t

0
EB[Z2

r ]dEr

+ 4ET (4b2γ+2
2 + ET )EB[Y (2)

T ]|R(Aγ )|
∑

α∈R(Aγ )

k2α(Et )δ
φ(α),

where Y (2)
T is defined in Proposition 3.1. Note that the least value of φ(α) for α ∈

R(Aγ ) is 2γ , which is achievedwhen �(α−)+n(α−) = 2γ , j� = 1 and �(α) �= n(α).
Thus, by the Gronwall-type inequality,

EB[Z2
T ] ≤ cET (4b2γ+2

2 + ET )EB[Y (2)
T ]ξ6(ET )ecξ7(ET )(2b2+2+ET )ET δ2γ ,

where c > 0 is a constant, ξ6(u) := ∑
α∈R(Aγ ) k2α(u) = ∑

α∈R(Aγ ) e2 log kα(u), and

ξ7(u) := ∑
α∈Aγ \v h2

α(u). The desired results now follow as in the last paragraph of
the proof of Theorem 4.2. �

6 Simulations

This section presents two numerical examples which verify the rates of convergence
obtained in Theorems 4.1 and 4.2 in Sect. 4, respectively. We use a 0.8-stable subor-
dinator D and simulate a sample path of X δ on a time interval [0, T ] as follows. First,
simulate D at the discretization points {0, δ, 2δ, · · · } and stop this procedure upon
finding an integer N satisfying T ∈ [DNδ, D(N+1)δ). Second, simulate the Brownian
motion B at the discretization points {0, δ, 2δ, · · · , Nδ}. Finally, calculate X δ

nδ for
n = 0, 1, 2, · · · , N − 1 using the approximation scheme in (4.3) and let X δ

t := X δ
nδ

whenever t ∈ [Dnδ, D(n+1)δ).
Consider the two SDEs

Xt = 1 +
∫ t

0

√
1 + Er dr +

∫ t

0

√
1 + Er Xr dEr +

∫ t

0

√
1 + Er Xr dBEr ; (6.1)

Yt = 1 +
∫ t

0

√
1 + Er dr +

∫ t

0

√
1 + Er Yr dEr +

∫ t

0

√
1 + Er dBEr . (6.2)

It is easy to verify that the coefficients of SDEs (6.1) and (6.2) satisfy the conditions of
Theorems 4.1 and 4.2 with θ = 1, respectively. To examine the order of convergence
for SDE (6.1), as in [3], we regard the numerical solution with the fixed step size
δ0 = 2−15 as the true solution. For each fixed δ ∈ {2−14, 2−13, . . . , 2−8}, we generate
100 paths for the true solution X δ0 and 100 paths for the approximated solution X δ .
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Fig. 3 Plot of log2(E R RO R(X , δ)) versus log2 δ with the least squares line y = 0.5138x + 4.1982
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Fig. 4 Plot of log2(E R RO R(Y , δ)) versus log2 δ with the least squares line y = 1.0088x + 9.2991

We then calculate the following error at the time horizon T = 1:

E R RO R(X , δ) := 1

100

100∑

i=1

|X δ
T (ωi ) − X δ0

T (ωi )|.
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856 S. Jin, K. Kobayashi

Figure 3 gives a plot of log2(E R RO R(X , δ)) against log2(δ). It shows a linear
trend with least squares slope being 0.5138, which is close to 0.5, the largest possible
slope suggested by Theorem 4.1. On the other hand, for SDE (6.2), Fig. 4 gives a plot
of log2(E R RO R(Y , δ)) against log2(δ), which again presents a linear trend but with
least squares slope being 1.0088. The latter is close to 1 as suggested by Theorem 4.2.
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