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Abstract
The localized exponential time differencing method based on overlapping domain
decomposition has been recently introduced and successfully applied to parallel com-
putations for extreme-scale numerical simulations of coarsening dynamics based on
phase field models. In this paper, we focus on numerical solutions of a class of semi-
linear parabolic equations with the well-knownAllen–Cahn equation as a special case.
We first study the semi-discrete system under the standard central difference spatial
discretization and prove the equivalence between the monodomain problem and the
corresponding multidomain problem obtained by the Schwarz waveform relaxation
iteration. Then we develop the fully discrete localized exponential time differencing
schemes and, by establishing the maximum bound principle, prove the convergence
of the fully discrete localized solutions to the exact semi-discrete solution and the
convergence of the iterative solutions. Numerical experiments are carried out to verify
the theoretical results in one-dimensional space and test the convergence and accuracy
of the proposed algorithms with different numbers of subdomains in two-dimensional
space.
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1 Introduction

Semilinear parabolic equations have been widely used in many mathematical models
for various fields ranging from physics, chemistry, biology to materials and social sci-
ences. Some examples of semilinear parabolic equations include the reaction–diffusion
equations for chemical reactions and population dynamics [13], the Allen–Cahn and
Cahn–Hilliard equations for modeling phase transitions [2,3], the epitaxial growth
models for simulating growth of thin films [28], the phase field crystal models for
predicting crystal nucleation and growth [8], the time-dependent advection-diffusion
and Navier–Stokes equations for fluids dynamics [31], the Ginzburg–Landau equa-
tions for modeling superconductivity [5] and so on. The analytic solutions of these
models are usually not available, hence numerical methods play an important role in
studying thesemodels. Applying spatial discretizations, such as finite difference, finite
element, or spectral collocation methods, to these semilinear parabolic equations will
lead to a system of ordinary differential equations (ODEs) in time, which usually con-
sists of highly stiff linear and/or nonlinear terms. When we consider time-marching
approaches to the resulting ODE system, this stiffness leads to a severe constraint
on the time step size for the sake of numerical stability. Therefore, traditional time-
stepping schemes based on forward and backward differentiation formulas are not
adequate for efficient numerical methods for the models mentioned above. In recent
decades, numerous researches are devoted to efficient and stable time discretizations
for highly stiff ODE systems, such as large stability domain ODE solvers [25,29],
strong stability preserving methods [12,21,30], and exponential integrator methods
[18,26].

Exponential time differencing (ETD) methods are efficient numerical methods for
the temporal integration of ODE systems based on exponential integrators. Thorough
reviewsonETDmethods are given in [4,17,18]. TheETDmethods are derivedbasedon
the variation-of-constants formulawith the nonlinear terms in the systemapproximated
by polynomial interpolations, followed by exact integration of the resulting integrals.
Since the contribution of the linear part is evaluated exactly, the ETDmethods provide
desirable stability and accuracy by further combining with linear splitting techniques
for stabilization of the nonlinear term, and hence, larger time step sizes are allowed
while explicit methods often require a severe restriction on time step sizes. By using
the special structure of the linear operator, the ETDmethods often can be implemented
via fast algorithms on regular domains, which leads to successful applications of these
methods to efficient simulations of coarsening dynamics inmaterials science, see, e.g.,
[6,22–24,33] for the excellent numerical performance of ETD methods.

Applications of the ETD methods were limited initially due to the massive calcu-
lations for evaluating multiplications of matrix exponentials and vectors, especially
when the size of the matrix is large. For the sake of practical implementation of the
ETD methods, a large number of studies were devoted to the development of effi-
cient algorithms for the action of matrix exponentials, see, e.g., [1,16]. Alternatively,
a localized compact ETD algorithm based on overlapping domain decomposition was
first introduced in [32] for extreme-scale phase field simulations of three-dimensional
coarsening dynamics on supercomputers. The key idea of this algorithm is that the
ETD method is conducted locally in each subdomain in parallel and the data in the
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Overlapping domain decomposition based exponential time… 3

overlapping regions is transferred to the corresponding neighboring subdomains for
time marching. The numerical results showed satisfactory computational efficiency
and accuracy of the algorithm, though the theoretical analysis was not given there.

To our knowledge, the first literature on numerical analysis of localized ETD algo-
rithms with overlapping domain decomposition was provided by [14] for the diffusion
equation in one-dimensional space. For the continuous and space-discrete problems
of the diffusion problem, the equivalence of the multidomain problem to the corre-
sponding monodomain one was proven in [11] by showing the convergence of the
iterative solutions generated by the Schwarz waveform relaxation algorithm. In the
fully discrete version, however, the localized ETD scheme is not equivalent to the
corresponding monodomain ETD scheme. In [14], the fully discrete first- and second-
order localized ETD solutions were proven to converge to the exact solution of the
space-discrete multidomain problem. Then, two types of iterative algorithms were
proposed for practical calculations: one is based on the Schwarz iteration conducted
at each time step and involves solving stationary problems in the subdomains in each
iteration, while the other is based on the Schwarz waveform relaxation algorithm
where the space-discrete problem is solved in the subdomains in each iteration. The
iterative solutions were then proven to converge to the fully discrete localized ETD
solutions at the same rate as the Schwarz iteration algorithm studied in [11] for the
continuous and space-discrete problems. The analysis given in [14] is mainly based
on the maximum principle of the diffusion equation and the corresponding discrete
versions. The methods have also been extended to the case of nonoverlapping subdo-
mains in [15], where the convergence of the localized ETD solutions is proven based
on the variation-of-constants formula.

As a continuation of [14], we consider in this paper the numerical analysis of local-
ized ETD methods with overlapping subdomains for semilinear parabolic equations.
It should be noted that the equivalence between the semilinear parabolic problem
and the corresponding multidomain problem was shown in [10] by considering the
Schwarz waveform relaxation iteration for the continuous equations. The linear and
superlinear convergence rates of the iterative solutionswere also proven for the cases of
unbounded and bounded time intervals, respectively. In this work, we first consider the
semi-discrete problem and the corresponding multidomain problem by using the cen-
tral difference approximation in space. We obtain the equivalence of both problems by
proving rigorously the convergence of the iterative solutions generated by the Schwarz
waveform relaxation algorithm. Then, we derive the fully discrete schemes by using
the localized ETD approximation in time with first- and second-order accuracy and,
similar to [14], propose two types of iterative algorithms for practical computations.
Instead of the maximum principle for the diffusion problem, the semilinear parabolic
equations with suitable nonlinear terms satisfy the “maximum bound principle” (see
[7] and references cited therein), which says, there exists a constant such that if the
absolute value of initial and boundary data is bounded by this constant, then the solu-
tion is also bounded by the same constant in the whole time and space. We show that
such a maximum bound principle can be preserved by the semi-discrete multidomain
problem and the fully discrete localized ETD schemes. The temporal convergence
is proven by standard consistency and stability estimates using the maximum bound
principle.
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4 X. Li et al.

The rest of this paper is organized as follows. In Sect. 2, the model initial-
boundary-value problem of semilinear parabolic equations is introduced along with
the multidomain problem based on overlapping domain decomposition. For com-
pleteness, we present the convergence results of the Schwarz waveform relaxation
methods studied in [10]. In Sect. 3, we consider the semi-discrete system of the orig-
inal problem and prove the linear convergence of the overlapping Schwarz waveform
relaxation algorithm for the semi-discrete multidomain problem. The fully discrete
first- and second-order localized ETD schemes are presented in Sect. 4, as well as
the iterative algorithms for solving the discrete coupled problems. In Sect. 5, the con-
vergence of the iterative localized ETD solutions and the temporal convergence of
the fully discrete solutions to the exact semi-discrete solutions are proven. In Sect. 6,
numerical experiments are carried out in one- and two-dimensional cases to study the
convergence behaviors of the proposed algorithms. Finally, some concluding remarks
are given in Sect. 7.

2 Model problem and overlapping domain decomposition

In this section, we first introduce themodel problem of semilinear parabolic equations,
thenwepresent themultidomain problembased on overlapping domain decomposition
and recall the convergence results of the Schwarzwaveform relaxation algorithm given
in [10].

Let us consider the following semilinear parabolic equation in one-dimensional
space: ⎧

⎪⎪⎨

⎪⎪⎩

∂u

∂t
= D

∂2u

∂x2
+ f (u), 0 < x < L, 0 < t ≤ T ,

u(0, t) = g1(t), u(L, t) = g2(t), 0 < t ≤ T ,

u(x, 0) = u0(x), 0 ≤ x ≤ L,

(1)

where D > 0 is the diffusion coefficient and f ∈ C1(R) satisfies (F1) there exists
ρ > 0 such that f (ρ) ≤ 0 ≤ f (−ρ); (F2) the derivative f ′(s) is bounded from above
in R and denote by R = sups∈R f ′(s).

It is shown in [7] that under condition (F1), problem (1) satisfies the maximum
bound principle which will be stated later. Condition (F2) actually gives a restriction
on the increasing rate of the nonlinear term and it will be used in the proofs of the
convergence results (Theorems 3, 7, and 8) in later sections. A simple example of f
could be f (s) = −swith R = −1 and arbitrary positiveρ. Another important example
is given by f (s) = s−s3 with R = 1 and ρ ≥ 1, which corresponds to theAllen–Cahn
equation. We assume that the given boundary and initial data g1(t), g2(t), and u0(x)
are piecewise continuous, so that the existence and uniqueness of a solution of (1) is
guaranteed. We define the following norms for any function v ∈ C([0, L] × [0, T ]):

‖v(·, t)‖∞ = max
0≤x≤L

|v(x, t)|, ‖v(x, ·)‖T = max
0≤t≤T

|v(x, t)|, ‖v‖∞,T = max
0≤x≤L

max
0≤t≤T

|v(x, t)|.

The well-known maximum bound principle of problem (1) can be stated as follows
(see, e.g., [7,9]): for the constant ρ > 0 in (F1), if max{‖u0‖∞, ‖g1‖T , ‖g2‖T } ≤ ρ,
then the solution u(x, t) of (1) satisfies ‖u‖∞,T ≤ ρ.
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Overlapping domain decomposition based exponential time… 5

Fig. 1 A decomposition into two
overlapping subdomains [14]

Let us decompose the domain � = (0, L) into two overlapping subdomains �1 =
(0, βL) and �2 = (αL, L) with 0 < α < β < 1 as given in Fig. 1.

The solution u(x, t) of (1) now can be obtained from the solutions v(x, t) on
�1 × [0, T ] and w(x, t) on �2 × [0, T ] of the coupled problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v

∂t
= D

∂2v

∂x2
+ f (v), 0 < x < βL, 0 < t ≤ T ,

v(0, t) = g1(t), 0 < t ≤ T ,

v(βL, t) = w(βL, t), 0 < t ≤ T ,

v(x, 0) = u0(x), 0 ≤ x ≤ βL,

(2a)

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂w

∂t
= D

∂2w

∂x2
+ f (w), αL < x < L, 0 < t ≤ T ,

w(αL, t) = v(αL, t), 0 < t ≤ T ,

w(L, t) = g2(t), 0 < t ≤ T ,

w(x, 0) = u0(x), αL ≤ x ≤ L.

(2b)

Note that the pair (v,w)with v = u on�1×[0, T ] andw = u on�2×[0, T ] is the
solution of (2). Theuniqueness is obtained as a result of the convergence of theSchwarz
waveform relaxation algorithm, which involves, at each iteration k = 0, 1, . . . , the
solution of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂v(k+1)

∂t
= D

∂2v(k+1)

∂x2
+ f (v(k+1)), 0 < x < βL, 0 < t ≤ T ,

v(k+1)(0, t) = g1(t), 0 < t ≤ T ,

v(k+1)(βL, t) = w(k)(βL, t), 0 < t ≤ T ,

v(k+1)(x, 0) = u0(x), 0 ≤ x ≤ βL,

(3a)

123



6 X. Li et al.

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂w(k+1)

∂t
= D

∂2w(k+1)

∂x2
+ f (w(k+1)), αL < x < L, 0 < t ≤ T ,

w(k+1)(αL, t) = v(k)(αL, t), 0 < t ≤ T ,

w(k+1)(L, t) = g2(t), 0 < t ≤ T ,

w(k+1)(x, 0) = u0(x), αL ≤ x ≤ L,

(3b)

where v(0)(αL, t) and w(0)(βL, t) are given initial guesses. The convergence of the
Schwarz iteration (3) is guaranteed by the following theorem in [10].

Theorem 1 The Schwarz iterative solution (v(k), w(k)) of (3) converges to the solution
(v,w) of (2) at the superlinear rate:

‖v(2k+1) − v‖∞,T ≤ max{e2RT , 1} erfc
(k(β − α)L√

DT

)
‖w(0)(βL, ·) − w(βL, ·)‖T ,

‖w(2k+1) − w‖∞,T ≤ max{e2RT , 1} erfc
(k(β − α)L√

DT

)
‖v(0)(αL, ·) − v(αL, ·)‖T ,

where erfc denotes the complementary error function.

3 Semi-discrete problems andmaximum bound principles

In this section, we first consider the semi-discrete problem for (1) by finite difference
discretizations and prove the semi-discretemaximum bound principle. Then, after pre-
senting some useful lemmas, we show that the semi-discrete multidomain problem, by
the Schwarz waveform relaxation iteration, is equivalent to the monodomain problem.

3.1 Monodomain problem

Let us consider the spatial discretization by using the standard second-order cen-
tral difference with a uniform grid of size h = L/(N + 1). Denote by uuu(t) =
(u1(t), u2(t), . . . , uN (t))T with u j (t) representing the approximation of u( jh, t) for
j = 1, 2, . . . , N . We obtain the following ODE system for the semi-discrete problem
of (1):

{ duuu

dt
= A(N )uuu + fff (uuu) + BBB(g1(t), g2(t)), 0 < t ≤ T ,

uuu(0) = uuu0,
(4)
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Overlapping domain decomposition based exponential time… 7

where the N × N matrix A(N ), the vector-valued functions fff (uuu) and BBB(g1(t), g2(t))
are given by

A(N ) = D

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 · · · 0

1 −2 1
. . .

.

.

.

0 1 −2
. . . 0

.

.

.
. . .

. . .
. . . 1

0 · · · 0 1 −2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, fff (uuu) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (u1(t))
f (u2(t))

.

.

.

f (uN−1(t))
f (uN (t))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, BBB(g1(t), g2(t)) = D

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

g1(t)
0
.
.
.

0
g2(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and uuu0 is the initial vector, uuu0 = (u0(h), u0(2h), . . . , u0(Nh))T . Define the following
norms for each function vvv = (v1, v2, . . . , vN )T ∈ C([0, T ];RN ):

‖vvv(t)‖∞ = max
1≤ j≤N

|v j (t)|, ‖v j‖T = max
0≤t≤T

|v j (t)|, ‖vvv‖∞,T = max
1≤ j≤N

max
0≤t≤T

|v j (t)|.

We now establish the semi-discrete version of themaximum bound principle. It should
be noted that the general framework proposed in [7] gives a systematic analysis on the
maximum bound principle. In spite of this, we still present a brief statement for the
special case here for completeness of this paper. By introducing a stabilizing constant
S > 0, the semi-discrete problem (4) is equivalent to

{ duuu

dt
= A(N )uuu − Suuu + fff S(uuu) + BBB(g1(t), g2(t)), 0 < t ≤ T ,

uuu(0) = uuu0,
(5)

where fff S(uuu) = fff (uuu)+ Suuu. In the following, we impose a condition on the stabilizing
constant S such that

S ≥ max
ξ∈[−ρ,ρ] | f

′(ξ)|. (6)

Lemma 1 Under condition (6), we have

(i) | f S(ξ)| ≤ Sρ for any ξ ∈ [−ρ, ρ];
(ii) | f S(ξ1) − f S(ξ2)| ≤ 2S|ξ1 − ξ2| for any ξ1, ξ2 ∈ [−ρ, ρ].

Proof We have f S(ξ) = f (ξ) + Sξ and ( f S)′(ξ) = f ′(ξ) + S. To prove (i), as
( f S)′(ξ) ≥ 0 for any ξ ∈ [−ρ, ρ] (deduced from (6)), we use condition (F1) and
obtain

−Sρ ≤ f (−ρ) + S(−ρ) ≤ f S(ξ) ≤ f (ρ) + Sρ ≤ Sρ.

Again by (6), we have |( f S)′(ξ)| ≤ 2S for any ξ ∈ [−ρ, ρ], which leads to (ii).

Theorem 2 Suppose that max{‖u0‖∞, ‖g1‖T , ‖g2‖T } ≤ ρ, then the semi-discrete
system (4) admits a unique solution uuu ∈ C([0, T ];RN ) and ‖uuu‖∞,T ≤ ρ.

Proof Denote Bρ = {ξξξ ∈ R
N : ‖ξξξ‖∞ ≤ ρ} and Xt = C([0, t]; Bρ). Clearly, Xt ,

equipped with the norm ‖·‖Xt = ‖·‖∞,t , becomes a Banach space for each t ∈ [0, T ].
We need to show that there exists a unique solution uuu ∈ XT of the system (4).
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8 X. Li et al.

Given T1 ∈ (0, T ] and φφφ ∈ XT1 , we denote byψψψ the solution of

{ dψψψ

dt
= A(N )ψψψ − Sψψψ + fff S(φφφ) + BBB(g1(t), g2(t)), 0 < t ≤ T1,

ψψψ(0) = uuu0.

Obviously, ψψψ is uniquely defined since A(N ) − SI(N ) (with I(N ) the N × N identity
matrix) is symmetric andnegative definite. If‖ψψψ‖∞,T1 ≤ max{‖uuu0‖∞, ‖g1‖T , ‖g2‖T }
, then ψψψ ∈ XT1 . Otherwise, suppose that there exists ( j0, t0) with 1 ≤ j0 ≤ N and
t0 ∈ (0, T1] such that ψ j0(t0) = ‖ψψψ‖∞,T1 , then we have

dψ j0

dt
(t0) ≥ 0, and

(
A(N )ψψψ(t0) + BBB(g1(t0), g2(t0))

)

j0
≤ 0,

which implies that
Sψ j0(t0) ≤ f S(φ j0(t0)). (7)

Since |φ j0(t0)| ≤ ρ, by Lemma 1-(i), we deduce from (7) that ψ j0(t0) ≤ ρ, and thus,
‖ψψψ‖∞,T1 ≤ ρ. Similarly, if there exists ( j ′0, t ′0) with 1 ≤ j ′0 ≤ N and t ′0 ∈ (0, T1]
such that ψ j ′0(t

′
0) = −‖ψψψ‖∞,T1 , we can also show that ‖ψψψ‖∞,T1 ≤ ρ. In any case, we

obtain the unique solutionψψψ ∈ XT1 .
Denote byA the mappingφφφ 	→ ψψψ from XT1 to XT1 . Next we demonstrate thatA is

a strict contraction if T1 is small sufficiently. To this end, we choose φφφ, φ̃̃φ̃φ ∈ XT1 and
defineψψψ = A(φφφ), ψ̃̃ψ̃ψ = A(φ̃̃φ̃φ). The difference εψψψ = ψψψ − ψ̃̃ψ̃ψ satisfies

{ dεψψψ

dt
= A(N )εψψψ − Sεψψψ + fff S(φφφ) − fff S(φ̃̃φ̃φ), 0 < t ≤ T1,

εψψψ(0) = 000,

or equivalently,

εψψψ(t) =
∫ t

0
e−S(t−τ)e(t−τ)A(N ) [ fff S(φφφ(τ)) − fff S(φ̃̃φ̃φ(τ ))] dτ, 0 ≤ t ≤ T1.

Since A(N ) is strictly diagonally dominant with all negative diagonal entries, we know
from [7] that the set of operators {et A(N )}t>0 becomes a contraction semigroup in
the sense of matrix ∞-norm, namely, ‖et A(N )‖∞ ≤ 1. Thus, using Lemma 1-(ii), we
derive

‖εψψψ(t)‖∞ ≤
∫ t

0
e−S(t−τ)‖e(t−τ)A(N )‖∞‖ fff S(φφφ(τ)) − fff S(φ̃̃φ̃φ(τ ))‖∞ dτ

≤ 2S
∫ t

0
e−S(t−τ)‖φφφ(τ) − φ̃̃φ̃φ(τ )‖∞ dτ

≤ 2(1 − e−St )‖φφφ − φ̃̃φ̃φ‖Xt ,

and then,
‖A(φφφ) − A(φ̃̃φ̃φ)‖XT1

≤ 2(1 − e−ST1)‖φφφ − φ̃̃φ̃φ‖XT1
.
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Overlapping domain decomposition based exponential time… 9

Choose T1 small sufficiently such that T1 < S−1 ln 2, then 2(1 − e−ST1) < 1, which
means A is a strict contraction.

Since XT1 is complete, we can apply the Banach’s fixed-point theorem to obtain a
unique solution uuu ∈ XT1 of the system (5) (or equivalently, of the system (4)) on the
time interval [0, T1]. Note that T1 depends only on the constant S, so we can repeat
the same argument to extend the solution to the time interval [T1, 2T1]. After finite
steps, we obtain the unique solution uuu ∈ XT on the time interval [0, T ].

3.2 Preliminary lemmas

We now establish the semi-discrete analogue of the positivity lemma [10, Lemma 2.1].
For vectors φφφ,ψψψ ∈ R

N , we write φφφ ≥ ψψψ if φ j ≥ ψ j for all 1 ≤ j ≤ N .

Lemma 2 Assume that C(t) = diag{c1(t), c2(t), . . . , cN (t)} and there exists a con-
stant R0 such that c j (t) ≤ R0 for all 1 ≤ j ≤ N and t ∈ [0, T ]. If a function ψψψ(t)
satisfies the system

{ dψψψ

dt
− A(N )ψψψ − C(t)ψψψ ≥ 000, 0 < t ≤ T ,

ψψψ(0) ≥ 000,
(8)

thenψψψ(t) ≥ 000 for any t ∈ [0, T ].
Proof First, we consider the special case: c j (t) < 0 for all 1 ≤ j ≤ N and t ∈ [0, T ],
namely, the diagonal entries of C(t) are negative. Assume that there exists ( j0, t0)
with 1 ≤ j0 ≤ N and t0 ∈ (0, T ] such that

ψ j0(t0) = min
1≤ j≤N , 0≤t≤T

ψ j (t).

We shall show ψ j0(t0) ≥ 0 by contradiction. Suppose that ψ j0(t0) < 0, then it is
implied that

dψ j0

dt
(t0) ≤ 0, and

(
A(N )ψψψ(t0)

)

j0
≥ 0.

In addition, as c j0(t0) < 0, we obtain

(dψψψ

dt
(t0) − A(N )ψψψ(t0) − C(t0)ψ(t0)

)

j0
< 0,

which is contrary to the first inequality in (8). Hence, ψ j0(t0) ≥ 0 and so ψψψ(t) ≥ 000
for any t ∈ [0, T ].

Next, we consider the general case. For any fixed ε > 0, let Rε := R0 + ε and
φφφ(t) := e−Rε tψψψ(t). Thenψψψ(t) = eRε tφφφ(t) and we have

dψψψ(t)

dt
− A(N )ψψψ(t) − C(t)ψψψ(t) = eRε t

(dφφφ(t)

dt
+ Rεφφφ(t) − A(N )φφφ(t) − C(t)φφφ(t)

)
,
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10 X. Li et al.

which means that the function φφφ(t) satisfies the inequality

dφφφ

dt
− A(N )φφφ − (C(t) − Rε I(N ))φφφ ≥ 000

andφφφ(0) = ψψψ(0) ≥ 000. Since c j (t) < Rε, namely, the diagonal entries ofC(t)−Rε I(N )

is negative, by the above argument, we have φφφ(t) ≥ 000, and consequently,ψψψ(t) ≥ 000.

Corollary 1 Suppose thatψψψ(t) satisfies the system

{ dψψψ

dt
− A(N )ψψψ − C(t)ψψψ = BBB(g1(t), g2(t)), 0 < t ≤ T ,

ψψψ(0) = 000,

where C(t) satisfies the assumption given in Lemma 2. Then it holds that

|ψ j (t)| ≤ D

h2

∫ t

0
eR0(t−τ)

((
e(t−τ)A(N )

)

j,1|g1(τ )| + (
e(t−τ)A(N )

)

j,N |g2(τ )|
)
dτ,

for any 1 ≤ j ≤ N and 0 ≤ t ≤ T , where (·) j,k denotes the ( j, k)-entry of a matrix.

Proof Let ψ̃̃ψ̃ψ(t) be the solution of the following system:

⎧
⎨

⎩

dψ̃̃ψ̃ψ

dt
− A(N )ψ̃̃ψ̃ψ − R0ψ̃̃ψ̃ψ = BBB(|g1(t)|, |g2(t)|), 0 < t ≤ T ,

ψ̃̃ψ̃ψ(0) = 000,

or equivalently,

ψ̃̃ψ̃ψ(t) =
∫ t

0
eR0(t−τ)e(t−τ)A(N )BBB(|g1(τ )|, |g2(τ )|) dτ.

From Lemma 2 we have that ψ̃̃ψ̃ψ(t) ≥ 000 for 0 ≤ t ≤ T . Note that

−R0ψ̃̃ψ̃ψ+C(t)ψψψ = −R0ψ̃̃ψ̃ψ+C(t)ψψψ−C(t)ψ̃̃ψ̃ψ+C(t)ψ̃̃ψ̃ψ = −C(t)εψψψ(t)−(R0 I(N )−C(t))ψ̃̃ψ̃ψ,

(9)
where εψψψ(t) := ψ̃̃ψ̃ψ(t) − ψψψ(t). By the definitions of ψψψ , ψ̃̃ψ̃ψ and using (9), we deduce
that εψψψ(t) satisfies the system:

{ dεψψψ

dt
− A(N )εψψψ − C(t)εψψψ ≥ 000, 0 < t ≤ T ,

εψψψ(0) = 000.

According to Lemma 2, we have ψ̃̃ψ̃ψ(t) −ψψψ(t) ≥ 000. A similar result holds for the sum
ψ̃̃ψ̃ψ(t) + ψψψ(t) ≥ 000. Hence, we obtain

|ψ j (t)| ≤ ψ̃ j (t), 1 ≤ j ≤ N , 0 ≤ t ≤ T ,
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Overlapping domain decomposition based exponential time… 11

that is,

|ψ j (t)| ≤
∫ t

0
eR0(t−τ)

(
e(t−τ)A(N )BBB(|g1(τ )|, |g2(τ )|)

)

j
dτ

= D

h2

∫ t

0
eR0(t−τ)

((
e(t−τ)A(N )

)

j,1|g1(τ )| + (
e(t−τ)A(N )

)

j,N |g2(τ )|
)
dτ,

which completes the proof.

The following lemma gives the estimates related to the entries of the matrix et A(N )

and will be used in the analysis later.

Lemma 3 For the tridiagonal matrix A(N ) defined above, we have

D

h2

∫ t

0

(
e(t−τ)A(N )

)

j,1 dτ ≤ N + 1 − j

N + 1
, (10a)

D

h2

∫ t

0

(
e(t−τ)A(N )

)

j,N dτ ≤ j

N + 1
, (10b)

for any 1 ≤ j ≤ N and t > 0.

Proof Since A(N ) = θ(−2I(N ) + J ), where θ = D/h2 and J contains only nonnega-
tive entries, we have

eτ A(N ) = e−2τθ I(N )eτθ J = e−2τθ
∞∑

k=0

(τθ)k

k! J k,

which implies that the matrix eτ A(N ) has only nonnegative entries. Thus, for any 1 ≤
j, k ≤ N and t > 0, we derive

∫ t

0

(
e(t−τ)A(N )

)

j,k dτ =
∫ t

0

(
eτ A(N )

)

j,k dτ ≤
∫ ∞

0

(
eτ A(N )

)

j,k dτ. (11)

Since A(N ) is symmetric and negative definite and

∫ ∞

0
eτλ dτ = −1

λ
, ∀ λ < 0,

according to the property of matrix functions (see, e.g., [19, Theorem 6.2.9]), we have

∫ ∞

0

(
eτ A(N )

)

j,k dτ =
( ∫ ∞

0
eτ A(N ) dτ

)

j,k
= (−A−1

(N )) j,k . (12)

The entries of the inversion of A(N ) is given by [20]

(A−1
(N )) j,k = − ( j + k − | j − k|)(2N + 2 − j − k − | j − k|)

4θ(N + 1)
. (13)
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12 X. Li et al.

Combining (11)–(13), we obtain

θ

∫ t

0

(
e(t−τ)A(N )

)

j,k dτ ≤ ( j + k − | j − k|)(2N + 2 − j − k − | j − k|)
4(N + 1)

.

Setting k = 1 and k = N lead to the inequalities (10a) and (10b), respectively.

3.3 Multidomain problem and Schwarz waveform relaxationmethod

For the overlapping domain decomposition as given in Fig. 1, we assume that αL =
Nαh and βL = Nβh for some integers Nα and Nβ such that 1 < Nα < Nβ < N .
Denote by N1 = Nβ − 1 and N2 = N − Nα the numbers of interior grid points in �1
and �2, respectively. Set Nβ,α = Nβ − Nα . As in the continuous case, the solution
uuu(t) of (4) can be obtained from the solutions vvv(t) = (v j (t))1≤ j≤N1 on �1 × [0, T ]
andwww(t) = (w j (t))1≤ j≤N2 on �2 × [0, T ] of the following two coupled problems:

{ dvvv

dt
= A1vvv + fff 1(vvv) + BBB1(g1(t), wNβ,α (t)), 0 < t ≤ T ,

v j (0) = u0( jh), 1 ≤ j ≤ N1,
(14a)

and

{ dwww

dt
= A2www + fff 2(www) + BBB2(vNα (t), g2(t)), 0 < t ≤ T ,

w j (0) = u0((Nα + j)h), 1 ≤ j ≤ N2,
(14b)

where A1 = A(N1), A2 = A(N2), and

fff 1(vvv) = (
f (v1(t)), f (v2(t)), . . . , f (vN1(t))

)T
,

fff 2(www) = (
f (w1(t)), f (w2(t)), . . . , f (wN2(t))

)T
,

BBB1(g1(t), wNβ,α (t)) = D

h2
(
g1(t), 0, . . . , 0, wNβ,α (t)

)T
,

BBB2(vNα (t), g2(t)) = D

h2
(
vNα (t), 0, . . . , 0, g2(t)

)T
.

Applying the Schwarz waveform relaxation iteration to the coupled problems (14),
we obtain

⎧
⎨

⎩

dvvv(k+1)

dt
= A1vvv

(k+1) + fff 1(vvv(k+1)) + BBB1(g1(t), w
(k)
Nβ,α

(t)), 0 < t ≤ T ,

v
(k+1)
j (0) = u0( jh), 1 ≤ j ≤ N1,

(15a)
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and

⎧
⎨

⎩

dwww(k+1)

dt
= A2www

(k+1) + fff 2(www(k+1)) + BBB2(v
(k)
Nα

(t), g2(t)), 0 < t ≤ T ,

w
(k+1)
j (0) = u0((Nα + j)h), 1 ≤ j ≤ N2,

(15b)

where v
(0)
Nα

(t) and w
(0)
Nβ,α

(t) are given initial guesses. The convergence of the semi-
discrete Schwarz iteration (15) is guaranteed by the following theorem. Note that in
[10], the Schwarz iteration was proven to converge only for continuous problems.

Theorem 3 The Schwarz iterative solution (vvv(k),www(k)) of (15) converges to the solu-
tion (vvv,www) of (14) at a linear rate:

‖vvv(2k+1) − vvv‖∞,T ≤ max{e2RT , 1}(κ(α, β))k‖w(0)
Nβ,α

− wNβ,α‖T ,

‖www(2k+1) − www‖∞,T ≤ max{e2RT , 1}(κ(α, β))k‖v(0)
Nα

− vNα‖T ,

where 0 < κ(α, β) := α(1 − β)

β(1 − α)
< 1.

Proof Let ddd(k)(t) := vvv(k)(t) − vvv(t) and eee(k)(t) := www(k)(t) − www(t), which satisfy the
error equations

⎧
⎨

⎩

dddd(k+1)

dt
= A1ddd(k+1) + fff ′

1(ξξξ
(k+1))ddd(k+1) + BBB1(0, e

(k)
Nβ,α

(t)), 0 < t ≤ T ,

ddd(k+1)(0) = 000,
(16a)

and

⎧
⎨

⎩

deee(k+1)

dt
= A2eee(k+1) + fff ′

2(ηηη
(k+1))eee(k+1) + BBB2(d

(k)
Nα

(t), 0), 0 < t ≤ T ,

eee(k+1)(0) = 000,
(16b)

where fff ′
� denotes the Jacobian of fff �, i.e.,

fff ′
�(ζζζ ) = diag{ f ′(ζ1), f ′(ζ2), . . . , f ′(ζN�

)}, ζζζ ∈ R
N� , � = 1, 2,

ξξξ (k+1)(t) lies between vvv(k+1)(t) and vvv(t) componentwisely for 0 < t ≤ T , and
ηηη(k+1)(t) lies between www(k+1)(t) and www(t) componentwisely for 0 < t ≤ T . Since
f ′(u) ≤ R for all u ∈ R (condition (F2)), we apply Corollary 1 to the system (16)
and obtain

|d(k+1)
j (t)| ≤ D

h2

∫ t

0
eR(t−τ)

(
e(t−τ)A1

)

j,N1
|e(k)

Nβ,α
(τ )| dτ, 1 ≤ j ≤ N1, 0 ≤ t ≤ T ,

(17a)
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14 X. Li et al.

and

|e(k+1)
j (t)| ≤ D

h2

∫ t

0
eR(t−τ)

(
e(t−τ)A2

)

j,1|d(k)
Nα

(τ )| dτ, 1 ≤ j ≤ N2, 0 ≤ t ≤ T .

(17b)

Evaluating (17b) at j = Nβ,α and combining with (17a), we deduce that

|d(k+2)
j (t)| ≤

( D

h2

)2
∫ t

0
eR(t−τ1)

(
e(t−τ1)A1

)

j,N1

∫ τ1

0
eR(τ1−τ2)

(
e(τ1−τ2)A2

)

Nβ,α,1|d(k)
Nα

(τ2)| dτ2dτ1

=
( D

h2

)2
∫ t

0

(
e(t−τ1)A1

)

j,N1

∫ τ1

0

(
e(τ1−τ2)A2

)

Nβ,α,1e
R(t−τ2)|d(k)

Nα
(τ2)| dτ2dτ1.

Setting j = Nα , by induction, we have

|d(2k)
Nα

(t)| ≤
( D

h2

)2k
∫ t

0

(
e(t−τ1)A1

)

Nα,N1

∫ τ1

0

(
e(τ1−τ2)A2

)

Nβ,α,1 · · ·
∫ τ2k−2

0

(
e(τ2k−2−τ2k−1)A1

)

Nα,N1

·
∫ τ2k−1

0

(
e(τ2k−1−τ2k )A2

)

Nβ,α,1e
R(t−τ2k )|d(0)

Nα
(τ2k)| dτ2kdτ2k−1 · · · dτ2dτ1

≤ max{eRt , 1}‖d(0)
Nα

‖t
( D

h2

)2k
∫ t

0

(
e(t−τ1)A1

)

Nα,N1

∫ τ1

0

(
e(τ1−τ2)A2

)

Nβ,α,1 · · ·

·
∫ τ2k−2

0

(
e(τ2k−2−τ2k−1)A1

)

Nα,N1

∫ τ2k−1

0

(
e(τ2k−1−τ2k )A2

)

Nβ,α,1 dτ2kdτ2k−1 · · · dτ2dτ1.
(18)

By using Lemma 3, we have

( D

h2

)2
∫ τ2k−2

0

(
e(τ2k−2−τ2k−1)A1

)

Nα,N1

∫ τ2k−1

0

(
e(τ2k−1−τ2k )A2

)

Nβ,α,1 dτ2kdτ2k−1

= D

h2

∫ τ2k−2

0

(
e(τ2k−2−τ2k−1)A1

)

Nα,N1

( D

h2

∫ τ2k−1

0

(
e(τ2k−1−τ2k )A2

)

Nβ,α,1 dτ2k
)
dτ2k−1

≤ D

h2

∫ τ2k−2

0

(
e(τ2k−2−τ2k−1)A1

)

Nα,N1
dτ2k−1 · N2 + 1 − Nβ,α

N2 + 1

≤ Nα

N1 + 1
· N2 + 1 − Nβ,α

N2 + 1

= Nα

Nβ

· N + 1 − Nβ

N + 1 − Nα

= κ(α, β).

Thus, we obtain from (18) that

|d(2k)
Nα

(t)| ≤ max{eRt , 1}(κ(α, β))k‖d(0)
Nα

‖t , 0 < t ≤ T ,

and consequently,

‖d(2k)
Nα

‖T ≤ max{eRT , 1}(κ(α, β))k‖d(0)
Nα

‖T .
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Overlapping domain decomposition based exponential time… 15

Similarly, we have

‖e(2k)
Nβ,α

‖T ≤ max{eRT , 1}(κ(α, β))k‖e(0)
Nβ,α

‖T . (19)

From (17a), we deduce that

|d(2k+1)
j (t)| ≤ max{eRT , 1}‖e(2k)

Nβ,α
‖T · D

h2

∫ t

0

(
e(t−τ)A1

)

j,N1
dτ, (20)

in which, by Lemma 3, one finds that

D

h2

∫ t

0

(
e(t−τ)A1

)

j,N1
dτ ≤ j

N1 + 1
< 1.

Thus, combining (20) and (19) yields the following estimate:

|d(2k+1)
j (t)| ≤ max{e2RT , 1}(κ(α, β))k‖e(0)

Nβ,α
‖T .

Similarly,
|e(2k+1)

j (t)| ≤ max{e2RT , 1}(κ(α, β))k‖d(0)
Nα

‖T ,

which completes the proof.

We remark that Theorem 1 implies the superlinear convergence rate of the Schwarz
iteration solution in the continuous case while we only obtain linear convergence rate
in Theorem 3 due to some technical difficulties for the semi-discrete case. However,
we still expect to observe the superlinear convergence rate in numerical experiments.
Theorem 3 also guarantees the uniqueness of the solution (vvv,www) of (14), and hence,
implies the equivalence between the multidomain problem (14) and the monodomain
one (4). Moreover, the maximum bound principle of the multidomain problem is a
direct corollary.

Corollary 2 Suppose that (vvv,www) is the solution of the multidomain problem (14). If

max{‖u0‖∞, ‖g1‖T , ‖g2‖T } ≤ ρ,

then we have ‖vvv‖∞,T ≤ ρ and ‖www‖∞,T ≤ ρ.

4 Fully discrete localized ETD schemes

In this section, we study the fully discrete localized ETD schemes. For completeness,
we first present the monodomain ETD schemes and the corresponding maximum
boundprinciple. Then,we introduce thefirst- and second-order localizedETDschemes
and show their unique solvability. Finally, two types of iterative algorithms for the
localized ETD schemes are derived: the first one is based on the Schwarz iteration
applied at each time step and involves solving stationary problems at each iteration,
and the second one is based on the Schwarz waveform relaxation algorithm.
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16 X. Li et al.

4.1 Monodomain ETD schemes

Consider a partition of the time interval [0, T ] by {tm = m�t : 0 ≤ m ≤ M} with a
uniform time step size �t = T /M . The exact solution of the equivalent system (5) at
each time level is given by the variation-of-constants formula:

uuu(tm+1) = e�t AS
(N )uuu(tm) +

∫ �t

0
e(�t−τ)AS

(N ) [ fff S(uuu(tm + τ)) + BBB(tm + τ)] dτ,

for m = 0, 1, . . . , M − 1, where AS
(N ) = A(N ) − SI(N ) and BBB(t) = BBB(g1(t), g2(t)).

Denote byUUUm the approximation of uuu(tm) by the ETD methods.
The first-order ETD (ETD1) scheme is obtained by approximating fff S(uuu(t)) on

[tm, tm+1] by the constant fff S(uuu(tm)) and approximating BBB(t) by the constant BBB(tm+1):

UUUm+1 = e�t AS
(N )UUUm +

∫ �t

0
e(�t−τ)AS

(N )[ fff S(UUUm) + BBB(tm+1)] dτ

= e�t AS
(N )UUUm + (AS

(N ))
−1(e�t AS

(N ) − I(N ))[ fff S(UUUm) + BBB(tm+1)]. (21)

The second-order ETD Runge–Kutta (ETDRK2) scheme is obtained by approxi-
mating fff S(uuu(t)) + BBB(t) on [tm, tm+1] with its linear interpolation polynomial:

UUUm+1 = e�t AS
(N )UUUm +

∫ �t

0
e(�t−τ)AS

(N )

{(
1 − τ

�t

)
[ fff S(UUUm ) + BBB(tm )] + τ

�t
[ fff S(Ũ̃ŨUm+1) + BBB(tm+1)]

}
dτ

= e�t AS
(N )UUUm +

∫ �t

0
e(�t−τ)AS

(N )

{
[ fff S(UUUm ) + BBB(tm )] + [ fff S(Ũ̃ŨUm+1) + BBB(tm+1)] − [ fff S(UUUm ) + BBB(tm )]

�t
τ
}
dτ

= e�t AS
(N )UUUm + (AS

(N ))
−1(e�t AS

(N ) − I(N ))[ fff S(UUUm ) + BBB(tm )]
+ (�t)−1(AS

(N ))
−2(e�t AS

(N ) − I(N ) − �t AS
(N ))[ fff S(Ũ̃ŨUm+1) − fff S(UUUm ) + BBB(tm+1) − BBB(tm )], (22)

where the predicted value Ũ̃ŨUm+1 is given by

Ũ̃ŨUm+1 = e�t AS
(N )UUUm + (AS

(N ))
−1(e�t AS

(N ) − I(N ))[ fff S(UUUm) + BBB(tm)].

We define the following norms for each function VVV = (Vm
j )1≤ j≤N , 0≤m≤M :

‖VVVm‖∞ = max
1≤ j≤N

|Vm
j |, ‖Vj‖T = max

0≤m≤M
|Vm

j |, ‖VVV ‖∞,T = max
1≤ j≤N

max
0≤m≤M

|Vm
j |.

Now we establish the fully discrete counterparts of the maximum bound principle
for the ETD1 and ETDRK2 schemes. To this end, we always assume condition (6) for
the rest of the paper.

Theorem 4 Suppose {UUUm}0≤m≤M is the solution of the ETD1 (21) or ETDRK2
scheme (22). If max{‖u0‖∞, ‖g1‖T , ‖g2‖T } ≤ ρ, then, for any �t > 0, we have
‖UUU‖∞,T ≤ ρ.
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Overlapping domain decomposition based exponential time… 17

Proof We prove this theorem by induction. Obviously, ‖UUU 0‖∞ ≤ ‖u0‖∞ ≤ ρ. Now
assume that the result holds for m = k: ‖UUUk‖∞ ≤ ρ. We will show that it also holds
for m = k + 1.

We note that the solution UUUk+1 is actually given by UUUk+1 = ψψψ(�t) with the
functionψψψ : [0,�t] → R

N solving

⎧
⎨

⎩

dψψψ

dt
= A(N )ψψψ − Sψψψ + f̂̂f̂f S(t,UUUk) + BBB(ĝ1(tk + t), ĝ2(tk + t)), 0 < t ≤ �t,

ψψψ(0) = UUUk,

where

f̂̂f̂f S(t,UUUk) =
{

fff S(UUUk), for ETD1,(
1 − t

�t

)
fff S(UUUk) + t

�t fff
S(Ũ̃ŨUk+1), for ETDRK2,

and

ĝ�(tk + t) =
{
g�(tk+1), for ETD1,(
1 − t

�t

)
g�(tk) + t

�t g�(tk+1), for ETDRK2,
� = 1, 2.

Note that
max

tk≤t≤tk+1
|̂g�(t)| ≤ max

tk≤t≤tk+1
|g�(t)|, � = 1, 2.

Since ‖UUUk+1‖∞ ≤ ‖ψψψ‖∞,�t , we just need to consider the case

‖ψψψ‖∞,�t > max
{
‖UUUk‖∞, max

tk≤t≤tk+1
|̂g1(t)|, max

tk≤t≤tk+1
|̂g2(t)|

}
,

and proceed as in the semi-discrete case (cf. Theorem 2). If there exists ( ĵ, t̂) with
1 ≤ ĵ ≤ N and t̂ ∈ (0,�t] such that ψ ĵ (̂t) = ‖ψψψ‖∞,�t , then

dψ ĵ

dt
(̂t) ≥ 0, and

(
A(N )ψψψ(̂t) + BBB(ĝ1(̂t), ĝ2(̂t))

)

ĵ ≤ 0,

which implies that
Sψ ĵ (̂t) ≤ (

f̂̂f̂f S (̂t,UUUk)
)

ĵ . (23)

For the ETD1 scheme, since |Uk
ĵ
| ≤ ρ, by using Lemma 1-(i), we deduce from (23)

that
Sψ ĵ (̂t) ≤ f S(Uk

ĵ
) ≤ Sρ.

Therefore, ψ ĵ (̂t) ≤ ρ, and as a consequence, ‖UUUk+1‖∞ ≤ ρ. For the ETDRK2

scheme, since the predicted value Ũ̃ŨUk+1 is calculated by the ETD1 scheme, it holds
that |Ũ k+1

ĵ
| ≤ ρ. Thus again, by using Lemma 1-(i), we obtain from the inequality

(23) that
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18 X. Li et al.

Sψ ĵ (̂t) ≤
(
1 − t̂

�t

)
f S(Uk

ĵ
) + t̂

�t
f S(Ũ k+1

ĵ
) ≤

(
1 − t̂

�t

)
· Sρ + t̂

�t
· Sρ = Sρ,

which yields ψ ĵ (̂t) ≤ ρ, and thus, ‖UUUk+1‖∞ ≤ ρ.

Similarly, if there exists ( ĵ ′, t̂ ′) with 1 ≤ ĵ ′ ≤ N and t̂ ′ ∈ (0,�t] such that
ψ ĵ ′ (̂t

′) = −‖ψψψ‖∞,�t , one can show that ‖UUUk+1‖∞ ≤ ρ. This completes the proof.

4.2 Localized ETD schemes and iterative algorithms

We apply the ETD methods to the semi-discrete multidomain problem (14) (with
overlapping subdomains as depicted in Fig. 1) to obtain the fully discrete localized
ETD schemes. The exact solution of (14) at each time level is given by the variation-
of-constants formula:

vvv(tm+1) = e�t AS
1vvv(tm) +

∫ �t

0
e(�t−τ)AS

1 [ fff S1 (vvv(tm + τ)) + BBB1(g1(tm + τ), wNβ,α (tm + τ))] dτ,

www(tm+1) = e�t AS
2www(tm) +

∫ �t

0
e(�t−τ)AS

2 [ fff S2 (www(tm + τ)) + BBB2(vNα (tm + τ), g2(tm + τ))] dτ,

for m = 0, 1, . . . , M − 1, where AS
� = A� − SI(N�) and fff S� (rrr) = fff �(rrr) + Srrr with

� = 1, 2. Denote by VVVm andWWWm the approximations of vvv(tm) andwww(tm).
The localized ETD1 scheme for solving the coupled problem (14) reads

VVVm+1 = e�t AS
1VVVm + (AS

1 )
−1(e�t AS

1 − I1)[ fff S1 (VVVm) + BBBm+1
1 ], (24a)

WWWm+1 = e�t AS
2WWWm + (AS

2 )
−1(e�t AS

2 − I2)[ fff S2 (WWWm) + BBBm+1
2 ], (24b)

for m = 0, 1, . . . , M − 1, where I1 = I(N1), I2 = I(N2),

BBBm
1 = BBB1(g1(tm),Wm

Nβ,α
), BBBm

2 = BBB2(V
m
Nα

, g2(tm)).

The localized ETDRK2 scheme for solving the coupled problem (14) reads

{
Ṽ̃ṼV m+1 = e�t AS

1VVVm + (AS
1 )−1(e�t AS

1 − I1)[ fff S1 (VVVm ) + BBBm
1 ],

VVVm+1 = Ṽ̃ṼV m+1 + (�t)−1(AS
1 )−2(e�t AS

1 − I1 − �t AS
1 )[ fff S1 (Ṽ̃ṼV m+1) − fff S1 (VVVm ) + BBBm+1

1 − BBBm
1 ], (25a)

{
W̃̃W̃Wm+1 = e�t AS

2WWWm + (AS
2 )−1(e�t AS

2 − I2)[ fff S2 (WWWm ) + BBBm
2 ],

WWWm+1 = W̃̃W̃Wm+1 + (�t)−1(AS
2 )−2(e�t AS

2 − I2 − �t AS
2 )[ fff S2 (W̃̃W̃Wm+1) − fff S2 (WWWm ) + BBBm+1

2 − BBBm
2 ],(25b)

for m = 0, 1, . . . , M − 1.

Theorem 5 The localized ETD schemes (24) and (25) are uniquely solvable.

Proof We first show the case of the localized ETD1 scheme (24). For � = 1, 2,
denote by q�

i, j the (i, j)-entry of the matrix (AS
� )−1(e�t AS

� − I�) and qqq�
j =

(q�
1, j , q

�
2, j , . . . , q

�
N�, j

)T . Note that

q�
i, j =

∫ �t

0

(
e(�t−τ)A�

)

i, j dτ, � = 1, 2.
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Thus, from Lemma 3 we find that

(
D

h2
)2q1Nα,N1

q2Nβ,α,1 ≤ κ(α, β) < 1

with κ(α, β) as defined in Theorem 3. For given VVVm and WWWm , the coupled problem
(24) is indeed a linear system with respect to VVVm+1 andWWWm+1:

{
VVVm+1 − D

h2
Wm+1

Nβ,α
qqq1N1

= e�t AS
1VVVm + (AS

1 )
−1(e�t AS

1 − I1) fff S1 (VVVm) + D
h2
g1(tm+1)qqq11 =: GGGm

1 ,

WWWm+1 − D
h2
Vm+1
Nα

qqq21 = e�t AS
2WWWm + (AS

2 )−1(e�t AS
2 − I2) fff S2 (WWW

m) + D
h2
g2(tm+1)qqq2N2

=: GGGm
2 ,

or equivalently, (
I1 P1
P2 I2

) (
VVVm+1

WWWm+1

)

=
(
GGGm

1
GGGm

2

)

. (26)

Clearly, the Nβ,αth column of P1 ∈ R
N1×N2 is given by − D

h2
qqq1N1

, the Nαth column of

P2 ∈ R
N2×N1 is given by − D

h2
qqq21, and all other entries of P1 and P2 are zero. Thus,

the Nβ,αth column of P2P1 is given by ( D
h2

)2q1Nα,N1
qqq21 and all other entries of P2P1

are zero. Then, the determinant of the coefficient matrix of the system (26) is

det

(
I1 P1
P2 I2

)

= det(I1) det(I2 − P2P1) = 1 −
( D

h2

)2
q1Nα,N1

q2Nβ,α,1 ≥ 1 − κ(α, β) > 0,

which implies the unique solvability of (26), and thus, the localized ETD1 scheme.
For the localized ETDRK2 scheme (25), note that

0 ≤ [
(�t)−1(AS

� )−2(e�t AS
� −I�−�t AS

� )
]

i, j =
∫ �t

0

τ

�t

(
e(�t−τ)A�

)

i, j dτ ≤ q�
i, j , � = 1, 2.

Therefore, using a similar argument as above, we can obtain the unique solvability of
(25).

We remark that, unlike the semi-discrete case, the localized ETD schemes (24) and
(25) do not give exactly the same fully discrete solutions as those obtained by the
corresponding monodomain ETD schemes (21) and (22). However, we shall show in
Section 5.2 that the localized ETD solutions converge to the exact solution of the semi-
discrete problem (14) as �t tends to zero. This property is specific to the ETD time
integration, and was first discussed in [14] for the case of linear parabolic problems.

Since the localized ETD schemes (24) and (25) are both coupled systems with
respect to VVVm+1 and WWWm+1, in the following, we construct two types of iterative
methods to solve them.
S-LETD: Space localized ETDmethodApplying the Schwarz iteration to the localized
ETD1 scheme (24) at each time step, we obtain the S-LETD1 method:

VVVm+1,(k+1) = e�t AS
1VVVm + (AS

1 )−1(e�t AS
1 − I1)[ fff S1 (VVVm) + BBB1(g1(tm+1),W

m+1,(k)
Nβ,α

)], (27a)

WWWm+1,(k+1) = e�t AS
2WWWm + (AS

2 )−1(e�t AS
2 − I2)[ fff S2 (WWWm) + BBB2(V

m+1,(k)
Nα

, g2(tm+1))], (27b)
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for k = 0, 1, . . . , where Vm+1,(0)
Nα

and Wm+1,(0)
Nβ,α

are given initial guess. The iteration
stops when

|Vm+1,(k+1)
Nα

− Vm+1,(k)
Nα

|
|Vm+1,(0)

Nα
|

< tol,
|Wm+1,(k+1)

Nβ,α
− Wm+1,(k)

Nβ,α
|

|Wm+1,(0)
Nβ,α

|
< tol, (28)

for a given tolerance tol > 0. Applying the Schwarz iteration to the localized ETDRK2
scheme (25), we obtain the S-LETDRK2 method:

Ṽ̃ṼV m+1 = e�t AS
1VVVm + (AS

1 )−1(e�t AS
1 − I1)[ fff S1 (VVVm) + BBB1(g1(tm),Wm

Nβ,α
)], (29a)

W̃̃W̃Wm+1 = e�t AS
2WWWm + (AS

2 )−1(e�t AS
2 − I2)[ fff S2 (WWWm) + BBB2(V

m
Nα

, g2(tm))], (29b)

VVVm+1,(k+1) = Ṽ̃ṼV m+1 + (�t)−1(AS
1 )−2(e�t AS

1 − I1 − �t AS
1 )

·[ fff S1 (Ṽ̃ṼV m+1) − fff S1 (VVVm) + BBB1(g1(tm+1),W
m+1,(k)
Nβ,α

) − BBB1(g1(tm),Wm
Nβ,α

)], (29c)
WWWm+1,(k+1) = W̃̃W̃Wm+1 + (�t)−1(AS

2 )−2(e�t AS
2 − I2 − �t AS

2 )

·[ fff S2 (W̃̃W̃Wm+1) − fff S2 (WWWm) + BBB2(V
m+1,(k)
Nα

, g2(tm+1)) − BBB2(V
m
Nα

, g2(tm))], (29d)

for k = 0, 1, . . . , where Vm+1,(0)
Nα

= Ṽ m+1
Nα

and Wm+1,(0)
Nβ,α

= W̃m+1
Nβ,α

. The iteration
stopping criterion is still chosen as (28).

ST-LETD: Space-time localized ETD method Instead of the S-LETD methods (27)
and (29), if we apply the ETD schemes to the Schwarz waveform relaxation iteration
system (15), we can obtain the space-time localized ETD methods. For a given initial
guess of Vm,(0)

Nα
and Wm,(0)

Nβ,α
for all 0 ≤ m ≤ M , the ST-LETD1 method (for the

(k + 1)-th iteration) reads

VVVm+1,(k+1) = e�t AS
1VVVm,(k+1) + (AS

1 )−1(e�t AS
1 − I1)[ fff S1 (VVVm,(k+1)) + BBB1(g1(tm+1),W

m+1,(k)
Nβ,α

)], (30a)

WWWm+1,(k+1) = e�t AS
2WWWm,(k+1) + (AS

2 )−1(e�t AS
2 − I2)[ fff S2 (WWWm,(k+1)) + BBB2(V

m+1,(k)
Nα

, g2(tm+1))], (30b)

for m = 0, 1, . . . , M − 1, where V 0,(k)
Nα

= u0(α) and W 0,(k)
Nβ,α

= u0(β) for any k. The
iteration stops when

max
1≤m≤M

|Vm,(k+1)
Nα

− Vm,(k)
Nα

|
max

1≤m≤M
|Vm,(0)

Nα
|

< tol,
max

1≤m≤M
|Wm,(k+1)

Nβ,α
− Wm,(k)

Nβ,α
|

max
1≤m≤M

|Wm,(0)
Nβ,α

|
< tol, (31)

for a given tolerance tol > 0. The ST-LETDRK2 method (for the (k + 1)-th iteration)
reads

Ṽ̃ṼV m+1,(k+1) = e�t AS
1VVVm,(k+1) + (AS

1 )−1(e�t AS
1 − I1)[ fff S1 (VVVm,(k+1)) + BBB1(g1(tm),Wm,(k)

Nβ,α
)], (32a)

VVVm+1,(k+1) = Ṽ̃ṼV m+1,(k+1) + (�t)−1(AS
1 )−2(e�t AS

1 − I1 − �t AS
1 )

·[ fff S1 (Ṽ̃ṼV m+1,(k+1)) − fff S1 (VVVm,(k+1)) + BBB1(g1(tm+1),W
m+1,(k)
Nβ,α

) − BBB1(g1(tm),Wm,(k)
Nβ,α

)], (32b)
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W̃̃W̃Wm+1,(k+1) = e�t AS
2WWWm,(k+1) + (AS

2 )−1(e�t AS
2 − I2)[ fff S2 (WWWm,(k+1)) + BBB2(V

m,(k)
Nα

, g2(tm))], (32c)
WWWm+1,(k+1) = W̃̃W̃Wm+1,(k+1) + (�t)−1(AS

2 )−2(e�t AS
2 − I2 − �t AS

2 )

·[ fff S2 (W̃̃W̃Wm+1,(k+1)) − fff S2 (WWWm,(k+1)) + BBB2(V
m+1,(k)
Nα

, g2(tm+1)) − BBB2(V
m,(k)
Nα

, g2(tm))], (32d)

for m = 0, 1, . . . , M − 1, and the iteration stopping criterion is still chosen as (31).
Note that the S-LETD algorithms (27) and (29) can be regarded as the ST-LETD
methods (30) and (32), respectively, evolving for only one time step T = �t .

5 Convergence analysis

This section is devoted to the convergence analysis at the theoretical level. In the
first part, we prove the convergence of the localized ETD iterative algorithms when
the number of iterations goes to infinity; then, as a direct corollary, we derive the
maximum bound principle of the localized ETD schemes. In the second part, we show
the convergence of the localized ETD solutions to the semi-discrete solution as the
time step size goes to zero.

5.1 Convergence of the localized ETD iterative algorithms and themaximum
bound principle

The following theorem suggests that the S-LETDmethods (27) and (29) both converge
at the linear rate.

Theorem 6 Given (VVVm,WWWm), the iteration sequence {(VVVm+1,(k),WWWm+1,(k))}k≥0 gen-
erated by the S-LETD1 method (27) (resp., the S-LETDRK2 method (29)) converges
to the solution (VVVm+1,WWWm+1) of the localized ETD1 scheme (24) (resp., the localized
ETDRK2 scheme (25)) as k → ∞. In particular, we have

‖VVVm+1,(2k+2) − VVVm+1‖∞ ≤ ‖WWWm+1,(2k+1) −WWWm+1‖∞ ≤ (κ(α, β))k |Vm+1,(0)
Nα

− Vm+1
Nα

|,
‖WWWm+1,(2k+2) −WWWm+1‖∞ ≤ ‖VVVm+1,(2k+1) − VVVm+1‖∞ ≤ (κ(α, β))k |Wm+1,(0)

Nβ,α
− Wm+1

Nβ,α
|.

Proof Define the errors at each iteration by eeem+1,(k)
V = VVVm+1,(k) − VVVm+1 and

eeem+1,(k)
W = WWWm+1,(k) −WWWm+1, which satisfy the following equations:
(i) if the localized ETD1 scheme is used, then

eeem+1,(k+1)
V =

∫ �t

0
e(�t−τ)AS

1 BBB1(0, (eW )
m+1,(k)
Nβ,α

) dτ,

eeem+1,(k+1)
W =

∫ �t

0
e(�t−τ)AS

2 BBB2((eV )
m+1,(k)
Nα

, 0) dτ ;

(ii) if the localized ETDRK2 scheme is used, then

eeem+1,(k+1)
V =

∫ �t

0

τ

�t
e(�t−τ)AS

1 BBB1(0, (eW )
m+1,(k)
Nβ,α

) dτ,
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eeem+1,(k+1)
W =

∫ �t

0

τ

�t
e(�t−τ)AS

2 BBB2((eV )
m+1,(k)
Nα

, 0) dτ.

For both cases, since τ
�t ≤ 1 and e−S(�t−τ) ≤ 1, using Lemma 3, we have

|(eV )
m+1,(k+1)
j | ≤ j

N1 + 1
|(eW )

m+1,(k)
Nβ,α

|, 1 ≤ j ≤ N1, (33a)

|(eW )
m+1,(k)
j | ≤ N2 + 1 − j

N2 + 1
|(eV )

m+1,(k−1)
Nα

|, 1 ≤ j ≤ N2. (33b)

Evaluating (33b) at j = Nβ,α and (33a) at j = Nα , we obtain

|(eV )
m+1,(k+1)
Nα

| ≤ κ(α, β)|(eV )
m+1,(k−1)
Nα

|,

from which we deduce that

|(eV )
m+1,(2k)
Nα

| ≤ (κ(α, β))k |(eV )
m+1,(0)
Nα

|, (34a)

and similarly,

|(eW )
m+1,(2k)
Nβ,α

| ≤ (κ(α, β))k |(eW )
m+1,(0)
Nβ,α

|. (34b)

Combining (33) with (34), we finally obtain

‖eeem+1,(2k+2)
V ‖∞ ≤ ‖eeem+1,(2k+1)

W ‖∞ ≤ |(eV )
m+1,(2k)
Nα

| ≤ (κ(α, β))k |(eV )
m+1,(0)
Nα

|,
‖eeem+1,(2k+2)

W ‖∞ ≤ ‖eeem+1,(2k+1)
V ‖∞ ≤ |(eW )

m+1,(2k)
Nβ,α

| ≤ (κ(α, β))k |(eW )
m+1,(0)
Nβ,α

|,

which completes the proof.

As a consequence of the convergence, we obtain the following maximum bound
principle for the localized ETD schemes which will be used in the proof of temporal
convergence in the next subsection.

Corollary 3 Suppose that {(VVVm,WWWm)}0≤m≤M is the solution of the localized ETD1
scheme (24) or the localized ETDRK2 scheme (25). Ifmax{‖u0‖∞, ‖g1‖T , ‖g2‖T } ≤
ρ, then, for any �t > 0, we have ‖VVV ‖∞,T ≤ ρ and ‖WWW‖∞,T ≤ ρ.

Proof We prove this by induction. Clearly, max{‖VVV 0‖∞, ‖WWW 0‖∞} ≤ ‖u0‖∞ ≤ ρ.
Now we assume that max{‖VVVm‖∞, ‖WWWm‖∞} ≤ ρ for some 0 ≤ m ≤ M − 1 and
check the result for m + 1.

Consider the S-LETD methods (27) and (29), where the initial guess for (27) are
chosen to satisfy |Vm+1,(0)

Nα
| ≤ ρ and |Wm+1,(0)

Nβ,α
| ≤ ρ. For both first- and second-order

cases, the subproblems are decoupled with respect to VVVm+1,(k+1) and WWWm+1,(k+1).
Applying Theorem 4 to these two subproblems, we obtain

‖VVVm+1,(k)‖∞ ≤ ρ and ‖WWWm+1,(k)‖∞ ≤ ρ, ∀ k = 1, 2, . . . .
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By passing the limit k → ∞, according to Theorem 6, we obtain

‖VVVm+1‖∞ ≤ ρ and ‖WWWm+1‖∞ ≤ ρ.

This completes the proof.

We recall that the ST-LETD algorithms (30) and (32) could be viewed as the mon-
odomain ETD schemes applied to the semi-discrete Schwarz waveform relaxation
problems (15a) and (15b). Therefore, the ST-LETD algorithms are expected to have
similar convergence behaviors as stated in Theorem 3, that is, only linear conver-
gence rate could be obtained theoretically while the superlinear convergence is again
expected to be observed numerically. Furthermore, unlike the case of linear diffusion
equations studied in [14], it is also necessary to require T < T ∗ for some T ∗ in
the analysis (as done in the proofs of the following Theorems 7 and 8) due to some
technical gaps, and we omit the details here.

5.2 Convergence of the localized ETD schemes to the semi-discrete problems

The following two theorems guarantee the convergence of the first- and second-order
localized ETD solutions (24) and (25) to the exact solution of the semi-discrete mul-
tidomain problem (14) as �t tends to zero.

Theorem 7 For sufficiently smooth initial and boundary data, and for T < T ∗ with
some T ∗ = T ∗(h, D, R) > 0, the localized ETD1 scheme (24) converges to the
semi-discrete problem (14) as �t → 0. More precisely, we have the error estimates:

‖vvv − VVV ‖∞,T + ‖www −WWW‖∞,T ≤ C�t,

where C is a constant depending on T , R, S, h, g′
1(t), g

′
2(t), vvv

′(t) andwww′(t).
Proof Denote by eeemv = vvv(tm) − VVVm and eeemw = www(tm) −WWWm , satisfying

eeem+1
v = e�t AS

1eeemv +
∫ �t

0
e(�t−τ)AS

1
[
fff S1 (vvv(tm + τ)) − fff S1 (VVV

m)

+BBB1(g1(tm + τ) − g1(tm+1), 0) + BBB1(0, wNβ,α (tm + τ) − Wm+1
Nβ,α

)
]
dτ

= e�t AS
1eeemv +

∫ �t

0
e(�t−τ)AS

1
[
fff S1 (vvv(tm)) − fff S1 (VVV

m) + BBB1(0, wNβ,α (tm+1) − Wm+1
Nβ,α

)
]
dτ

+
∫ �t

0
e(�t−τ)AS

1
[
fff S1 (vvv(tm + τ)) − fff S1 (vvv(tm))

+BBB1(g1(tm + τ) − g1(tm+1), wNβ,α (tm + τ) − wNβ,α (tm+1))
]
dτ

= e�t AS
1eeemv +

∫ �t

0
e(�t−τ)AS

1
[
( fff S1 )′(ξξξm)eeemv + BBB1(0, (ew)m+1

Nβ,α
)
]
dτ + γγγm+1

1 + δδδm+1
1 , (35)

and

eeem+1
w = e�t AS

2eeemw +
∫ �t

0
e(�t−τ)AS

2
[
( fff S2 )

′(ηηηm)eeemw +BBB2((ev)
m+1
Nα

, 0)
]
dτ +γγγm+1

2 +δδδm+1
2 ,

(36)
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for m = 0, 1, . . . , M − 1 with eee0v = eee0w = 000, where ξξξm lies between vvv(tm) and VVVm

componentwisely, ηηηm lies betweenwww(tm) andWWWm componentwisely, and

γγγm+1
1 =

∫ �t

0
e(�t−τ)AS

1

∫ τ

0
( fff S1 )

′(vvv(tm + s))vvv′(tm + s) dsdτ,

δδδm+1
1 =

∫ �t

0
e(�t−τ)AS

1

∫ τ

�t
BBB1(g

′
1(tm + s), w′

Nβ,α
(tm + s)) dsdτ,

γγγm+1
2 =

∫ �t

0
e(�t−τ)AS

2

∫ τ

0
( fff S2 )

′(www(tm + s))www′(tm + s) dsdτ,

δδδm+1
2 =

∫ �t

0
e(�t−τ)AS

2

∫ τ

�t
BBB2(v

′
Nα

(tm + s), g′
2(tm + s)) dsdτ.

Since A1 is strictly diagonally dominant with all negative diagonal entries, the set
of operators {et A1}t>0 becomes a contraction semigroup in the sense of matrix ∞-
norm, namely, ‖et A1‖∞ ≤ 1, and thus, ‖et AS

1 ‖∞ ≤ e−St (see also [27, Theorem 2]).
According to (6) and (F2), we find that |( f S)′(ξ)| = f ′(ξ) + S ≤ R + S for any
ξ ∈ [−ρ, ρ]. Therefore, we can bound γγγm+1

1 and δδδm+1
1 by

‖γγγm+1
1 ‖∞ ≤

∫ �t

0
‖e(�t−τ)AS

1 ‖∞
∫ τ

0
‖( fff S1 )′(vvv(tm + s))‖∞‖vvv′(tm + s)‖∞ dsdτ

≤ (R + S)‖vvv′‖∞,T

∫ �t

0
e−S(�t−τ)τ dτ

= (R + S)‖vvv′‖∞,T · e
−S�t − 1 + S�t

S2
≤ R + S

2
‖vvv′‖∞,T (�t)2,

and

‖δδδm+1
1 ‖∞ ≤ D

h2

∫ �t

0
‖e(�t−τ)AS

1 ‖∞
∫ �t

τ

max{|g′
1(tm + s)|, |w′

Nβ,α
(tm + s)|} dsdτ

≤ D

h2
max{‖g′

1‖T , ‖w′
Nβ,α

‖T }
∫ �t

0
e−S(�t−τ)(�t − τ) dτ

= D

h2
max{‖g′

1‖T , ‖w′
Nβ,α

‖T } · 1 − e−S�t − S�te−S�t

S2

≤ D

2h2
max{‖g′

1‖T , ‖w′
Nβ,α

‖T }(�t)2.

According to Corollaries 2 and 3, we have ‖ξξξm‖∞ ≤ ρ and ‖ηηηm‖∞ ≤ ρ. Hence, we
obtain from (35) that

‖eeem+1
v ‖∞ ≤ ‖e�t AS

1 ‖∞‖eeemv ‖∞ +
∫ �t

0
‖e(�t−τ)AS

1 ‖∞‖( fff S1 )′(ξξξm)‖∞‖eeemv ‖∞ dτ

+
∫ �t

0
‖e(�t−τ)AS

1 ‖∞‖BBB1(0, (ew)m+1
Nβ,α

)‖∞ dτ + C1(�t)2
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≤ e−S�t‖eeemv ‖∞ + (R + S)‖eeemv ‖∞
∫ �t

0
e−S(�t−τ) dτ

+ D

h2
|(ew)m+1

Nβ,α
|
∫ �t

0
e−S(�t−τ) dτ + C1(�t)2

=
(
1 + R · 1 − e−S�t

S

)
‖eeemv ‖∞ + D

h2
|(ew)m+1

Nβ,α
| · 1 − e−S�t

S
+ C1(�t)2

≤ (1 + R�t)‖eeemv ‖∞ + �t
( D

h2
‖eeem+1

w ‖∞ + C1�t
)
, (37)

where C1 := R + S

2
‖vvv′‖∞,T + D

2h2
max{‖g′

1‖T , ‖w′
Nβ,α

‖T }. An application of the

discrete Gronwall’s inequality leads to

‖eeev‖∞,T ≤ 1

R
(eRT − 1)

( D

h2
‖eeew‖∞,T + C1�t

)
. (38)

Similarly, we have from (36) that

‖eeew‖∞,T ≤ 1

R
(eRT − 1)

( D

h2
‖eeev‖∞,T + C2�t

)
, (39)

where C2 := R + S

2
‖www′‖∞,T + D

2h2
max{‖v′

Nα
‖T , ‖g′

2‖T }. Substituting (39) into

(38), we obtain

‖eeev‖∞,T ≤ (eRT − 1)2D2

R2h4
‖eeev‖∞,T + eRT − 1

R
C1�t + (eRT − 1)2D

R2h2
C2�t .

If T < T ∗ := 1

R
ln

(
1 + Rh2

D

)
, then

(eRT − 1)2D2

R2h4
< 1 for any �t > 0. Conse-

quently, we obtain
‖eeev‖∞,T ≤ C3�t,

and similarly,
‖eeew‖∞,T ≤ C4�t,

where C3 and C4 depend on T , R, S, h, ‖g′
1‖T , ‖g′

2‖T , ‖vvv′‖∞,T and ‖www′‖∞,T .

Theorem 8 For sufficiently smooth initial and boundary data, and for T < T ∗ with
some T ∗ = T ∗(h, D, R, S) > 0, the localized ETDRK2 scheme (25) converges to the
semi-discrete problem (14) as �t → 0. More precisely, we have the error estimates:

‖vvv − VVV ‖∞,T + ‖www −WWW‖∞,T ≤ C(�t)2,

where C is a constant depending on T , R, F2, S, h, g′′
1 (t), g

′′
2 (t), vvv

′′(t) and www′′(t),
where F2 is the supremum of | f ′′| on the interval [−ρ, ρ].
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Proof Denote by eeemv = vvv(tm) − VVVm and eeemw = www(tm) −WWWm , which satisfy

eeem+1
v = e�t AS

1 eeemv +
∫ �t

0
e(�t−τ )AS

1

[
fff S1 (vvv(tm + τ)) −

(
1 − τ

�t

)
fff S1 (VVVm) − τ

�t
fff S1 (Ṽ̃ṼV m+1)

]
dτ

+
∫ �t

0
e(�t−τ )AS

1

[
BBB1(tm + τ) −

(
1 − τ

�t

)
BBBm
1 − τ

�t
BBBm+1
1

]
dτ

= e�t AS
1 eeemv +

∫ �t

0
e(�t−τ )AS

1

[(
1 − τ

�t

)(
fff S1 (vvv(tm)) − fff S1 (VVVm)

) + τ

�t

(
fff S1 (vvv(tm+1)) − fff S1 (Ṽ̃ṼV m+1)

)]
dτ

+
∫ �t

0
e(�t−τ )AS

1

[(
1 − τ

�t

)
BBB1(0, wNβ,α (tm) − Wm

Nβ,α
) + τ

�t
BBB1(0, wNβ,α (tm+1) − Wm+1

Nβ,α
)
]
dτ

+
∫ �t

0
e(�t−τ )AS

1

[
fff S1 (vvv(tm + τ)) −

(
1 − τ

�t

)
fff S1 (vvv(tm)) − τ

�t
fff S1 (vvv(tm+1))

]
dτ

+
∫ �t

0
e(�t−τ )AS

1

[
BBB1(tm + τ) −

(
1 − τ

�t

)
BBB1(tm) − τ

�t
BBB1(tm+1)

]
dτ

= e�t AS
1 eeemv +

∫ �t

0
e(�t−τ )AS

1

[(
1 − τ

�t

)
( fff S1 )′(ξξξm)eeemv + τ

�t
( fff S1 )′ (̃ξ̃ξ̃ξm+1 )̃ẽẽem+1

v

]
dτ

+
∫ �t

0
e(�t−τ )AS

1

[(
1 − τ

�t

)
BBB1(0, (ew)mNβ,α

) + τ

�t
BBB1(0, (ew)m+1

Nβ,α
)
]
dτ + γγγm+1

1 + δδδm+1
1 , (40)

and

eeem+1
w = e�t AS

2eeemw +
∫ �t

0
e(�t−τ)AS

2

[(
1 − τ

�t

)
( fff S2 )

′(ηηηm)eeemw + τ

�t
( fff S2 )

′ (̃η̃η̃ηm+1 )̃ẽẽem+1
w

]
dτ

+
∫ �t

0
e(�t−τ)AS

2

[(
1 − τ

�t

)
BBB1((ev)

m
Nα

, 0) + τ

�t
BBB1((ev)

m+1
Nα

, 0)
]
dτ + γγγm+1

2 + δδδm+1
2 ,

(41)

for m = 0, 1, . . . , M − 1 with eee0v = eee0w = 000, where

ẽ̃ẽem+1
v = vvv(tm+1) − Ṽ̃ṼV m+1, ẽ̃ẽem+1

w = www(tm+1) − W̃̃W̃Wm+1,

ξξξm lies between vvv(tm) and VVVm componentwisely, ξ̃̃ξ̃ξm+1 lies between vvv(tm+1) and
Ṽ̃ṼV m+1 componentwisely, ηηηm lies betweenwww(tm) andWWWm componentwisely, η̃̃η̃ηm+1 lies
betweenwww(tm+1) and W̃̃W̃Wm+1 componentwisely, and

γγγm+1
1 =

∫ �t

0
e(�t−τ)AS

1

[
fff S1 (vvv(tm + τ)) −

(
1 − τ

�t

)
fff S1 (vvv(tm)) − τ

�t
fff S1 (vvv(tm+1))

]
dτ,

δδδm+1
1 =

∫ �t

0
e(�t−τ)AS

1

[
BBB1(tm + τ) −

(
1 − τ

�t

)
BBB1(tm) − τ

�t
BBB1(tm+1)

]
dτ,

γγγm+1
2 =

∫ �t

0
e(�t−τ)AS

2

[
fff S2 (www(tm + τ)) −

(
1 − τ

�t

)
fff S2 (www(tm)) − τ

�t
fff S2 (www(tm+1))

]
dτ,

δδδm+1
2 =

∫ �t

0
e(�t−τ)AS

2

[
BBB2(tm + τ) −

(
1 − τ

�t

)
BBB2(tm) − τ

�t
BBB2(tm+1)

]
dτ.
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Noting the fact that for any ϕ ∈ C2(0, T ),

ϕ(tm + τ) −
(
ϕ(tm) + ϕ(tm+1) − ϕ(tm)

�t
τ
)

=
∫ τ

0
(τ − s)ϕ′′(tm + s) ds + τ

�t

∫ �t

0
(�t − s)ϕ′′(tm + s) ds

≤
( ∫ τ

0
(τ − s) ds + τ

�t

∫ �t

0
(�t − s) ds

)
‖ϕ′′‖C(0,T )

= 1

2
(τ 2 + τ�t)‖ϕ′′‖C(0,T ),

then we can bound γγγm+1
1 and δδδm+1

1 by

‖γγγm+1
1 ‖∞ ≤

∫ �t

0
‖e(�t−τ)AS

1 ‖∞
∥
∥
∥ fff S1 (vvv(tm + τ)) −

(
1 − τ

�t

)
fff S1 (vvv(tm)) − τ

�t
fff S1 (vvv(tm+1))

∥
∥
∥∞ dτ

≤ 1

2
(F2‖vvv′‖2∞,T + (R + S)‖vvv′′‖∞,T )

∫ �t

0
e−S(�t−τ)(τ 2 + τ�t) dτ

= (F2‖vvv′‖2∞,T + (R + S)‖vvv′′‖∞,T ) · 1 − S�t + 1
2 (S�t)2 − e−S�t

S3

≤ 1

6
(F2‖vvv′‖2∞,T + (R + S)‖vvv′′‖∞,T )(�t)3, (42)

and

‖δδδm+1
1 ‖∞ ≤ D

6h2
max{‖g′′

1‖T , ‖w′′
Nβ,α

‖T }(�t)3. (43)

According to the last step in (37), we have

‖̃ẽẽem+1
v ‖∞ ≤ (1 + R�t)‖eeemv ‖∞ + �t

( D

h2
‖eeemw‖∞ + C1�t

)
.

Using the maximum bound principle, we find that

max{‖ξξξm‖∞, ‖ηηηm‖∞, ‖̃ξ̃ξ̃ξm+1‖∞, ‖̃η̃η̃ηm+1‖∞} ≤ ρ.

Thus, it is deduced that
∥
∥
∥

(
1 − τ

�t

)
( fff S1 )′(ξξξm)eeemv + τ

�t
( fff S1 )′ (̃ξ̃ξ̃ξm+1 )̃ẽẽem+1

v

∥
∥
∥∞

≤
(
1 − τ

�t

)
(R + S)‖eeemv ‖∞ + τ

�t
(R + S)‖̃ẽẽem+1

v ‖∞

≤
(
1 − τ

�t

)
(R + S)‖eeemv ‖∞ + τ

�t
(R + S)(1 + R�t)‖eeemv ‖∞ + τ (R + S)

( D

h2
‖eeemw‖∞ + C1�t

)

= (1 + Rτ)(R + S)‖eeemv ‖∞ + τ(R + S)
( D

h2
‖eeemw‖∞ + C1�t

)
. (44)

In addition, we have

∥
∥
∥

(
1 − τ

�t

)
BBB1(0, (ew)mNβ,α

) + τ

�t
BBB1(0, (ew)m+1

Nβ,α
)

∥
∥
∥∞ ≤ D

h2
‖eeew‖∞,T . (45)
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Using the estimates (42)–(45), we obtain from (40) that

‖eeem+1
v ‖∞ ≤ e−S�t‖eeemv ‖∞ +

[
(R + S)‖eeemv ‖∞ + D

h2
‖eeew‖∞,T

] ∫ �t

0
e−S(�t−τ) dτ

+
[
R(R + S)‖eeemv ‖∞ + (R + S)

( D

h2
‖eeew‖∞,T + C1�t

)]∫ �t

0
e−S(�t−τ)τ dτ + C5(�t)3

=
(
1 + R�t + R2 · e

−S�t − 1 + S�t

S2

)
‖eeemv ‖∞ + D

h2
‖eeew‖∞,T · 1 − e−S�t

S

+ (R + S)
( D

h2
‖eeew‖∞,T + C1�t

)
· e

−S�t − 1 + S�t

S2
+ C5(�t)3

≤
(
1 + R�t + (R�t)2

2

)
‖eeemv ‖∞

+ �t
[(

1 + R + S

2
�t

) D

h2
‖eeew‖∞,T +

( R + S

2
C1 + C5

)
(�t)2

]
,

where C5 := 1

6
(F2‖vvv′‖2∞,T + (R + S)‖vvv′′‖∞,T ) + D

6h2
max{‖g′′

1‖T , ‖w′′
Nβ,α

‖T }. An
application of the discrete Gronwall’s inequality leads to

‖eeev‖∞,T ≤ eRT − 1

R + 1
2 R

2�t

[(
1 + R + S

2
�t

) D

h2
‖eeew‖∞,T +

( R + S

2
C1 + C5

)
(�t)2

]
.

(46)
Similarly, we have from (41) that

‖eeew‖∞,T ≤ eRT − 1

R + 1
2 R

2�t

[(
1+ R + S

2
�t

) D

h2
‖eeev‖∞,T +

( R + S

2
C2 +C6

)
(�t)2

]
,

(47)

where C6 := 1

6
(F2‖www′‖2∞,T + (R + S)‖www′′‖∞,T ) + D

6h2
max{‖v′′

Nα
‖T , ‖g′′

2‖T }. Sub-
stituting (47) into (46), we obtain

‖eeev‖∞,T ≤
( eRT − 1

R + 1
2 R

2�t

)2(
1 + R + S

2
�t

)2 D2

h4
‖eeev‖∞,T +

[ eRT − 1

R + 1
2 R

2�t

( R + S

2
C1 + C5

)

+
( eRT − 1

R + 1
2 R

2�t

)2(
1 + R + S

2
�t

)( R + S

2
C2 + C6

) D

h2

]
(�t)2

≤
( eRT − 1

R + 1
2 R

2�t

)2(
1 + R + S

2
�t

)2 D2

h4
‖eeev‖∞,T

+
[ eRT − 1

R

( R + S

2
C1 + C5

)
+

( eRT − 1

R

)2 R + S

R

( R + S

2
C2 + C6

) D

h2

]
(�t)2.

When T < T ∗ := 1

R
ln

(
1 + R2h2

(R + S)D

)
, we have

( eRT − 1

R + 1
2 R

2�t

)2(
1 + R + S

2
�t

)2 D2

h4
< 1
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for any �t > 0, and then, obtain

‖eeev‖∞,T ≤ C7(�t)2,

and similarly,
‖eeew‖∞,T ≤ C8(�t)2,

where C7 and C8 depend on T , R, F2, S, h, ‖g′′
1‖T , ‖g′′

2‖T , ‖vvv′′‖∞,T and ‖www′′‖∞,T .

6 Numerical experiments

In this section, we will carry out numerical experiments to investigate the convergence
behavior and the accuracy of the localized ETD schemes. In the first part, we consider
the one-dimensional problem to verify the theoretical results on the convergence of the
first- and second-order localizedETDschemes. In the second part,we focus on the two-
dimensional problem to show the convergence behaviors of the iterative algorithms
for the second-order localized ETD scheme.

6.1 One-dimensional examples

Let us consider the one-dimensional problem (1) with the spatial domain � = (0, 1),
the reaction term f (u) = u − u3, and the parameter D = 0.01. Two subdomains are
given by �1 = (0, β) and �2 = (α, 1) with 1

2 < β < 1 and α = 1 − β. The spatial
mesh size is set to be h = 1/200 and the overlap size is Nβ,αh = β −α. The stabilizer
is chosen to be S = 2 in all the experiments.

Example 1 Consider problem (1) with the initial and boundary conditions given by

u0(x) = x2, g1(t) = 0, g2(t) = e−t .

Under this setting, we investigate numerically the temporal convergence of the local-
ized ETD schemes with different overlap sizes.

We calculate the numerical solutions at time t = 1 by the localized ETD1 scheme
(24) and the localizedETDRK2 scheme (25)with various time step sizes�t = δ×2−K

(δ = 0.1 and K = 0, 1, . . . , 6) and different overlap sizes Nβ,α ∈ {4, 8, 16, 32}. To
compute the numerical errors, we use the solution obtained by the ETDRK2 scheme
(22) with�t = 10−10 as the reference solution. Note that, once converged completely,
the solutions of the localized ETD schemes computed by the S-LETD methods (27)
and (29) are identical to those computed by the ST-LETD methods (30) and (32),
respectively. Thus, we adopt the S-LETD methods (27) and (29) with the tolerance
10−10. The maximum-norms of the numerical errors and corresponding convergence
rates are given in Tables 1 and 2, where the expected convergence rates are obvi-
ously observed. In addition, the orders of the temporal accuracy of the localized ETD
schemes are better preserved when larger overlap sizes are considered.
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Table 1 Results on errors and convergence rates in the maximum norm by localized ETD1 in Example 1

�t ETD1 Localized ETD1

Nβ,α = 4 Nβ,α = 8 Nβ,α = 16 Nβ,α = 32

Error Rate Error Rate Error Rate Error Rate Error Rate

δ 4.324e−2 – 2.777e−2 – 3.086e−2 – 3.506e−2 – 3.853e−2 –
δ
2 2.263e−2 0.934 1.899e−2 0.548 1.607e−2 0.941 1.842e−2 0.929 2.019e−2 0.932
δ
4 1.158e−2 0.966 1.333e−2 0.510 8.265e−3 0.959 9.443e−3 0.964 1.034e−2 0.965
δ
8 5.859e−3 0.983 7.675e−3 0.797 4.201e−3 0.976 4.782e−3 0.982 5.235e−3 0.982
δ
16 2.947e−3 0.991 3.988e−3 0.945 2.117e−3 0.989 2.406e−3 0.991 2.634e−3 0.991
δ
32 1.478e−3 0.996 2.049e−3 0.961 1.062e−3 0.994 1.207e−3 0.995 1.321e−3 0.996
δ
64 7.400e−4 0.998 1.047e−3 0.968 5.322e−4 0.997 6.046e−4 0.998 6.616e−4 0.998

Table 2 Results on errors and convergence rates in the maximum norm by localized ETDRK2 in Example
1

�t ETDRK2 Localized ETDRK2

Nβ,α = 4 Nβ,α = 8 Nβ,α = 16 Nβ,α = 32

Error Rate Error Rate Error Rate Error Rate Error Rate

δ 5.008e−3 − 1.177e−2 − 9.230e−3 − 7.388e−3 − 6.635e−3 −
δ
2 1.370e−3 1.870 3.568e−3 1.722 2.613e−3 1.821 2.065e−3 1.839 1.853e−3 1.840
δ
4 3.587e−4 1.934 9.997e−4 1.835 6.998e−4 1.900 5.517e−4 1.904 4.935e−4 1.909
δ
8 9.179e−5 1.966 2.654e−4 1.914 1.823e−4 1.941 1.434e−4 1.944 1.282e−4 1.944
δ
16 2.322e−5 1.983 6.844e−5 1.955 4.663e−5 1.967 3.680e−5 1.963 3.274e−5 1.969
δ
32 5.839e−6 1.992 1.742e−5 1.974 1.186e−5 1.975 9.319e−6 1.981 8.305e−6 1.979
δ
64 1.464e−6 1.996 4.400e−6 1.985 3.005e−6 1.981 2.351e−6 1.987 2.090e−6 1.990

Example 2 We consider problem (1) with zero initial and boundary conditions so that
it admits uniquely the zero solution. We will investigate the relation between the
convergence of the S-LETD/ST-LETD methods and the overlap size Nβ,α , the time
step size �t , and the final time T , respectively. All the components of the initial guess
for the S-LETD/ST-LETD methods are chosen randomly in the interval [−1, 1].

First, we study the convergence of the S-LETD (27)–(29) and ST-LETD methods
(30)–(32) with respect to the overlap size Nβ,α . For that purpose, we fix the time step
size �t = 0.1 while varying Nβ,α ∈ {2, 4, 8, 16, 32}. Theoretically, since

κ(α, β) = κ(1 − β, β) =
(1 − β

β

)2
,

the larger Nβ,α means the larger β and the smaller κ(α, β), which implies the faster
convergence. Figures 2 and 3 plot the iteration errors ‖VVV (k)‖∞,T with respect to the
number of iterations k with various overlap sizes for S-LETD with T = �t and ST-
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Fig. 2 (Example 2) Error curves of the S-LETD method with various overlap sizes: the localized ETD1
scheme (left) and the localized ETDRK2 scheme (right)

Fig. 3 (Example 2) Error curves of the ST-LETD method with various overlap sizes: the localized ETD1
scheme (left) and the localized ETDRK2 scheme (right)

LETD with T = 1, respectively. Clearly, the larger overlap size leads to the faster
convergence, which meets the theoretical prediction, and the linear and superlinear
convergence rates are observed for S-LETD (Fig. 2) and ST-LETD (Fig. 3) methods,
respectively. In addition, the second-order localized ETD schemes converge a little
faster than the first-order ones.

Next, we investigate the convergence of the S-LETD and ST-LETD methods with
different the time step size by taking�t ∈ {1/10, 1/20, 1/40, 1/80, 1/160} and fixing
the overlap size Nβ,α = 4. The curves of the iteration errors with different time step
sizes are shown in Figs. 4 and 5 for the S-LETD method with T = �t and the ST-
LETD method with T = 1, respectively. For S-LETD, it is observed that the linear
convergence rate is sensitive to the time step size, that is, the smaller time step gives the
faster convergence. However, for ST-LETD, we see that the superlinear convergence
rate is quite independent of the time step size, especially if the second-order scheme
is applied. This means that one could use larger time step sizes without yielding much
more iterations. In addition, the second-order schemes gives smaller iteration errors
than the first-order ones when conducting the same number of iterations.

123



32 X. Li et al.

Fig. 4 (Example 2) Error curves of the S-LETD method with different time step sizes: the localized ETD1
scheme (left) and the localized ETDRK2 scheme (right)

Fig. 5 (Example 2) Error curves of the ST-LETDmethod with different time step sizes: the localized ETD1
scheme (left) and the localized ETDRK2 scheme (right)

Finally, we study the convergence of the ST-LETDmethodwith different final times
by setting T ∈ {1, 2, 4, 8, 16} and fixing the overlap size Nβ,α = 32 and the time step
size �t = 0.1. The discrete L∞(0, T ; L∞(�)) iteration errors are plotted in Fig. 6.
We observe that the convergence is faster on the shorter time interval. Besides, the
first- and second-order schemes have similar convergence rates.

6.2 Two-dimensional example

We now carry out numerical simulations for the two-dimensional problem to study
the convergence of the localized ETD methods and compare their accuracy with the
ETD methods. Again, we set the stabilizer S = 2.

Example 3 We consider the two-dimensional reaction-diffusion problem

ut = D�u − Du, (x, y) ∈ (0, 1)2, t ∈ (0, 1],
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Fig. 6 (Example 2) Error curves of the ST-LETD method with different final times: the localized ETD1
scheme (left) and the localized ETDRK2 scheme (right)

Table 3 The relative L∞(�) errors between the exact solution and the (localized) ETDRK2 solutions with
different numbers of the subdomains for Example 3

ETDRK2 Localized ETDRK2 with p × p subdomains

2 × 2 3 × 3 4 × 4

S-LETD 2.6879e−6 4.2944e−6 [2] 5.2051e−6 [3] 5.8515e−6 [4]

ST-LETD 6.6384e−1 [2] 4.8766e−1 [3] 3.2051e−1 [4]

4.0291e−6 [12] 5.0900e−6 [12] 5.7039e−6 [12]

where the initial and Dirichlet boundary conditions are determined by the exact solu-
tion

u(x, y, t) = e−3Dt sin x cos y.

By setting D = 0.01, h = 1/200 and �t = 0.01, we will compare the accuracy of
the ETD schemes on the whole domain and the localized ETD schemes based on the
domain decomposition consisting of p× p overlapping and congruent squares with a
fixed overlap size Nβ,α = 20.

Table 3 collects the relative L∞(�) errors at time t = 1 between the exact solution
and the localized ETDRK2 solutions, as well as the errors of the ETDRK2 solutions
for comparison. The numbers in brackets are the numbers of iterations. We observe
that S-LETD costs a few iterations to reach the accuracy of the ETDRK2 solution
with the errors at the same order of magnitude. However, ST-LETD converges slower
and needs more iterations to reach the desired accuracy. If one uses the same numbers
of iterations as S-LETD, the numerical errors are much larger than the ETDRK2
solution by five orders of magnitude. Therefore, we see S-LETD is more efficient than
ST-LETD, at least for this example.

123



34 X. Li et al.

7 Conclusion

In this paper, we focus on the development and analysis of the localized ETD meth-
ods based on overlapping domain decomposition for a class of semilinear parabolic
equations. We first investigate the space-discrete multidomain problem and prove the
linear convergence rate of the Schwarz waveform relaxation algorithm. For the fully
discrete localized ETD schemes, we establish the corresponding discrete maximum
bound principle and demonstrate the convergence of the solutions to the exact semi-
discrete solution aswell as the convergence of the iterative solutions.All the theoretical
analyses are carried out in one-dimensional case. Numerical experiments for one- and
two-dimensional problems confirm the expected convergence rates. In addition, we
study numerically the relations between the convergence of the S-LETD/ST-LETD
methods and the overlap size, the time step size and the final time, where the results
show that larger overlap size and shorter time interval lead to faster convergence while
the time step size has little effect on the convergence rate.

It should be noted that although the theoretical results for temporal convergence
of the localized ETD schemes, as well as the convergence of the ST-LETD algo-
rithms, hold only for the small enough final time T , the convergence behavior could
be observed in numerical experiments for large T . Whether the restriction on T could
be removed is still an open question at the theoretical level. Some novel technical skills
may be necessary to remove such restriction in convergence analysis and we leave this
problem as one of our important future works.
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