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Abstract
This paper is concerned with the generalized Sylvester equation AXB +CXD = E ,
where A, B,C, D, E are infinite size matrices with a quasi Toeplitz structure, that
is, a semi-infinite Toeplitz matrix plus an infinite size compact correction matrix.
Under certain conditions, an equation of this type has a unique solution possessing
the same structure as the coefficient matrix does. By separating the analysis on the
Toeplitz part with that on the correction part, we provide perturbation results that cater
to the particular structure in the coefficient matrices. We show that the Toeplitz part
is well-conditioned if the whole problem, without considering the structure, is well-
conditioned. Perturbation results that are illustrated through numerical examples are
applied to equations arising in the analysis of a Markov process and the 2D Poisson
problem.

Keywords Sylvester matrix equation · Quasi Toeplitz matrix · Infinite matrix ·
Structured perturbation analysis

Mathematics Subject Classification 15A24 · 65F35 · 15B05 · 47A10

Communicated by Lothar Reichel.

B Jie Meng
jiemeng@dm.unipi.it

Hyun-Min Kim
hyunmin@pusan.ac.kr

1 Department of Mathematics, Finance · Fishery · Manufacture Industrial Mathematics Center on
Big Data, Pusan National University, Busan 46241, Republic of Korea

2 Dipartimento di Matematica, Università, di Pisa, Pisa 56127, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-021-00847-2&domain=pdf


860 H. Kim, J. Meng

1 Introduction

Themain purpose of this work is to provide perturbation results in a way appropriate to
the particular structure in the coefficient matrices of the generalized Sylvester matrix
equation

AXB + CXD = E, (1.1)

where A, B,C, D, E are infinite size matrices of the form S = T (s) + Es , where
T (s) is a semi-infinite Toeplitz matrix associated with a function s(z) = ∑∞

i=−∞ si zi

and Es = (ei j ) is a compact operator on the space �∞, the usual Banach space of
sequences x = (xi )i∈N with ‖x‖∞ := supi |xi | < ∞. Here the function s(z) is
defined on the unit circle T and satisfies

∑
i∈Z |si | < ∞. Matrices of this kind are

called quasi Toeplitz (QT) matrices and have been widely studied in [2–6].
Matrix equations with quasi Toeplitz coefficient matrices have been drawing atten-

tions recently [2,4,7,17]. Among those equations, the most widely studied is the
quadratic matrix equation A1X2 + A0X + A−1 = X , which is encountered in a
2-dimensional Quasi-Birth-Death (QDB) stochastic process and the coefficients are
infinite tridiagonal matrices with a QT structure. In [7] when applying Newton’s
method to this quadratic equation, a generalized Sylvester equation, which has coeffi-
cients with QT structure, is involved at each step. Numerical algorithms, which fully
exploit the QT structure, for the solution of the Sylvester equation was proposed in
[17].

The generalized Sylvester Eq. (1.1) in a matrix setting (finite dimensional) has
been widely investigated, see [1,9,10,13,18,20] and the references therein. When the
coefficients are bounded linear operators on a Hilbert space, sufficient conditions for
the existence of solutions were derived in [15]. Equations of type (1.1) with infinite
size Toeplitz like coefficients were first studied in [17], where the Stein, Lyapunov and
Sylvester type equations were proved to have the same structure as in the coefficient
matrices and efficient iteration methods, such as ADI iteration and rational Krylov
methods, were proposed. Our goal here is to provide perturbation analysis to equations
of type (1.1) with the emphasis on respecting structure in the coefficient matrices.

For matrix equations with QT coefficients, the Toeplitz part of the solution can be
computed at a low cost by algorithms based on evaluation and interpolation. An effi-
cient efficient way for computing the solution, when it is an infinite size quasi Toeplitz
matrix, is to separate the computation into two parts, that is, the computation of the
Toeplitz part and the computation of the correction part, see [7,17]. Accordingly, we
investigate the perturbation analysis on the Toeplitz part and on the correction part
separately. The existing results on perturbation analysis as in [11,12,19], where the
analysis is restricted to equations with finite coefficients and ignores the structures of
the matrices, are not appropriate for Eq. (1.1). Motivated by this, we provide pertur-
bation results in a way appropriate to the infinite size QT matrices.

This paper is organized as follows: in Sect. 2 we recall some properties concerning
semi-infinite quasi Toeplitz matrices and show that Eq. (1.1) has a unique solutionwith
QT structure under certain conditions; in Sect. 3, we carry out a structure-preserving
perturbation analysis and provide sharp perturbation bounds, while in Sect. 4 we
extend the perturbation results to an equation with a more general form; in Sect. 5, we
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apply the perturbation results to equations encountered in solving a quadratic matrix
equation arising in a Markov process and in the study of a 2D Poisson problem.

2 Existence of QT solutions

2.1 Preliminaries

We start with a review of some properties of the quasi Toeplitz (QT) matrices. Let �∞
stand for the usual Banach space of sequences x = (xi )i∈N with ‖x‖∞ := supi |xi | <

∞. Denote by L∞ the set of matrices A = (ai, j ) such that y → Ax , where y =∑∞
j=1 ai, j x j , defines a bounded linear operator from �∞ to �∞ [7]. Recall that L∞ is

a Banach space with the induced norm ‖A‖∞ := sup‖x‖∞=1 ‖Ax‖∞, which is verified
to be ‖A‖∞ = supi

∑∞
j=1 |ai, j |.

Consider the complex valued functions a(z) = ∑
i∈Z ai zi , where a(z) is defined

on the unit circle T, the Wiener algebra W is defined as the set W = {a(z) =∑
i∈Z ai zi : ‖a‖w = ∑

i∈Z |ai | < ∞}. It is known that W is a Banach algebra, then
‖ab‖w ≤ ‖a‖w‖b‖w for any a, b ∈ W and the normed space is complete [8].

For a ∈ W , we denote by T (a) the semi-infinite Toeplitz matrix associated with
the function a(z), that is, (T (a))i, j = a j−i for i, j ∈ Z

+. Denote by KL∞ the set
of matrices E = (ei, j ) ∈ L∞ such that limi vi = 0, where vi = ∑∞

j=1 |ei, j |. It was
proved in [5, Lemma 2.9 and Theorem 2.11] that KL∞ is a closed subset of K(�∞),
which is the set of compact operators from �∞ to �∞, so that KL∞ is a Banach space
with the induced norm ‖ · ‖∞. Consider the class

QT ∞ = {A = T (a) + Ea : a ∈ W, Ea ∈ KL∞}.

If A ∈ QT ∞, we call A a quasi Toeplitz (QT) matrix with a Toeplitz part T (a) and
a compact correction part Ea . The function a(z) is called the symbol of A and it is
invertible if and only if a(z) �= 0 for all z ∈ T. It follows from [8, Proposition 1.1]
that T (a) ∈ L∞, which implies that A ∈ L∞ if A ∈ QT ∞.

For A ∈ QT ∞, there exist a unique a ∈ W and Ea ∈ KL∞ such that A = T (a)+
Ea . Indeed, suppose there is a1 ∈ W and Ea1 ∈ KL∞ such that A = T (a1)+Ea1 , then
we have T (a − a1) + (Ea − Ea1) = 0, which yields T (a − a1) = Ea1 − Ea ∈ KL∞.
It follows from [8, Corollary 1.13] that T (a − a1) = 0 so that a = a1 and hence
Ea = Ea1 .

Observe that the quasi Toeplitz matrices can be defined as A = T (a) + Ea , where
a ∈ W and Ea is a compact operator on �p for 1 ≤ p ≤ ∞, see [17] for example. In
this paper, we only consider the case where p = ∞.

We refer the readers to [2–4,6] for more details about the QT matrices.
The following properties of matrices in QT ∞ can be found in [8].

Lemma 2.1 [8, Proposition 1.3] Let T (a) and T (b) be two semi-infinite Toeplitz matri-
ces with a, b ∈ W . Then

T (a)T (b) = T (ab) − H(a−)H(b+),
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where H(a−) and H(b+) are Hankel matrices such that (H(a−))i, j =
(a−(i+ j)+1)i, j∈Z+ and (H(b+))i, j = (bi+ j−1)i, j∈Z+ . Moreover, H(a−)H(b+) is a
compact operator on �p for any p ∈ [1,∞].
Lemma 2.2 [8, Theorem 1.14] If a ∈ W , then ‖T (a)‖1 = ‖T (a)‖∞ = ‖a‖w.

It can be seen from [8, Page 27] that if a ∈ W and Ea ∈ L∞ is a compact operator,
then ‖T (a)‖∞ ≤ ‖T (a) + Ea‖∞. Together with Lemma 2.2, we have

Lemma 2.3 If A = T (a) + Ea ∈ QT , then ‖a‖w ≤ ‖A‖∞.

Denote by B(�∞) the set of all bounded linear operators from �∞ to itself. Recall
that the spectrumof A ∈ B(�∞) is the setσ(A) = {λ ∈ C : A−λI is not invertible}.
The essential spectrum of A ∈ B(�∞) is the set σess(A) = {λ ∈ C : A −
λI is not Fredholm}, where A ∈ B(�∞) is said to be Fredholm if it is an invert-
ible operator modulo compact operators. We know from [8] that œess(A) ⊂ σ(A) and
œess(A) is invariant under compact perturbations.

In what follows, we denote by σ(A) and σess(A), respectively, the spectrum and
the essential spectrum of an operator A in the space L∞ unless otherwise specified.

2.2 Existence of solutions

Note that if X ∈ QT ∞ then X ∈ L∞, we show that under certain conditions Eq. (1.1)
has a unique solution in L∞ and then prove that the solution is a QT matrix if the
coefficients A, B,C, D, E ∈ QT ∞.

Observe that Eq. (1.1) is solvable in L∞ if and only if the operator G : L∞ → L∞
defined by G(X) = AXB+CXD is invertible inL∞. It follows from [14, Theorem 4]
that σ(G) ⊂ σ(A)σ (B)+σ(C)σ (D) if AC = CA and BD = DB. Herewe denote by
σ(A)σ (B) the set {λAλB : λA ∈ σ(A), λB ∈ σ(B)} and by σ(A)σ (B) + σ(C)σ (D)

we denote the set {λAλB +λCλD : λAλB ∈ σ(A)σ (B), λCλD ∈ σ(C)σ (D)}. Hence,
G is invertible if AC = CA, BD = DB, and σ(A)σ (B) ∩ σ(−C)σ (D) = ∅. We
have

Theorem 2.1 Suppose A, B,C, D, E ∈ L∞ are such that AC = CA, BD = DB
and σ(A)σ (B) ∩ σ(−C)σ (D) = ∅, then Eq. (1.1) has a unique solution X ∈ L∞.

If σ(A)σ (B)∩σ(−C)σ (D) = ∅ holds, then 0 /∈ σ(A)σ (B)∩σ(−C)σ (D), which
implies 0 /∈ σ(A)σ (B) or 0 /∈ σ(−C)σ (D). If 0 /∈ σ(A)σ (B), then both A and B
are invertible, so are C and D if 0 /∈ σ(−C)σ (D). In what follows, without loss of
generality, A and B are assumed to be invertible. We show that the commutativity
property AC = CA, BD = DB can be removed under a stronger condition and the
solution of Eq. (1.1) can be described in an explicit way.

Theorem 2.2 Suppose A and B are invertible, let α = ‖A−1‖∞‖B−1‖∞ and β =
‖C‖∞‖D‖∞. If αβ < 1, then Eq. (1.1) has a unique solution X ∈ L∞ and

X =
∞∑

k=0

(−1)k Ǎk Ě B̌k, (2.1)
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where Ǎ = A−1C, B̌ = DB−1 and Ě = A−1EB−1.

Proof Set Ǎ = A−1C , B̌ = DB−1 and Ě = A−1EB−1, observe that X solves Eq.
(1.1) if and only if X is a solution of equation

X + ǍX B̌ = Ě . (2.2)

It suffices to prove that Eq. (2.2) has a unique solution in L∞.
Note that ‖ Ǎ‖∞‖B̌‖∞ ≤ αβ < 1, then for any λ ∈ σ(− Ǎ)σ (B̌), we have |λ| < 1,

which implies 1 /∈ σ(− Ǎ)σ (B̌). According to Theorem 2.1, the map F : X →
X+ ǍX B̌ is invertible inL∞, this implies that Eq. (2.2) has a unique solution X ∈ L∞.

We prove that the series in (2.1) is convergent in L∞, it is then easy to check that
X in (2.1) solves Eq. (2.2) and hence is a solution of Eq. (1.1). Indeed, we have

∥
∥
∥

∞∑

k=0

(−1)k Ǎk Ě B̌k
∥
∥
∥∞ ≤

∞∑

k=0

(αβ)k‖A−1‖∞‖B−1‖∞‖E‖∞

≤ α‖E‖∞
1 − αβ

< ∞. (2.3)

The proof is completed. ��
In what follows, we use α and β to denote ‖A−1‖∞‖B−1‖∞ and ‖C‖∞‖D‖∞,

respectively. Observe that the assumption αβ < 1 can be relaxed to be ‖ Ǎ‖∞‖B̌‖∞ <

1. Under the latter one it is easy to prove that Eq. (2.2) has a unique solution in L∞
by applying the same technique as in the proof of Theorem 2.2.

Remark 2.1 Since αβ < 1, there is ε > 0 such that ε is sufficiently small and β ≤
α−1−ε. This implies that σ(−C)σ (D) is contained in the disk {z : |z| ≤ α−1−ε}. On
the other hand, it follows from ‖A−1‖∞‖B−1‖∞ = α that σ(A−1)σ (B−1) is inside
the disk {z : |z| ≤ α}. Then σ(A)σ (B) is outside the disk {z : |z| ≤ α−1}. This way,
we have σ(A)σ (B) ∩ σ(−C)σ (D) = ∅.

Concerning the case where the coefficients are QT matrices, if there is a disc of
radius r < 1 such that σ( Ǎ), σ (B̌) ⊆ B(0, r), it can be seen from [17] that Eq. (2.2)
has a unique solution X ∈ QT ∞ so that Eq. (1.1) has a unique solution in the QT ∞
class. Here with the condition αβ < 1 and a slightly different technique, we prove
that the unique solution of Eq. (1.1) belongs to the QT ∞ class.

Theorem 2.3 For A, B,C, D, E ∈ QT ∞, under the assumptions in Theorem 2.2, Eq.
(1.1) has a unique solution X ∈ QT ∞.

Proof For A, B,C, D, E ∈ QT ∞ such that the conditions of Theorem 2.2 are sat-
isfied, by relying on Lemma 2.1 and (2.1) we will prove that X can be written as
X = T (x) + Ex , where

x(z) =
∞∑

k=0

(−1)kc(z)ka(z)−k−1e(z)b(z)−k−1d(z)k, (2.4)
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and x(z) ∈ W , Ex ∈ KL∞ so that X ∈ QT ∞. To show x ∈ W , we have

‖x‖w ≤
∞∑

k=0

(‖a−1‖w‖b−1‖w‖c‖w‖d‖w)k‖a−1‖w‖b−1‖w‖e‖w. (2.5)

In view of Lemma 2.3, we have

‖a−1‖w‖b−1‖w‖c‖w‖d‖w ≤ αβ < 1 and ‖a−1‖w‖b−1‖w ≤ α,

it follows from (2.5) that

‖x‖w ≤ α‖e‖w

1 − αβ
, (2.6)

from which we obtain x ∈ W . It remains for us to prove that Ex ∈ KL∞. To this end,
set Xn = ∑n

k=0(−1)k Ǎk Ě B̌k , we have

‖Xn − X‖∞ ≤
∞∑

k=n+1

(‖A−1‖∞‖B−1‖∞‖C‖∞‖D‖∞)k‖A−1‖∞‖B−1‖∞‖E‖∞

≤ (αβ)n+1α‖E‖∞
1 − αβ

,

which implies limn ‖Xn − X‖∞ = 0 as αβ < 1 and hence (αβ)n+1 → 0 as n → ∞.
It is clear that Xn ∈ QT ∞ and Xn = T (xn) + En , where

xn(z) =
n∑

k=0

(−1)kc(z)ka(z)−k−1e(z)b(z)−k−1d(z)k ∈ W

and En ∈ KL∞. We prove that limn→∞ ‖En − Ex‖∞ = 0 so that Ex ∈ KL∞ since
KL∞ is a Banach space. Note that

‖x − xn‖w =
∞∑

k=n+1

‖cka−k−1eb−k−1dk‖w

≤
∞∑

k=n+1

(‖a−1‖w‖b−1‖w‖c‖w‖d‖w)k‖a−1‖w‖b−1‖w‖e‖w

≤ (αβ)n+1α‖e‖w

1 − αβ
, (2.7)

which implies limn→∞ ‖T (xn − x)‖∞ = limn→∞ ‖xn − x‖w = 0.
From En − Ex = Xn − X − T (xn − x), we have ‖En − Ex‖∞ ≤ ‖Xn − X‖∞ +

‖T (xn − x)‖∞, which yields limk ‖En − Ex‖∞ = 0 since limn ‖Xn − X‖∞ = 0 and
limn→∞ ‖T (xn − x)‖∞ = 0. ��
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The next theorem shows that the symbol of the solution X ∈ QT ∞ has an explicit
expression.

Theorem 2.4 For A = T (a) + Ea, B = T (b) + Eb,C = T (c) + Ec, D = T (d) +
Ed , E = T (e)+ Ee ∈ QT ∞, under the assumptions in Theorem 2.2, let X = T (x)+
Ex be the unique solution of Eq. (1.1), then x(z) = (a(z)b(z) + c(z)d(z))−1e(z).

Proof In view of Lemma 2.1, we know

AXB + CXD − E = T (x(ab + cd) − e) + F,

where F ∈ KL∞ is a compact correction. Since AXB + CXD − E = 0, we must
have

x(z)(a(z)b(z) + c(z)d(z)) = e(z). (2.8)

We prove that a(z)b(z) + c(z)d(z) is invertible, that is, a(z)b(z) + c(z)d(z) �= 0
for all z ∈ T. It follows from [8, Corollary 1.10] that a(T) = σess(T (a)) and since
the essential spectrum is invariant under compact perturbations, we have a(T) =
σess(T (a)) = σess(A) ⊆ σ(A). The same results hold for matrices B,C and D, that
is, b(T) ⊆ σ(B), c(T) ⊆ σ(C) and d(T) ⊆ σ(D). Suppose a(z)b(z) + c(z)d(z) =
0 for some z ∈ T, that is, a(z)b(z) = −c(z)d(z), this shows that σ(A)σ (B) ∩
σ(−C)σ (D) �= ∅, which is impossible since σ(A)σ (B) ∩ σ(−C)σ (D) = ∅ in
view of Remark 2.1. Hence, a(z)b(z) + c(z)d(z) �= 0 for all z ∈ T so that x(z) =
(a(z)b(z) + c(z)d(z))−1e(z). ��
Remark 2.2 Since the decomposition of a QT matrix into the sum of a Toepltiz part
and a correction part is unique, we know from Theorem 2.4 and (2.4) that (a(z)b(z)+
c(z)d(z))−1e(z) = ∑∞

k=0(−1)kc(z)ka(z)−k−1e(z)b(z)−k−1d(z)k .

3 Structured perturbation analysis

Consider the perturbed equation

(A + ΔA)(X + ΔX )(B + ΔB) + (C + ΔC )(X + ΔX )(D + ΔD) = E + ΔE ,

(3.1)

where ΔA,ΔB,ΔC ,ΔD,ΔE ∈ QT ∞ are such that ΔA = T (δa) + Eδa , ΔB =
T (δb) + Eδb , ΔC = T (δc) + Eδc , ΔD = T (δd) + Eδd , ΔE = T (δe) + Eδe , and
X + ΔX is the perturbed solution.

Suppose the assumptions in Theorem 2.2 are satisfied by the perturbed Eq. (3.1),
it follows from Theorem 2.3 that ΔX ∈ QT ∞.

Taking the difference of Eq. (3.1) with (1.1) and omitting the second and higher
order terms in the perturbations, it yields

AΔX B + CΔX D
.= ΔW , (3.2)
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where ΔW = ΔE −ΔAX B − AXΔB −ΔC XD−CXΔD . Then (3.2) can be written
as

G(ΔX )
.= ΔW ,

where
.= means equality up to higher order terms with respect to the perturbations

and G : L∞ → L∞ is defined by G(Y ) = AY B + CY D. Under the assumptions in
Theorem 2.2, G is invertible and

ΔX
.= G−1(ΔW ) =

∞∑

k=0

(−1)k ǍkΔW̌ B̌k, (3.3)

where Ǎ = A−1C , B̌ = DB−1 and ΔW̌ = A−1ΔW B−1. It follows from (3.3) that

‖ΔX‖∞≤̇
∞∑

k=0

(‖A−1‖∞‖B−1‖∞‖C‖∞‖D‖∞)k‖A−1‖∞‖B−1‖∞‖ΔW‖∞

≤ α‖ΔW‖∞
1 − αβ

.

On the other hand, we have from (2.3) that ‖X‖∞ ≤ α‖E‖∞
1−αβ

. Set

ω = max{‖A‖∞, ‖B‖∞, ‖C‖∞, ‖D‖∞}, γ = max

{

1,
αω‖E‖∞
1 − αβ

}

, (3.4)

we have

‖ΔW‖∞ ≤ γ (‖ΔA‖∞ + ‖ΔB‖∞ + ‖ΔC‖∞ + ‖ΔD‖∞ + ‖ΔE‖∞),

and

‖ΔX‖∞≤̇ αγ

1 − αβ
(‖ΔA‖∞ + ‖ΔB‖∞ + ‖ΔC‖∞ + ‖ΔD‖∞ + ‖ΔE‖∞). (3.5)

Inequality (3.5) provides a perturbation bound to the whole solution without taking
the QT structure into account and αγ

1−αβ
provides an upper bound to the conditioning

of the whole problem. In real applications, when the solution of an equation with
QT coefficients is also a QT matrix, in some implementation issues, it is feasible to
approximate the Toeplitz part and the correction part of the solution separately. For
example, in [17] the Toeplitz part is computed by algorithms based on evaluation
and interpolation while the correction part is computed separately by Krylov or ADI
methods. Accordingly, it is convenient to separate the perturbation analysis into two
parts, that is, the analysis of the Toeplitz part and the analysis of the correction part.

123



Structured perturbation analysis for an infinite size quasi… 867

3.1 Toeplitz part

Write ΔX = T (δx ) + Eδx , in view of Theorem 2.4, x + δx is the unique solution of
the equation

((a + δa)(b + δb) + (c + δc)(d + δd))(x + δx ) = e + δe. (3.6)

Taking the difference of Eq. (3.6) with (2.8) yields

(ab + cd)δx
.= δe − xbδa − axδb − xdδc − cxδd .

According to Theorem 2.4, a(z)b(z) + c(z)d(z) is invertible, we have

δx
.= δe − xbδa − axδb − xdδc − cxδd

ab + cd
, (3.7)

from which we obtain

‖δx‖ẇ ≤ ‖(ab + cd)−1‖w

(‖δe‖w + (‖δa‖w‖b‖w

+‖δb‖w‖a‖w + ‖δc‖w‖d‖w + ‖δd‖w‖c‖w)‖x‖w

)
. (3.8)

Observe that ‖x‖w = ‖(ab+ cd)−1e‖w in view of Theorem 2.4. Together with (3.8),
we have

‖δx‖w≤̇μ‖(ab + cd)−1‖w(‖δa‖w + ‖δb‖w + ‖δc‖w + ‖δd‖w + ‖δe‖w), (3.9)

where

μ = max{1, ν‖(ab + cd)−1e‖w}, ν = max{‖a‖w, ‖b‖w, ‖c‖w, ‖d‖w}. (3.10)

It turns out from (3.9) that μ‖(ab + cd)−1‖w provides an upper bound to the
conditioning of the Toeplitz part. In view of Remark 2.2, we have ‖(ab+cd)−1e‖w ≤
α‖e‖w

1−αβ
. Then, according to Lemma 2.3, (3.4) and (3.10), we deduce thatμ ≤ γ . On the

other hand, it can be easily checked that (ab + cd)−1 = ∑∞
k=0(ab)

−k−1(cd)k so that
‖(ab + cd)−1‖w ≤ α

1−αβ
, from which we have μ‖(ab + cd)−1‖w ≤ αμ

1−αβ
≤ αγ

1−αβ
.

Recall that αγ
1−αβ

is an upper bound to the conditioning of the whole problem, it is

interesting to observe that if αγ
1−αβ

is a small number, that is, the whole problem is
well-conditioned, then the Toeplitz part is well-conditioned.

3.2 Correction part

Concerning the perturbation bound of the correction part, it follows from Eδx =
ΔX − T (δx ) and Lemma 2.2 that ‖Eδx ‖∞ ≤ ‖ΔX‖∞ + ‖δx‖w. Moreover, in view of
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Lemma 2.3 and (3.9), we have

‖δx‖w≤̇μ‖(ab + cd)−1‖w(‖ΔA‖∞ + ‖ΔB‖∞ + ‖ΔC‖∞ + ‖ΔD‖∞ + ‖ΔE‖∞).

Together with (3.5), we derive an upper bound for Eδx

‖Eδx ‖∞̇ ≤ αγ

1 − αβ
(‖ΔA‖∞ + ‖ΔB‖∞ + ‖ΔC‖∞ + ‖ΔD‖∞ + ‖ΔE‖∞) + ‖δx‖w

≤ κ(‖ΔA‖∞ + ‖ΔB‖∞ + ‖ΔC‖∞ + ‖ΔD‖∞ + ‖ΔE‖∞), (3.11)

where κ = αγ
1−αβ

+ μ‖(ab + cd)−1‖w, μ and γ are defined in (3.10) and (3.4)
respectively.

Inequality (3.11) provides an upper perturbation bound to the correction part. It is
interesting to observe from (3.11) that the perturbations on the Toeplitz part of the
coefficients may make a difference to the perturbation results on the correction part.
This coincides with the fact that, when the computations are separated, the Toeplitz
part that has been previously computed appears in the computation of the correction
part, see [17] for example.

Set

δ = max

{ ‖δa‖w

‖Eδa‖∞
,

‖δb‖w

‖Eδb‖∞
,

‖δc‖w

‖Eδc‖∞
,

‖δd‖w

‖Eδd‖∞
,

‖δe‖w

‖Eδe‖∞

}

. (3.12)

If δ < ∞, it follows from (3.11) that

‖Eδx ‖∞̇ ≤ κ(1 + δ)(‖Eδa‖∞ + ‖Eδb‖∞ + ‖Eδc‖∞ + ‖Eδd‖∞ + ‖Eδe‖∞)

≤ 2αγ (1 + δ)

1 − αβ
(‖Eδa‖∞ + ‖Eδb‖∞ + ‖Eδc‖∞ + ‖Eδd‖∞ + ‖Eδe‖∞),

(3.13)

where the last inequality follows from ‖(ab + cd)−1‖w ≤ α
1−αβ

and μ ≤ γ so that

κ ≤ α(μ+γ )
1−αβ

≤ 2αγ
1−αβ

.

If δ < ∞, we can see from (3.13) that 2αγ (1+δ)
1−αβ

may provide some insights to the
conditioning of the correction part. When δ is a small number, the perturbations on
the Toeplitz part make a very small difference to the perturbations on the correction
part and in this case the correction part is well-conditioned if the whole problem is
well-conditioned.

3.3 A special case

We consider a special case of Eq. (1.1), which is

AX + X A = E, (3.14)
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where A = T (a) + Ea ∈ QT ∞ and E = T (e) + Ee ∈ QT ∞. An equation of this
type arises in the study of 2D Poisson problem on an unbounded domain, see [17,
Example 5.1]. The assumptions in Theorem 2.2 are not satisfied by Eq. (3.14) since
‖A−1‖∞‖A‖∞ ≥ 1 for all invertible A. Hence, the structured perturbation results
may not apply.

Let

S = {λ ∈ C : ‖(A + λI )−1‖∞‖A − λI‖∞ < 1}.
If S �= ∅, then Eq. (3.14) has a unique solution X which satisfies X ∈ L∞ ∩ QT ∞.
Indeed, consider the equation

(A + λI )X + X(A − λI ) = E . (3.15)

Suppose S is nonempty, that is, there is λ ∈ S such that ‖(A + λI )−1‖∞‖A −
λI‖∞ < 1, by Remark 2.1, we have σ(A + λI ) ∩ σ(λI − A) = ∅, which implies
σ(A) ∩ σ(−A) = ∅, so that Eq. (3.14) has a unique solution X ∈ L∞ in view
of Theorem 2.1. On the other hand, observe that X also solves Eq. (3.15) so that
X ∈ QT ∞, since it follows from Theorem 2.3 that Eq. (3.15) has a unique solution
Xλ ∈ QT ∞.

We have the following properties for the set S.
Lemma 3.1 If S is nonempty, then a(z) �= 0 for all z ∈ T, where a(z) is the symbol of
matrix A.

Proof Suppose by contradiction that a(z0) = 0 for some z0 ∈ T. Let λ ∈ S be such
that ‖(A + λI )−1‖∞‖A − λI‖∞ < 1. Observe that a(z) + λ is invertible on the unit
circle T since a(T) + λ = σess(A + λI ) ⊂ σ(A + λI ) and 0 /∈ σ(A + λI ) so that
a(z)+λ �= 0 for all z ∈ T. In view of Lemma 2.3, we have ‖(a+λ)−1‖w‖a−λ‖w ≤
‖(A+λI )−1‖∞‖A−λI‖∞ < 1, which is impossible since ‖(a+λ)−1‖w‖a−λ‖w ≥
‖(a + λ)−1‖∞‖a − λ‖∞ ≥ |(a(z0) + λ)−1||a(z0) − λ| = 1. ��

In what follows, we suppose that the set S is nonempty so that Eq. (3.14) has a
unique solution in the QT ∞ class. Concerning the perturbed Eq. of (3.14), we have

(A + ΔA)(X + ΔX ) + (X + ΔX )(A + ΔA) = E + ΔE , (3.16)

where ΔA = T (δa) + Eδa ∈ QT ∞ and ΔE = T (δe) + Eδe ∈ QT ∞.
Suppose

‖(A + ΔA + λI )−1‖∞‖A + ΔA − λI‖∞ < 1 (3.17)

for some λ ∈ S. This assumption is shown to be feasible by numerical experiment.
Then, the perturbed Eq. (3.16) has a unique solution X + ΔX ∈ QT ∞.

Taking difference of Eq. (3.16) with (3.14) and omitting the second and higher
order terms in perturbations, we have

AΔX + ΔX A
.= ΔE − XΔA − ΔAX . (3.18)
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Now we apply the perturbation results to Eq. (3.14). For the Toeplitz part, since
a(z) is invertible in view of Lemma 3.1, we have

δx = 1

2
a−1(δe − 2xδa),

from which we obtain

‖δx‖w ≤ 1

2
‖a−1‖w(‖δe‖w + 2‖x‖w‖δa‖w). (3.19)

On the other hand, it is easy to get x(z) = 1
2a(z)−1e(z) so that ‖x‖w ≤ 1

2‖a−1e‖w.
Let ξ = max{1, ‖a−1e‖w}, it follows from (3.19) that

‖δx‖w ≤ ξ‖a−1‖w

2
(‖δe‖w + ‖δa‖w). (3.20)

Concerning the correction part, observe that Eq. (3.18) is equivalent to

(A + λI )ΔX + ΔX (A − λI )
.= ΔE − XΔA − ΔAX (3.21)

for some λ ∈ S such that (3.17) is satisfied. Set α̃ = ‖(A + λI )−1‖∞ and β̃ =
‖A − λI‖∞, then α̃β̃ < 1. We obtain from (3.21) that

ΔX =
∞∑

k=0

(−1)k(A + λI )−k−1(ΔE − XΔA − ΔAX)(A − λI )k,

which yields

‖ΔX‖∞ ≤ α̃

1 − ãβ̃
(‖ΔE‖∞ + 2‖X‖∞‖ΔA‖∞)

≤ α̃τ̃

1 − ãβ̃
(‖ΔE‖∞ + ‖ΔA‖∞), (3.22)

where τ̃ = max{1, 2‖X‖∞}. It follows

‖Eδx ‖∞ ≤ α̃τ̃

1 − ãβ̃
(‖ΔE‖∞ + ‖ΔA‖∞) + ‖δx‖w

≤
(

α̃τ̃

1 − ãβ̃
+ ξ‖a−1‖w

2

)

(‖ΔE‖∞ + ‖ΔA‖∞), (3.23)

where the last inequality follows from (3.20) and Lemma 2.3.
Observe that the perturbation bounds (3.22) and (3.23) shed light on how the whole

solution and the correction part behave when the coefficients are perturbed by small
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perturbations. However they can be inaccurate since they are quite related to the value
of some λ ∈ S.

Here we provide some insight on how to choose λ if A = T (a), where a(z) =∑
i∈Z ai zi ∈ W . This is a special case but has practical interest, see Example 5.2.

Observe that we may choose λ such that the value ‖(A + λI )−1‖∞‖A − λI‖∞ is
far away from 1. For any θ ∈ C such that A + θ I is invertible, we have ‖(A +
θ I )−1‖∞‖A − θ I‖∞ ≥ ‖(a + θ)−1‖w‖a − θ‖w ≥ ‖a−θ‖w

‖a+θ‖w
. This inequality provides

a good way to choose λ, that is, we may choose λ such that λ = argminθ
‖a−θ‖w

‖a+θ‖w
, and

one can see that λ = a0. Now let λ = a0 and B = A− λI , suppose |a0| >
∑

i �=0 |ai |,
we have |λ| > ‖B‖∞ and

‖(A + λI )−1‖∞‖A − λI‖∞ = ‖(2λI + B)−1‖∞‖B‖∞

≤ 1

2|λ|
∞∑

i=0

‖B‖i∞
(2|λ|)i ‖B‖∞

= ‖B‖∞
2|λ| − ‖B‖∞

< 1.

From the above analysis, we can see that λ = a0 can be used in practice if A = T (a)

and the symbol a satisfies |a0| >
∑

i �=0 |ai |.

4 A generalization

The perturbation results for the generalized Sylvester Eq. (1.1) are here applied to a
more general type equation

n∑

k=1

Ak X Bk = C, (4.1)

where Ak, Bk , k = 1, . . . , n (n ≥ 3), and C belong to the QT ∞ class. Observer
that Eq. (4.1) has a unique solution X ∈ L∞ if the elementary operator T : X →∑n

k=1 Ak X Bk is invertible in L∞. It was proved in [14, Theorem 4] that if Ai A j =
A j Ai and Bi B j = Bj Bi for ∀i, j ∈ {1, . . . , n}, then the spectrum of T satisfies

σ(T ) ⊂
{ n∑

k=1

αkβk : αk ∈ σ(Ak), βk ∈ σ(Bk), 1 ≤ k ≤ n
}
,

which implies that T is invertible in L∞ if 0 /∈ ∑n
k=1 σ(Ak)σ (Bk).

Concerning matrices in the QT ∞ class, it would be natural to ask if the set of
commutative QT matrices is nonempty. We show by an interesting example that there
are cases where the QT matrices are commutative. Consider the set C = {Ak =
T (ak) − H(a+

k ): ak(z) = ∑
i∈Z a(k)

i zi ∈ W and a(k)
i ∈ R satisfies a(k)

i = a(k)
−i for

all i ∈ Z, H(a+
k ) is a Hankel matrix such that H(a+

k )i, j = (a(k)
i+ j−1)i, j∈Z+}. Observe
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that both T (ak) and H(a+
k ) are real symmetric and H(a+

k ) = H(a−
k ), where H(a−

k )

is a Hankel matrix such that H(a−
k )i, j = (a(k)

−i− j+1)i, j∈Z+ . For any Ak, A� ∈ C, in
view of Lemma 2.1, we have

Ak A� = T (aka�) − T (ak)H(a+
� ) − H(a+

k )T (a�),

and

A�Ak = T (aka�) − T (a�)H(a+
k ) − H(a+

� )T (ak).

A direct computation yields that T (ak)H(a+
� ) + H(a+

k )T (a�) = T (a�)H(a+
k ) +

H(a+
� )T (ak) so that Ak A� = A�Ak .

4.1 Existence of QT solutions

Suppose there is at least a pair (Ai , Bi ), i = 1, . . . , n, such that both Ai and Bi are
invertible in L∞. We provide an easy-to-check condition under which T is invertible
inL∞. In what follows, without loss of generality, we assume A1 and B1 are invertible.

Theorem 4.1 Assume A1 and B1 are invertible in L∞, Ai A j = A j Ai and Bi B j =
Bj Bi , ∀i, j ∈ {1, . . . , n}, and

η := ‖A−1
1 ‖∞‖B−1

1 ‖∞

(
n∑

k=2

‖Ak‖∞‖Bk‖∞

)

< 1,

Then Eq. (4.1) has a unique solution in L∞ and

X = A−1
1 CB−1

1 +
∞∑

k=1

n∑

i1,...,ik=2

(−1)k A−k−1
1 Ai1 · · · AikCBi1 · · · Bik B−k−1

1 . (4.2)

Moreover, if Ak, Bk,C ∈ QT ∞ for k = 1, . . . , n, then X ∈ QT ∞.

Proof Set η1 = ‖A−1
1 ‖∞‖B−1

1 ‖∞, we have σ(A1)σ (B1) ⊆ {z : |z| ≥ η−1
1 }. Observe

that
∑n

k=2 ‖Ak‖∞‖Bk‖∞ < η−1
1 , we have

∑n
k=2 σ(Ak)σ (Bk) ⊆ {z : |z| < η−1

1 }.
It follows that 0 /∈ ∑n

k=1 σ(Ak)σ (Bk). Hence the elementary operator T : X →∑n
k=1 Ak X Bk is invertible and Eq. (4.1) has a unique solution in L∞. It is easy to

check that X in (4.2) solves Eq. (4.1). We prove that the series in (4.2) converges in
L∞.

Set Ǎik = A−1
1 Aik and B̌ik = Bik B

−1
1 for k = 1, . . . ,∞ and ik = 2, . . . , n,

concerning the commutativity of the coefficients, (4.2) is equivalent to

X = A−1
1 CB−1

1 +
∞∑

k=1

n∑

i1,...,ik=2

(−1)k Ǎi1 · · · Ǎik A
−1
1 CB−1

1 B̌i1 · · · B̌ik . (4.3)
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Write Q = A−1
1 CB−1

1 , then Q ∈ L∞. Observe that for j = 1, . . . , k, we have

n∑

i j=2

‖ Ǎi j ‖∞‖B̌i j ‖∞ ≤ ‖A−1
1 ‖∞‖B−1

1 ‖∞
( n∑

i j=2

‖Ai j ‖∞‖Bi j ‖∞
)

= η < 1.

It follows from (4.3) that

‖X‖∞ ≤ ‖Q‖∞ +
∥
∥
∥

∞∑

k=1

n∑

i1,...,ik=2

Ǎi1 · · · Ǎik Q B̌i1 · · · B̌ik
∥
∥
∥∞

≤ ‖Q‖∞ +
∞∑

k=1

( n∑

i1=2

‖ Ǎi1‖∞‖B̌i1‖∞
)

. . .
( n∑

ik=2

‖ Ǎik‖∞‖B̌ik‖∞
)
‖Q‖∞

≤
∞∑

k=0

ηk‖Q‖∞ = ‖Q‖∞
1 − η

, (4.4)

from which we obtain X ∈ L∞.
Concerning the case where the coefficients Ak, Bk , k = 1, . . . , n, and C are QT

matrices, the proof to show X ∈ QT ∞ is analogous to that of Theorem 2.3 and is
omitted here. ��
Theorem 4.2 Assume that the assumptions in Theorem 4.1 hold true. For Ak =
T (ak) + Ek, Bk = T (bk) + Ek,C = T (c) + Ec ∈ QT ∞, k = 1, . . . , n, let
X = T (x) + Ex ∈ QT ∞ be the unique solution of Eq. (4.1), then

x(z) =
( n∑

k=1

ak(z)bk(z)
)−1

c(z).

Proof We have from

n∑

k=1

Ak X Bk − C = T
(( n∑

k=1

akbk
)
x − c

)
+ F = 0

that
( ∑n

k=1 ak(z)bk(z)
)
x(z) = c(z). Since, for any z ∈ T, it holds ak(z) ∈ σ(Ak)

and bk(z) ∈ σ(Bk) for k = 1, . . . , n, we have

n∑

k=1

ak(z)bk(z) ∈
n∑

k=1

σ(Ak)σ (Bk)

for any z ∈ T. Note that 0 /∈ ∑n
k=1 σ(Ak)σ (Bk) in view of the proof of Theo-

rem 4.1, then
∑n

k=1 ak(z)bk(z) �= 0 for all z ∈ T, from which we have x(z) =
( ∑n

k=1 ak(z)bk(z)
)−1

x(z). ��
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4.2 Perturbation results

We are ready to extend the perturbation results to Eq. (4.1). Consider the perturbed
matrix equation obtained from (4.1) by replacing the coefficients Ak , Bk and C by
Ak +ΔAk , Bk +ΔBk andC+ΔC , respectively, whereΔAk = T (δak )+Eδak

∈ QT ∞,
ΔBk = T (δbk )+Eδbk

∈ QT ∞, k = 1, . . . , n, andΔC = T (δc)+Eδc ∈ QT ∞. Denote
by X + ΔX the solution of the perturbed equation, we have

n∑

k=1

(Ak + ΔAk )(X + ΔX )(Bk + ΔBk ) = C + ΔC . (4.5)

In what follows, we suppose the assumptions in Theorem 4.1 are satisfied for the
perturbed equation, then there is a unique X + ΔX ∈ QT ∞ solving Eq. (4.5). Write
ΔX = T (δx ) + Eδx , we have for the Toeplitz part

( n∑

k=1

akbk
)
δx

.= δc −
n∑

k=1

(δak xbk + akxδbk ).

In view of the proof of Theorem4.2, we know
∑n

k=1 ak(z)bk(z) is invertible, it follows

δx
.=

( n∑

k=1

akbk
)−1(

δc −
n∑

k=1

(
δak bk + akδbk

)
x
)
,

which yields

δx ≤̇
∥
∥
∥
( n∑

k=1

akbk
)−1∥∥

∥
w

(‖δc‖w +
n∑

k=1

(‖δak‖w‖bk‖w + ‖δbk‖w‖ak‖w)‖x‖w

)
.

Let

v1 = max
k

{‖ak‖w}, v2 = max
k

{‖bk‖w}, θ =
∥
∥
∥
( n∑

k=1

akbk
)−1∥∥

∥
w
‖c‖w,

and

μ̂ = max{1, v1θ, v2θ}. (4.6)

Note that ‖x‖w ≤ ‖(∑n
k=1 akbk)

−1‖w‖c‖w in view of Theorem 4.2, we obtain

‖δx‖w≤̇μ̂

∥
∥
∥
( n∑

k=1

akbk
)−1∥∥

∥
w

( n∑

k=1

(
‖δak‖w + ‖δbk‖w

)
+ ‖δc‖w

)
. (4.7)
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Concerning the correction part, write ΔV = ΔC − ∑n
k=1(ΔAk X Bk + Ak XΔBk ),

we have T (ΔX )
.= ΔV , where T : X → ∑n

k=1 Ak X Bk is the elementary operator.
Since T is invertible in view of the proof of Theorem 4.1, we have ΔX

.= T −1(ΔV ),
which is

ΔX
.= A−1

1 ΔV B
−1
1 +

∞∑

k=1

n∑

i1,...,ik=2

(−1)k A−k−1
1 Ai1 · · · AikΔV Bi1 · · · Bik B−k−1

1 .

(4.8)

Set η1 = ‖A−1
1 ‖∞‖B−1

1 ‖∞, η2 = max{maxk ‖Ak‖∞,maxk ‖Bk‖∞} and η3 =
max

{
1, η1η2

1−η
‖C‖∞

}
, we obtain from (4.8) that

‖ΔX‖∞≤̇‖A−1
1 ‖∞‖B−1

1 ‖∞
( ∞∑

k=0

ηk
)
‖ΔV ‖∞

= η1

1 − η

(
‖ΔC‖∞ +

n∑

k=1

(
‖ΔAk‖∞‖Bk‖∞ + ‖ΔBk‖∞‖Ak‖∞

)
‖X‖∞

)

≤ η1η3

1 − η

(
‖ΔC‖∞ +

n∑

k=1

(
‖ΔAk‖∞ + ‖ΔBk‖∞

))
,

where the last inequality follows from ‖X‖∞ ≤ η1‖C‖∞
1−η

, which is obtained by (4.4).
Set

δ̂ = max
{
max
k

{ ‖δak‖w

‖Eδak
‖∞

}
,max

k

{ ‖δbk‖w

‖Eδbk
‖∞

}
,

‖δc‖w

‖Eδc‖∞

}
,

if δ̂ < ∞, we obtain a bound for Eδx

‖Eδx ‖∞≤̇κ̂(1 + δ̂)
( n∑

k=1

(‖Eδak
‖∞ + ‖Eδbk

‖∞) + ‖Eδc‖∞
)
,

where κ̂ = η1η3
1−η

+ μ̂‖(∑n
k=1 akbk)

−1‖w and û is defined in (4.6).
Wemay observe that the results we obtained can be used as a basis to solve equation

of the form

n∑

k=1

fk(A)Xgk(B) = C,

where fk(·) and gk(·), k = 1, . . . , n, are holomorphic functions in domains containing
σ(A) andσ(B), respectively.An equation of this type in the (finite dimensional)matrix
setting was studied in [21]. Concerning the case where A, B,C ∈ L∞ ( or A, B,C ∈
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QT ∞), according to [14, Theorem 5], the spectrum of the operator R : L∞ → L∞
defined by R(X) = ∑∞

k=1 fk(A)Xgk(B) satisfies

σ(R) ⊂
{ n∑

k=1

fk(λa)gk(λb) : λa ∈ σ(A) and λb ∈ σ(B)
}
.

Under certain conditions, it may be feasible to extend the results we have obtained to
this equation. We leave this as a future consideration.

5 Numerical experiments

In this section, we apply the perturbation analysis to the generalized Sylvester Eq.
(1.1). All the computations are performed in QT arithmetic relying on the operations
implemented in cqt-toolbox [6]. The threshold used in the computations is set to 10−12.

Example 5.1 This example is taken from Example 5.2 in [17], where a generalized
Sylvester equation arising in solving a quadraticmatrix equation A1X2+A0X+A−1 =
0 byNewton’smethod [7] is considered. The involved quadratic matrix equation arises
in the analysis of a Markov process modeling a two-node Jackson network [16] and
the matrices A1, A0, A−1 are nonnegative matrices with QT structure. When applying
Newton’s method to the quadratic matrix equation, the computation of the Newton
increment Hk at each step is reduced to solve an equation of the form

(A1Xk + A0 − I )H + A1HXk = L(Xk), (5.1)

with L(Xk) = A1X2
k + (A0 − I )Xk + A−1.

We consider the generalized Sylvester equation arising in the computation of the
second Newton iterates X2, that is, we consider the equation

(A1X1 + A0 − I )H + A1HX1 = L(X1), (5.2)

where X1 is obtained by using the Newton iteration in [7] and the solution H of the
generalized Sylvester equation is computed using the Galerkin approach in [17]. We
choose the coefficients A1, A0, A−1 from the 10 problems as in [7, Example 6.2] and
perturb the coefficients by using the same technique as in [7].

It can be seen from [7] that A1X1 + A0 − I is invertible in L∞. Moreover, ‖(I −
A0 − A1X)−1A1‖∞ < 1 and ‖X1‖∞ ≤ 1, according to Theorem 2.3, Eq. (5.2) has
a unique solution H = T (h) + Eh ∈ QT ∞. Moreover, the perturbed equation has a
unique solution H + ΔH ∈ QT ∞ with ΔH = T (δh) + Eδh .

Table 1 reports the value δ defined in (3.12), the upper bound of the conditioning
of the whole solution, which is condH = αγ

1−αβ
. Recall that condH implies that the

Toeplitz part is well-conditioned if it is a small number. In this experiment, we observe
that αγ

1−αβ
provides a good estimate to the conditioning of the whole problem so that
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Table 1 Conditioning of the the whole solution of Eq. (5.2) and perturbation bounds: actual perturbations
in the Toeplitz part and in the correction part and the related upper bounds

Problem δ CondH ‖δh‖w δh -bound ‖Eδh ‖∞ Eδh -bound

1 3.7671 4.1267 3.0393e-09 5.8453e-09 1.2534e-09 3.3407e-08

2 2.8789 2.3941 1.4473e-09 3.8391e-09 1.2294e-09 1.1288e-08

3 4.0215 2.3941 1.4741e-09 3.8678e-09 1.4835e-09 1.1227e-08

4 3.0117 2.1509 1.8394e-09 4.1083e-09 1.1593e-09 1.2465e-08

5 3.1677 1.8838 2.0794e-09 4.6513e-09 9.3214e-10 1.4119e-08

6 3.7744 1.8838 2.4189e-09 6.3207e-09 1.2491e-09 1.9116e-08

7 2.3698 2.0364 1.1101e-09 4.3663e-09 1.6565e-10 9.8742e-09

8 12.0710 3.2542 5.9479e-10 1.2838e-09 2.9312e-10 5.8110e-09

9 9.6032 2.4431 1.0662e-09 2.4756e-09 1.1020e-09 9.4847e-09

10 2.7598 2.4431 1.2139e-09 2.8840e-09 1.4515e-09 1.4340e-08

the Toeplitz part is well-conditioned, and together with δ, it implies that the correction
part is also well-conditioned.

Denote by δh-bound the bound (3.9) for the Toeplitz part and Eδh -bound the bound
(3.11) for the correction part. In Table 1, we compare these two perturbation bounds
with the actual perturbation errors ‖δh‖w and ‖Eδh‖∞. It can be seen that, with respect
to small perturbations on the coefficients, inequalities (3.9) and (3.11) provide sharp
and revealing perturbation bounds to the Toeplitz part and to the correction part,
respectively.

Example 5.2 This example is taken from Example 5.1 in [17], where, in the solution
of a 2D Poisson problem on the positive orthant, equation of the form

MX + XM = Q, (5.3)

is encountered, where M = (Δt A− Δx2
2 I ) and Q = Δx2Ut −Δx2Δt F . Here, Δx is

the discretization step, Δt is the time step, Ut is the solution of the Poisson problem
at time t . Both A and F are QT matrices so that the coefficients M and Q are also QT
matrices.

We perturb the matrix F by ΔF , where ΔF = cqt(’hankel’, dfm) +
0.1*cqt(dfm,dfm) with dfm=rand*10ˆ{-8}*fm, the construction of fm can
be found in [17].Matrix A is perturbedbyΔA,whereΔA = cqt([−c1, c2], [−c1, c2])
with c1 = rand ∗ 10−8 and c2 = rand ∗ 10−8. It can be examined that M + λI
is invertible for λ = 1. Moreover, it holds ‖(M + λI )−1‖∞‖M − λI‖∞ < 1
and ‖(M + ΔM + λI )−1‖∞‖M + ΔM − λI‖∞ < 1. Hence, there is unique
X = T (x) + Ex ∈ QT ∞ and X + ΔX with ΔX = T (δx) + Eδx solving Eq.
(5.3) and the corresponding perturbed equation, respectively.

As in [17], we consider the solution of Eq. (5.3) in [0, 2] × [0, 2] with timesteps
Δt = 0.05, 0.10, 0.15, 0.20, respectively. Table 2 reports two perturbation bounds
(3.20) and (3.23), denoted by δx -bound for the Toeplitz part and Eδx -bound for the

123



878 H. Kim, J. Meng

Table 2 Perturbation bounds for Eq. (5.3): actual perturbations in the Toeplitz part and in the correction
part and the related upper bounds

Δt ‖δx‖w δx -bound ‖Eδx ‖∞ Eδx -bound

0.05 4.6655e-09 3.4053e-08 5.7381e-09 7.2163e-08

0.10 1.2843e-08 7.1753e-08 8.6048e-09 1.5270e-07

0.15 8.1842e-08 1.0451e-07 2.1398e-08 4.0208e-07

0.20 9.0113e-08 9.5174e-08 9.0113e-08 3.7718e-07

correction part, respectively. Comparison with the corresponding actual perturbation
errors ‖δx‖w and ‖Eδx ‖∞ indicates that these two bounds are sharp.

Example 5.3 Consider the equation X + A1X A2 = A3, where A1 = T (a1) with
a1(z) = 1

2 − ε + 1
4 (z + z−1), where ε > 0 is a small number, A2 = T (a2) with

a2(z) = 3
5 + 1

5 z + 1
5 z

−1 and A3 = cqt(1,1).

Observe that matrix A1 is nearly singular if ε is close to 0, so that the computations
involving matrix A1 are usually very sensitive to numerical errors. Choose ε = 0.006,
we perturbed Ai , i = 1, 2, 3, by ΔAi = cqt(ci , ci ), where ci = rand∗10−8. In this
special case, the numerical results show that the perturbation bound for the Toeplitz
part is 2.7493e-08 and the actual error is 1.4297e-08. For the perturbation bound of
the whole problem, the upper bound of the conditioning is shown to be 1.0000e+02,
and the perturbation bound is 2.3465e-06, compared with the actual error 1.4297e-08,
we can see that the perturbation bound (3.5) is also descriptive of the errors when the
problem is not well-conditioned.

6 Conclusion

Wehave analysed a generalizedSylvester equationwith infinite sizematrix coefficients
in theQT ∞ class of quasi Toeplitz matrices. Under sufficient conditions, we showed
that an equation of this type has a unique solution in the QT ∞ class. By separating
the perturbation analysis of the Toeplitz part from the correction part, we provided
perturbation results that cater to the particular QT structure. The perturbation results
were also extended to an equation with a more general form.
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