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Abstract
The simple (linear) birth-and-death process is a widely used stochastic model for
describing the dynamics of a population. When the process is observed discretely
over time, despite the large amount of literature on the subject, little is known about
formal estimator properties. Here we will show that its application to observed data is
further complicated by the fact that numerical evaluation of the well-known transition
probability is an ill-conditioned problem. To overcome this difficulty we will rewrite
the transition probability in terms of a Gaussian hypergeometric function and sub-
sequently obtain a three-term recurrence relation for its accurate evaluation. We will
also study the properties of the hypergeometric function as a solution to the three-term
recurrence relation. We will then provide formulas for the gradient and Hessian of the
log-likelihood function and conclude the article by applying our methods for numer-
ically computing maximum likelihood estimates in both simulated and real dataset.
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1 Introduction

A birth-and-death process (BDP) is a stochastic model that is commonly employed
for describing changes over time of the size of a population. Its first mathematical
formulation is due to Feller [11], followed by important mathematical contributions
of Arley and Borchsenius [1] and Kendall [18,19]. According to the basic assumptions
of the model, when the population size at time t is j , the probability of a single birth
occurring during an infinitesimal time interval (t, t + dt) is equal to λ j dt + o(dt)
while the probability of a single death is μ j dt + o(dt), where λ j ≥ 0 and μ j ≥ 0 for
j ≥ 0. If p j (t) is the probability of observing j individuals at time t then

p j (t + dt) = λ j−1dtp j−1(t) + μ j+1dtp j+1(t) + (1 − (λ j + μ j )dt)p j (t) + o(dt)

If we subtract p j (t) from both sides of the equation, divide by dt , and then take the
limit of dt to zero, we obtain the well known BDP differential equation

p′
j (t) = λ j−1 p j−1(t) + μ j+1 p j+1(t) − (λ j + μ j )p j (t) (1.1)

By assuming that at time zero the size of the population was i ≥ 0, that is pi (0) = 1,
we have the initial condition required to solve the differential equation (1.1).

In this article we will focus on the simple (linear) BDP without migration [19]
defined by λ j = jλ and μ j = jμ. With this particular choice of parameters a starting
size of zero implies λ0 = μ0 = 0, i.e. it remains zero for all t ≥ 0. The rate of growth
does not increase faster than the population size and therefore

∑∞
j=0 p j (t) = 1 [12,

Chapter 17, Section 4]. When i > 0 the population becomes extinct if it reaches the
size j = 0 at time t > 0. Obviously i , j , and t are not allowed to be negative, nor the
basic birth and death rates.

What makes this model particularly attractive for real applications is the fact that
its transition probability is available in closed form [2, Chapter 8] and we could, in
principle, easily evaluate it. By defining

φ(t, λ, μ) = e(λ−μ)t − 1

λe(λ−μ)t − μ
, α(t, λ, μ) = μφ(t, λ, μ), β(t, λ, μ) = λφ(t, λ, μ)

γ (t, λ, μ) = 1 − α(t, λ, μ) − β(t, λ, μ) = 1 − (λ + μ)φ(t, λ, μ)

and assuming that at time 0 the size of the population was i > 0, the probability p j (t)
of observing j units at time t is
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑

h=0

(
i

h

)(
i + j − h − 1

i − 1

)

α(t, λ, μ)i−hβ(t, λ, μ) j−hγ (t, λ, μ)h, μ �= λ

(1.2)
m∑

h=0

(
i

h

)(
i + j − h − 1

i − 1

) (
λt

1 + λt

)i+ j−2h (
1 − λt

1 + λt

)h

, μ = λ (1.3)

(
j − 1

i − 1

)

e− jλt (eλt − 1) j−i , μ = 0, j ≥ i (1.4)

(
i

j

)

e−iμt (eμt − 1)i− j , λ = 0, j ≤ i (1.5)

1, t = 0, j = i (1.6)

1, λ = μ = 0, j = i (1.7)

0, otherwise (1.8)

where t , λ, and μ are to be considered strictly positive if not otherwise specified and
m = min(i, j). The probability of the population being extinct at time t is

p0(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
μe(λ−μ)t − μ

λe(λ−μ)t − μ

)i

, μ �= λ (1.9)

(
λt

1 + λt

)i

, μ = λ (1.10)

(1 − e−μt )i , λ = 0 (1.11)

0, μ = 0 or t = 0 (1.12)

In the majority of applications direct evaluation of Eqs. (1.2)–(1.12) is sufficient.
However, for particular values of process parameters, Eqs. (1.2) and (1.3) are numer-
ically unstable (Fig. 1) and alternative methods are needed [28].

A possible approach might be the algorithm introduced by Crawford and Suchard
[5] based on the continued fraction representation of Murphy and O’Donohoe [22], or
the saddlepoint approximation method of Davison et al. [8]. For this particular case
where we know the exact closed form we will show that a simpler and more efficient
method is available.

The remainder of the paper is organized as follows. In Sect. 2 we introduce the
problem and find the parameter sets for which it is ill-conditioned. In Sect. 3 we
rewrite the transition probability in terms of a Gaussian hypergeometric function and
find in Sect. 4 a three-term recurrence relation (TTRR) for its computation. In Sect. 5
we extend the results to the log-likelihood function, its gradient, and itsHessianmatrix.
In Sect. 6 we apply our method to both simulated and real data. In Sect. 7 we conclude
the article with a brief discussion.
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564 A. Pessia , J. Tang

Fig. 1 Numerical relative error of the log-probability as evaluated by direct application of Eqs. (1.2) and
(1.3). For this particular example we set i = 25, j = 35, t = 2, λ = 1 and evaluated the log-probability as a
function of μ. We computed correct values with Maple™ 2018.2 [21] using 100 significant digits. Relative
error is defined as |1− log p̂ j (t)/ log p j (t)|where p̂ j (t) is the numerically evaluated transition probability

2 Numerical stability

We will always assume that all basic mathematical operations (arithmetic, logarith-
mic, exponentiation, etc.) are computed with a relative error bounded by a value ε

that is close to zero and small enough for any practical application [25]. Follow-
ing this assumption and after taking into consideration floating-point arithmetic [15],
Eqs. (1.4)–(1.12) can be considered numerically stable and won’t be discussed further.
We will instead focus our attention on the series (1.2) and (1.3) assuming all variables
to be strictly positive, including j .

Suppose to be interested in the value sm = ∑m
h=0 uh and use a naïve recursive

summation algorithm for its computation, that is

s0 = u0, sn = sn−1 + un, n = 1, . . . ,m

The relative condition number of this algorithm is [27]

ρm = ρA
m + ρR

m =
∑m

h=0 |uh |∣
∣
∑m

h=0 uh
∣
∣

+
∑m

n=1 |sn|∣
∣
∑m

h=0 uh
∣
∣

where ρA
m is associated with perturbations in the the value of the addends while ρR

m is
associated with rounding errors in the arithmetic operations. Note that when uh ≥ 0
for all h, ρA

m = 1 and the condition number depends only on rounding errors. With a
compensated summation algorithm [16] we might significantly reduce the numerical
error and evaluate accurately the sum. However, when the addends are alternating in
sign, the condition number can be of large magnitude and the problem is numerically
unstable even when compensating for rounding errors. In our case it is likely that the
magnitude of the binomial coefficients make ρA

m a ratio between a very large number
and a probability that is instead close to zero. We will now find the conditions under
which the sums (1.2) and (1.3) are alternating in sign.
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Proposition 2.1 For all λ ≥ 0 and μ ≥ 0 the function

φ(t, λ, μ) = e(λ−μ)t − 1

λe(λ−μ)t − μ

is zero if and only if t = 0. It is always positive otherwise.

Proof Ifμ �= λ and t = 0 the numerator e(λ−μ)t−1 is equal to zero but the denominator
is not. When μ = λ the function becomes

lim
μ→λ

e(λ−μ)t − 1

λe(λ−μ)t − μ
= t

1 + λt

For all λ ≥ 0, it is equal to zero if t = 0 and positive otherwise. Assume now t > 0.
When λ > μ we have e(λ−μ)t > 1 and μ/λ < 1 implying that the numerator and the
denominator are always positive. When λ < μ the numerator e(λ−μ)t − 1 is negative.
The denominator is also negative when e(λ−μ)t < μ/λ. Since λ < μ the left hand side
is less than one while the right hand side is greater than one, proving the proposition.

�	
Corollary 2.1 Functions α(t, λ, μ) = μφ(t, λ, μ) and β(t, λ, μ) = λφ(t, λ, μ) are
non-negative for all λ ≥ 0, μ ≥ 0, and t ≥ 0.

Proof This is a direct consequence of Proposition (2.1) and the assumptions λ ≥ 0
and μ ≥ 0. �	
Proposition 2.2 Assume t > 0, λ > 0,μ > 0. Ifμ �= λ, define ξ = log(λ/μ)/(λ−μ).
If μ = λ, define instead ξ = 1/λ. Let γ (t, λ, μ) = 1 − (λ + μ)φ(t, λ, μ). Then

(t, λ, μ)

⎧
⎨

⎩

< 0 if t > ξ

> 0 if t < ξ

= 0 if t = ξ

Proof Rewrite the function γ (t, λ, μ) in its expanded form:

γ (t, λ, μ) = λ − μe(λ−μ)t

λe(λ−μ)t − μ

Assume μ �= λ. If t > 0, we already proved in Proposition (2.1) that the denominator
is always positive when λ > μwhile it is always negative when λ < μ. The numerator
is positive when (λ − μ)t < log(λ/μ), that is when t < ξ and λ > μ or t > ξ and
λ < μ. It is zero when t = ξ . From these results follow the first set of inequalities.
When μ = λ the function becomes

lim
μ→λ

λ − μe(λ−μ)t

λe(λ−μ)t − μ
= 1 − λt

1 + λt

If t > 0 and λ > 0 the denominator is always positive. The numerator is zero if
t = λ−1, it is positive when t < λ−1, and it is negative otherwise. �	
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566 A. Pessia , J. Tang

Corollary 2.2 When t = log(λ/μ)/(λ − μ) equation (1.2) becomes

p j (t) =
(
i + j − 1

i − 1

) (
μ

λ + μ

)i (
λ

λ + μ

) j

When t = λ−1 Eq. (1.3) becomes

p j (t) =
(
i + j − 1

i − 1

)(
1

2

)i+ j

Proof This is a direct consequence of the fact that γ (t, λ, μ) = 0 and that 0h is zero
for all h > 0 and one for h = 0. �	

From Corollary 2.2 we have simple closed form solutions when γ (t, λ, μ) is zero
and therefore we will not consider this case further. We know from Proposition 2.2
the conditions under which Eqs. (1.2) and (1.3) are alternating in sign and might
become numerically unstable. Looking at the example shown in Fig. 1, where t = 2
and λ = 1, function γ (t, λ, μ) is non-negative when 0 < μ � 0.2032. We clearly
see from Fig. 1 that the error steadily increases starting at the value μ ≈ 0.2032.
Computer algebra systems implementing symbolic computation are obviously a way
of evaluating the transition probability since we can, in principle, increase the number
of significant digits to an appropriate amount. The computational cost of symbolic
computation, however, can be prohibitive for real applications where the probability
is usually evaluated multiple times with a large number of addends in the summation.
In the next section we will instead find an alternative representation to Eqs. (1.2) and
(1.3) that will lead to an algorithm for their accurate and efficient evaluation.

3 Hypergeometric representation

Define

ω(i, j, t, λ, μ) =
(
i + j − 1

i − 1

)

μiλ j

(
e(λ−μ)t − 1

λe(λ−μ)t − μ

)i+ j

z(t, λ, μ) = γ (t, λ, μ)

α(t, λ, μ)β(t, λ, μ)
= (λ − μe(λ−μ)t )(λe(λ−μ)t − μ)

λμ(e(λ−μ)t − 1)2

Note that ω(i, j, t, λ, μ) is simply the first term in (1.2). When μ = λ set

ω(i, j, t, λ, λ) = lim
μ→λ

ω(i, j, t, λ, μ) =
(
i + j − 1

i − 1

) (
λt

1 + λt

)i+ j

z(t, λ, λ) = lim
μ→λ

z(t, λ, μ) =
(

1

λt

)2

− 1
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Multiply and divide each term in the series (1.2) by ω(i, j, t, λ, μ) to get

p j (t) = ω(i, j, t, λ, μ)

m∑

h=0

( i
h

)( j
h

)

(i+ j−1
h

) z(t, λ, μ)h

= ω(i, j, t, λ, μ)

m∑

h=0

i !
(i − h)!

j !
( j − h)!

(i + j − 1 − h)!
(i + j − 1)!

z(t, λ, μ)h

h!

= ω(i, j, t, λ, μ)

m∑

h=0

(−i)h(− j)h
(−(i + j − 1))h

(−z(t, λ, μ))h

h!

= ω(i, j, t, λ, μ) 2F1

[ −i, − j

−(i + j − 1)
;−z(t, λ, μ)

]

(3.1)

where (q)h is the risingPochhammer symbol and 2F1(a, b; c; y) is theGaussian hyper-
geometric function [26, Chapter 1]. To evaluate (3.1) is then sufficient to separately
compute the functions ω(i, j, t, λ, μ) and 2F1(−i,− j;−(i + j − 1);−z(t, λ, μ)).

Partial derivatives of log p j (t) are required for computing partial derivatives of the
log-likelihood function as we will explicitly show in Sect. 5. The following theorem
proves that partial derivatives of 2F1(−i,− j;−(i + j − 1);−z(t, λ, μ)) depend on
hypergeometric functions of similar nature.

Theorem 3.1 Denote with ux the first-order partial derivative of u(x, y) with respect
to x. Similarly, denote with uxy the second-order partial derivative with respect first
to x and subsequently y. Then

∂

∂x
2F1

[ −i, − j

−(i + j − 1)
;−u(x, y)

]

= ux
i j

i + j − 1
2F1

[−a1, − b1
−(a1 + b1)

;−u(x, y)

]

∂2

∂x∂ y
2F1

[ −i, − j

−(i + j − 1)
;−u(x, y)

]

= uxy
i j

i + j − 1
2F1

[−a1, − b1
−(a1 + b1)

;−u(x, y)

]

+uxuy
i(i − 1) j( j − 1)

(i + j − 1)(i + j − 2)
2F1

[ −a2, − b2
−(a2 + b2 + 1)

;−u(x, y)

]

where a1 = i − 1, a2 = i − 2, b1 = j − 1, and b2 = j − 2.
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Proof

∂

∂x

(

1 +
m∑

h=1

i !
(i − h)!

j !
( j − h)!

(i + j − 1 − h)!
(i + j − 1)!

u(x, y)h

h!

)

= ux

m∑

h=1

i !
(i − h)!

j !
( j − h)!

(i + j − 1 − h)!
(i + j − 1)!

u(x, y)h−1

(h − 1)!

= ux
i j

i + j − 1

m−1∑

h=0

(i − 1)!
(i − 1 − h)!

( j − 1)!
( j − 1 − h)!

(i + j − 2 − h)!
(i + j − 2)!

u(x, y)h

h!

= ux
i j

i + j − 1
2F1

[−(i − 1), − ( j − 1)

−(i + j − 2)
;−u(x, y)

]

where m = min(i, j). Apply the same procedure to obtain the second-order partial
derivatives. �	

From Theorem 3.1 we see that, in general, we must be able to accurately evaluate
the hypergeometric function

2F1

[ −a, − b

−(a + b − k)
;−z

]

=
min(a,b)∑

h=0

(a
h

)(b
h

)

(a+b−k
h

) zh (3.2)

for a, b ∈ N+, k = 1, 0,−1,−2, . . ., and z ∈ R.

4 Hypergeometric function 2F1(−a,−b;−(a+ b− k);−z)

The following theorem can be considered the main result of this article.

Theorem 4.1 The hypergeometric function 2F1(−a,−b;−(a + b − k);−z), as a
function of b, is a solution of the three-term recurrence relation (TTRR)

(a + b + 1 − k)(a + b − k)yb+1 − (a + b − k)(a + b + 1 − k + (a − b)z)yb +
−b(b − k)zyb−1 = 0 (3.1)

Proof The recursion can be obtained by the method of creative telescoping [24,29].
To prove that it holds, define

Lb,h = a!
(a − h)!

b!
(b − h)!

(a + b − k − h)!
(a + b − k)!

zh

h!
and let

th = (a + b + 1 − k)(a + b − k)Lb+1,h

− (a + b − k)(a + b + 1 − k + (a − b)z)Lb,h + −b(b − k)zLb−1,h
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A three-term recurrence relation for accurate evaluation… 569

Note that
∑

h th is the left hand side of equation (3.1) because yb = ∑
h Lb,h . Set

Rb,h = − (a − k)(a + b − k − h)bh

(b + 1 − h)(b − h)

and let

uh = Rb,h+1Lb−1,h+1 − Rb,h Lb−1,h

Sum the previous expression with respect to h to obtain
∑

h uh = −Rb,0Lb−1,0 = 0.
We now need to prove that th = uh for all h. Start by dividing th by Lb−1,h to obtain

(a + b + 1 − k − h)(a + b − k − h)(b + 1)b

(b + 1 − h)(b − h)
+

−b(a + b − k − h)(a + b + 1 − k + (a − b)z)

b − h
− b(b − k)z

By expanding the polynomial and collecting the terms with respect to h we get

th
Lb−1,h

= − (a − k)b

(b + 1 − h)(b − h)

[
(1 + z)h2 − (a + b − k + (a + b + 1)z)h + a(b + 1)z

]

Doing the same with the right hand side we get

uh
Lb−1,h

= − (a − k)b

(b + 1 − h)(b − h)
[(b + 1 − h)(a − h)z − h(a + b − k − h)]

= − (a − k)b

(b + 1 − h)(b − h)

[
(1 + z)h2 − (a + b − k + (a + b + 1)z)h + a(b + 1)z

]

proving the equality. �	
If we divide both sides of equation (3.1) by the coefficient of yb+1, and shift the

index by 1, we obtain the forward recursion

yb =
(

1 + (a + 1 − b)z

a + b − k

)

yb−1 + (b − 1)(b − 1 − k)z

(a + b − k)(a + b − 1 − k)
yb−2 (3.2)

Starting from

y0 = 2F1(−a, 0;−(a − k);−z) = 1

y1 = 2F1(−a,−1;−(a + 1 − k);−z) = 1 + az

a + 1 − k

we can, in principle, obtain all remaining solutions all the way up to the required term.
Note that a ≥ 1 and k ≤ 1, therefore the denominator a + 1 − k is strictly positive
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570 A. Pessia , J. Tang

and always well defined. Knowing the values of yb+2 and yb+1, for large b, we can
travel the recursion also in a backward manner:

yb = (a + b + 2 − k)(a + b + 1 − k)

(b + 1)(b + 1 − k)z

(

yb+2 −
(

1 + (a − b − 1)z

a + b + 2 − k

)

yb+1

)

(3.3)

Theorem 4.1 proves that our hypergeometric function is a solution of a TTRR.
However, equation (3.1) can also admit a second linearly independent solution.

Definition 4.1 A solution fb of a TTRR is said to be a minimal solution if there exists
a linearly independent solution gb such that

lim
b→∞

fb
gb

= 0

The solution gb is called a dominant solution.

It is well known that, regardless of the starting values, forward evaluation of a TTRR
converges to the dominant solution while backward evaluation converges instead to
the minimal solution [14, Chapter 4]. We now need to find the conditions under which
our hypergeometric function is either the dominant or the minimal solution.

Lemma 4.1 (Poincaré–Perron) Let yb+1 + vb yb + ubyb−1 = 0 and suppose that vb
and ub are different from zero for all b > 0. Suppose also that limb→∞ vb = v and
limb→∞ ub = u. Denote with φ1 and φ2 the (not necessarily distinct) roots of the
characteristic equation φ2 + vφ + u = 0. If fb and gb are the linearly independent
non-trivial solutions of the difference equation, then

lim sup
b→∞

b
√| fb| = |φ1|, lim sup

b→∞
b
√|gb| = |φ2|

If |φ1| < |φ2| it is also

lim
b→∞

fb+1

fb
= φ1, lim

b→∞
gb+1

gb
= φ2

and fb is the minimal solution while gb is the dominant solution. If |φ1| = |φ2| the
lemma is inconclusive about the existence of a minimal solution.

Proof See Chapter 8 of Elaydi [10]. �	
Using Lemma 4.1 we can study the nature of our hypergeometric function as a

solution of the TTRR.

Theorem 4.2 2F1(−a,−b;−(a+b−k);−z) is a dominant solution of Eq. (3.1)when
|z| < 1. It is a minimal solution when |z| > 1. The nature of the solution is unknown
when |z| = 1.
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Proof Our TTRR is

yb+1 −
(

1 + (a − b)z

a + b + 1 − k

)

yb − b(b − k)z

(a + b + 1 − k)(a + b − k)
yb−1 = 0

Take the limit of the coefficients

lim
b→∞ −

(

1 + a − b

a + b + 1 − k
z

)

= −(1 − z), lim
b→∞ − b(b − k)z

(a + b + 1 − k)(a + b − k)
= −z

The characteristic equation is φ2 − (1 − z)φ − z = 0 with solutions φ1 = −z
and φ2 = 1. When |z| < 1 the solution associated with φ1 is minimal and the one
associated with φ2 is dominant. The opposite is true when |z| > 1. We will now prove
that 2F1(−a,−b;−(a+b− k);−z) is associated with the characteristic root φ2 = 1.
The summation index h in Eq. (3.2) depends on b since the upper bound of the series
is the minimum between a and b. Note, however, that variable a is considered known
and fixed to a finite value. When b goes to infinity the summation index h in (3.2)
does not depend on b any more and the series is always finite, so that we can safely
exchange the limit of the sum with the sum of the limits:

lim
b→∞

min(a,b)∑

h=0

(−a)h(−b)h
(−(a + b − k))h

(−z)h

h! =
a∑

h=0

(−a)h
(−z)h

h! lim
b→∞

(−b)h
(−(a + b − k))h

Using Stirling’s approximation n! ∼ √
2πn(n/e)n for large n, we obtain

lim
b→∞

(−b)h
(−(a + b − k))h

= lim
b→∞

bb+1/2(a + b − k − h)a+b−k−h+1/2

(b − h)b−h+1/2(a + b − k)a+b−k+1/2

= lim
b→∞

(
b

b − h

)b+1/2 (
a + b − k − h

a + b − k

)b−k+1/2

= ehe−h = 1

from which follows that

lim
b→∞ 2F1

[ −a, − b

−(a + b − k)
;−z

]

=
a∑

h=0

(−a)h
(−z)h

h! =
a∑

h=0

(
a

h

)

(−z)h = (1 − z)a

and

lim
b→∞

2F1
[ −a, −(b+1)

−(a+b+1−k) ;−z
]

2F1
[ −a, −b

−(a+b−k) ;−z
] = (1 − z)a

(1 − z)a
= 1

The solution is therefore dominant when |z| < 1 and minimal for |z| > 1. When
|z| = 1 Lemma 4.1 is inconclusive about the nature of the solution. �	
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Since Lemma 4.1 refers to asymptotic results, Theorem 4.2 is always valid for large
values of b. For small values of b, instead, there is a possibility of anomalous behaviour
as described by Deaño and Segura [9]. By Definition 4.1 we would expect that the
sequence of ratios between aminimal and a dominant solutionwould bemonotonically
decreasing to zero for all b. There are cases, however, in which this is not necessarily
true. A minimal solution might behave as a dominant solution up to a finite value b∗
and then switch to its asymptotic minimal nature only starting at b∗ + 1.

Definition 4.2 Let fb and gb be respectively the minimal and dominant solution of a
TTRR as b → ∞. fb is said to be pseudo-dominant for all b ≤ b∗ if the sequence
{Rb = | fb/gb|} is increasing for b ≤ b∗ but decreasing for b > b∗.

Lemma 4.2 (Deaño–Segura) Let yb+1+vb yb+ubyb−1 = 0 be a recurrence such that,
for b ≥ b−, ub < 0 and vb changes sign at b∗ > b− + 1. Suppose that there exists a
solution fb with fixed pattern of signs for all b ≥ b−, the pattern being alternating if
vb < 0 for large b or with constant sign if vb > 0 for large b ( fb may be minimal).
Let gb be any solution (not minimal) such that

gb∗+1

gb∗
= −ψ

fb∗+1

fb∗
, ψ > 0,

and let Rb = | fb/gb|, then for b ≥ b− the following holds depending on the value ψ:

(1) if ψ > 1, then Rb < Rb∗ if b �= b∗.
(2) if ψ < 1, then Rb < Rb∗+1 if b �= b∗ + 1.
(3) if ψ = 1, then Rb < Rb∗ = Rb∗+1 if b �= b∗, b∗ + 1.

Proof See Deaño and Segura [9]. �	
According to Lemma 4.2, if ub is negative and vb changes sign at index b∗, then

our asymptotic minimal solution behaves as a dominant solution up to b∗ − 1 or b∗.
We must then study the sign of the two coefficients

ub = − b(b − k)z

(a + b + 1 − k)(a + b − k)

vb = − (a + b + 1 − k) + (a − b)z

a + b + 1 − k

with b ≥ 1, a ≥ 1 and k ≤ 1. Since the denominators are strictly positive, we can
simply study the signs of the associated quantities

u′
b = −b(b − k)z

v′
b = −(a + b + 1 − k) − (a − b)z

u′
b is negative when z > 0, positive when z < 0, and zero when b = k = 1. Define

b∗ = (z − 1)−1((z + 1)a + 1 − k). v′
b is negative when z < 1 and b > b∗ or when

z > 1 and b < b∗. It is obviously positive in the complementary set. The point b∗ is
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Fig. 2 Nature of the hypergeometric function 2F1(−a,−b;−(a+b−k); −z) as a solution of TTRR (3.1).
The minimum value admissible for b is one. When b = 0 we can simply use the numerically stable Eqs.
(1.9)–(1.12). The dotted curve is given by equation b∗ = (z − 1)−1((z + 1)a + 1 − k). It is dotted to
represent the fact that we don’t know if the solution becomes minimal at b∗ or b∗ + 1. The curve has an
horizontal asymptote at b = a

the delimiter at which the coefficient vb switches from positive sign to negative sign
or vice versa.

When z > 1 we are under the conditions of Lemma 4.2, therefore the solution is
surely minimal for b > b∗ + 1. It is pseudo-dominant for all b < b∗. Not knowing the
shape of the linearly independent solution gb, we don’t know if the solution becomes
minimal at b∗ or b∗ + 1. Interestingly, when z < −(a + 2 − k)/(a − 1), we have the
opposite behaviour of a positive ub and vb changing sign from positive to negative at
the same index b∗. The regions are highlighted in Fig. 2.

Lemma 4.2 does not consider the case of a positive ub butwe conjecture that it might
be applied to this case as well. Nevertheless, as shown by the following proposition,
we can simply ignore the problem altogether.

Proposition 4.1 For all finite λ > 0, μ > 0, and t > 0, function z(t, λ, μ) is always
greater than -1. It is positive when μ �= λ and t < log(λ/μ)/(λ − μ) or when μ = λ

and t < λ−1.

Proof Rewrite the function z(t, λ, μ) as

z(t, λ, μ) = γ (t, λ, μ)

α(t, λ, μ)β(t, λ, μ)
= ( λ

μ
+ μ

λ
)e(λ−μ)t − e2(λ−μ)t − 1

e2(λ−μ)t − 2e(λ−μ)t + 1

It is straightforward to show that the function converges to −1 when λ, μ, or t go to
infinity. The limit is never attained for finite λ, μ, or t . When any of the parameters
approaches zero, instead, the function approaches positive infinity. We know from
Corollary 2.1 that the denominator α(t, λ, μ)β(t, λ, μ) is always positive. The sign
of the function z(t, λ, μ) is therefore equal to the sign of γ (t, λ, μ), which is given in
Proposition 2.2. Same results apply when μ = λ. �	

Note that for |z| > 1, as clearly shown in Fig. 2, we have to use either the forward
or backward recursion depending on the value of b that we wish to evaluate. We can
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simplify our computations and compute the hypergeometric function for all values
of z ∈ R by applying the well known symmetric property 2F1(−a,−b;−(a + b −
k);−z) = 2F1(−b,−a;−(b + a − k);−z). If z > 1 and b > a, swap the two
variables to transform a minimal solution into a pseudo-dominant one. If z < −1 and
b < a, swap the two variables to transform a (possibly) pseudo-dominant solution
into a minimal one. When |z| = 1 the two solutions are neither dominant nor minimal
and recursion in both directions is not unstable [13].

All previous results are summarized in Algorithm 1 in Supplementary Material S1.
Assuming a constant time for arithmetic operations the time complexity is simply
O(m), where m = min(a, b), that is the total number of iterations required. Note that
we only use basic arithmetic operations, saving computational time when compared to
the more expensive functions found in Eqs. (1.2)–(1.3), such as the Binomial function.
Using the TTRR approach is better, from a computational point of view, also when
the problem is well-behaved.

5 Likelihood function

Let t = (t0, . . . , tS)T be the vector of observation times with tS ≤ t , n =
(n0, . . . , nS)T be the corresponding observed population sizes, and τ

= (τ1, . . . , τS)
T = (t1 − t0, . . . , tS − tS−1)

T be the vector of inter-arrival times.
When the process is observed continuously the log-likelihood function is [7, Equation
(25)]

logL (λ, μ|t, n) = Bt log λ + Dt logμ − (λ + μ)Xt +
S−1∑

s=0

log ns (5.1)

where Bt and Dt are respectively the total number of births and deaths recorded during
the time interval [0, t]while Xt = ∑S

s=0 nsτs+1 is the total time lived in the population
during [0, t]. By convention we set τS+1 = t − tS . From (5.1) we obtain the maximum
likelihood estimators (MLEs) of λ and μ as

λ̂ = Bt

Xt
, μ̂ = Dt

Xt
(5.2)

from which follows that the MLE of the growth rate θ = λ − μ is θ̂ = λ̂ − μ̂ =
(Bt −Dt )/Xt . A more challenging situation is encountered when the BDP is observed
discretely at fixed time points. Rewrite the probability of transitioning from i to j in t
timewith birth rate λ and death rateμ as p( j |i, t, λ, μ). Since the BDP is a continuous
time Markov chain [19] we can write the likelihood function as

L (λ, μ|t, n) =
S∏

s=1

p(ns |ns−1, τs, λ, μ)
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Note that the joint likelihood of M observations of stochastically independent pro-
cesses, having the same birth and death rates, is simply the product of theM likelihoods
associated with each process. To the best of our knowledge, no known closed form
solutions for λ̂ and μ̂ are currently available for the discrete case. However, in the case
of equidistant sampling where τs = τ for all s, we know that [17]

θ̂ = 1

τ
log

(
n1 + · · · + nS
n0 + · · · + nS−1

)

(5.3)

It is easy to show that the first moment of θ̂ does not exist. Starting with S = 1 we
have

E[θ̂] = 1

τ

∞∑

j=0

log

(
j

n0

)

p( j |n0, t, λ, μ)

The first term in the summation is not defined because the probability of extinction is
strictly positive, unless the process is a pure birth process (see Eqs. (1.9)–(1.12)). For
a simple birth-and-death process without migration the population stays extinct once
its size reaches a value of zero, therefore the previous result can be extended to any
value S > 1. To estimate λ̂, μ̂, and θ̂ we must consider only observations in which the
population is not immediately extinct at time point s = 1.

To find the maximum likelihood estimators we will use a numerical approach, that
is the Newton–Raphson method [4, Chapter 4] applied to the log-likelihood function.
To proceed we need its gradient and Hessian matrix, that are

∇l(λ, μ|t, n) = ∇ logL (λ, μ|t, n) =
S∑

s=1

⎛

⎜
⎝

∂

∂λ
log p(ns |ns−1, τs , λ, μ)

∂

∂μ
log p(ns |ns−1, τs , λ, μ)

⎞

⎟
⎠ (5.4)

H(λ, μ|t, n) =
S∑

s=1

⎛

⎜
⎜
⎝

∂2

∂λ2
log p(ns |ns−1, τs , λ, μ)

∂2

∂λ∂μ
log p(ns |ns−1, τs , λ, μ)

∂2

∂μ∂λ
log p(ns |ns−1, τs , λ, μ)

∂2

∂μ2 log p(ns |ns−1, τs , λ, μ)

⎞

⎟
⎟
⎠

(5.5)

with closed form solutions of partial derivatives of log-probabilities appearing in (5.4)
and (5.5) given inSupplementaryMaterial S2.They canbe evaluatedwith our proposed
TTRR approach. Note that (5.4) and (5.5) are sums of piecewise functions with sub-
domains inherited from Eqs. (1.2)–(1.8).
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Fig. 3 Numerical relative error of the log-probability evaluated using the hypergeometric representation
and the TTRR approach. Parameters are the same as in Fig. 1, that is i = 25, j = 35, t = 2, and λ = 1.
Relative error is always less than 10−10

6 Applications

Wedeveloped a free Julia [3] package called “SimpleBirthDeathProcess” to implement
all results presented so far.1

Returning to the example shown in Fig. 1, we can see from Fig. 3 that our method
improves significantly the accuracy of the computations. Interestingly, although not
entirely unexpected, the algorithm has a higher numerical error in the neighbourhood
of the special point μ = λ, that is the removable singularity of Eq. (1.2). Note that
relative errors for this particular example are always less than 10−10 and small enough
for any practical application. In Fig. 4 we can see amore general example where points
near the line μ = λ are again associated with higher relative errors. Also in this case
they are very small and always less than 10−13.

6.1 Simulated data

We will now study some properties of the maximum likelihood estimator of the birth
rate λ, death rate μ, and growth rate θ = λ − μ. We will use our software package to
perform simulations and apply standard Monte Carlo integration to approximate the
bias and root mean square error (RMSE) of MLEs. The total number of simulations
is set to 105 in each of the following synthetic experiments.

Constant growth rate

The first study mimics a situation in which both rate parameters are strictly positive.
For simplicity we fix the total observation time to t = 10 and assume the process to
be observed at S equidistant time points, that is every τ = t/S amount of time. To
reduce the amount of possible combinations to test we choose birth and death rates
so that the expected population size and standard deviation at time t is approximately
proportional to the initial population size. In what follows we will always condition
our estimators only to populations that are not immediately extinct, as explained in

1 Download available at https://github.com/albertopessia/SimpleBirthDeathProcess.jl.
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Fig. 4 Numerical relative error of the log-probability evaluated using the hypergeometric representation
and the TTRR approach. Parameters for this example are i = 200, j = 100, and t = 1. Relative error is
always less than 10−13

Sect. 5. Results of the simulations when λ > μ are shown in Table 1 while results of
the simulations when λ < μ are shown in Table 2.

Estimators are generally negatively biased but we also observe situations when
λ < μ in which the bias is positive. The magnitude of the bias of λ̂ and μ̂ is very
large when only one time point is used, for which we have |Bias(λ̂)| ≈ RMSE(λ̂)

and |Bias(μ̂)| ≈ RMSE(μ̂). Increasing the number of time points S help reducing
both the bias and RMSE of λ̂ and μ̂. All estimators obviously perform worse when
the standard deviation of the stochastic process is high. What is surprising to us is the
observation that θ̂ has approximately the same performance regardless of the initial
sample size. Increasing the number of time points has also the counter-intuitive effect
of making the estimation worse.

Technical replicates

Following the results from the previous section we want to investigate the perfor-
mance of the estimators when the stochastic process is observed more than once. As
an example, this is a standard setting in dose-response drug screening experiments
where cell counts are observed after a period of incubation and (usually) 3 to 5 tech-
nical replicates are produced under the same experimental conditions [23]. For a fair
comparison we will use the same simulation parameters from the previous simulation
experiment with the only difference of now having three technical replicates instead

123



578 A. Pessia , J. Tang

Table 1 Monte Carlo estimates from 105 simulations of a simple BDP where λ > μ. Growth rate θ =
λ − μ = 0.0693 for each row, i.e. the expected population size at time t = 10 is set to be two times the
initial population size n0. For each number of time points S, the three rows correspond respectively to a
standard deviation of 1.25, 1.5, and 2.0 times the initial population size n0

n0 S λ μ θ

Truth Bias RMSE Truth Bias RMSE Bias RMSE

10 1 0.305 −0.244 0.249 0.236 −0.222 0.226 −0.022 0.078

0.425 −0.362 0.366 0.355 −0.335 0.339 −0.027 0.092

0.728 −0.659 0.662 0.658 −0.634 0.636 −0.025 0.105

8 0.305 −0.045 0.141 0.236 −0.019 0.138 −0.026 0.086

0.425 −0.069 0.205 0.355 −0.028 0.203 −0.041 0.123

0.728 −0.132 0.391 0.658 −0.042 0.390 −0.090 0.226

100 1 2.742 −2.681 2.681 2.673 −2.658 2.658 −0.023 0.083

3.934 −3.872 3.872 3.864 −3.841 3.842 −0.030 0.101

6.966 −6.898 6.898 6.897 −6.867 6.867 −0.031 0.118

8 2.742 −0.382 1.292 2.673 −0.357 1.285 −0.026 0.086

3.934 −0.565 1.853 3.864 −0.524 1.841 −0.041 0.121

6.966 −1.018 3.430 6.897 −0.928 3.413 −0.089 0.226

1000 1 27.111 −27.050 27.050 27.041 −27.026 27.026 −0.024 0.085

39.024 −38.962 38.962 38.955 −38.932 38.932 −0.031 0.102

69.349 −69.281 69.281 69.280 −69.249 69.249 −0.032 0.121

8 27.111 −3.700 12.914 27.041 −3.675 12.906 −0.025 0.085

39.024 −5.522 18.489 38.955 −5.481 18.478 −0.041 0.122

69.349 −9.961 33.635 69.280 −9.871 33.616 −0.090 0.226

of one. Results of the simulations when λ > μ are shown in Table 3 while results of
the simulations when λ < μ are shown in Table 4.

As expected, we see a decrease in both bias magnitude and RMSE for λ̂ and μ̂.
A small improvement is obtained also for θ̂ . Again, increasing the number of time
points allow for a better estimation of λ and μ but make the estimation of θ worse.
When increasing the number of time points S, the loss (gain) of performance is lower
(higher) that in the single observation case of the previous section.

Real data

As an example applicationwewill use real data from a cancer drug combination exper-
iment originally performed and analysed by Liu et al. [20]. Briefly, two monoclonal
antibodies were combined together at a concentration ratio of 1:1 to form a mixture.
Tested concentrations of the mixture were 0 (no antibody), 0.025, 0.25, 2.5, and 10 µ
g/ml. Living cell counts were subsequently measured with a fluorescence microscopy
at 1, 2, and 3 days. For each time point they performed six technical replicates for
concentrations greater than zero and twelve replicates for the control dose of zero.
Since the initial number of cells was not available, they estimated it from the data
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Table 3 Monte Carlo estimates from 105 simulations of three simple BDPs where λ > μ. Growth rate
θ = λ − μ = 0.0693 for each row, i.e. the expected population size at time t = 10 is set to be two times
the initial population size n0. For each number of time points S, the three rows correspond respectively to
a standard deviation of 1.25, 1.5, and 2.0 times the initial population size n0

n0 k λ μ θ

Truth Bias RMSE Truth Bias RMSE Bias RMSE

10 1 0.305 −0.107 0.170 0.236 −0.102 0.164 −0.006 0.038

0.425 −0.185 0.242 0.355 −0.179 0.234 −0.005 0.045

0.728 −0.427 0.469 0.658 −0.430 0.466 0.003 0.054

8 0.305 −0.014 0.082 0.236 −0.006 0.080 −0.008 0.039

0.425 −0.020 0.117 0.355 −0.009 0.116 −0.011 0.049

0.728 −0.033 0.209 0.658 −0.011 0.208 −0.022 0.075

100 1 2.742 −1.064 1.712 2.673 −1.057 1.707 −0.006 0.039

3.934 −1.793 2.390 3.864 −1.787 2.382 −0.006 0.046

6.966 −4.201 4.610 6.897 −4.202 4.606 0.001 0.054

8 2.742 −0.126 0.765 2.673 −0.119 0.763 −0.007 0.039

3.934 −0.176 1.099 3.864 −0.165 1.097 −0.011 0.049

6.966 −0.270 1.986 6.897 −0.248 1.984 −0.021 0.075

1000 1 27.111 −10.559 17.127 27.041 −10.553 17.122 −0.006 0.039

39.024 −17.871 23.869 38.955 −17.865 23.860 −0.006 0.046

69.349 −41.816 45.913 69.280 −41.818 45.909 0.001 0.055

8 27.111 −1.275 7.621 27.041 −1.268 7.620 −0.007 0.039

39.024 −1.673 10.999 38.955 −1.662 10.997 −0.011 0.049

69.349 −2.647 19.663 69.280 −2.625 19.661 −0.021 0.075

to be on average approximately equal to 23. Following previous studies [6] we will
fix for each and every observation an initial cell count of 23 as if it were known in
advance. The complete dataset is visually represented in Fig. 5.

It is important to note that the dataset is made of 108 independent observations,
i.e. counts referring to the same concentration at different time points are not part of
the same time series but are, instead, independent realizations of the same stochastic
process observed at different times. In our notation, S = 1 and τ = t/S = t for
each of the 108 measurements. The basic datum xi , i = 1, . . . , 108, is a vector
(ci , ti , ni (0), ni (ti ))T where ci is the tested antibody concentration, ti is the time in
days, ni (0) is the initial population size set to 23 for each and every observation, and
ni (ti ) is the final cancer cell counts for observation i . For further details about the
study and the experimental design we refer to the original article of Liu et al. [20]. To
model the data we use a similar approach to that of Crawford et al. [6], that is a linear
model on the logarithm scale of the basic process rates. Formally we define

{
log(λi ) = αλ + βλ log(1 + ci )

log(μi ) = αμ + βμ log(1 + ci )
, for all i = 1, . . . , 108 (6.1)
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Fig. 5 Antibody dataset by Liu et al. [20]. All the observed counts are assumed to be originated from the
same number of cells n0 = 23. Increasing the antibody concentration reduces the growth rate of cancer
cells

Table 5 Maximum likelihood estimates of model (6.1) based on the antibody dataset

Dose (µ g/ml) λ μ θ = λ − μ

Estimate SE Estimate SE Estimate SE

0 4.0344 0.4844 2.9572 0.4835 1.0772 0.0292

0.025 4.0238 0.4806 2.9595 0.4806 1.0644 0.0285

0.25 3.9397 0.4548 2.9774 0.4595 0.9623 0.0283

2.5 3.5304 0.4476 3.0721 0.4366 0.4583 0.0535

10 3.1249 0.5778 3.1810 0.5962 −0.0561 0.0740

Maximum likelihood estimates and their corresponding standard errors are shown in
Table 5.We obtained estimates by numericallymaximizing the log-likelihood function
with the BFGS algorithm [4, Chapter 4]. We applied the delta method to the observed
Fisher information matrix in order to compute the standard error of all parameters.

According to ourmodel, increasing the antibody concentration has the double effect
of reducing the birth rate and raising the death rate while maintaining the overall rate
λ + μ approximately the same. When the dose of the treatment increases the global
growth rate θ decreases as a consequence, reaching a negative value at the maximum
tested concentration. Interestingly, Crawford et al. obtained values that are slightly
different from ours but still very close. In particular, the maximum absolute difference
between our estimates of θ and theirs is just 0.054. Since their R package birth.death is
not available for download anymorewe could not replicate the analysis and investigate
the discrepancies more. We believe, however, that the observed differences are simply
due to numerical errors or to a chosen solution that is a local optimum rather than a
global.
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7 Concluding remarks

Maximum likelihood estimators for the basic rates of a simple (linear) birth-and-
process are available in closed form only when the process is observed continuously
over time. Numerical methods are currently the only option to draw inferences for
discretely observed processes. However, we showed that direct application of the well-
known transition probability might be subject to large numerical error. We rewrote the
probability in terms of a Gaussian hypergeometric function and found a three-term
recurrence relation for its evaluation. Not only our approach led to very accurate
approximations but also to a computational efficient algorithm when compared to the
naïve direct summation method.

By means of simulation we observed that MLEs λ̂ and μ̂ are largely negatively
biased. We confirmed the intuition that to obtain better estimates it is important to
employ a large initial population size, multiple time points, and multiple technical
replicates. The actual values, as one would expect, depend on the magnitude of the
basic rates, i.e. the process standard deviation. If only the growth parameter θ = λ−μ

is of interest then multiple technical replicates with (surprisingly) only one time point
provide the best results. Interestingly, the initial population size seems not to affect
the bias nor the root mean square error of θ̂ .

We also released a free Julia package called “SimpleBirthDeathProcess”. With the
help of our tool it is possible to simulate, fit, or just evaluate the likelihood function of
a simple BDP. Accurate evaluation of the log-likelihood function will create opportu-
nities for future research, such as implementation of MCMC algorithms for Bayesian
inference. As a final note, it might be worth investigating our conjecture that Lemma
4.2 can be extended to TTRRs with a positive coefficient.
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