
BIT Numerical Mathematics (2021) 61:535–560
https://doi.org/10.1007/s10543-020-00834-z

Efficient exponential Runge–Kutta methods of high order:
construction and implementation

Vu Thai Luan1

Received: 24 February 2020 / Accepted: 19 November 2020 / Published online: 18 January 2021
© Springer Nature B.V. 2021

Abstract
Exponential Runge–Kutta methods have shown to be competitive for the time integra-
tion of stiff semilinear parabolic PDEs. The current construction of stiffly accurate
exponential Runge–Kutta methods, however, relies on a convergence result that
requires weakening many of the order conditions, resulting in schemes whose stages
must be implemented in a sequential way. In this work, after showing a stronger
convergence result, we are able to derive two new families of fourth- and fifth-order
exponential Runge–Kutta methods, which, in contrast to the existing methods, have
multiple stages that are independent of one another and share the same format, thereby
allowing them to be implemented in parallel or simultaneously, and making the meth-
ods to behave like using with much less stages. Moreover, all of their stages involve
only one linear combination of the product of ϕ-functions (using the same argu-
ment) with vectors. Overall, these features make these new methods to be much more
efficient to implement when compared to the existing methods of the same orders.
Numerical experiments on a one-dimensional semilinear parabolic problem, a non-
linear Schrödinger equation, and a two-dimensional Gray–Scott model are given to
confirm the accuracy and efficiency of the two newly constructed methods.

Keywords Exponential Runge–Kutta methods · Exponential integrators · Stiff
PDEs · Efficient implementation

Mathematics Subject Classification 65L04 · 65M06 · 65N12

Dedicated to Professor Alexander Ostermann on the occasion of his 60th birthday.

Communicated by Mechthild Thalhammer.

This work has been supported in part by National Science Foundation through award NSF DMS–2012022.

B Vu Thai Luan
luan@math.msstate.edu

1 Department of Mathematics and Statistics, Mississippi State University, 410 Allen Hall,
175 President’s Circle, Mississippi, MS 39762, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10543-020-00834-z&domain=pdf
http://orcid.org/0000-0003-0319-654X

536 V. T. Luan

1 Introduction

In this paper, we are concerned with the construction and implementation of new
efficient exponential Runge–Kutta integrators for solving stiff parabolic PDEs. These
PDEs, upon their spatial discretizations, can be cast in the form of semilinear problems

u′(t) = Au(t) + g(t, u(t)) = F(t, u(t)), u(t0) = u0, (1.1)

where the linear part Au usually causes stiffness. The nonlinearity g(t, u) is assumed
to satisfy a local Lipschitz condition in a strip along the exact solution.

Exponential Runge–Kutta methods are a popular class of exponential integrators
[9], which have shown a great promise as an alternative to standard time integration
solvers for stiff systems and applications in recent years, see e.g. [8,10–20,22]. The
main idea behind these methods is to solve the linear portion of (1.1) exactly and
integrate the remaining nonlinear portion explicitly based on a representation of the
exact solution using the variation-of-constants formula.

A s-stage explicit exponential Runge–Kutta (expRK) method [8] applied to (1.1)
can be reformulated (see [15,17]) as

Uni = un + ci hϕ1(ci hA)F(tn, un) + h
i−1∑

j=2

ai j (hA)Dnj , 2 ≤ i ≤ s, (1.2a)

un+1 = un + hϕ1(hA)F(tn, un) + h
s∑

i=2

bi (hA)Dni , (1.2b)

where

Dni = g(tn + ci h,Uni) − g(tn, un), 2 ≤ i ≤ s. (1.3)

Here, Uni denote the internal stages that approximate u(tn + ci h) using the time step
size h = tn+1 − tn > 0 and nodes ci . By construction, the coefficients ai j (z) and bi (z)
are usually linear combinations of the entire functions

ϕk(z) =
∫ 1

0
e (1−θ)z θk−1

(k − 1)! dθ, k ≥ 1 (1.4)

and their scaled versions ϕk(ci z).
A common approach that has been used to determine the unknown matrix func-

tions ai j (hA) and bi (hA) is to expand them as ai j (hA) = ∑
k≥0 α

(k)
i j (hA)k , bi (hA) =

∑
k≥0 β

(k)
i (hA)k (e.g. using classical Taylor series expansions) to obtain order con-

ditions. Clearly, the boundedness of the remainder terms of these expansions (and
thus the error terms) are dependent of ‖A‖. Due to stability reasons, such resulting
methods might not be suitable for integrating stiff PDEs, which A typically has a
large norm or is even unbounded operator. These methods are thus usually referred
as classical (non-stiffly accurate) expRK methods. Unlike this approach, in a seminal

123

Efficient exponential Runge–Kutta methods of high… 537

contribution [8], Hochbruck and Ostermann derived a new error expansion with the
remainder terms that are bounded independently of the stiffness (i.e. not involving the
powers of A), leading to stiff order conditions, which give rise to the construction of
stiffly accurate expRK methods of orders up to four. Following this, in [14] Luan and
Ostermann developed a systematic theory of deriving stiff order conditions for expRK
methods of arbitrary order, thereby allowing the construction of a fifth-order method
in [15].

In view of the existing stiffly accurate expRK methods in the literature, we observe
that they were derived based on a convergence result that requires weakening many
of the stiff order conditions (in order to minimize the number of required stages s
and matrix functions used in each internal stages Uni). As a result, their structures
contain internal stages Uni that are dependent of the preceding stages, implying that
such methods must be implemented by computing each of these stages sequentially.
Also, the very last stages usually involve several different linear combinations of
ϕk(ci hA)-functions (using different nodes ci in their arguments) acting on different
sets of vectors. This would introduce additional computational effort for these stages.
For more details, we refer to Sects. 2 and 5.

Motivated by the observations above, in this work we show a stronger convergence
result for expRK methods up to order five which requires weakening only one order
condition (thereby could improve the stability and accuracy) and offers more degree
of freedoms in solving order conditions. Using this result and inspired by our recent
algorithm, phipm_simul_iom, proposed in [19] (which allows one to simultane-
ously compute multiple linear combinations of ϕ- functions acting on a same set of
vectors), we construct new methods of orders 4 and 5 which involve only one linear
combination of ϕ- functions for each stage and have multiple internal stages Uni that
are independent of one another, thereby allowing them to be computed in parallel.
Furthermore, one can derive these independent stages in a way that they share the
same form of linear combination of ϕk(ci hA)- functions acting on the same set of
vectors, allowing them to be implemented simultaneously (by one evaluation). While
these independent states can be computed in parallel (as mentioned above) by any
algorithm which approximates the action of (the linear combination of) ϕ- functions,
we note that the possibility to compute them simultaneously is a new feature that
can be used with our algorithm phipm_simul_iom (other algorithms, e.g., that do
not require the construction of Krylov subspaces, might not support computing these
stages simultaneously). Overall, this makes the new methods to behave like methods
using much less number of stages (even when compared to the existing methods of the
same orders), meaning that they require much less number of evaluations for linear
combinations of ϕ- functions, and are thus more efficient.

The paper is organized as follows. In Sect. 2, we describe our motivation, propose
new ideas, and review the existing expRKmethods in the literaturewith respect to these
ideas. Following this, in Sect. 3 we prove a stronger convergence result (Theorem 3.1)
for expRKmethods,which requires relaxing only one order condition. This allows us to
construct more efficient methods in Sect. 4. In particular, we are able to derive two new
families of fourth- and fifth- order stiffly accurate expRK methods called expRK4s6
(4th-order 6-stage but requires 4 independent stage evaluation only) and expRK5s10
(5th-order 10-stage but requires 5 independent stage evaluation only), respectively. In

123

538 V. T. Luan

Sect. 5, we present details implementation of these two new methods, as well as the
existing stiffly accurate expRK schemes of the same orders (for comparison). In the
last section, numerical examples including one and two-dimensional stiff PDEs are
presented to demonstrate the accuracy and efficiency of the two newly constructed
expRK integrators.

2 Motivation and existingmethods

In this section, we start our motivation by taking a closer look at an efficient way for
implementing expRK methods (1.2). Then, we propose some ideas to derive more
efficient methods with respect to this efficient implementation along with reviewing
the current methods.

2.1 An efficient way of implementation

Clearly, each stage (Uni or un+1) of (1.2) requires computing matrix functions of the
form ϕk(ci hA)vk (0 < ci ≤ 1), where vk is some vector (could be F(tn, un), Dni

or a linear combination of these). Thanks to recent developments [1,4,6,21], one can
efficiently compute a linear combination of ϕ-functions acting on a set of input vectors
V0, . . . , Vq

ϕ0(M)V0 + ϕ1(M)V1 + ϕ2(M)V2 + · · · + ϕq(M)Vq , (2.1)

where M is some square matrix. This is crucial when implementing exponential inte-
grators. Very recently, in [19], we were able to improve the implementations presented
in [6,21], resulting in the routinephipm_simul_iom. The underlyingmethod in this
algorithm is the use of an adaptive time-stepping technique combined with Krylov
subspace methods, which allows us to simultaneously compute multiple linear com-
binations of type (2.1) using different scaling factors ρ1, · · · , ρr of M , i.e.,

ϕ0(ρ1M)V0 + ϕ1(ρ1M)V1 + ϕ2(ρ1M)V2 + · · · + ϕN (ρ1M)Vq ,

...

ϕ0(ρr M)V0 + ϕ1(ρr M)V1 + ϕ2(ρr M)V2 + · · · + ϕN (ρr M)Vq .

(2.2)

Now taking M = hA and considering ρk (1 ≤ k ≤ r) as nodes ci used in expRK
methods immediately suggests that one can compute the following (s−1) linear linear
combinations

ϕ1(ci hA)V1 + ϕ2(ci hA)V2 + · · · + ϕN (ci hA)Vq , 2 ≤ i ≤ s (2.3)

simultaneously by using only one evaluation (i.e., one call to phipm_simul_iom).
Note that this requires the use of a same set of vectors [V1, . . . , Vq] for all the linear
combinations in (2.3).

123

Efficient exponential Runge–Kutta methods of high… 539

Motivated by this, we see that if a s-stage expRK scheme (1.2) is constructed in
such a way that each internal stage Uni has the form

Uni = un + ϕ1(ci hA)V1i + ϕ2(ci hA)V2i + · · · + ϕN (ci hA)Vqi , (2.4)

which includes only one linear combination of ϕ- functions using exactly node ci as
an argument in all ϕk functions, then the scheme will contain a total of s such linear
combinations (s − 1 for Uni and 1 for un+1 as (1.2b) can be always written in the
form of (2.4) with ci = 1), thereby requiring s evaluations only. Furthermore, since
the sets of vectors [V1i , V2i , · · · , Vqi] in (2.4) are usually different for eachUni , (2.3)
also suggests that the efficiency will be significantly increased if one could build such
stages (or a group of) Uni of the form (2.4) that share the same format (i.e., having
the same set of acting vectors V1i ≡ V1, . . . , Vqi ≡ Vq) or that are independent of
one another. As this allows to compute such stages simultaneously by one evaluation
or to implement them in parallel similarly to our construction of parallel exponential
Rosenbrockmethods [18]), it certainly reduces the total number of required evaluations
and thus speedups the computing time.

With respect to these observations, we now review the existing expRK schemes
in the literature. Since our focus is on stiff problems, we will discuss only on stiffly
accurate expRK methods, meaning that they satisfy the stiff order conditions (see
Sect. 3 below).

2.2 Existing schemes and remarks

In [8], expRK methods of orders up to four have been derived. For later reference, we
name the second-order, the third-order, and the fourth-order methods in that work as
expRK2s2, expRK3s3, and expRK4s5, respectively. In [15], we have constructed
an expRK method of order five called expRK5s8. To discuss all of these schemes in
terms of the implementation, we rewrite their internal stages Uni and un+1 as linear
combinations of ϕ- functions like (2.4) and display them as follows (Note that since
the first-order method, the exponential Euler scheme un+1 = un +ϕ1(hA)hF(tn, un),
has no internal stage, we do not consider it here).
expRK2s2:

Un2 = un + ϕ1(c2hA)c2hF(tn, un),

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA) 1
c2
hDn2.

(2.5)

expRK3s3 (a representative with c2 �= 2
3):

Un2 = un + ϕ1(c2hA)c2hF(tn, un),

Un3 = un + ϕ1
(2
3hA

) 2
3hF(tn, un) + ϕ2

(2
3hA

) 4
9c2

hDn2,

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA) 32hDn2.

(2.6)

123

540 V. T. Luan

expRK4s5 (the only existing fourth-order stiffly accurate expRK method [8]):

Un2 = un + ϕ1
(1
2 hA

) 1
2 hF(tn, un),

Un3 = un + ϕ1
(1
2 hA

) 1
2 hF(tn, un) + ϕ2

(1
2 hA

)
hDn2,

Un4 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA)h(Dn2 + Dn3),

Un5 = un + [
ϕ1

(1
2 hA

) 1
2 hF(tn, un) + ϕ2

(1
2 hA

) 1
4h(2Dn2 + 2Dn3 − Dn4)

+ϕ3
(1
2 hA

) 1
2 h(−Dn2 − Dn3 + Dn4)

] + [
ϕ2(hA) 14h(Dn2 + Dn3 − Dn4)

+ϕ3(hA)h(−Dn2 − Dn3 + Dn4)] ,

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA)h(−Dn4 + 4Dn5) + ϕ3(hA)h(4Dn4 − 8Dn5).

(2.7)

expRK5s8 (the only existing fifth-order stiffly accurate expRK method [15]):

Un2 = un + ϕ1
(1
2hA

) 1
2hF(tn, un),

Un3 = un + ϕ1
(1
2hA

) 1
2hF(tn, un) + ϕ2

(1
2hA

) 1
2hDn2,

Un4 = un + ϕ1
(1
4hA

) 1
4hF(tn, un) + ϕ2

(1
4hA

) 1
8hDn3,

Un5 = un + ϕ1
(1
2hA

) 1
2hF(tn, un) + ϕ2

(1
2hA

) 1
2h(−Dn3 + 4Dn4)

+ϕ3
(1
2hA

)
h(2Dn3 − 4Dn4)

Un6 = un + ϕ1
(1
5hA

) 1
5hF(tn, un) + ϕ2

(1
5hA

) 1
25h(8Dn4 − 2Dn5)

+ϕ3
(1
5hA

) 1
125h(−32Dn4 + 16Dn5),

Un7 = un + [
ϕ1

(2
3hA

) 2
3hF(tn, un) + ϕ2

(2
3hA

)
h

(−16
27 Dn5 + 100

27 Dn6
)

+ϕ3
(2
3hA

)
h

(320
81 Dn5 − 800

81 Dn6
)]

+
[
ϕ2

(1
5hA

)
h

(−20
81 Dn4 + 5

243Dn5 + 125
486Dn6

)

+ϕ3
(1
5hA

)
h

(
16
81Dn4 − 4

243Dn5 − 50
243Dn6

)]
,

Un8 = un +
[
ϕ1(hA)hF(tn, un) + ϕ2(hA)h

(−16
3 Dn5 + 250

21 Dn6 + 27
14Dn7

)

+ϕ3(hA)h
(
208
3 Dn5 − 250

3 Dn6 − 27Dn7

)

+ϕ4(hA)h
(
−240Dn5 + 1500

7 Dn6 + 810
7 Dn7

)]

+
[
ϕ2

(1
5hA

)
h

(−4
7 Dn5 + 25

49Dn6 + 27
98Dn7

)

+ϕ3
(1
5hA

)
h

(8
5Dn5 − 10

7 Dn6 − 27
35Dn7

)

+ϕ4
(1
5hA

)
h

(−48
35 Dn5 + 60

49Dn6 + 162
245Dn7

)]

+ [
ϕ2

(2
3hA

)
h

(−288
35 Dn5 + 360

49 Dn6 + 972
245Dn7

)

+ϕ3
(2
3hA

)
h

(384
5 Dn5 − 480

7 Dn6 − 1296
35 Dn7

)

+ϕ4
(2
3hA

)
h

(−1536
7 Dn5 + 9600

49 Dn6 + 5184
49 Dn7

)]
,

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA)h
(
125
14 Dn6 − 27

14Dn7 + 1
2Dn8

)

123

Efficient exponential Runge–Kutta methods of high… 541

+ϕ3(hA)h
(−625

14 Dn6 + 162
7 Dn7 − 13

2 Dn8

)

+ϕ4(hA)h
(
1125
14 Dn6 − 405

7 Dn7 + 45
2 Dn8

)
.

Remark 2.1 In viewof the structures of these schemes, one can see that only the second-
and third-oder schemes (expRK2s2, expRK3s3) have all Uni in the form (2.4).
While expRK2s2 requires one internal stage Un2, expRK3s3 needs two internal
stages with Un3 depends on Un2, making these stages cannot be computed simulta-
neously. As for expRK4s5, to the best of our knowledge, this 5-stage scheme is the
only existing fourth-order stiffly accurate expRK method. As seen, among its internal
stages the three internal stagesUn2,Un3, andUn4 are of the form (2.4) but again their
corresponding sets of vectors [Vki] are not the same ([Vk2] = [12hF(tn, un)], [Vk3] =
[12hF(tn, un), hDn2], [Vk4] = [hF(tn, un), h(Dn2+Dn3)]), and because of (1.3), they
are not independent of one another (Un4 and Un3 depend on their preceding stages).
Therefore one needs 3 sequential evaluations for computing these three stages. Also,
we note that the last internal stage Un5 depends on all of its preceding stages and
involves two different linear combinations of ϕk- functions with different scaling fac-
tors c5 = 1

2 and c4 = 1, namely,
∑

k ϕk(
1
2hA)Vk and

∑
k ϕk(hA)Wk (grouped in two

different brackets []), which has to be implemented by 2 separate evaluations. The
final stage un+1 depends on Un4 and Un5. As a result, this scheme must be imple-
mented in a sequential way, which requires totally 6 evaluations for 6 different linear
combinations. Similarly, to the best of our knowledge, expRK5s8 is also the only
existing fifth-order stiffly accurate expRK methods. From the construction of this
scheme [15], one needs 8 stages. Among them, the first five internal stages are of the
form (2.4). We note, however, that the last two internal stagesUn7 andUn8 involves 2
and 3 different linear combinations (grouped in different brackets []) of ϕk- functions
(with different scaling factors) acting on different sets of vectors. And each stage (Uni

or un+1) depends on all the preceding stages (except for the first stageUn2). Thus, this
scheme must be also implemented in a sequential way (it also does not have any group
of internal stages that can be computed simultaneously). Clearly, it requires totally 11
evaluations (11 different linear combinations of ϕ functions).

Remark 2.2 The resulting structures of the expRK schemes discussed in Remark 2.1
can be explained by taking a closer look at their constructions presented in [8,15].
Namely, these methods have been analyzed and derived by using a weakened conver-
gence result, i.e., weakening ofmany order conditions in order tominimize the number
of required stages s and the number of matrix functions in each internal stage Uni .
Specifically, for fourth-order methods (e.g., expRK4s5) 4 out of 9 order conditions
have to be relaxed and for fifth-order methods (e.g., expRK5s8) 9 out of 16 order
conditions have to be relaxed. As a trade off, each stage of these methods depends on
the preceding stages (thus the resulting schemes must be implemented by computing
each stage sequentially) and the very last stages usually involve different linear com-
binations of ϕk-functions (with several different nodes ci as scaling factors) acting on
not the same set of vectors, which then require additional sequential evaluations. For
more details, see Sect. 4 below.

123

542 V. T. Luan

3 Stiff order conditions and convergence analysis

Inspired by the motivation and remarks in Sect. 2, we next present a stronger conver-
gence result which later allows a construction of new efficient methods of high order.
For this, we first recall the stiff order conditions for expRK methods up to order 5 (see
[15,17]).

3.1 Stiff order conditions for methods up to order 5

Let ẽn+1 = ûn+1 − u(tn+1) denote the local error of (1.2), i.e., the difference between
the numerical solution ûn+1 obtained by (1.2) after one step starting from the ‘initial
condition’ u(tn) and the corresponding exact solution u(tn+1) of (1.1) at tn+1.

To simplify the notation in this section we set f (t) = g(t, u(t)) as done in [8],
and additionally denote Gk,n = Dkg(tn, u(tn)) be the k-th partial Fréchet derivative
(with respect to u) evaluated at u(tn). Our results in [17] (Sect. 4.2) or [14] (Sect. 5.1)
showed that

ẽn+1 = h2ψ2(hA) f ′(tn) + h3ψ3(hA) f ′′(tn) + h4ψ4(hA) f ′′′(tn) + h5ψ5(hA) f (4)(tn)

+ Rn + O(h6)
(3.1)

with the remaining terms

Rn = h3
s∑

i=2

biG1,nψ2,i f ′(tn) + h4
s∑

i=2

biG1,nψ3,i f ′′(tn)

+ h4
s∑

i=2

biG1,n

i−1∑

j=2

ai jG1,nψ2, j f ′(tn)

+ h4
s∑

i=2

bi ciG2,n
(
u′(tn), ψ2,i f ′(tn)

) + h5
s∑

i=2

biG1,nψ4,i f ′′′(tn)

+ h5
s∑

i=2

biG1,n

i−1∑

j=2

ai jG1,nψ3, j f ′′(tn)

+ h5
s∑

i=2

biG1,n

i−1∑

j=2

ai jG1,n

j−1∑

k=2

a jkG1,nψ2,k f ′(tn)

+ h5
s∑

i=2

biG1,n

i−1∑

j=2

ai j c jG2,n
(
u′(tn), ψ2, j f ′(tn)

)

+ h5
s∑

i=2

bi ciG2,n
(
u′(tn), ψ3,i f ′′(tn)

)

123

Efficient exponential Runge–Kutta methods of high… 543

+ h5
s∑

i=2

bi ciG2,n
(
u′(tn),

i−1∑

j=2

ai jG1,nψ2, j f ′(tn)
)

+ h5
s∑

i=2

bi
2!G2,n

(
ψ2,i f ′(tn), ψ2,i f ′(tn)

)

+ h5
s∑

i=2

bi
c2i
2!G2,n

(
u′′(tn), ψ2,i f ′(tn)

)

+ h5
s∑

i=2

bi
c2i
2!G3,n

(
u′(tn), u′(tn), ψ2,i f ′(tn)

)
. (3.2)

Here, (and from now on) we use the abbreviations ai j = ai j (hA), bi = bi (hA), ϕ j,i =
ϕ j (ci hA) and

ψ j (hA) =
s∑

i=2

bi
c j−1
i

(j − 1)! − ϕ j (hA), j ≥ 2 (3.3a)

ψ j,i = ψ j,i (hA) =
i−1∑

k=2

aik
c j−1
k

(j − 1)! − c ji ϕ j,i . (3.3b)

Requiring a local error truncation ẽn+1 = O(h6) results in the stiff order conditions
for methods of order up to 5, which are displayed in Table 1 below.

3.2 A stronger convergence result

The convergence analysis of exponential Runge–Kutta methods is usually performed
in the framework of analytic semigroups on a Banach space X with the following
assumptions (see e.g. [8,15]):

Assumption 1 The linear operator A is the infinitesimal generator of an analytic
semigroup e t A on X . This implies that

‖e t A‖X←X ≤ C, t ≥ 0 (3.4)

and consequently ϕk(hA), the coefficients ai j (hA) and bi (hA) of the method are
bounded operators. Furthermore, the following stability bound (see [8, Lemma 1])

∥∥∥∥∥∥
hA

n∑

j=1

e jh A

∥∥∥∥∥∥
X←X

≤ C (3.5)

holds uniformly for all n ≥ 1 and h > 0 with 0 < nh ≤ T − t0.

123

544 V. T. Luan

Table 1 Stiff order conditions for explicit exponential Runge–Kutta methods up to order 5. The variables
Z , J , K , L denote arbitrary square matrices, and B an arbitrary bilinear mapping of appropriate dimensions.
The functions ψl and ψk,l are defined in (3.3)

No. Stiff order condition Order

1 ψ2(Z) = 0 ⇐⇒ ∑s
i=2 bi (Z)ci = ϕ2(Z) 2

2 ψ3(Z) = 0 ⇐⇒ ∑s
i=2 bi (Z)

c2i
2! = ϕ3(Z) 3

3
∑s

i=2 bi (Z)Jψ2,i (Z) = 0 3

4 ψ4(Z) = 0 ⇐⇒ ∑s
i=2 bi (Z)

c3i
3! = ϕ4(Z) 4

5
∑s

i=2 bi (Z)Jψ3,i (Z) = 0 4

6
∑s

i=2 bi (Z)J
∑i−1

j=2 ai j (Z)Jψ2, j (Z) = 0 4

7
∑s

i=2 bi (Z)ci Kψ2,i (Z) = 0 4

8 ψ5(Z) = 0 ⇐⇒ ∑s
i=2 bi (Z)

c4i
4! = ϕ5(Z) 5

9
∑s

i=2 bi (Z)Jψ4,i (Z) = 0 5

10
∑s

i=2 bi (Z)J
∑i−1

j=2 ai j (Z)Jψ3, j (Z) = 0 5

11
∑s

i=2 bi (Z)J
∑i−1

j=2 ai j (Z)J
∑ j−1

k=2 a jk (Z)Jψ2,k (Z) = 0 5

12
∑s

i=2 bi (Z)J
∑i−1

j=2 ai j (Z)c j Kψ2, j (Z) = 0 5

13
∑s

i=2 bi (Z)ci Kψ3,i (Z) = 0 5

14
∑s

i=2 bi (Z)ci K
∑i−1

j=2 ai j (Z)Jψ2, j (Z) = 0 5

15
∑s

i=2 bi (Z)B
(
ψ2,i (Z), ψ2,i (Z)

) = 0 5

16
∑s

i=2 bi (Z)c2i Lψ2,i (Z) = 0 5

Assumption 2 (for high-order methods). The solution u : [t0, T] → X of (1.1) is
sufficiently smooth with derivatives in X and g : [t0, T] → X is sufficiently often
Fréchet differentiable in a strip along the exact solution. All occurring derivatives are
assumed to be uniformly bounded.

Let en+1 = un+1 − u(tn+1) denote the global error at time tn+1. In [15], we have
shown that en satisfies the recursion

en = h
n−1∑

j=0

e (n− j)hAK j (e j)e j +
n−1∑

j=0

e jh Aẽn− j , (3.6)

where K j (e j) are bounded operators on X .

Motivated by Remark 2.2, we now give a stronger convergence result (compared
to those results given in [8,15]) in the sense that it requires relaxing only one order
condition.

Theorem 3.1 (Convergence) Let the initial value problem (1.1) satisfy Assumptions
1–2. Consider for its numerical solution an explicit exponential Runge–Kutta method
(1.2) that fulfills the order conditions of Table 1 up to order p (2 ≤ p ≤ 5) in a strong
form with the exception that only one condition ψp(Z) = 0 holds in a weakened

123

Efficient exponential Runge–Kutta methods of high… 545

form, i.e., ψp(0) = 0. Then, the method is convergent of order p. In particular, the
numerical solution un satisfies the error bound

‖un − u(tn)‖ ≤ Chp (3.7)

uniformly on compact time intervals t0 ≤ tn = t0 + nh ≤ T with a constant C that
depends on T − t0, but is independent of n and h.

Proof The proof can be carried out in a very similar way as done in [15, Theorem
4.2]. In view of (3.1) and (3.2) and employing the assumptions of Theorem 3.1 on the
order conditions, we have Rn = 0 and thus

ẽn+1 = h p(ψp(hA) − ψp(0)
)
Gp−1,n + h p+1Sn, (3.8)

where Gp−1,n is defined in Sect. 3.1 and Sn involves the terms multiplying h p+1 and
higher order in (3.1) (clearly, ‖Sn‖ ≤ C). Inserting (3.8) (with index n − j − 1 in
place of n) into (3.6) and using the fact that there exists a bounded operator ψ̃p(hA)

such that ψp(hA) − ψp(0) = ψ̃p(hA)hA yields

en = h
n−1∑

j=0

e (n− j)hAK j (e j)e j + h p
n−1∑

j=0

hAe jhAψ̃p(hA)Gn− j−1,p−1 + h p+1Sn− j−1.

(3.9)

Using (3.4), (3.5) and an application of a discrete Gronwall lemma shows (3.7). �

With the result of Theorem 3.1 in hand, we are now ready to derive more efficient
methods. In particular, we will solve the system of stiff order conditions of Table 1
in the context of Theorem 3.1. It turns out that for methods of high order this will
require an increase in the number of stages s. However, we will have more degree of
freedoms for constructing our desired methods as seen in Sect. 4 below. In addition,
by relaxing only one order condition, we expect methods resulted from Theorem 3.1
to have better stability (and thus may be more accurate) when integrating stiff systems
(see Sect. 6).

4 Derivation of new efficient exponential Runge–Kutta methods

In this section,wewill derivemethodswhich have the following features: (i) containing
multiple internal stages Uni that are independent of each other (henceforth called
parallel stages) and share the same format (thereby allowing them to be implemented
in parallel); (ii) involving less number of evaluations of the form (2.4) when compared
to the existing methods of the same orders (thus behaving like methods that use fewer
number of stages s).

We first start with methods of order p ≤ 3.When solving order conditions for these
methods (requiring at least s = 2 and s = 3 for second- and third-order methods,
respectively), one can easily show that it is not possible to fulfill the desired feature

123

546 V. T. Luan

(ii), particularly when comparing with expRK2s2 (order 2, 2-stage) and expRK3s3
(order 3, 3-stage) mentioned in Sect. 2. We omit the details. Therefore, we will focus
on the derivation of new methods of higher orders, namely, orders 4 and 5.

4.1 A family of fourth-order methods with parallel stages

Deriving methods of order 4 requires solving the set of 7 stiff order conditions 1–
7 in Table 1. First, we discuss on the required number of stages s. It is shown in
[8, Sect.5.3] that s = 5 is the minimal number of stages required to construct a
family of fourth-order methods which satisfies conditions 1–3 in the strong sense and
conditions 4–7 in the weakened form (relaxing bi (Z) as bi (0)). In other words, with
s = 5 it is not possible to fulfill the order conditions in the context of Theorem 3.1,
which requires only condition 4 holds in a weakened form ψ4(0) = 0 or equivalently
∑s

i=2 bi (0)
c3i
3! = ϕ4(0) = 1/24. Therefore, we consider s = 6. In this case, conditions

1, 2, and the weakened condition 4 are

b2c2 + b3c3 + b4c4 + b5c5 + b6c6 = ϕ2, (4.1a)

b2c
2
2 + b3c

2
3 + b4c

2
4 + b5c

2
5 + b6c

2
6 = 2ϕ3, (4.1b)

b2(0)c
3
2 + b3(0)c

3
3 + b4(0)c

3
4 + b5(0)c

3
5 + b6(0)c

3
6 = 6ϕ4(0) = 1/4, (4.1c)

and conditions 3, 5, 7 and 6 are

b2 Jψ2,2 + b3 Jψ2,3 + b4 Jψ2,4 + b5 Jψ2,5 + b6 Jψ2,6 = 0, (4.2a)
b2 Jψ3,2 + b3 Jψ3,3 + b4 Jψ3,4 + b5 Jψ3,5 + b6 Jψ3,6 = 0, (4.2b)
b2c2Kψ2,2 + b3c3Kψ2,3 + b4c4Kψ2,4 + b5c5Kψ2,5 + b6c6Kψ2,6 = 0, (4.2c)
b3 Ja32 Jψ2,2 + b4 J (a42 Jψ2,2 + a43 Jψ2,3) + b5 J (a52 Jψ2,2 + a53 Jψ2,3 + a54 Jψ2,4)

(4.2d)+ b6 J (a62 Jψ2,2 + a63 Jψ2,3 + a64 Jψ2,4 + a65 Jψ2,5) = 0.

We now solve these order conditions. We note from (3.3b) that

ψ2,i =
i−1∑

j=2

ai j c j − c2i ϕ2,i , ψ3,i =
i−1∑

j=2

ai j
c2j
2! − c3i ϕ3,i (4.3)

and thus ψ2,2 = −c22ϕ2,2 �= 0, ψ3,2 = −c32ϕ3,2 �= 0 (since c2 �= 0). Using (4.3),
one can infer that either ψ2,3 or ψ3,3 must be nonzero as well (if both are zero then

a32 = c23
c2

ϕ2,3 = 2c33
c22

ϕ3,3, which is impossible since c3 > 0 and {ϕ2, ϕ3} are linearly
independent). This strongly suggests that b2 = b3 = 0 in order to later fulfill (4.2)
in the strong sense with arbitrary square matrices J and K . Next, we further observe
that if b4 �= 0 one may need both ψ2,4 = ψ3,4 = 0 (which solves a42 �= 0, a43 �= 0).
However, thismakes the second term in (4.2d) to be nonzerowhich is then very difficult
to satisfy (4.2d) in the strong form. Putting together, it requires that b2 = b3 = b4 = 0.

123

Efficient exponential Runge–Kutta methods of high… 547

Using this sufficient condition we can easily solve (4.1) to get

b5 = −c6ϕ2 + 2ϕ3

c5(c5 − c6)
, b6 = −c5ϕ2 + 2ϕ3

c6(c6 − c5)

for any choice of distinct nodes c5, c6 > 0, satisfying the condition

c5 = 4c6 − 3

6c6 − 4
. (4.4)

Since b5, b6 �= 0, we must enforce ψ2,5 = ψ3,5 = 0 and ψ2,6 = ψ3,6 = 0 to satisfy
conditions (4.2a)–(4.2c). Using (4.3), this leads to the following 2 systems of two
linear equations

a52c2 + a53c3 + a54c4 = c25ϕ2,5, (4.5a)

a52c
2
2 + a53c

2
3 + a54c

2
4 = 2c35ϕ3,5, (4.5b)

and

a62c2 + a63c3 + a64c4 + a65c5 = c26ϕ2,6, (4.6a)

a62c
2
2 + a63c

2
3 + a64c

2
4 + a65c

2
5 = 2c36ϕ3,6. (4.6b)

To satisfy conditions (4.2d), we further enforce a52 = a62 = 0 (since ψ2,2 �= 0),
which immediately solves (4.5) for coefficients (with c3 �= c4)

a53 = −c4c25ϕ2,5 + 2c35ϕ3,5

c3(c3 − c4)
�= 0, a54 = −c3c25ϕ2,5 + 2c35ϕ3,5

c4(c4 − c3)
�= 0, (4.7)

and thus we also need ψ2,3 = ψ2,4 = 0 (since ψ2,5 = 0), which gives

a32 = c23
c2

ϕ2,3, (4.8a)

a42c2 + a43c3 = c24ϕ2,4. (4.8b)

After fulfilling all the required order conditions in (4.1)–(4.2), we see from (4.6) and
(4.8b) that either a42 or a43 and one of the coefficients among a63, a64, a65 can be
taken as free parameters. We now use them to construct parallel stages. Guided by
(4.7) and (4.8a), we choose a43 = 0 to make Un4 is independent of Un3 so that both
these stages only depend on Un2, and choose a65 = 0 to make Un6 is independent of
Un5 so that both these stages only depend on the two preceding stagesUn3,Un4 (since
a52 = a62 = 0). From this we determine the remaining coefficients

a42 = c24
c2

ϕ2,4, a63 = −c4c26ϕ2,6 + 2c36ϕ3,6

c3(c3 − c4)
, a64 = −c3c26ϕ2,6 + 2c36ϕ3,6

c4(c4 − c3)
.

(4.9)

123

548 V. T. Luan

Putting altogether and rearranging terms in Uni , un+1 as linear combinations of ϕ

functions, we obtain the following family of 4th-order 6-stage methods (with the pairs
of parallel stages {Un3,Un4} and {Un5,Un6}), which will be called expRK4s6:

Un2 = un + ϕ1(c2hA)c2hF(tn, un), (4.10a)

Un,k = un + ϕ1(ckhA)ckhF(tn, un) + ϕ2(ckhA)
c2k
c2
hDn2, k = 3, 4 (4.10b)

Un, j = un + ϕ1(c j hA)c j hF(tn, un) + ϕ2(c j hA)
c2j

c3−c4
h
(−c4

c3
Dn3 + c3

c4
Dn4

)

+ ϕ3(c j hA)
2c3j

c3−c4
h
(1
c3
Dn3 − 1

c4
Dn4

)
, j = 5, 6 (4.10c)

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA) 1
c5−c6

h
(−c6

c5
Dn5 + c5

c6
Dn6

)

+ ϕ3(hA) 2
c5−c6

h
(1
c5
Dn5 − 1

c6
Dn6

)
. (4.10d)

For the numerical experiments given in Sect. 6, we choose c2 = c3 = 1
2 , c4 = 1

3 ,
c6 = 1

3 which gives c5 = 5
6 due to (4.4).

Remark 4.1 (A comparison with expRK4s5). As seen, expRK4s6 is resulted from
weakening only condition 4 of Table 1 instead of weakening four conditions 4–7
as in the derivation of expRK4s5. While the 5-stage method expRK4s5 requires 6
sequential evaluations in each step (asmentioned in Section 2), the new fourth-order 6-
stage method expRK4s6 requires only 4 sequential evaluations, making it to behave
like a 4-stage method. This is due to the fact expRK4s6 has the pairs of parallel
stages {Un3,Un4} and {Un5,Un6} and allUni within these pairs have the same format,
i.e., same (one) linear combination of ϕk(ci hA)vk , allowing them to be computed in
parallel or simultaneously (see Sect. 5).

4.2 A family of fifth-order methods with parallel stages

Constructing fifth-order exponential Runge-Kutta methods needs much more effort as
one has to solve 16 order conditions in Table 1. As mentioned in Section 2, the only
existing method of order 5 in the literature is expRK5s8 (see [15]) which requires
s = 8 stages. Like expRK4s5, this method does not have any parallel stages and
must be implemented in a sequential way. It also does not satisfy the assumption on
the order conditions stated in Theorem 3.1. Indeed, it was constructed by fulfilling
conditions 1–7 in the strong form and weakening conditions 8–16 (9 out of 16 order
conditions) with bi (0) in place of bi (Z). This resulted in the last two internal stages
Un7 and Un8 that involve several different linear combinations of ϕk(ci hA)vk (with
different scalings c6, c7, c8 of hA), for which additional computational efforts are
required to compute those stages (as shown in Section 2).

Therefore, to derive a method based on Theorem 3.1 which later allows us to derive
parallel stages schemeswithUni involving only one linear combination ofϕk(ci hA)vk ,
we have to increase s ≥ 9. To make it easier for readers to follow, we consider s = 10
first and later employ the similar procedure to show that it is not possible to fulfill

123

Efficient exponential Runge–Kutta methods of high… 549

condition 11 of Table 1 in the strong form (and thus not satisfying Theorem 3.1) with
s = 9.

(a) The case s = 10: Similarly to the derivation presented in Sect. 4.1, using (4.3), it
strongly suggests b2 = b3 = b4 = b5 = b6 = b7 = 0 in order to solve conditions 3,
5, 9, 7, 16, 13, and 15 in their strong form. Using this, these conditions now read as

b8 Jψ2,8 + b9 Jψ2,9 + b10 Jψ2,10 = 0, (4.11a)

b8 Jψ3,8 + b9 Jψ3,9 + b10 Jψ3,10 = 0, (4.11b)

b8 Jψ4,8 + b9 Jψ4,9 + b10 Jψ4,10 = 0, (4.11c)

b8c8Kψ2,8 + b9c9Kψ2,9 + b10c10Kψ2,10 = 0, (4.11d)

b8c
2
8Lψ2,8 + b9c

2
9Lψ2,9 + b10c

2
10Lψ2,10 = 0, (4.11e)

b8c8Kψ3,8 + b9c9Kψ3,9 + b10c10Kψ3,10 = 0, (4.11f)

b8B(ψ2,8, ψ2,8) + b9B(ψ2,9, ψ2,9) + b10B(ψ2,10, ψ2,10) = 0, (4.11g)

respectively. And conditions 1, 2, 4, and 8 (weakened form) become

b8c8 + b9c9 + b10c10 = ϕ2, (4.12a)

b8c
2
8 + b9c

2
9 + b10c

2
10 = 2ϕ3, (4.12b)

b8c
3
8 + b9c

3
9 + b10c

3
10 = 6ϕ4, (4.12c)

b8(0)c
4
8 + b9(0)c

4
9 + b10(0)c

4
10 = 24ϕ5(0) = 1/5. (4.12d)

Solving (4.12) gives

b8 = c9c10ϕ2 − 2(c9 + c10)ϕ3 + 6ϕ4

c8(c8 − c9)(c8 − c10)
, (4.13a)

b9 = c8c10ϕ2 − 2(c8 + c10)ϕ3 + 6ϕ4

c9(c9 − c8)(c9 − c10)
, (4.13b)

b10 = c8c9ϕ2 − 2(c8 + c9)ϕ3 + 6ϕ4

c10(c10 − c8)(c10 − c9)
(4.13c)

where c8, c9, and c10 are distinct and positive nodes satisfying the algebraic equation

c8 + c9 + c10
4

− c8c9 + c8c10 + c9c10
3

+ c8c9c10
2

= 1

5
. (4.14)

Clearly, b8, b9, b10 �= 0 so one has to enforce

ψ2, j = ψ3, j = ψ4, j = 0 (j = 8, 9, 10) (4.15)

to satisfy (4.11) in the strong sense with arbitrary square matrices J , K , L and B.
Next, we consider conditions 6 and 10 taken into account that bi = 0 (i = 2, · · · , 7)

123

550 V. T. Luan

and (4.15), which can be now simplified as

7∑

j=2

(b8 Ja8 j + b9 Ja9 j + b10 Ja10 j)Jψm, j = 0 (m = 2, 3), (4.16)

respectively. In order to satisfy the strong form of (4.16) one needs

a8 j = a9 j = a10 j = 0 (j = 2, 3, 4) (4.17)

(this is again due to (4.3)) and

ψ2, j = ψ3, j = 0 (j = 5, 6, 7). (4.18)

With (4.17), we note that Un8,Un9,Un10 are independent of the internal stages
Un2,Un3,Un4. Taking into all the requirements above, one can easily see that con-
ditions 12 and 14 are now automatically fulfilled. Therefore, the only remaining
condition to satisfy is condition 11.

Before working with condition 11, we first solve (4.15) using (4.17). For this, we
observe that several coefficients ai j can be considered as free parameters. To have
Un8,Un9,Un10 are independent of each other, we choose

a98 = a10,8 = a10,9 = 0. (4.19)

The resulting systems of linear equations from (4.15) is then solved with the unique
solution

ai j = c2i ckclϕ2,i − 2c3i (ck + cl)ϕ3,i + 6c4i ϕ4,i

c j (c j − ck)(c j − cl)
,

i = 8, 9, 10; j, k, l ∈ {5, 6, 7}, j �= k �= l (4.20)

(i.e., c5, c6, c7 > 0 are distinct nodes).
We now use bi = 0 (i = 2, · · · , 7), (4.15), (4.17), (4.18), and (4.19) to simplify
condition 11 as

10∑

i=8

bi J
7∑

j=5

ai j J
(
a j2 Jψ2,2 + a j3 Jψ2,3 + a j4 Jψ2,4

) = 0. (4.21)

Since b8, b9, b10 �= 0, coefficients ai j in (4.20) (i ∈ {8, 9, 10}, j ∈ {5, 6, 7}) are also
nonzero, and that ψ2,2 �= 0, we must enforce

a j2 = 0 (j = 5, 6, 7), i.e., a52 = a62 = a72 = 0 (4.22)

and require that

ψ2,3 = ψ2,4 = 0 (4.23)

123

Efficient exponential Runge–Kutta methods of high… 551

in order to satisfy (4.21) in the strong sense. Note, because of (4.22), one could not
require a53 = 0 or a54 = 0 (j = 5) in (4.21) or both as this does not agree with the
requirement ψ2,5 = ψ3,5 = 0 in (4.18) (in other words, the linear system of equations
displayed in (4.5) represented for this requirement has no solution). This justifies the
requirement (4.23).

Finally, we solve (4.23) and (4.18) for the remaining coefficients ai j . When solving
(4.23) (see (4.8)), we choose a43 = 0 to have Un4 is independent of Un3. This gives

a32 = c23
c2

ϕ2,3, a42 = c24
c2

ϕ2,4. (4.24)

When solving (4.18) (using (4.22)), we choose a65 = a75 = a76 = 0 to have
Un5,Un6,Un7 are independent of each other. This results in the following 6 coef-
ficients:

ai j = −c2i ckϕ2,i + 2c3i ϕ3,i

c j (c j − ck)
, i = 5, 6, 7; j, k ∈ {3, 4}, j �= k (4.25)

(i.e., c3, c4 > 0 are distinct nodes).
Inserting all the obtained coefficients ai j and bi into Uni , un+1 and rewriting

these stages as linear combinations of ϕ functions, we obtain the following fam-
ily of 5th-order 10-stage methods (with the groups of parallel stages {Un3,Un4},
{Un5,Un6,Un7}, and {Un8,Un9,Un10}) which will be called expRK5s10:

Un2 = un + ϕ1(c2hA)c2hF(tn, un),

Un� = un + ϕ1(c�hA)c�hF(tn, un) + ϕ2(c�hA)
c2�
c2
hDn2, � = 3, 4

Unm = un + ϕ1(cmhA)cmhF(tn, un) + ϕ2(cmhA)c2mh
(c4
c3(c4−c3)

Dn3 + c3
c4(c3−c4)

Dn4
)

+ ϕ3(cmhA)c3mh
(2
c3(c3−c4)

Dn3 − 2
c4(c3−c4)

Dn4
)
, m = 5, 6, 7

Unq = un + ϕ1(cqhA)cqhF(tn, un) + ϕ2(cqhA)c2qh
(
α5Dn5 + α6Dn6 + α7Dn7

)

+ ϕ3(cqhA)c3qh
(
β5Dn5 − β6Dn6 − β7Dn7

)

+ ϕ4(cqhA)c4qh
(
γ5Dn5 + γ6Dn6 + γ7Dn7

)
, q = 8, 9, 10

un+1 = un + ϕ1(hA)hF(tn, un) + ϕ2(hA)h
(
α8Dn8 + α9Dn9 + α10Dn10

)

− ϕ3(hA)h
(
β8Dn8 + β9Dn9 + β10Dn10

) + ϕ4(hA)h
(
γ8Dn8 + γ9Dn9 + γ10Dn10

)
,

where

αi = ckcl
ci (ci − ck)(ci − cl)

, βi = 2(ck + cl)

ci (ci − ck)(ci − cl)
, γi = 6

ci (ci − ck)(ci − cl)

(4.26)

with i ∈ {5, 6, 7} for k, l ∈ {5, 6, 7}, and i ∈ {8, 9, 10} for k, l ∈ {8, 9, 10} (note that
i, k, l are distinct indices and that ci , ck, cl are distinct (positive) nodes).
For our numerical experiments, we choose c2 = c3 = c5 = 1

2 , c4 = c6 = 1
3 , c7 = 1

4 ,
c8 = 3

10 , c9 = 3
4 , and c10 = 1 (satisfying (4.14)).

123

552 V. T. Luan

Remark 4.2 (A comparison with expRK5s8). Although the new fifth-order method
expRK5s10 has 10 stages (compared to 8 stages of expRK5s8 displayed in
Section 2), its special structure offers much more efficient for implementation. In par-
ticular, allUni in this scheme involve only one linear combination ofϕk(ci hA)vk which
can be computed by one evaluation for each; and more importantly, due to the same
format of multiple stages within each of the three groups {Un3,Un4}, {Un5,Un6,Un7},
and {Un8,Un9,Un10} (same linear combination with different inputs ci), they can
be computed simultaneously or implemented in parallel (see Sect. 5). This makes
expRK5s10 to behave like a 5-stage method only, thereby requiring only 5 sequen-
tial evaluations in each step. Moreover, while expRK5s8 requires weakening 9 out
of 16 order conditions of Table 1, expRK5s10 requires only one condition (number
8) held in the weakened form. Note that by following the similar way of deriving
expRK5s10, we can derive a scheme that satisfies all the stiff order conditions in
Table 1 in the strong sense with s = 11. Such a scheme, however, still behaves like a
5-stage method. Therefore, we do not discuss further on this case.

(b) The case s = 9 (which does not work): Clearly, in this case we have less degree
of freedoms than the case s = 10 when solving the order conditions in Table 1.
Nonetheless, one can still proceed in a similar way as done for s = 10. Again, it
strongly suggests b2 = b3 = b4 = b5 = b6 = 0 (which solves for b7, b8, b9 �= 0
from conditions 1, 2, 4) and

ψ2, j = ψ3, j = ψ4, j = 0 (j = 7, 8, 9) (4.27)

in order to satisfy conditions 1, 2, 3, 4, 5, 7, 9, 13, 15, 16 in the strong form. With this,
conditions 6 and 10 now become

6∑

j=2

(b7 Ja7 j + b8 Ja8 j + b9 Ja9 j)Jψm, j = 0 (m = 2, 3). (4.28)

Again, due to the fact that ψ2,2, ψ3,2 �= 0 and either ψ2,3 or ψ3,3 must be nonzero,
one needs to enforce a7 j = a8 j = a9 j = 0 (j = 2, 3) in (4.28). Using this to
solve (4.27) for j = 7 (ψ2,7 = ψ3,7 = ψ4,7 = 0) gives a unique solution (with
c4, c5, c6 > 0 and are distinct) for a74, a75, a76 �= 0, which then determines Un7.
Next, one can solve (4.27) for j = 8, 9 to obtain Un8,Un9 that are independent of
Un7, as well as are independent of each other, by requiring the three free parameters
a87 = a97 = a98 = 0. As a result, one gets a7 j , a8 j , a9 j �= 0 (j = 5, 6). This
immediately suggests ψ2, j = ψ3, j = 0 (j = 4, 5, 6) to completely fulfill (4.28)
with arbitrary square matrix J . With all of these in place, conditions 12 and 14 are
automatically fulfilled, and condition 11 is now reduced to

9∑

i=7

bi J
6∑

j=4

ai j J
(
a j2 Jψ2,2 + a j3 Jψ2,3

) = 0. (4.29)

123

Efficient exponential Runge–Kutta methods of high… 553

Clearly, since b7, b8, b9 �= 0, a7 j , a8 j , a9 j �= 0 (j = 4, 5, 6), and ψ2,2 �= 0, (4.29)
can be satisfied in the strong sense only if we have one of the following conditions:
a j2 = a j3 = 0 or a j2 = ψ2,3 = 0, (j = 4, 5, 6). Unfortunately, either of these
requirements is in contradiction with ψ2, j = ψ3, j = 0 (j = 4, 5, 6) which is needed
for conditions 6 and 10 mentioned above. For example, solving ψ2,4 = ψ3,4 = 0
results in a42, a43 �= 0.

5 Details implementation of fourth- and fifth-order schemes

In this section, we present details implementation of the old and new fourth- and
fifth-order expRK schemes (expRK4s5, expRK5s8, expRK4s6, expRK5s10)
mentioned above.

Asmentioned in Sect. 2.1, wewill use theMATLAB routine phipm_simul_iom
(described in details in [19]) to implement expRK methods. In particular, given the
following inputs: an array of scaling factors t = [ρ1, . . . , ρr] with 0 < ρ1 < ρ2 <

· · · < ρr ≤ 1 (t could be a positive scalar), an n-by-n matrix M , and a set of column
vectors V = [V0, . . . , vq] (each vi is an n-by-1 vector), a tolerance tol, an initial
valuem for the dimension of theKrylov subspace, and an incomplete orthogonalization
length of iom, a call to this function

phipm_simul_iom(t,M,V,tol,m,iom) (5.1)

simultaneously computes the following r linear combinations

Lρi ,V = ϕ0(ρi M)v0 + ϕ1(ρi M)ρiv1 + ϕ2(ρi M)ρ2
i v2 + · · · + ϕq(ρi M)ρ

q
i vq ,

1 ≤ i ≤ r . (5.2)

Note that, by setting Vj = ρ
j
i v j (j = 0, · · · , q), (5.2) becomes (2.2). In other words,

all the linear combinations in (2.2) (if Vj are given instead of v j) can be then computed

at the same time with one call (5.1) by using scaled vectors v j = Vj/ρ
j
i for the input

V.
In the following, we set

M = hA, ρi = ci , v = hF(tn, un), di = hDni . (5.3)

to simplify notations in presenting details of implementation of the fourth- and fifth-
order methods mentioned above. When calling (5.1), we use tol = 10−12, m = 1
(default value), and imo = 2 (as in [19]).
Implementation of expRK4s5 (c2 = c3 = c5 = 1

2 , c4 = 1): As discussed
in Remark 2.1, expRK4s5 requires a sequential implementation of the follow-
ing 6 different linear combinations of the form (5.2), corresponding to 6 calls to
phipm_simul_iom:

(i) Evaluate Lc2,V with t = c2,V = [0, v] to get Un2 = un + Lc2,V.
(ii) Evaluate Lc3,V with t = c3,V = [0, v, d2/c23] to get Un3 = un + Lc3,V.

123

554 V. T. Luan

(iii) Evaluate Lc4,V with t = c4,V = [0, v, d2 + d3] to get Un4 = un + Lc4,V.
(iv) Evaluate Lc5,V1 with t = c5,V1 = [0, v, 2d2 + 2d3 − d4, (−d2 − d3 + d4)/c25]

and
(v) Evaluate Lc4,V2 with t = c4,V2 = [0, 0, (d2 + d3 − d4)/4, (−d2 − d3 + d4)]

to get Un5 = un + Lc5,V1 + Lc4,V2 .
(vi) Evaluate L1,V with t = 1,V = [0, v,−d4 + 5d5, 4d4 − 8d5] to get un+1 =

un + L1,V.

Since di = hDni which depends on Uni , these are the 6 (sequential) evaluations.
Implementation of expRK4s6 (c2 = c3 = 1

2 , c4 = c6 = 1
3 , c5 = 5

6): As discussed in
Remark 4.1, expRK4s6 can be implemented like a 4-stage method by evaluating the
following 4 sequential evaluations, corresponding to 4 calls to phipm_simul_iom:

(i) Evaluate Lc2,V with t = c2,V = [0, v] to get Un2 = un + Lc2,V.
(ii) Evaluate Lc4,V and Lc3,V simultaneously using t = [c4, c3],V = [0, v, d2/c2]

to get both Un3 = un + Lc3,V and Un4 = un + Lc4,V.
(iii) Evaluate Lc5,V and Lc6,V simultaneouslywitht = [c6, c5],V = [0, v, −c4

(c3−c4)c3
d3+

c3
(c3−c4)c4

d4,
1

(c3−c4)c3
d3 − 1

(c3−c4)c4
d4] to get both Un5 = un + Lc5,V and

Un6 = un + Lc6,V.
(iv) Evaluate L1,V witht = 1,V = [0, v, 1

c5−c6
(−c6

c5
d5+ c5

c6
d6),

2
c5−c6

(1
c5
d5− 1

c6
d6)]

to get un+1 = un + L1,V.

Implementationof expRK5s8 (c2 = c3 = c5 = 1
2 , c4 = 1

4 , c6 = 1
5 , c7 = 2

3 , c8 = 1):
As discussed in Remark 2.1, expRK5s8 requires a sequential implementation of 11
different linear combinations of the form (5.2), corresponding to the following 11 calls
to phipm_simul_iom:

(i) Evaluate Lc2,V with t = c2,V = [0, v] to get Un2 = un + Lc2,V.
(ii) Evaluate Lc3,V with t = c3,V = [0, v, d2/c23] to get Un3 = un + Lc3,V.
(iii) Evaluate Lc4,V with t = c4,V = [0, v, d3/c24] to get Un4 = un + Lc4,V.
(iv) Evaluate Lc5,V with t = c5,V = [0, v, (−d3 + 4d4)/c25, (2d3 − 4d4)/c35] to

get Un5 = un + Lc5,V.
(v) Evaluate Lc6,V with t = c6,V = [0, v, (8d4 − 2d5)/c26, (−32d4 + 16d5)/c36]

to get Un6 = un + Lc6,V.
(vi) Evaluate Lc7,V1 with t = c7,V1 = [0, v, (−16

27 d5 + 100
27 d6)/c

2
7, (

320
81 d5 −

800
81 dn6)/c

3
7] and

(vii) Evaluate Lc6,V2 witht = c6,V2 = [0, 0, (−20
81 d4+ 5

243d5+ 125
486d6)/c

2
6, (

16
81d4−

4
243d5 − 50

243d6)/c
3
6] to get Un7 = un + Lc7,V1 + Lc6,V2 .

(viii) Evaluate Lc8,V1 witht = c8,V1 = [0, v, (−16
3 d5+ 250

21 d6+ 27
14d7)/c

2
8, (

208
3 d5−

250
3 d6 − 27d7)/c38, (−240d5 + 1500

7 d6 + 810
7 d7)/c48] and

(ix) Evaluate Lc6,V2 with t = c6,V2 = [0, 0, (−4
7 d5 + 25

49d6 + 27
98d7)/c

2
6, (

8
5d5 −

10
7 d6 − 27

35d7)/c
3
6, (

−48
35 d5 + 60

49d6 + 162
245d7)/c

4
6] and

(x) Evaluate Lc7,V3 witht = c7,V3 = [0, 0, (−288
35 d5+ 360

49 d6+ 972
245d7)/c

2
7, (

384
5 d5−

480
7 d6− 1296

35 d7)/c37, (
−1536

7 d5+ 9600
49 d6+ 5184

49 d7)/c47] to getUn8 = un+Lc8,V1+
Lc6,V2 + Lc7,V3 .

(xi) Evaluate L1,V with t = 1,V = [0, v, 125
14 d6 − 27

14d7 + 1
2d8,

−625
14 d6 + 162

7 d7 −
13
2 d8,

1125
14 d6 − 405

7 d7 + 45
2 d8] to get un+1 = un + L1,V.

123

Efficient exponential Runge–Kutta methods of high… 555

Implementation of expRK5s10 (c2 = c3 = c5 = 1
2 , c4 = c6 = 1

3 , c7 = 1
4 , c8 = 3

10 ,
c9 = 3

4 , and c10 = 1): As discussed in Remark 4.2, expRK5s10 can be imple-
mented like a 5-stage method by evaluating the following 5 sequential evaluations,
corresponding to 5 calls to phipm_simul_iom:

(i) Evaluate Lc2,V with t = c2,V = [0, v] to get Un2 = un + Lc2,V.
(ii) Evaluate Lc4,V and Lc3,V simultaneously using t = [c4, c3],V = [0, v, d2/c2] to

get both Un3 = un + Lc3,V and Un4 = un + Lc4,V.
(iii) Evaluate Lc5,V, Lc6,V, and Lc7,V simultaneously using t = [c7, c6, c5], V =

[0, v, c4
c3(c4−c3)

d3+ c3
c4(c3−c4)

d4,
2

c3(c3−c4)
d3− 2

c4(c3−c4)
d4] to getUn5 = un+Lc5,V,

Un6 = un + Lc6,V, Un7 = un + Lc7,V.
(iv) Evaluate Lc8,V, Lc9,V, and Lc10,V simultaneously using t = [c9, c10, c8], V =

[0, v, α5d5 +α6d6 +α7d7, β5d5 −β6d6 −β7d7, γ5d5 +γ6d6 +γ7d7] to getUn8 =
un + Lc8,V, Un9 = un + Lc9,V, Un10 = un + Lc10,V.

(v) Evaluate L1,V with t = 1,V = [0, v, α8d8 + α9d9 + α10d10, β8d8 + β9d9 +
β10d10, γ8d8 + γ9d9 + γ10d10] to get un+1 = un + L1,V (coefficients αi , βi , γi are
given in (4.26)).

6 Numerical experiments

In this section, we demonstrate the efficiency of our newly derived fourth- and fifth-
order expRK time integration methods (expRK4s6, expRK5s10). Specifically, we
will compare their performance against the existing methods of the same orders
(expRK4s5, expRK5s8) on several examples of stiff PDEs. All the numerical sim-
ulations are performed in MATLAB on a single workstation, using an iMac 3.6 GHz
Intel Core i7, 32 GB 2400 MHz DDR4.

Example 6.1 (A one-dimensional semilinear parabolic problem [8]): We first ver-
ify the order of convergence for the new derived fourth- and fifth-order expRK
schemes (expRK4s6, expRK5s10) by considering the following PDE for u(x, t),
x ∈ [0, 1], t ∈ [0, 1], and subject to homogeneous Dirichlet boundary conditions,

∂u(x, t)

∂t
− ∂2u(x, t)

∂x2
= 1

1 + u2(x, t)
+ Φ(x, t), (6.1)

whose exact solution is known to be u(x, t) = x(1− x)e t for a suitable choice of the
source function Φ(x, t).

Spatial discretization: For this example,we use standard second order finite differences
with 200 grid points. This leads to a very stiff system of the form (1.1) (with ‖A‖∞ ≈
1.6 × 105).

The resulting system is then integrated on the time interval [0, 1] using constant
step sizes, corresponding to the number of time steps N = 4, 8, 16, 32, 64. The time
integration errors at the final time t = 1 are measured in the maximum norm.

In Fig. 1, we plot orders for all the employed integrators in the left diagram and the
total CPU time versus the global errors in the right diagram. The left diagram clearly

123

556 V. T. Luan

4 8 16 32 64
number of time steps

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4
er

ro
r

expRK4s5
expRK4s6
expRK5s8
expRK5s10
slope 4
slope 5

0.5 1 1.5 2 2.5
CPU time

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

er
ro

r

expRK4s5
expRK4s6
expRK5s8
expRK5s10

Fig. 1 Order plots (left) and total CPU times (right) of expRK4s5, expRK4s6 , expRK5s8, and
expRK5s10 when applied to (6.1). The global errors at time t = 1 are plotted as functions of the number
of time steps (left) and the total CPU time in second (right). For comparison, straight lines with slopes 4
and 5 are added

shows a perfect agreement with our convergence result in Theorem 3.1, meaning that
the two new integrators expRK4s6 and expRK5s10 fully achieve orders 4 and 5,
respectively. When compared to the old integrators of the same orders expRK4s5
and expRK5s8, we note that, given the same number of time steps, expRK4s6 is
slightly more accurate but is much faster than expRK4s5 (see the right diagram). In
a similar manner, expRK5s10 gives almost identical global errors but is also much
faster than expRK5s8. Finally, we observe that, for this example, for a global error
that is larger than 10−6, the new fourth-order method expRK4s6 is the fastest one,
and for more stringent errors, expRK5s10 is the fastest integrator.

Example 6.2 (A nonlinear Schrödinger equation [2,5]):We consider the following one-
dimensional nonlinear Schrödinger (NLS) equationwith periodic boundary conditions

i
∂Ψ (x, t)

∂t
= −∂2Ψ (x, t)

∂x2
+ (

V (x) + λ|Ψ (x, t)|2)Ψ (x, t),

Ψ (−π, t) = Ψ (π, t), t ≥ 0

Ψ (0, t) = Ψ0(x), x ∈ [−π, π]
(6.2)

where the potential function V (x) = 1

1 + sin2(x)
, the initial condition Ψ0(x) =

esin(2x), and the constant λ = 1 (see [2]).

Spatial discretization: For this example, we use a discrete Fourier transform F with
ND = 128 modes, leading to a mildly stiff system of the form (1.1) with

A = diag(−ik2), k = −ND

2
+ 1, . . . ,

ND

2
= −63, . . . , 64

g(t, u) = −iF ((V (x) + λ|F−1(u)|2)F−1(u).

(6.3)

123

Efficient exponential Runge–Kutta methods of high… 557

64 128 256 512 1024
number of time steps

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3
er

ro
r

expRK4s5
expRK4s6
expRK5s8
expRK5s10
slope 4
slope 5

54321
CPU time

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

er
ro

r

expRK4s5
expRK4s6
expRK5s8
expRK5s10

Fig. 2 Order plots (left) and total CPU times (right) of expRK4s5, expRK4s6 , expRK5s8, and
expRK5s10 when applied to Example 6.2. The errors at time t = 3 are plotted as functions of the
number of time steps (left) and the total CPU time in second (right). For comparison, straight lines with
slopes 4 and 5 are added

Next, we integrate this system on the time interval [0, 3] with constant step sizes,
corresponding to the number of time steps N = 64, 128, 256, 512, 1024. Since the
exact solutionΨ (x, t) of (6.2) is unknown, a reliable reference solution is computed by
the stiff solver ode15swith AT OL = RT OL = 10−14. Again, the time integration
errors are measured in a discrete maximum norm at the final time t = 3.

As seen from the two double-logarithmic diagrams in Fig. 2, we plot the accu-
racy of the four employed integrators (expRK4s5, expRK4s6 , expRK5s8, and
expRK5s10) as functions of the number of time steps (left) and the total CPU time
(right). The left digram clearly indicates that the two new integrators expRK4s6
and expRK5s10 achieve their corresponding expected orders 4 and 5. While
expRK5s10 is a little more accurate than expRK5s8, expRK4s6 is much more
accurate than expRK4s5 for a given same number of time steps, meaning that it can
take much larger time steps while achieving the same accuracy. Moreover, the right
precision digram displays the efficiency plot indicating that both expRK4s6 and
expRK5s10 are much faster than their counterparts expRK4s5 and expRK5s8,
respectively. More specifically, a similar story is observed: for lower accuracy require-
ments, say error∼ 10−7, the new fourth-ordermethodexpRK4s6 is themost efficient,
whereas for error ∼ 10−8 or tighter the new fifth-order method expRK5s10 is the
most efficient.

Example 6.3 (A 2DGray–Scott model [3,7]): Consider the following two-dimensional
reaction-diffusion equation–the Gray–Scott equation model, for u = u(x, y, t), v =
v(x, y, t) on the square Ω = [0, L]2, (here, we choose L = 1.5) subject to periodic
boundary conditions

∂u

∂t
= duΔu − uv2 + α(1 − u),

∂v

∂t
= dvΔv + uv2 − (α + β)v,

(6.4)

123

558 V. T. Luan

32 64 128 256 512 1024
number of time steps

10-15

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

er
ro

r

expRK4s5
expRK4s6
expRK5s8
expRK5s10
slope 4
slope 5

Fig. 3 Order plots of expRK4s5, expRK4s6 , expRK5s8, and expRK5s10 when applied to Exam-
ple 6.3. The errors at time t = 2 are plotted as functions of the number of time steps. For comparison,
straight lines with slopes 4 and 5 are added

where Δ is the Laplacian operator, the diffusion coefficients du = 0.02, dv = 0.01,
and the bifurcation parameters α = 0.065, β = 0.035. The initial conditions are
Gaussian pulses

u(x, y, 0) = 1 − e−150
(
(x−L)2+(y−L)2

)
, v(x, y, 0) = e−150

(
(x−L)2+2(y−L)2

)
.

Spatial discretization: For this example,we use standard second order finite differences
using 150 grid points in each direction with mesh width Δx = Δy = L/150. This
gives a stiff system of the form (1.1).

The system is then solved on the time interval [0, 2] using constant step sizes. In
the absence of an analytical solution of (6.4), a high-accuracy reference solution is
computed using the expRK4s6 method with a sufficient small time step. Errors are
measured in a discrete maximum norm at the final time t = 2.

In Fig. 3, using the same number of time steps N = 32, 64, 128, 256, 512, 1024,
we again display the order plots of the taken integrators. One can see that expRK4s6
is much more accurate than expRK4s5 and expRK5s10 is slightly more accurate
than expRK5s8.

In Fig. 4, we display the efficiency plot for which the time step sizes were chosen
for each integrator to obtain about same error thresholds 10−i , i = 5, . . . , 11 (The
corresponding number of time steps for each integrator are displayed in Table 2. As
seen, given about the same level of accuracy, the new methods use smaller steps
than the old ones of the same order, meaning that they can take larger step sizes).
Again, expRK4s6 is much faster than expRK4s5 and it is interesting that this new
fourth-order method turns out to be the most efficient (although for error thresholds
tighter than 10−11 the new fifth-order method expRK5s10 seems to become the most
efficient).

123

Efficient exponential Runge–Kutta methods of high… 559

2 3 5 10 15 20
CPU time

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

er
ro

r

expRK4s5
expRK4s6
expRK5s8
expRK5s10

Fig. 4 Total CPU times of expRK4s5, expRK4s6 , expRK5s8, and expRK5s10 when applied to
Example 6.3. The time step sizes were chosen in such a way that each integrator achieves about the same
error thresholds 10−i , i = 5, . . . , 11. The errors at time t = 2 are plotted as functions of the total CPU
time (in second)

Table 2 The number of time steps taken to achieve about the same error thresholds 10−i , i = 5, . . . , 11

Method Error threshold versus number of time steps

10−5 10−6 10−7 10−8 10−9 10−10 10−11

expRK4s5 18 36 66 121 215 385 685

expRK4s6 10 19 28 46 122 230 420

expRK5s8 7 18 33 57 92 149 238

expRK5s10 8 17 30 51 82 130 208

The numerical results presented on the three examples above clearly confirm the
advantage of constructing parallel stages expRK methods based on Theorem 3.1,
leading to more efficient and accurate methods expRK4s6 and expRK5s10.

Acknowledgements The author would like to thank Reviewer 1 for the valuable comments and helpful
suggestions. He would like also to thank the National Science Foundation, which supported this research
under award NSF DMS–2012022. He also thanks Mississippi State University’s Center for Computational
Science (CCS) for providing some resources at the High Performance Computing Collaboratory (HPCC).

References

1. Al-Mohy, A.H., Higham, N.J.: Computing the action of the matrix exponential, with an application to
exponential integrators. SIAM J. Sci. Comput. 33, 488–511 (2011)

2. Berland, H., Skaflestad, B.: Solving the nonlinear Schrödinger equation using exponential integrators.
Technical report (2005)

123

560 V. T. Luan

3. Berland, H., Skaflestad, B., Wright, W.M.: Expint–a matlab package for exponential integrators. ACM
Trans. Math. Softw. 33(1), 4-es (2007)

4. Caliari, M., Kandolf, P., Ostermann, A., Rainer, S.: The Leja method revisited: backward error analysis
for the matrix exponential. SIAM J. Sci. Comp. 38(3), A1639–A1661 (2016)

5. Cazenave, T.: An introduction to nonlinear Schrödinger equations, vol. 22. Universidade Federal do
Rio de Janeiro, Centro de Ciências Matemáticas e da (1989)

6. Gaudreault, S., Pudykiewicz, J.: An efficient exponential time integration method for the numerical
solution of the shallow water equations on the sphere. J. Comput. Phys. 322, 827–848 (2016)

7. Gray, P., Scott, S.: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: oscillations
and instabilities in the system A + 2B → 3B; B → C . Chem. Eng. Sci. 39(6), 1087–1097 (1984)

8. Hochbruck, M., Ostermann, A.: Explicit exponential Runge-Kutta methods for semilinear parabolic
problems. SIAM J. Numer. Anal. 43, 1069–1090 (2005)

9. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
10. Ju, L., Wang, Z.: Exponential time differencing Gauge method for incompressible viscous flows.

Commun. Comput. Phys. 22(2), 517–541 (2017)
11. Luan, V.T.: High-order exponential integrators. Ph.D. thesis, University of Innsbruck (2014)
12. Luan, V.T.: Fourth-order two-stage explicit exponential integrators for time-dependent PDEs. Appl.

Numer. Math. 112, 91–103 (2017)
13. Luan, V.T., Michels, D.: Efficient exponential time integration for simulating nonlinear coupled oscil-

lators, J. Compt. Appl. Math. (Revised) (2020)
14. Luan, V.T., Ostermann, A.: Exponential B-series: the stiff case. SIAM J. Numer. Anal. 51, 3431–3445

(2013)
15. Luan, V.T., Ostermann, A.: Explicit exponential Runge-Kutta methods of high order for parabolic

problems. J. Comput. Appl. Math. 256, 168–179 (2014)
16. Luan, V.T., Ostermann, A.: Exponential Rosenbrock methods of order five-construction, analysis and

numerical comparisons. J. Comput. Appl. Math. 255, 417–431 (2014)
17. Luan, V.T., Ostermann, A.: Stiff order conditions for exponential Runge–Kutta methods of order five.

In: H.B. et al. (ed.) Modeling, Simulation and Optimization of Complex Processes-HPSC 2012, pp.
133–143. Springer, Berlin (2014)

18. Luan, V.T., Ostermann, A.: Parallel exponential Rosenbrock methods. Comput. Math. Appl. 71, 1137–
1150 (2016)

19. Luan, V.T., Pudykiewicz, J.A., Reynolds, D.R.: Further development of efficient and accurate time
integration schemes for meteorological models. J. Comput. Phys. 376, 817–837 (2019)

20. Michels, D.L., Luan, V.T., Tokman,M.: A stiffly accurate integrator for elastodynamic problems. ACM
Trans. Graph. 36(4), 116 (2017)

21. Niesen, J., Wright, W.M.: Algorithm 919: A Krylov subspace algorithm for evaluating the ϕ-functions
appearing in exponential integrators. ACM Trans. Math. Soft. 38(3), 22 (2012)

22. Pieper, K., Sockwell, K.C., Gunzburger, M.: Exponential time differencing for mimetic multilayer
ocean models. J. Comput. Phys. 398, 817–837 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Efficient exponential Runge–Kutta methods of high order: construction and implementation
	Abstract
	1 Introduction
	2 Motivation and existing methods
	2.1 An efficient way of implementation
	2.2 Existing schemes and remarks

	3 Stiff order conditions and convergence analysis
	3.1 Stiff order conditions for methods up to order 5
	3.2 A stronger convergence result

	4 Derivation of new efficient exponential Runge–Kutta methods
	4.1 A family of fourth-order methods with parallel stages
	4.2 A family of fifth-order methods with parallel stages

	5 Details implementation of fourth- and fifth-order schemes
	6 Numerical experiments
	Acknowledgements
	References

