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Abstract
The rational Krylov subspace method (RKSM) and the low-rank alternating directions
implicit (LR-ADI) iteration are established numerical tools for computing low-rank
solution factors of large-scale Lyapunov equations. In order to generate the basis
vectors for the RKSM, or extend the low-rank factors within the LR-ADI method,
the repeated solution to a shifted linear system of equations is necessary. For very
large systems this solve is usually implemented using iterative methods, leading to
inexact solves within this inner iteration (and therefore to “inexact methods”). We
will show that one can terminate this inner iteration before full precision has been
reached and still obtain very good accuracy in the final solution to the Lyapunov
equation. In particular, for both the RKSM and the LR-ADI method we derive theory
for a relaxation strategy (e.g. increasing the solve tolerance of the inner iteration, as
the outer iteration proceeds) within the iterative methods for solving the large linear
systems. These theoretical choices involve unknown quantities, therefore practical
criteria for relaxing the solution tolerance within the inner linear system are then
provided. The theory is supported by several numerical examples, which show that
the total amount of work for solving Lyapunov equations can be reduced significantly.
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1 Introduction

We consider the numerical solution of large scale Lyapunov equations of the form

AX + X AT = −BBT , (1.1)

where A ∈ R
n×n, B ∈ R

n×r . Lyapunov equations play a fundamental role in many
areas of applications, such as control theory, model reduction and signal processing,
see, e.g. [2,14]. Here we assume that the spectrum of A, Λ(A), lies in the open left
half plane, e.g. Λ(A) ⊂ C− and that the right hand side is of low rank, e.g. r � n,
which is often the case in practice. A large and growing amount of literature considers
the solution to (1.1), see [45] and references therein for an overview of developments
and methods.

The solution matrix X of (1.1) is, in general, dense, making it virtually impossible
to store it for large dimensions n. For a low-rank right hand side, however, the solution
X often has a very small numerical rank [3,5,25,36,40,51] and many algorithms have
been developed that approximate X by a low-rankmatrix X ≈ Z ZT , where Z ∈ R

n×s ,
s � n. Important low-rank algorithms are, for instance, projection typemethods based
on Krylov subspaces [20,21,28,43,44] and low-rank alternating directions implicit
(ADI) methods [12–14,30,33,36].

This paper considers both the rational Krylov subspace method (from the family
of projection type methods) and the low-rank ADI method for the low rank solution
to (1.1). One of the computationally most expensive parts in both methods is that, in
each iteration step, shifted linear systems of the form

(A − σ I )y = z, z ∈ R
n×r ,

need to be solved, where the shift σ is usually variable and both the shift σ and
the right hand side z depend on the particular algorithm used. Normally these linear
systems are solved by sparse-direct or iterativemethods.When iterativemethods, such
as preconditioned Krylov subspace methods, are used to solve the linear systems,
then these solves are implemented inexactly and we obtain a so-called inner-outer
iterative method (sometimes the term “inexact method” is used). The outer method
is (in our case) a rational Krylov subspace method or a low-rank ADI iteration. The
inner problem is the iterative solution to the linear systems. The inner solves are often
carried out at least as accurately as the required solution accuracy for the Lyapunov
equation (cf., e.g., the numerical experiments in [20]), usually in terms of the associated
Lyapunov residual norms. It turns out that this is not necessary, and the underlying
theory is the main contribution of this paper.

Inexact methods have been considered for the solution to linear systems and eigen-
value problems (see [17,23,42,47,53] and references therein). One focus has been on
inexact inverse iteration and similar methods, where, in general, the accuracy of the
inexact solve has to be increased to obtain convergence [22]. For subspace expan-
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Inexact methods for large scale Lyapunov equations 1223

sion methods, such as the Krylov methods considered in [17,24,42,47,53], it has been
observed numerically and shown theoretically that it is possible to relax the solve
tolerance as the outer iteration proceeds.

In this paperwe show that for both the rationalKrylov subspacemethod and the low-
rank ADI algorithm we can terminate the inner iteration before full precision has been
reached (in a way that depends on the outer iteration accuracy) and still obtain very
good accuracy in the final solution to the Lyapunov equation. We develop a strategy
which shows that we can relax (e.g. increase) the stopping tolerance within the inner
solve as the outer iteration proceeds. The key approach is to consider the so-called
“residual gap” between the exact and inexact methods for solving Lyapunov equations
and show that it depends on the linear system accuracy. Using this connection between
inner and outer solve accuracy we can derive relaxation criteria for inexact solves to
Lyapunov equations, which is the main contribution of this article.

This is a similar behavior as observed for Krylov methods with inexact matrix-
vector products applied to eigenvalue methods [23,42], linear systems [17,47,53], and
matrix functions [24]. We provide practical relaxation strategies for both methods
and give numerical examples which support the theory, and show that the amount of
computation time can be significantly reduced by using these strategies.

The paper is organised as follows. In Sect. 2 we review results about rational Krylov
subspacemethods. Those are used to show important properties aboutGalerkin projec-
tions. A new inexact rational Arnoldi decomposition is derived, extending the theory
of [37].We show in Theorem 2.1, Corollaries2.1 and 2.2 that the entries of the solution
to the projected Lyapunov equation have a decreasing pattern, as seen in Fig. 1. This
crucial novel result is then used to demonstrate that, in the inexact rational Krylov
subspace method, the linear system solve can be relaxed, in a way inversely propor-
tional to this pattern. Section3 is devoted to low-rank ADI methods. We show that
the low-rank factors arising within the inexact ADI iteration satisfy an Arnoldi like
decomposition in Theorem 3.2. This theory is again new and significant for deriving
a specially tailored relaxation strategy for inexact low-rank ADI methods in Theorem
3.3. Finally, in Sect. 4 we test several practical relaxation strategies and provide numer-
ical evidence for our findings. Our examples show that, in particular for very large
problems, we can save up to half the number of inner iterations within both methods
for solving Lyapunov equations.

Notation Throughout the paper, if not stated otherwise, we use ‖ · ‖ to denote the
Euclidean vector and associated inducedmatrix norm. (·)∗ stands for the transpose and
complex conjugate transpose for real and, respectively, complex matrices and vectors.
The identity matrix of dimension k is denoted by Ik with the subscript omitted if the
dimension is clear from the context. The j th column of the identity matrix is e j . The
spectrum of a matrix A and a matrix pair (A, M) is denoted by Λ(A) and Λ(A, M),
respectively. The smallest (largest) eigenvalues and singular values of a matrix X are
denoted by λmin(X) (λmax(X)) and σmin(X) (σmax(X)).
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1224 P. Kürschner, M. A. Freitag

2 Rational Krylov subspacemethods and inexact solves

2.1 Introduction and rational Arnoldi decompositions

Projection methods for (1.1) follow a Galerkin principle similar to, e.g., the Arnoldi
method for eigenvalue computations or linear systems (in this case called full orthog-
onalization method). Let Q = range (Q) ⊂ C

n with a matrix Q ∈ C
n×k , k � n

whose columns form an orthonormal basis of Q: Q∗Q = Ik . We look for low-rank
approximate solutions to (1.1) in the form QX̃Q∗ with X̃ = X̃∗ ∈ C

k×k , i.e.

X ∈ Z (Q) := {QX̃Q∗ ∈ C
n×n, X̃ = X̃∗, range (Q) = Q}.

The Lyapunov residual matrix for approximate solutions X ∈ Z (Q) is

R := R(QX̃Q∗) = A(QX̃Q∗) + (QX̃Q∗)A∗ + BB∗. (2.1)

Imposing a Galerkin condition R ⊥ Z [28,38] leads to the projected Lyapunov
equation

T X̃ + X̃T ∗ + Q∗BB∗Q = 0, T := Q∗AQ, (2.2)

i.e., X̃ is the solution of a small, k-dimensional Lyapunov equationwhich can be solved
by algorithms employing dense numerical linear algebra, e.g., the Bartels–Stewart
method [4]. Throughout this article we assume that the compressed problem (2.2)
admits a unique solution which is ensured by Λ(T ) ∩ −Λ(T ) = ∅, which holds,
for example, when Λ(T ) ⊂ C−. A sufficient condition for ensuring Λ(T ) ⊂ C− is
A + A∗ < 0. In practice, however, this condition is rather restrictive because, on the
one hand, oftenΛ(T ) ⊂ C− holds even for indefinite A+ A∗ and, one the other hand,
the discussed projection methods will still work if the restriction T has eigenvalues in
C+ provided that Λ(T ) ∩ −Λ(T ) = ∅ holds.

Usually, one produces sequences of subspaces of increasing dimensions in an iter-
ative manner, e.g. Q1 ⊆ Q2 ⊆ . . . ⊆ Q j . For practical problems, using the standard
(block) Krylov subspace

Q j = K j (A, B) = range
([

B, AB, . . . , A j−1B
])

(2.3)

is not sufficient and leads to a slowly converging process and, hence, large low-rank
solution factors. A better performance can in most cases be achieved by using rational
Krylov subspaces which we use here in the form

Q j = K rat
j (A, B, ξ) := range

⎛
⎝
⎡
⎣B, (A − ξ2 I )

−1B, . . . ,

j∏
i=2

(A − ξi I )
−1B

⎤
⎦
⎞
⎠ , (2.4)
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Inexact methods for large scale Lyapunov equations 1225

with shifts ξi ∈ C+ (hence ξi /∈ Λ(A)), i = 2, . . . , j . An orthonormal basis forK rat
j

can be computed by the (block) rational Arnoldi process [37] leading to Q j ∈ C
n× jr

of full column rank. The resulting rational Krylov subspace method (RKSM) for com-
puting approximate solutions to (1.1) is given in Algorithm 1. The shift parameters are
crucial for a rapid reduction of the Lyapunov residual norm ‖R j‖ := ‖R(Q jY j Q∗

j )‖
(cf. (2.1)) and can be generated a-priori or adaptively in the course of the iteration [21].
The extension of the orthonormal basis range

(
Q j
)
by w in Line 6 of Algorithm 1

should be done by a robust orthogonalization process, e.g., using a repeated (block)
Gram–Schmidt process. The orthogonalization coefficients are accumulated in the
block Hessenberg matrix Hj = [hi,k] ∈ C

jr× jr , hi,k ∈ C
r×r , i, k = 1, . . . , j ,

i < k + 2. If the new basis blocks are normalized using a thin QR factorization, then
the hi+1,i matrices are upper triangular. In the following we summarize properties
of the RKSM method, in particular known results about the rational Arnoldi decom-
position and the Lyapunov residual, which will be crucial later on. We simplify this
discussion of the rational Arnoldi process and Algorithm 1 to the case r = 1. From
there, one can generalize to the situation r > 1.

Algorithm 1: Rational Krylov subspace method for solving (1.1)
Input : A, B as in (1.1), shifts {ξ2, . . . , ξ jmax } ⊂ C+, tolerance 0 < τ � 1.

Output: Q ∈ C
n× jr , X̃ ∈ C

jr× jr such that QX̃Q∗ ≈ X with jr � n.
1 Compute thin QR decomposition of B: Q1β = B, j = 1.
2 while ‖R(Q jY j Q

∗
j )‖ > τ‖BB∗‖ do

3 Solve (A − ξ j+1 I )w j+1 = q j for w j+1.
4 Orthogonally extend basis matrix Q j :
5 h1: j, j = Q∗

jw j+1, ŵ j+1 = w j+1 − Q j h1: j , j ,
6 q j+1h j+1, j = ŵ j+1, Q j+1 = [Q j , q j+1].
7 Projected matrices: Tj = Q∗

j (AQ j ), B̃ j = Q∗
j B = [β∗, 0]∗.

8 Solve Tj Y j + Y j T
∗
j + B̃ j B̃

∗
j = 0 for Y j .

9 Compute residual norm ‖R(Q jY j Q
∗
j )‖.

10 j = j + 1.

11 X̃ = Y j , Q = Q j

Assuming at first that the linear systems in Line 3 of Algorithm 1 are solved exactly,
then, after j steps of Algorithm 1, the generated quantities satisfy a rational Arnoldi
decomposition [21,27,37]

AQ j = Q jTj + g j h j+1, j e
∗
j H

−1
j , g j := q j+1ξ j+1 − (I − Q j Q

∗
j )Aq j+1, (2.5)

which can also be expressed as

AQ j+1Hj+1, j = Q j+1Mj+1, j , Mj+1, j :=
[
I + Hj D j

ξ j+1h j+1, j e∗
j

]
, (2.6)
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1226 P. Kürschner, M. A. Freitag

where Hj+1, j and Mj+1, j are ( j +1)× j matrices, Dj = diag
(
ξ2, . . . , ξ j+1

)
, Hj and

Dj are square matrices of size j , see, e.g., [16,37]. Here we generally use Hj = Hj, j

for simplicity. From the relations (2.5) and (2.6) it follows that the restriction of A
onto K rat

j can be written as

Tj = Q∗
j (AQ j ) = (I + Hj D j )H

−1
j − Q∗

j Aq j+1h j+1, j e
∗
j H

−1
j , (2.7)

which enables to compute the restriction Tj efficiently in terms of memory usage.
The restriction Tj can also be associated with the Hessenberg–Hessenberg pair
(Mj, j , Hj, j ) [16,37].

The final part of this section discusses how the Lyapunov residual in Line 9 of
Algorithm 1 can be computed efficiently. If the projected Lyapunov equation in Line 8

TjY j + Y j T
∗
j + B̃ j B̃

∗
j = 0 (2.8)

is solved for Y j , then for the Lyapunov residual (2.1) after j steps of the RKSM, we
have

R j = R(Q jY j Q
∗
j ) = Fj + F∗

j , (2.9a)

with

Fj := L j Q
∗
j ∈ C

n×n, L j := g j h j+1, j e
∗
j H

−1
j Y j ∈ C

n× j , (2.9b)

as was shown in [21,44]. The term L j is sometimes referred to as “semi-residual”.
Since g j ∈ C

n , h j+1, j e∗
j H

−1
j Y j ∈ C

1× j , the matrix Fj is of rank one. In general for
B ∈ R

n×r , r > 1 and a block-RKSM, Fj is of rank r .
Note that relation (2.9a) is common for projection methods for (1.1), but the special

structure of L j in (2.9b) arises from the rational Arnoldi process. Because g∗
j Q j = 0

we have that F2
j = 0 and ‖R j‖ = ‖Fj‖ = ‖L j‖ (using the relationship between the

spectral norm and the largest eigenvalues/singular values). This enables an efficient
way for computing the norm of the Lyapunov residual R j via

‖R j‖ = ‖‖g j‖h j+1, j e
∗
j H

−1
j Y j‖, (2.10)

for g j ∈ C
n .

2.2 The inexact rational Arnoldi method

The solution of the linear systems for w j+1 in each step of RKSM (line 3 in Algo-
rithm 1) is one of the computationally most expensive stages of the rational Arnoldi
method. In this section we investigate inexact solves of this linear systems, e.g., by
iterative Krylov subspace methods, but we assume that this is the only source of inac-
curacy in the algorithm. Clearly, some of the above properties do not hold anymore if
the linear systems are solved inaccurately. Let
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Inexact methods for large scale Lyapunov equations 1227

s j := q j − (A − ξ j+1 I )w̃ j+1, with ‖s j‖ ≤ τLSj

be the residual vectors with respect to the linear systems and inexact solution vectors
w̃ j+1 with τLSj < 1 being the solve tolerance of the linear system at step j of the
rational Arnoldi method.

The derivations in [37], [21, Proof of Prop. 4.2.] can be modified with

q j = (A − ξ j+1 I )Q j+1h1: j+1, j + s j ,

in order to obtain

AQ j+1Hj+1, j = Q j+1Mj+1, j − S j , S j := [s1, . . . , s j ],

where Mj+1, j is as in (2.6). Note that for S j = 0 we recover (2.6), as expected. Hence
AQ j Hj = [Q j (I + Hj D j )+ (ξ j+1q j+1 − Aq j+1)e∗

j h j+1, j ]− S j which leads to the
perturbed rational Arnoldi relation

AQ j = Q jT
impl.
j + g j e

∗
j h j+1, j H

−1
j − S j H

−1
j , (2.11)

where T impl.
j := [(I + Hj D j ) − Q∗

j Aq j+1)e∗
j h j+1, j ]H−1

j marks the restriction of A
by the implicit formula (2.7). However, the explicit restriction of A can be written as

T expl.
j := Q∗

j (AQ j ) = T impl.
j − Q∗

j S j H
−1
j ,

= ((I + Hj D j ) − Q∗
j Aq j+1)e

∗
j h j+1, j − Q∗

j S j )H
−1
j

(2.12)

which highlights the problem that the implicit (computed) restriction T impl.
j from (2.7)

is not the true restriction of A onto range
(
Q j
)
. In fact, the above derivations reveal

that

T impl.
j = Q∗

j (A + E j )Q j , E j := S j H
−1
j Q∗

j ,

i.e., the implicit restriction (2.7) is the exact restriction of a perturbation of A [26,31].
Similar to [26]weprefer to useT expl.

j for defining the projectedproblemas this keeps
the whole process slightly closer to the original matrix A. Moreover, (2.12) reveals
that unlike T impl., the explicit restriction T expl.

j is not connected to a Hessenberg–
Hessenberg pair because the term Q∗

j S j has no Hessenberg structure. Computing

T expl.
j by either (2.12) or explicitly generating T expl.

j = Q∗
j (AQ j ) by adding new

columns and rows to T expl.
j−1 will double thememory requirements because an additional

n × j array, S j ∈ C
n× j or Wj := AQ j , has to be stored. Hence, the per-step storage

requirements are similar to the extended Krylov subspace method (see, e.g., [43] and
the corresponding paragraph in Sect. 2.5). Alternatively, if matrix vector products with
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A∗ are available, we can also update the restriction

T expl.
j = Q∗

j (AQ j ) =
⎡
⎣ T expl.

j−1 Q∗
j−1(Aq j )

(z j )∗Q j−1 q∗
j (Aq j )

⎤
⎦ , z j := A∗q j ,

thereby bypassing the increased storage requirements. We will use this approach
in our numerical experiments. Trivially, we may also compute T expl.

j from scratch
row/columnwise, requiring j matrix vector products with A but circumventing the
storage increase. Using T expl.

j leads to the inexact rational Arnoldi relation

AQ j = Q jT
expl.
j + g̃ j H

−1
j , g̃ j := g j h j+1, j e

∗
j − (I − Q j Q

∗
j )S j , (2.13)

which we employ in the subsequent investigations.

Lemma 2.1 Consider the approximate solution Q jY j Q∗
j of (1.1) after j iterations

of inexact RKSM, where Y j solves the projected Lyapunov equation (2.8) defined by

either T expl.
j or T impl.

j . Then the true Lyapunov residual matrix Rtrue
j = R(Q jY j Q∗

j )

can be written in the following forms.

(a) If T expl.
j is used it holds

Rtrue
j = Fexpl.

j + (Fexpl.
j )∗, Fexpl.

j := g̃ j H
−1
j Y j Q

∗
j

= Fj − (I − Q j Q
∗
j )S j H

−1
j Y j Q

∗
j , (2.14a)

(b) and, if otherwise T impl.
j is used, it holds

Rtrue
j = Fimpl.

j + (Fimpl.
j )∗, Fimpl.

j := Fj − S j H
−1
j Y j Q

∗
j . (2.14b)

Proof For case (a), using (2.13) immediately yields

Rtrue
j =R(Q jY j Q

∗
j ) = AQ jY j Q

∗
j + Q jY j Q

∗
j A

∗ + BB∗

=[Q jT
expl.
j + g̃ j H

−1
j ]Y j Q

∗
j + Q jY j [Q jT

expl.
j

+ g̃ j H
−1
j ]∗ + Q j Q

∗
j BB

∗Q j Q
∗
j

=Q j

[
T expl.
j Y j + Y j (T

expl.
j )∗ + Q∗

j BB
∗Q j

]
Q∗

j

+ g̃ j H
−1
j Y j Q

∗
j + Q jY j H

−∗
j g̃∗

j = Fexpl.
j + (Fexpl.

j )∗.

Case (b) follows similarly using (2.11). �
Hence in both cases the true residual Rtrue

j is a perturbation of the computed residual

given by (2.9a)–(2.9b) which we denote in the remainder by Rcomp.
j . In case T expl.

j is
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Inexact methods for large scale Lyapunov equations 1229

used, since Q j ⊥ g̃ j one can easily see that ‖Rtrue
j ‖ = ‖Fexpl.

j ‖ = ‖g̃ j H
−1
j Y j‖, a

property not shared when using T impl.
j .

Our next step is to analyze the difference between the true and computed residual.

Definition 1 The residual gap after j steps of inexact RKSM for Lyapunov equations
is given by

ΔR j := Rtrue
j − Rcomp.

j = η
expl./impl.
j + (η

expl./impl.
j )∗,

where η
expl.
j := Fj − Fexpl.

j = (I − Q j Q
∗
j )S j H

−1
j Y j Q

∗
j (if T expl.

j is used),

η
impl.
j := Fj − F impl.

j = S j H
−1
j Y j Q

∗
j (if T impl. is used).

We have

‖ΔR j‖ =
{

‖ηexpl.j + (η
expl.
j )∗‖ = ‖ηexpl.j ‖,

‖ηimpl.
j + (η

impl.
j )∗‖ ≤ 2‖ηimpl.

j ‖.

The result for ‖ηexpl.j ‖ follows from the orthogonality of left and rightmost factors of

η
expl.
j : with Q̂ := [Q j , Q⊥

j ] ∈ C
n×n unitary we have

‖ΔR j‖2 =
∣∣∣λmax(η

expl.
j + (η

expl.
j )∗)

∣∣∣ =
∣∣∣λmax(Q̂

∗(ηexpl.j + (η
expl.
j )∗)Q̂)

∣∣∣

=
∣∣∣∣∣λmax

([
0 Q⊥

j
∗
η
expl.
j Q j

(Q⊥
j

∗
η
expl.
j Q j )

∗ 0

])∣∣∣∣∣ = σmax(η
expl.
j ) = ‖ηexpl.j ‖2.

In the followingwe use T expl.
j to define the projected problem and omit the superscripts

expl., impl.. Suppose the desired accuracy is so that ‖Rtrue
j ‖ ≤ ε, where ε > 0 is a

given threshold. In practice the computed residual norms often show a decreasing
behavior very similar to the exact method. However, the norm of the residual gap
‖η j‖ indicates the attainable accuracy of the inexact rational Arnoldi method because
‖Rtrue

j ‖ ≤ ‖Rcomp.
j ‖ + ‖η j‖ and the true residual norm is bounded by ‖η j‖ even if

‖Rcomp.
j ‖ ≤ ε, which would indicate convergence of the computed residuals. This

motivates to enforce ‖η j‖ < ε, such that small true residual norms ‖Rtrue
j ‖ ≤ 2ε are

obtained overall. Since, at step j ,

‖η j‖ ≤ ‖S j H
−1
j Y j‖ =

∥∥∥∥∥∥

j∑
k=1

ske
∗
k H

−1
j Y j

∥∥∥∥∥∥
≤

j∑
k=1

‖sk‖‖e∗
k H

−1
j Y j‖, (2.15)

it is sufficient that only one of the factors in each addend in the sum is small and the
other one is bounded by, say, O(1) in order to achieve ‖η j‖ ≤ ε. In particular, if
the ‖e∗

k H
−1
j Y j‖ terms decrease with k, the linear residual norms ‖sk‖ are allowed to

increase to some extent, and still achieve a small residual gap ‖η j‖. Hence, the solve
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1230 P. Kürschner, M. A. Freitag

tolerance τLSk of the linear solves can be relaxed in the course of the outer iteration
which has coined the term relaxation. For this to happen, however, we first need to
investigate if there is a decay of ‖e∗

k H
−1
j Y j‖ as k increases, which we will do next.

2.3 Properties of the solution of the Galerkin system

By (2.15), the norm of the residual gap η j strongly depends on the solution Y j of the
projected Lyapunov equation (2.8). We will see in Theorem 2.1 and Corollary 2.1 that
the entries of Y j decrease away from the diagonal in a manner proportional to the
Lyapunov residual norm.

In the second part of this section we consider the rows of H−1
j Y j , since the residual

formula (2.9a–2.9b) and the residual gap (2.15) depend on this quantity. It turns out
that the norm of those rows also decay with the Lyapunov residual norms. Both decay
bounds will later be used to develop practical relaxation criteria for achieving ‖η j‖ ≤
ε.

Consider the solution to the projected Lyapunov equation (2.8). We are interested
in the transition from step k to j , where k < j . At first, we investigate this transition
for a general Galerkin method including RKSM as a special case.

Theorem 2.1 Assume A+A∗ < 0 and consider aGalerkin projectionmethod for (1.1)
with Tj = Q∗

j (AQ j ), Q∗
j Q j = I j , and the first basis vector given by B = q1β.

Let the k × k matrix Yk and the j × j matrix Y j be the solution to the projected
Lyapunov equation (2.8) after k and j steps of this method (e.g., Algorithm 1 with
r = 1), respectively, where k < j . Consider the j × j difference matrix ΔY j,k :=
Y j −

[
Yk 0
0 0

]
, where the zero blocks are of appropriate size. Then

‖ΔY j,k‖ ≤ cA‖Rtrue
k ‖, cA := (1 + √

2)2

2αA
, (2.16)

where αA := 1
2 |λmax(A+ A∗)|, and Rtrue

k is the Lyapunov residual matrix after k steps
of Algorithm 1.

Proof The residual matrix N j,k of (2.8) w.r.t. Tj and

[
Yk

0

]
is given by

N j,k := Tj

[
Yk

0

]
+
[
Yk

0

]
T ∗
j +

⎡
⎣
[

ββ∗ 0
0 0

]
0

0 0

⎤
⎦

as Tj is built cumulatively. Since Q j [Yk 0
]Q∗

j = QkYkQ∗
k , it follows that ‖N j,k‖ ≤

‖Rtrue
k ‖. The difference matrix ΔY j,k satisfies the Lyapunov equation TjΔY j,k +

ΔY j,kT ∗
j = −N j,k , and since Λ(Tj ) ⊂ C− (using A + A∗ < 0) it can be expressed
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via the integral

ΔY j,k =
∞∫

0

eTj t N j,k e
T ∗
j t dt . (2.17)

Moreover, using results from [19], we have

‖ eTj t ‖ ≤ (1 + √
2) max

z∈W (Tj )
| ezt | = (1 + √

2) e
max

z∈W (T j )
Re (z)t

,

where W (·) denotes the field of values. Using the assumption A + A∗ < 0 it holds
that W (A) ⊂ C− and, consequently, W (Tj ) ⊆ W (A), ∀ j > 0. Hence,

e
max

z∈W (T j )
Re (z)t

≤ e−αAt with αA := 1

2
|λmin(A + A∗)|.

Finally, from (2.17)weobtain‖ΔY j,k‖ ≤
∞∫

0

‖ eTj t ‖2dt‖N j,k‖ ≤ (1 + √
2)2‖Rtrue

k ‖
2αA

.

�
Theorem 2.1 shows that the difference matrix ΔY j,k decays at a similar rate as the
Lyapunov residual norms.

Remark 2.1 Note that the constant cA in Theorem 2.1 is a bound on
∞∫
0

‖ eTj t ‖2dt and
could bemuch smaller than the given value. In the following considerations we assume
that cA is small or of moderate size. If cA is large (e.g., the field of values is close to the
imaginary axis) then the ability to approximate X by a low-rank factorization might
be reduced, see, e.g. [3,25]. Hence, this situation could be difficult for the low-rank
solvers, regardless whether exact or inexact linear solves are used, and it is therefore
appropriate to assume that cA is small (or of moderate size).

The above theorem can be used to obtain results about the entries of the solution Y j

of the projected Lyapunov equation (2.8).

Corollary 2.1 Let the assumptions of Theorem 2.1 hold. For the (�, i)th entry of Y j we
have

|e∗
�Y j ei | ≤ cA‖Rtrue

k ‖, �, i = 1, . . . , j, (2.18)

where k < max(�, i) and cA is as in Theorem 2.1.

Proof We have

e∗
�Y j ei = e∗

�

[
Yk 0
0 0

]
ei + e∗

�ΔY j,kei . (2.19)
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For k < � the first summand vanishes and hence, using Theorem 2.1

|e∗
�Y j ei | = |e∗

�ΔY j,kei | ≤ (1 + √
2)2

2αA
‖Rtrue

k ‖, k = 1, . . . , � − 1. (2.20)

Since, Y j = Y ∗
j the indices �, i can be interchanged, s.t. k < max(�, i) and we end up

with the final bound (2.18). �

Remark 2.2 Note that the sequence {‖Rtrue
k ‖} is not necessarilymonotonically decreas-

ing and we can further extend the bound in (2.18) and obtain

|e∗
�Y j ei | ≤ cA min

p=1,...,max(�,i)
‖Rtrue

p−1‖, �, i = 1, . . . , j .

Corollary 2.1 shows that the (�, i)-th entry of Y j can be bounded from above using
the Lyapunov residual norm at step k < max(�, i). This indicates that the further
away from the diagonal, the smaller the entries of Y j will become in the course of the
iteration, provided the true residual norms exhibit a sufficiently decreasing behavior.
We can observe this characteristic in Fig. 1 in Sect. 4. The decay of Lyapunov solutions
has also been investigated by different approaches. Especially when Tj is banded,
which is, e.g., the case when a Lanczos process is applied to A = A∗, more refined
decay bounds for the entries of Y j can be established, see, e.g., [18,35].

In exact and inexact RKSM, the formula for residuals (2.9), (2.14) and residual
gaps (2.15) depend not only on Y j but rather on H−1

j Y j . In particular, the rows of

H−1
j Y j appear in (2.15) and will later be substantial for defining relaxation strategies.

Hence, we shall investigate if the norms ‖e∗
k H

−1
j Y j‖ also exhibit a decay for 1 ≤ k ≤

j . For the last row, i.e. k = j , using (2.10) readily reveals

‖e∗
j H

−1
j Y j‖ = ‖Rcomp.

j ‖
|h j+1, j |‖g j‖ , assuming g j �= 0, h j+1, j �= 0.

In the spirit of Theorem 2.1, Corollary 2.1, we would like to bound the �th row
of H−1

j Y j by the (� − 1)th computed Lyapunov residual norm ‖Rcomp.
�−1 ‖. For this we

require the following lemma showing that, motivated by similar results in [53], the
first k (1 < k ≤ j) entries of e∗

k H
−1
j are essentially determined by the left null space

of H j := Hj+1, j and e∗
k−1H

−1
k−1 modulo scaling.

Lemma 2.2 Let H j =
[
Hj

h j+1, j e∗
j

]
∈ C

( j+1)× j with Hj an unreduced upper Hes-

senberg matrix, with rank(H j ) = j , Hk := H1:k,1:k nonsingular ∀1 ≤ k ≤ j , and

let ω ∈ C
1×( j+1), ω �= 0 satisfy ωH j = 0. Define the vectors f (k)

m := e∗
k H

−1
m ,

1 ≤ k ≤ m ≤ j . Then, for 1 ≤ k ≤ j , we have

123



Inexact methods for large scale Lyapunov equations 1233

f ( j)
j = − ω1: j

ω j+1h j+1, j
, f (k)

j = v
(k)
j

φ
(k)
j

, where (2.21a)

v
(k)
j := ω1: j + [01,k, [01, j−k−1, h j+1, jω j+1]H−1

k+1: j,k+1: j ], φ
(k)
j := v

(k)
j H j ek .

(2.21b)

Moreover, for k > 1, the first k entries of v(k)
j can be expressed by

(v
(k)
j )1:k = [−hk,k−1 f

(k−1)
k−1 , 1]ωk . (2.21c)

Proof See “Appendix A”. �
Corollary 2.2 Let the assumptions of Theorem 2.1, Corollary 2.1, and Lemma 2.2 hold
and consider the RKSM as a special Galerkin projection method. Then

‖e∗
�H

−1
j Y j‖ ≤

⎧⎨
⎩
cA‖e∗

1H
−1
j ‖‖Rtrue

0 ‖, � = 1,
1

φ
(�)
j ‖g�−1‖

‖Rcomp.
�−1 ‖ + cA‖e∗

�H
−1
j ‖‖Rtrue

�−1‖, � = 2, . . . , j (2.22)

with g� from (2.5) and φ
(�)
j from Lemma 2.2.

Proof Using Lemma 2.2 for f (�)
j := e∗

�H
−1
j , 1 < � ≤ j , and the structure (2.9b) of

the computed Lyapunov residuals yields

e∗
�H

−1
j Y j = f (�)

j

([
Y�−1 0
0 0

]
+ ΔY j,�−1

)

= [−h�,�−1 f
(�−1)
�−1 ω�]/φ(�)

j Y�−1 + f (�)
j ΔY j,�−1

= − g∗
�−1L�−1

‖g�−1‖2φ(�)
j

ω� + f (�)
j ΔY j,�−1.

Taking norms, using thatω is a unit norm vector, noticing for � = 1 only the second
term exists, and applying Theorem 2.1 gives the result. �

Corollary 2.2 shows that, similar to the entries of Y j , the rows of H−1
j Y j can be

bounded using the previous Lyapunov residual norm. However, due to the influence of
H−1

j , the occurring constants in front of the Lyapunov residual norms can potentially
be very large.

2.4 Relaxation strategies and stopping criteria for the inner iteration

In order to achieve accurate results, the difference between the true and computed
residual, the residual gap, needs to be small.

Corollary 2.2 indicates that ‖e∗
k H

−1
j Y j‖ decreases with the computed Lyapunov

residual, and hence ‖sk‖maybe relaxed during theRKSM iteration in amanner inverse
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proportional to the norm of the Lyapunov residual (assuming the Lyapunov residual
norm decreases).

Theorem 2.2 (Theoretical relaxation strategy in RKSM) Let the assumptions of The-
orem 2.1 and Corollary 2.2 hold. Assume we carry out j steps of Algorithm 1 always
using the explicit projection T expl.

j . If we choose the solve tolerances ‖sk‖, 1 ≤ k ≤ j
for the inexact solves within RKSM such that

‖sk‖ ≤ τLSk =

⎧
⎪⎨
⎪⎩

ε

jcA‖e∗
1H

−1
j ‖‖Rtrue

0 ‖ , k = 1,

ε
j

φ
(k)
j ‖gk−1‖

‖Rcomp.
k−1 ‖+ jcA‖e∗

k H
−1
j ‖‖Rtrue

k−1‖
, 1 < k ≤ j, (2.23)

with the same notation as before, then, for the residual gap ‖η j‖ ≤ ε holds.

Proof Consider a single addend in the sum expression (2.15) for the norm of the
residual gap

‖sk‖‖e∗
k H

−1
j Y j‖ ≤ ‖sk‖

(
1

φ
(k)
j ‖gk−1‖

‖Rcomp.
k−1 ‖ + cA‖e∗

k H
−1
j ‖‖Rtrue

k−1‖
)

, k > 1.

Choosing sk such that (2.23) is satisfied for 1 ≤ k ≤ j then gives‖η j‖ ≤ ∑ j
k=1

ε
j =

ε where we have used (2.15), Theorem 2.1, Corollaries 2.1 and 2.2. �
The true norms ‖Rtrue

k−1‖ can be estimated by ‖Rtrue
k−1‖ ≤ ‖Rcomp.

k−1 ‖+‖ηk−1‖. For this,
we might either use some estimation for ‖ηk−1‖ or simply assume that all previous
residual gaps were sufficiently small, i.e., ‖ηk−1‖ ≤ ε.
Practical relaxation strategies for inexact RKSM The relaxation strategy in Theo-
rem 2.2 is far from practical. First, the established bounds for the entries and rows of
Y j and H−1

j Y j , respectively, can be a vast overestimation of the true norms. Hence,

the potentially large denominators in (2.23) result in very small solve tolerances τLSk
and, therefore, prevent a substantial relaxation of the inner solve accuracies. Second,
several quantities in the used bounds are unknown at step k < j , e.g. H−1

j , Y j , and

the constants φ
(k)
j . If we knew H−1

j , Y j , we could employ a relaxation strategy of
the form ‖sk‖ ≤ ε

j‖e∗
k H

−1
j Y j‖ and only use Corollary 2.2 as theoretical indication that

‖e∗
k H

−1
j Y j‖ decreases as the outer method converges.

In the following we therefore aim to develop a more practical relaxation strategy by
trying to estimate the relevant quantity ‖e∗

k H
−1
j Y j‖ differently using the most recent

available data. Suppose an approximate solution with residual norm ‖Rtrue
k ‖ ≤ ε,

0 < ε � 1 is desired which should be found after at most jmax rational Arnoldi steps.
This goal is achieved if ‖η jmax‖ ≤ ε

2 and if ‖Rcomp.
jmax

‖ ≤ ε
2 is obtained by the inexact

RKSM.
Consider the left null vectors of the augmented Hessenberg matrices, ωk Hk = 0,

k ≤ jmax. It is easy to show that ωk can be updated recursively, in particular it is
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possible to compute ωm = (ωk)1:m+1, m ≤ k ≤ jmax. Consequently, at the beginning
of step k we already have Hk−1 and hence, also the first k entries of ω jmax without
knowing the full matrix H jmax

. Using Lemma 2.2 and proceeding similar as in the
proof of Corollary 2.2 results in

‖e∗k H−1
jmax

Y jmax‖ =
∥∥∥∥e∗k H−1

jmax

([
Yk−1 0
0 0

]
+ ΔY jmax,�−1

)∥∥∥∥

=
∥∥∥∥∥∥
−ω jmax (k)

φ
(k)
jmax

[hk,k−1e
∗
k−1H

−1
k−1, ∗]

[
Yk−1 0
0 0

]
+ e∗k H−1

jmax
ΔY jmax,�−1)

∥∥∥∥∥∥

=
∥∥∥∥∥∥
−hk,k−1ωk(k)

φ
(k)
jmax

e∗k−1H
−1
k−1Yk−1 + e∗k H−1

jmax
ΔY jmax,k−1

∥∥∥∥∥∥

≤
∣∣∣∣∣∣
hk,k−1ωk(k)

φ
(k)
jmax

∣∣∣∣∣∣
‖e∗k−1H

−1
k−1Yk−1‖ + ‖e∗k H−1

jmax
‖cA‖Rtrue

k−1‖

≈
∣∣∣∣∣∣
hk,k−1ωk(k)

φ
(k)
jmax

∣∣∣∣∣∣
‖e∗k−1H

−1
k−1Yk−1‖,

if ‖e∗
k H

−1
jmax

‖cA‖Rtrue
k−1‖ is small. Only the scaling parameter φ

(k)
jmax

contains missing
data at the beginning of step k, because Hk−1, Yk−1, ωk are known from the previous
step. We suggest to omit the unknown data and use the following practical relaxation
strategy

‖sk‖ ≤ τLSk =
⎧
⎨
⎩

δ ε
jmax

, k = 1,

δ ε

jmax‖hk,k−1e∗
k−1H

−1
k−1Yk−1‖ , k > 1,

(2.24a)

where 0 < δ ≤ 1 is a safeguard constant to accommodate for the estimation error
resulting from approximating ‖e∗

k H
−1
jmax

Y jmax‖ and omitting unknown quantities (e.g.,

φ
(k)
jmax

).

Remark 2.3 The parameter δ is a safeguard constant. Choosing δ too large may lead
to divergence of the inexact method, choosing it too small could lead to unnecessary
extra work. Investigating the choice of this constant is future work, however we would
like to remark, that similar constants have been used in other works on inexact iterative
solves, e.g. [46].

The readermight notice by followingAlgorithm 1 closely, that the built up subspace
at the beginning of iteration step k ≤ jmax is already k-dimensional and since we are
using the explicit projection T expl.

k to define the Galerkin systems, we can already
compute Yk directly after building Qk . This amounts to a simple rearrangement of
Algorithm 1 by moving Lines 7, 8 before Line 3. Hence, the slight variation
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‖e∗
k H

−1
jmax

Y jmax‖ ≈
∣∣∣∣∣
ωk(k)

φ
(k)
jmax

∣∣∣∣∣ ‖[−hk,k−1e
∗
k−1H

−1
k−1, 1]Yk‖

of the above estimate is obtained, which suggests the use of the (slightly different)
practical relaxation strategy

‖sk‖ ≤ τLSk =
⎧⎨
⎩

δ ε
jmax

, k = 1,

δ ε

jmax‖[−hk,k−1e∗
k−1H

−1
k−1,1]Yk‖

, k > 1.
(2.24b)

For both dynamic stopping criteria, in order to prevent too inaccurate and too
accurate linear solves, it is reasonable to enforce τLSk ∈ [τLSmin, τ

LS
max], where 0 <

τLSmin < τLSmax ≤ 1 indicate minimal and maximal linear solve thresholds.
The numerical examples in Sect. 4 show that these practical relaxation strategies

are effective and can reduce the number of inner iterations for RKSM by up to 50%.

2.5 Implementation issues and generalizations

This section contains several remarks on the implementation of the inexact RKSM, in
particular the case when the right hand side of the Lyapunov equation has rank greater
than one, aswell as considerations of the inner iterative solver and preconditioning.We
also briefly comment on extensions to generalized Lyapunov equations and algebraic
Riccati equations.

The case r > 1 The previous analysis was restricted to the case r = 1 but the block
situation, r > 1, can be handled similarly by using appropriate block versions of the
relevant quantities, e.g., qk, wk, sk ∈ C

n×r , hi j ∈ R
r , ω ∈ C

r×( j+1)r , and ek by
ek ⊗ Ir , as well as replacing absolute values by spectral norms in the right places.
When solving the linear system with r right hand sides qk , such that, ‖sk‖ ≤ τLSk is
achieved, one can either used block variants of the iterativemethods (see, e.g., [49]), or
simply apply a single vector method and sequentially consider every column qk(:, �),
� = 1, . . . , r and demand that sk(:, �) ≤ τLSk /r .

Choice of inner solver One purpose of low-rank solvers for large matrix equations is
to work in a memory efficient way. Using a long-recurrence method such as GMRES
to solve unsymmetric inner linear systems defies this purpose in some sense because
it requires storing the full Krylov basis. Unless a very good preconditioner is avail-
able, this can lead to significant additional storage requirements within the inexact
low-rank method, where the Krylov method consumes more memory than the actual
low-rank Lyapunov solution factor of interest. Therefore we exclusively used short-
recurrence Krylov methods (e.g., BiCGstab) for the numerical examples defined by
an unsymmetric matrix A.

Preconditioning The preceding relaxation strategies relate to the residuals sk of the
underlying linear systems. For enhancing the performance of the Krylov subspace
methods, using preconditioners is typically inevitable. Then the inner iteration itself
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inherently only works with the preconditioned residuals sPrec.k which, if left or two-
sided preconditioning is used, are different from the residuals sk of the original linear
systems. Since ‖sPrec.k ‖ ≤ τLSk does not imply ‖sk‖ ≤ τLSk this can result in linear
systems solved not accurately enough to ensure small enough Lyapunov residual gaps.
Hence, some additional care is needed to respond to these effects frompreconditioning.
The obvious approach is to use right preconditioning which gives ‖sPrec.k ‖ = ‖sk‖.
Complex shifts In practice A, B are usually real but some of the shift parameters can
occur in complex conjugate pairs. Then it is advised to reduce the amount of com-
plex operations by working with a real rational Arnoldi method [37] that constructs
a real rational Arnoldi decomposition and slightly modified formulae for the com-
puted Lyapunov residuals, in particular for Fj . The actual derivations are tedious and
are omitted here for the sake of brevity, but our implementation for the numerical
experiments works exclusively with the real Arnoldi process.

Generalized Lyapunov equations In many practical relevant situations, generalized
Lyapunov equations of the form

AXM∗ + MX A∗ = −BB∗, (2.25)

with an additional, nonsingular matrix M ∈ R
n×n have to be solved. Projection

methods tackle (2.25) by implicitly running on equivalent Lyapunov equations defined
by AM := L−1

M AU−1
M , BM := L−1

M B using a factorization M = LMUM , which
could be a LU-factorization or, if M is positive definite, a Cholesky factorization
(UM = L∗

M ). Other possibilities are LM = M, UM = I and LM = I , UM = M .
Basis vectors for the projection subspace are obtained by

Q1β = L−1
M B, (A − ξ j+1M)ŵ j+1 = LMq j , w j+1 = UM ŵ j+1. (2.26)

After convergence, the low-rank approximate solutionof the original problem (2.25)
is given by X ≈ (U−1

M Q j )Y j (U
−1
M Q j )

∗), where Y j solves the reduced Lyapunov
equation defined by the restrictions of AM and BM . This requires solving extra linear
systems defined by (factors of) M in certain stages of Algorithm 1: setting up the
first basis vector, building the restriction Tj of AM (either explicitly or implicitly
using (2.7)), and recovering the approximate solution after termination. Since the
coefficients of these linear system do not change throughout the iteration, often sparse
factorizations of M are computed once at the beginning and reused every time they
are needed. In this case the above analysis can be applied with minor changes of the
form

s j := LMq j − (A − ξ j+1M) ˆ̃w j+1, ‖s j‖ ≤ τLSj , w j+1 = UM ˆ̃w j+1,

for the inexact linear solves. We obtain an inexact rational Arnoldi decomposition
with respect to AM of the form
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AMQ j = Q j T̂
expl.
j + ĝ j e

∗
j h j+1, j H

−1
j − (I − Q j Q

∗
j )L

−1
M Sj H

−1
j ,

with T̂ expl.
j = Q∗

j AMQ j , ĝ j = q j+1ξ j+1 − (I − Q j Q
∗
j )AMq j+1.

If Q jY j Q∗
j is an approximate solution of the equivalent Lyapunov equation defined by

AM , BM , and Y j solves the reduced Lyapunov equation defined by T̂
expl.
j and Q∗

j BM ,
then the associated residual is

AMQ jY j Q
∗
j + Q jY j Q

∗
j A

∗
M + BM B∗

M = F̂j + ΔF̂j + (F̂j + ΔF̂j )
∗,

F̂j := ĝ∗
j h j+1, j H

−1
j Y j Q

∗
j , ΔF̂j := (I − Q j Q

∗
j )L

−1
M Sj H

−1
j Y j Q

∗
j .

Hence, the generalized residual gap is η̂ j = ΔF̂j . If LM = I ,UM = M , bounding
‖η̂ j‖ works in the same way as in the case M = I , otherwise an additional constant
1/σmin(LM ) (or an estimation thereof) has to be multiplied to the established bounds.
Allowing inexact solves of the linear systems defined by (factors of) M substantially
complicates the analysis. In particular, the transformation to a standard Lyapunov
equation is essentially not given exactly since, in that case, only a perturbed version of
AM and its restriction are available. This situation is, hence, similar to the casewhen no
exact matrix vector products with A are available. If LM �= I , also BM is not available
exactly leading to further perturbations in the basis generation. For these reasons, we
will not further pursue inexact solves with M or its factors. This is also motivated
from practical situations, where solving with M , or computing a sparse factorization
thereof, is usually much less demanding compared to factorising A − ξ j+1M .

Extended Krylov subspace methods A special case of the rational Krylov subspace
appears when only the shifts zero and infinity are used, leading to the extended Krylov
subspace EKk(AM , BM ) = Kk(AM , BM ) ∪ Kk(A

−1
M , A−1

M BM ) (using the notation
from the previous subsection). Usually, in the resulting extended Arnoldi process the
basis is expanded by vectors from Kk(AM , BM ) and Kk(A

−1
M , A−1

M BM ) in an alter-
nating fashion, starting with Kk(AM , BM ). The extended Krylov subspace method
(EKSM) [43] for (1.1) and (2.25) uses a Galerkin projection onto EKk(AM , BM ). In
each step the basis is orthogonally expanded by w j+1 = [AMq j (:, 1 : r), A−1

M q j (:
, r + 1 : 2r)], where q j contains the last 2r basis vectors. This translates to the
following linear systems and matrix vector products

UMz = q j (:, 1 : r), LMw j+1(:, 1 : r) = Az,

and Az = LMq j (:, r + 1 : 2r), w j+1(:, r + 1 : 2r) = UMz,

that have to be dealt with. Similar formula for the implicit restriction of A and the
Lyapunov residual as in RKSM can be found in [43]. Since these coefficient matrices
do not change during the iteration, a very efficient strategy is to compute, if possible,
sparse factorizations of A, M once before the algorithm and reuse them in every step.
Incorporating inexact linear solves by using inexact sparse factorizations A ≈ L̃ AŨA,
M ≈ L̃MŨM would make it difficult to incorporate relaxed solve tolerances, since
there is little reason to compute a less accurate factorization once a highly accurate one
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has been constructed. For the same reasons stated in the paragraph above, we restrict
ourselves to the iterative solution of the linear systems defined by A. These linear
systems affect only the columns in w j+1(:, r + 1 : 2r). In particular, by proceeding
as for inexact RKSM, one can show that

AMQ j = Q j+1T
expl.
j+1, j − (I − Q j Q

∗
j )S

EK
j with

T expl.
j+1, j = Q∗

j+1AMQ j , SEKj := [sEK1 , . . . , sEKj ], sEKi := [0,U−1
M si ] ∈ C

n×2r ,

where si := LMqi (:, r + 1 : 2r) − Az, 1 ≤ i ≤ j . Note that, allowing inexact solves
w.r.t. M or even inexact matrix vector products with A, M , would destroy the zero
block columns in sEKi .

Algebraic Riccati equations The RKSM in Algorithm 1 can be generalized to
compute low-rank approximate solutions of generalized algebraic Riccati equations
(AREs)

AXM∗ + MX A∗ − MXCC∗XM + BB∗ = 0, C ∈ C
n×p, p � n, (2.27)

see, e.g., [44,48]. The majority of steps in Algorithm 1 remain unchanged, the main
difference is that the Galerkin system is now a reduced ARE

TjY j + Y j T
∗
j − Y j (Q

∗
jCM )(C∗

MQ j )Y j + Q∗
j BM B∗

MQ j = 0, CM := U−∗
M C,

which has to be solved. Since we do not alter the underlying rational Arnoldi process,
most of the properties of the RKSM hold again, especially the residual formulas in
both the exact and inexact case, and a residual gap is defined again as in the Lyapunov
case. Differences occur in the bounds for the entries of Y j and rows of H−1

j Y j , since
Theorem 2.1 cannot be formulated in the same way. Under some additional assump-
tions, a bound of the form ‖ΔY j, j−1‖ ≤ cARE‖R j−1‖ can be established [44], where
the constant cARE is different from cA. We leave concrete generalizations of Theo-
rem 2.1, Corollaries 2.1, 2.2 for future research and only show in some experiments
that relaxation strategies of the form (2.24a), (2.24b) also work for the inexact RKSM
for AREs.

3 The inexact low-rank ADI iteration

3.1 Derivation, basic properties, and introduction of inexact solves

Using the Cayley transformationC(A, α) := (A+α I )−1(A−α I ), for α ∈ C−, (1.1)
can be reformulated as discrete-time Lyapunov equation (symmetric Stein equation)

X = C(A, α)XC(A, α)∗ − 2Re (α) B(α)B(α)∗, B(α) := (A + α I )−1B.
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1240 P. Kürschner, M. A. Freitag

For suitably chosen α j this motivates the iteration

X j = C(A, α j )X j−1C(A, α j )
∗ − 2Re

(
α j
)
B(α j )B(α j )

∗, (3.1)

which is known as alternating directions implicit (ADI) iteration [54] for Lyapunov
equations. It converges for shift parameters α j ∈ C− because ρ(C(A, α j )) < 1 and
it holds [10,33,40,54]

X j − X = C j (X0 − X)C∗
j , (3.2)

R j = AX j + X j A
∗ + BB∗ = C j R0C

∗
j , (3.3)

where C j := ∏ j
i=1 C(A, αi ).

A low-rank version of the ADI iteration is obtained by setting X0 = 0 in (3.1),
exploiting that (A + α j I )−1 and (A − αi I ) commute for i, j ≥ 1, and realising that
the iterates are given in low-rank factored form X j = Z j Z∗

j with low-rank factors Z j

constructed by

Z j = [
γ1v1, γ2v2, . . . , γ jv j

] = [
Z j−1, γ jv j

]
, γ j :=

√
−2Re

(
α j
)
,

v j = (A − α j−1 I )(A + α j I )
−1v j−1, j ≥ 1, v1 := (A + α1 I )

−1B,

(3.4)

see [33,39] for more detailed derivations. Thus, in each step Z j−1 is augmented by r
new columns v j . Moreover, from (3.3) with X0 = 0 and (3.4) it is evident that

R j = w jw
∗
j , w j := C j B = w j−1 − γ 2

j (A + α j I )
−1w j−1, w0 := B, (3.5)

see also [10,55]. Hence, the residual matrix has at most rank r and its norm can be
cheaply computed as ‖R j‖2 = ‖w∗

jw j‖2 which coined the name residual factors for
the w j . The low-rank ADI (LR-ADI) iteration using these residual factors is

v j = (A + α j I )
−1w j−1, w j = w j−1 + γ 2

j v j , w0 := B. (3.6a)

For generalized Lyapunov equations (2.25), this iteration can be formally applied
to an equivalent Lyapunov equations defined, e.g. by M−1A, M−1B. Basic manipu-
lations (see, e.g. [10,30]) resolving the inverses of M yield the generalized LR-ADI
iteration

v j = (A + α j M)−1w j−1, w j = w j−1 + γ 2
j Mv j , w0 := B. (3.6b)

As for RKSM, the choice of shift parameters α j is crucial for a rapid convergence.
Many approaches have been developed for this problem, see, e.g., [40,52,54], where
shifts are typically obtained from (approximate) eigenvalues of A, M . Among those
exist asymptotically optimal shifts for certain situations, e.g., A = A∗, M = M∗ and
Λ(A, M) ⊂ R−. Adaptive shift generation approaches, where shifts are computed
during the running iteration, were proposed in [12,30] and often yield better results,
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Inexact methods for large scale Lyapunov equations 1241

Algorithm 2: Inexact LR-ADI iteration.
Input : Matrices A, M, B defining (2.25), set of shift parameters {α1, . . . , α jmax } ⊂ C−,

tolerance 0 < ε � 1.
Output: Z j ∈ C

n×r j , such that Z Z∗ ≈ X .
1 w0 = B, Z0 = [ ], R0 = ‖w∗

0w0‖, j = 1.
2 while ‖R j−1‖ ≥ ε do
3 Get v j s.t. s j = w j−1 − (A + α j M)v j , ‖s j‖ ≤ δ j .
4 w j = w j−1 − 2Re

(
α j
)
Mv j .

5 Z j = [Z j−1,
√

−2Re
(
α j
)
v j ].

6 R j = ‖w∗
jw j‖2.

7 j = j + 1.

especially for nonsymmetric coefficients with complex spectra. In this workwemainly
work with these dynamic shift selection techniques. The main computational effort
in each step is obviously the solution of the shifted linear system with (A + α j M)

and r right hand sides for v j in (3.6). Allowing inexact linear solves but keeping the
other steps in (3.6) unchanged results in the inexact low-rank ADI iteration illustrated
in Algorithm 2. We point out that a different notion of an inexact ADI iteration can
be found in [34] in the context of operator Lyapunov equations, where inexactness
refers to the approximation of infinite dimensional operators by finite dimensional
ones.

Of course, allowing s j �= 0 will violate some of the properties that were used to
derive the LR-ADI iteration. Inexact solves within the closely related Smith methods
have been investigated in, e.g., [40,50], from the viewpoint of an inexact nonstationary
iteration (3.1) that led to rather conservative results on the allowed magnitude of the
norm of the linear system residual s j . The analysis we present here follows a different
path by exploiting the well-known connection of the LR-ADI iteration to rational
Krylov subspaces [20,32,33].

Theorem 3.1 [32,33,55] The low-rank solution factors Z j after j steps of the exact
LR-ADI iteration (‖s j‖ = 0, ∀ j ≥ 1) span a (block) rational Krylov subspace:

range
(
Z j
) ⊆ range

⎛
⎝
⎡
⎣(A + α1M)−1B, . . . ,

⎡
⎣

j∏
i=2

(A + αi M)−1

⎤
⎦ (A + α1M)−1B

⎤
⎦
⎞
⎠ . (3.7)

Although for LR-ADI, the Z j do not have orthonormal columns and there is no
rational Arnoldi process in Algorithm 2, it is still possible to find decompositions
similar to (2.5) and (2.11).
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1242 P. Kürschner, M. A. Freitag

Theorem 3.2 The low-rank solution factors Z j after j steps of the inexact LR-ADI
iteration (Algorithm 2) satisfy a rational Arnoldi like decomposition

AZ j = MZ j Tj + w j g
∗
j − S jΓ j , S j := [s1, . . . , s j ], where (3.8)

Tj = −

⎡
⎢⎢⎢⎢⎣

α1 0 . . . 0

γ1γ2 α2
. . .

...

...
. . . 0

γ1γ j . . . α j

⎤
⎥⎥⎥⎥⎦

⊗ Ir , g j :=
⎡
⎢⎣

γ1
...

γ j

⎤
⎥⎦⊗ Ir , Γ j := diag

(
g j
)
. (3.9)

Moreover, the Lyapunov residual matrix associated with the approximation X j =
Z j Z∗

j ≈ X is given by

Rtrue
j = AZ j Z

∗
j M

∗ + MZ j Z
∗
j A

∗ + BB∗

= −S jΓ j Z
∗
j M

∗ − MZ jΓ j S
∗
j + w jw

∗
j . (3.10)

Note that here, Tj and g j denote different quantities than in Sect. 2.

Proof For S j = 0 the decomposition (3.8) was established in [30,55] and can be
entirely derived from the relations (3.6). Inexact solves in the sense w j−1 − (A +
α j M)v j = s j can be inserted in a straightforward way leading to (3.8). By construc-
tion, it holds B = w0 = w j − MZ j g j which, together with (3.8), gives

Rtrue
j = MZ j (Tj + T ∗

j + g j g
∗
j )Z

∗
j M

∗ + w jw
∗
j − S jΓ j Z

∗
j M

∗ − MZ jΓ j S
∗
j

and (3.10) follows by verifying that Tj + T ∗
j = −g j g∗

j .

Remark 3.1 The LR-ADI iteration is in general not a typical Galerkin projection
method using orthonormal bases of the search spaces and solutions of reduced matrix
equations. For instance, in [55] it is shown that the exact LR-ADI iteration can be seen
as an implicit Petrov-Galerkin type method with a hidden left projection subspace. In
particular, as we exploited in the proof above, the relation Tj + T ∗

j + g j g∗
j = 0 can

be interpreted as reduced matrix equation solved by the identity matrix I j . It is also
possible to state a decomposition similar to (3.8) which incorporates w0 = B instead
of w j [20,55]. This can be used to state conditions which indicate when the LR-ADI
approximation satisfies a Galerkin condition [20, Theorem 3.4]. Similar to inexact
RKSM, if s j �= 0 these result do in general not hold any more.

3.2 Computed Lyapunov residuals, residual gap, and relaxation strategies in
inexact LR-ADI

Similar to inexact RKSM when inexact solves are allowed in LR-ADI, the computed
Lyapunov residuals Rcomp.

j = w jw
∗
j are different from the true residuals Rtrue

j and,

thus, ‖w j‖2 ceases to be a safe way to assess the quality of the current approximation
Z j Z∗

j . In the exact case, s j = 0, it follows from (3.5) and ρ j := ρ(C(A, α j )) < 1
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that the Lyapunov residual norms decrease in the form ‖R j‖ ≤ cρ2
j ‖R j−1‖ for some

c ≥ 1. For the factors w j of the computed Lyapunov residuals Rcomp.
j in the inexact

method we have the following result.

Lemma 3.1 Let wexact
j be the factors of the Lyapunov residuals of the exact LR-ADI

method, i.e., si = 0, and Ci := C(A, αi ), 1 ≤ i ≤ j . The factors w j of the computed
Lyapunov residuals of the inexact LR-ADI are given by

w j = wexact
j +

j∑
i=1

⎡
⎣

j∏
k=i+1

Ck

⎤
⎦ (Ci − I )si .

Proof For simplicity, let r = 1, M = In , and exploit C j = A−α j A
−1
α j

= I + γ 2
j A

−1
α j

,

Aα := A+ α I . Denoting the errors by δv j = A−1
α j

w j−1 − v j = A−1
α j

s j for j ≥ 1, we
have

w j = w j−1 + γ 2
j v j = w j−1 + γ 2

j A
−1
α j

w j−1 − γ 2
j δv j = C jw j−1 − γ 2

j δv j

= . . . =
j∏

k=1

Ckw0 −
j∑

i=1

γ 2
i

⎡
⎣

j∏
k=i+1

Ck

⎤
⎦ δvi

=
j∏

k=1

Ckw0 −
j∑

i=1

⎡
⎣

j∏
k=i+1

Ck

⎤
⎦ (Ci − I )si

andwenotice that the first term is exactly the exact Lyapunov residual factor from (3.5).
�

Constructing w jw
∗
j from the above formula and taking norms indicates that, by the

contraction property of Ci , the linear system residuals si get damped. In fact, similar
to the inexact projection methods, in practice we often observe that the computed
Lyapunov residual norms ‖Rcomp.

j ‖ = ‖w jw
∗
j‖ also show a decreasing behavior.

In the next step we analyze the difference between the computed and true residuals,
in a similar manner as we did for the RKSM in Sect. 2. Theorem 3.2 motivates the
definition of a residual gap analogue to the inexact RKSM.

Definition 2 The residual gap after j steps of the inexact LR-ADI iteration is given
by

ΔRADI
j := Rtrue

j − Rcomp.
j = Rtrue

j − w jw
∗
j = ηADIj + (ηADIj )∗,

ηADIj := −S jΓ j Z
∗
j M

∗. (3.11)

Assuming we have ‖Rcomp.
j ‖ = ‖w jw

∗
j‖ ≤ ε and are able to bound the residual

gap, e.g., ‖ΔRADI
j ‖ ≤ ε, then we achieve small true residual norms ‖Rtrue

j ‖ ≤ 2ε. A

theoretical approach for bounding ‖ΔRADI
j ‖ is given in the next theorem.
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1244 P. Kürschner, M. A. Freitag

Theorem 3.3 (Theoretical relaxation for inexact LR-ADI) Let the residual gap be
given by Definition 2 with w j , γ j as in (3.4)–(3.6b). Let jmax be the maximum number
of steps of Algorithm 2, σk := ‖M(A+αkM)−1‖, and 0 < ε < 1 the desired residual
tolerance.

(a) If, for 1 ≤ k ≤ jmax, the linear system residual satisfies

‖sk‖ ≤ 1

2

(√
‖wk−1‖2 + 2ε

σkγ
2
k jmax

− ‖wk−1‖
)

, (3.12a)

then ‖ΔRADI
jmax

‖ ≤ ε.
(b) If, for 1 ≤ k ≤ jmax, the linear system residual satisfies

‖sk‖ ≤ 1

2

(√
‖wk−1‖2 +

(
kε

jmax
− 2‖ηADIk−1‖

)
2

σkγ
2
k

− ‖wk−1‖
)

, (3.12b)

then ‖ΔRADI
jmax

‖ ≤ ε.

Proof Consider the following estimate

‖ΔRADI
jmax

‖ ≤ 2‖ηADIjmax
‖ = 2‖S jmaxΓ jmax Z

∗
jmax

M∗‖
≤ 2‖S jmax−1Γ jmax−1Z

∗
jmax−1M

∗‖ + 2γ 2
jmax

‖s jmax‖‖Mv jmax‖ (3.13)

≤ 2
jmax∑
k=1

γ 2
k ‖sk‖‖Mvk‖. (3.14)

Moreover,

‖Mvk‖ = ‖M(A + αkM)−1(wk−1 − sk)‖ ≤ σk(‖wk−1‖ + ‖sk‖). (3.15)

If the linear residual norms ‖sk‖ are so that each addend in the sum (3.14) is
smaller than ε

jmax
we achieve ‖ηADIjmax

‖ ≤ ε/2. With φk := 2γ 2
k σk , ωk−1 := ‖wk−1‖ =

√‖Rk−1‖ this means we require φk(ωk−1‖sk‖ + ‖sk‖2) ≤ ε

jmax
. Hence, the desired

largest allowed value ‖sk‖ is given by the positive root of the inherent quadratic
equation φk(ωkς + ς2) − ε

jmax
= 0 such that

‖sk‖ ≤ 1

2

(√
ω2
k−1 + 4ε

φk jmax
− ωk−1

)
(3.16)

leading to the desired result (a). The second strategy can be similarly shown by using
(3.13) and

‖ηADIk ‖ ≤ 2‖ηADIk−1‖ + φk(‖wk−1‖‖sk‖ + ‖sk‖2),
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and then finding ‖sk‖ such that the right hand side in the above inequality is less than
kε

jmax
. �

The motivation behind the second stopping strategy (3.12b) is that we can take the
previous ‖ηADIk−1‖ into account. This can be helpful if at steps i ≤ k − 1 the used
iterative method produced smaller linear residual norms than demanded, such that the
linear residual norms ‖si‖ are allowed to grow slightly larger at later iteration steps
i > k − 1.

Convergence analysis of inexact ADI with relaxed solve tolerancesUsing the relax-
ation strategies in Theorem 3.3 reveals, under some conditions, further insight into the
behaviour of the computed LR-ADI residual norms.

Theorem 3.4 (Decay of computed LR-ADI residuals) Assume ‖C j‖ < 1, j =
1, . . . , jmax such that the residuals ‖Rexact

j ‖ of the exact LR-ADI iteration decrease.
Let the assumptions of Theorem 3.3 hold. If the relaxation (3.12a) is used in the inexact
LR-ADI iteration, then

‖Rcomp.
jmax

‖ ≤ ‖Rexact
jmax

‖ + ε.

Proof For simplicity, let r = 1, M = In and {α j } jmax
j=1 ⊂ R−. The assumption ‖C j‖ <

1 gives ξ j := γ 2
j σ j = ‖C j − I‖ < 2 for 1 ≤ j ≤ jmax. Consider the identity

w j = C jw j−1 + (C j − I )s j established in the proof of Lemma 3.1. Then

‖Rcomp.
j ‖ = ‖w j‖2 = ‖C jw j−1‖2 + ‖(C j − I )s j‖2 + 2w∗

j−1C
∗
j (C j − I )s j

≤ ‖C jw j−1‖2 + ξ2j ‖s j‖2 + 2ω j−1ξ j‖s j‖,

where we have used ω j−1 = ‖w j−1‖. Inserting (3.12a) yields

ξ2j ‖s j‖2 + 2ω j−1ξ j‖s j‖ ≤ξ2j

4

(√
ω2

j−1 + 2ε
ξ j jmax

− ω j−1

)2

+ ω j−1ξ j

(√
ω2

j−1 + 2ε
ξ j jmax

− ω j−1

)

=ξ2j

4

(
ω2

j−1 + 2ε
ξ j jmax

− 2ω j−1

√
ω2

j−1 + 2ε
ξ j jmax

+ ω2
j−1

)

+ ω j−1ξ j

√
ω2

j−1 + 2ε
ξ j jmax

− ω2
j−1ξ j .

Now, using ξ j < 2 we obtain

ξ2j ‖s j‖2 + 2ω j−1ξ j‖s j‖ ≤ξ j

2

(
2ω2

j−1 + 2ε
ξ j jmax

− 2ω j−1

√
ω2

j−1 + 2ε
ξ j jmax

)

+ ω j−1ξ j

√
ω2

j−1 + 2ε
ξ j jmax

− ω2
j−1ξ j

= ε
jmax

.
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resulting in ‖Rcomp.
j ‖ ≤ ‖C jw j−1‖2 + ε

jmax
. Using Lemma 3.1 again for w j−1 and

repeating the above steps for 1 ≤ j ≤ jmax gives

‖Rcomp.
jmax

‖ = ‖w jmax‖2 =
∥∥∥∥∥∥

jmax∏
j=1

C jw0

∥∥∥∥∥∥

2

+
jmax∑
j=1

ε

jmax
= ‖Rexact

jmax
‖ + ε.

�

Using Theorem 3.4 together with (3.11) yields the following conclusion.

Corollary 3.1 Under the same conditions as Theorem 3.4 we have ‖Rtrue
jmax

‖ ≤
‖Rexact

jmax
‖ + 2ε.

Hence, if (3.12a) is used, then the (true) Lyapunov residual norms in inexact LR-ADI
are a small perturbation of the residuals of the exact method.

Remark 3.2 Another way to enforce decreasing computed Lyapunov residuals norms
‖Rcomp.

j ‖ is using the stronger condition ‖C j‖ < 1 together with a proportional inner

accuracy ‖s j‖ < μ‖Rcomp.
j−1 ‖, 0 < μ < 1, similar to [41] in the context of inexact

stationary iterations. For the LR-ADI iteration this does, however, not ensure small
residual gaps, ‖ΔRcomp.

j ‖ < ε, and, thus, no small true residuals.

Practical relaxation strategies for inexact LR-ADI The proposed stopping crite-
ria (3.12) are not very practical, since the employed bound (3.15) will often give
substantial overestimation of ‖Mvk‖ by several orders of magnitude which, in turn,
will result in smaller inner tolerances τLS than actually needed. Furthermore, com-
puting or estimating the norm of the large matrix M(A + αkM)−1 is possible, e.g. by
inexact Lanczos-type approaches, but the additional computational effort for this does
not pay off because it can be easily more expensive compared to the remaining parts of
a single iteration step. Here we propose some variations of the above approaches that
are better applicable in an actual implementation. From the algorithmic description
(Algorithm 2) of the LR-ADI iteration it holds

‖Mvk‖ = 1

γ 2
k

‖wk − wk−1‖ ≤ 1

γ 2
k

(‖wk‖ + ‖wk−1‖). (3.17)

In practice, the sequence {‖wk‖} = {
√

‖Rcomp.
k ‖} is often monotonically decreasing.

Assuming ‖wk‖ ≤ ‖wk−1‖ suggests to use ‖Mvk‖ ≤ 2‖wk−1‖
γ 2
k

in (3.14) leading to the

relaxation criterion

‖sk‖ ≤ τLSk = ε

4 jmax

√
‖Rcomp.

k−1 ‖
. (3.18a)
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Starting from (3.13), assuming ‖ηADIk−1‖ ≤ (k−1)ε
2 jmax

, and enforcing ‖ΔRADI
k ‖ < kε

jmax
we

obtain

‖sk‖ ≤ τLSk =
kε
jmax

− 2‖ηADIk−1‖
4
√

‖Rcomp.
k−1 ‖

. (3.18b)

The second relaxation strategy (3.18b) requires ‖ηADIk−1‖ = ‖Sk−1Γk−1Z∗
k−1M

∗‖
or an approximation thereof. From ‖ηADIk−1‖ ≤ ‖ηADIk−2‖ + γ 2

k−1‖Mvk−1‖‖sk−1‖ basic
bounds ‖ηADIi ‖ ≤ ui , i = 0, . . . , k − 1 can be computed in each step via

‖ηADIk−1‖ ≤ uk−1 := uk−2 + γ 2
k−1‖Mvk−1‖‖sk−1‖, u0 := 0. (3.19)

Note that Mvk−1 is required anyway to continue Algorithm 2. The linear residual
norms ‖si‖, 1 ≤ i ≤ k−1 are sometimes available as byproducts of Krylov subspace
solvers for linear systems if right preconditioning is used. In case of other forms of
preconditioning, the si might need to be computed explicitly, which requires extra
matrix vector products with A (and M), or the norms ‖si‖ have to be estimated in
some other way. Similar to RKSM, for problems defined by real but unsymmetric
coefficients, pairs of complex conjugated shifts can occur in LR-ADI. These can be
dealt with efficiently using the machinery developed in [10,11,30] to ensure that the
majority of operations remains in real arithmetic. By following these results it is easily
shown that if steps k − 2, k − 1 used a complex conjugated pairs of shifts, then in the
formula (3.19) the real and imaginary parts of both vk−2, sk−2 enter the update.

At the first look, (3.18) appears to allow somewhat less relaxation compared to
RKSM since only the square roots of the computed Lyapunov residual norms appear
in the denominator. However, the numerical examples in the next section show that
with these relaxation strategies we can reduce the amount of work for inexact LR-ADI
by up to 50%.

4 Numerical examples

In this section we consider several numerical examples and apply inexact RKSM and
inexact LR-ADI with our practical relaxation strategies. The experiments were carried
out in MATLAB ® 2016a on a Intel®Core™2 i7-7500U CPU@ 2.7GHz with 16GB
RAM. We wish to obtain an approximate solution such that the scaled true Lyapunov
residual norm satisfies

R := ‖Rtrue‖/‖B‖2 ≤ ε̂, 0 < ε̂ � 1,

i.e., ε = ε̂‖B‖2. In all tests we desire to achieve this accuracy with ε̂ = 10−8 within at
most jmax = 50 iteration steps. In all but one case we employ dynamic shift generation
strategies using the approach in [21] for RKSM and shifts based on a projection idea
for LR-ADI, see [12,30] for details. For the latter one, the projection basis is chosen
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as the last min(coldim(Zr ), 10r) columns of the low-rank factor Z j . For one case, the
symmetric problem, optimal shifts following [54] for the LR-ADI iteration are used.
For comparative purposes, the exact (direct) EKSM is also tested for some examples.

We employ different Krylov subspace solvers and stopping criteria for the arising
linear systems of equations, in particular, we use fixed as well as dynamically chosen
inner solver tolerances τLS with the proposed relaxation strategies. The fixed solve
tolerances were determined a-priori via trial-and-error such that the residual behavior
of inexact method mimicked the residuals of the method using sparse-direct solution
approaches for the linear systems. If not stated otherwise, the values τLSmin = 10−12,
τLSmax = 0.1 are taken as minimal and maximal linear solve tolerances. As Krylov
subspace solvers we use BiCGstab and MINRES for problems with unsymmetric
and symmetric (A = A∗, M = M∗) coefficients, respectively. Sparse-direct solves
were carried out by the MATLAB backslash-routine, or, in case of EKSM, by pre-
computed sparse LU (or Cholesky) factorizations of A. EKSM and RKSM handled
the generalized problems by means of the equivalent problem using sparse Cholesky
factors of the matrix M as described in Sect. 2.5. We consider five examples, two
standard Lyapunov equations (cd2d and heat3d, where heat3d is an example for
which r > 1), two generalized Lyapunov equation (fem3d, msd) and an algebraic
Riccati equation (fem3d-are), in order to illustrate the theoretical results in this
paper. Details and setup on the examples we used are summarized in Table 1. The
matrices B for examples cd2d and heat3d were generated randomly with a stan-
dard Gaussian distribution and the initialization randn(’state’, 0). Examples
fem3d, fem3d-are provide vectors B,C [8]. Because of the symmetric coefficient
in heat3d, we use this example to experiment with precomputed shifts from [54]
instead of the dynamic shifts in all other experiments. The example msd represents
coefficients of a first order linearization of a second order dynamical system and is
a modified version of an example used in [52]. Further details on the setup of this
example can be found in “Appendix B”. For efficient iterative solves, this example
required updating the preconditioner in every iteration step.

At first we briefly investigate the results in Sect. 2.3 on the decay of Galerkin
solution Y j using example cd2d. We run the exact RKSM and plot the row norms of
Y j , H

−1
j Y j and the corresponding bounds obtained in Corollaries 2.1 and 2.2 against

the iteration number j , as well as the absolute values of the entries of the final Galerkin
solutionY j in the left plot of Fig. 1. Real shift parameterswere used for this experiment.
The figures are an example to show that our theoretical bounds can indeed be verified,
but that they significantly overestimate the true norms. The right plot shows the decay
of the entries Y j as predicted by Corollary 2.1. Similar results are obtained for the
other examples.

We now experiment with the different practical relaxation strategies (2.24) and
(3.18) from Sects. 2 and 3 for the inner iteration. In Table 2 we report the results for
all examples. There, we give, among other relevant information on the performance of
the outer method under inexact inner solves, also the final obtained scaled computed
residual normsRcomp

j (using the formula (2.9) for RKSM and (3.5) for LR-ADI). For

assessing the reliability of the value of Rcomp
j , the distance δR j := |Rcomp

j − Rtrue
j |
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0

Fig. 1 Illustration of the decay of the Galerkin solution for Example cd2d. Left: Row norms of Y j , H
−1
j Y j

and the corresponding bounds (Corollary 2.1, Corollary 2.2) against the iteration number j . Right: Absolute
values of the entries of the final Y j

to the true scaled residual norms is also listed, where Rtrue
j was computed using the

Lanczos process on R j .
First, we observe that in all examples the difference between the true and the

computed Lyapunov residual norm, δR j , is of the order O(10−9), or smaller.
The second observationwemake is that both practical relaxation criteria for RKSM,

namely (2.24a) and (2.24b) are effective and lead to a reduction in overall inner iteration
numbers. They both lead to nearly the same results for the number of inner iterations,
the gain in using (2.24b) over (2.24a) is very minor. For our examples, by using the
relaxed stopping criterion up to 50 per cent of inner iterations can by saved compared
to a fixed inner tolerance.

For the LR-ADImethod we consider the two relaxation criteria (3.18a) and (3.18b).
Again, we observe a reduction in the total number of iterations for both relaxation
strategies, but we also see that the second relaxation criterion (3.18b) reduces the
iteration numbers even further compared to (3.18a), so the use of (3.18b) is generally
recommended. Here it pays off that the second strategy takes the previous iterate
into account. The total savings in inner iterations between fixed and relaxed tolerance
solves for LR-ADI is between 14 and 42% in our examples.

The fairer comparison between the fixed and relaxed tolerance solve is the com-
putation time; in Table 2 we report the computation time for direct solves as well as
iterative solves with fixed and relaxed solve tolerances. For all examples we see that
the relaxed solve tolerance also leads to (sometimes significant) savings in computa-
tion time. For Example fem3d, the generalized Lyapunov equation, the absolute time
saving is not so significant (both for RKSM and LR-ADI), however, for the other three
examples the savings are quite large, in particular for inexact RKSM. The results for
the Riccati example fem3d-are indicate that the proposed relaxation criteria also
work for inexact RKSM for Riccati equations. Note that for Example cd2d, the direct
solver outperforms the iterative methods with fixed small solve tolerance (both for
RKSM and LR-ADI), however, the relaxed tolerance versions perform similar to the
direct methods in terms of computation time. This is to be expected as example cd2d
represents a two-dimensional problem, where sparse-direct solvers are usually very

123



Inexact methods for large scale Lyapunov equations 1251

Ta
bl
e
2

E
xp
er
im

en
ta
lr
es
ul
ts

E
x.

O
ut
er

In
ne
r

St
op

m
in

τ
L
S

m
ax

τ
L
S

ito
ut

D
im

R
co
m
p

j
δ
R

j
iti
n

Sa
ve

T
im

e

c
d
2
d

R
K
SM

D
ir
ec
t

–
–

–
37

37
2.
7e

−0
9

–
–

5.
5

R
K
SM

B
IC
G
ST

A
B

Fi
xe
d

1.
00
e−

10
37

37
3.
2e

−0
9

2.
0e

−1
0

83
2

5.
3

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4a
)

2.
0e

−1
2

2.
8e

−0
2

37
37

4.
2e

−0
9

2.
2e

−0
9

61
8

25
.7
%

3.
9

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4b

)
2.
0e

−1
2

9.
1e

−0
3

37
37

3.
0e

−0
9

7.
6e

−0
9

61
4

26
.2
%

3.
7

E
K
SM

D
ir
ec
t

–
–

–
40

80
3.
6e

−0
9

–
–

1.
5

L
R
-A

D
I

D
ir
ec
t

–
–

–
49

49
7.
0e

−0
9

–
–

6.
1

L
R
-A

D
I

B
IC
G
ST

A
B

Fi
xe
d

1.
0e

−1
0

49
49

7.
0e

−0
9

1.
4e

−1
2

13
82

6.
8

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8a
)

5.
0e

−1
1

4.
9e

−0
3

49
49

7.
0e

−0
9

2.
4e

−1
1

10
04

27
.4
%

4.
7

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8b

)
5.
0e

−1
1

2.
1e

−0
2

49
49

6.
9e

−0
9

1.
7e

−1
0

97
1

29
.7
%

4.
5

h
e
a
t
3
d

R
K
SM

D
ir
ec
t

–
–

–
15

60
7.
9e

−0
9

–
–

69
.0

R
K
SM

M
IN

R
E
S

Fi
xe
d

1.
00
e−

09
15

60
7.
9e

−0
9

5.
3e

−1
4

49
2

20
.1

R
K
SM

M
IN

R
E
S

R
el
ax

(2
.2
4a
)

2.
0e

−1
0

1.
0e

−0
1

15
60

7.
9e

−0
9

2.
6e

−1
0

26
5

46
.1
%

13
.2

R
K
SM

M
IN

R
E
S

R
el
ax

(2
.2
4b

)
2.
0e

−1
0

1.
0e

−0
1

15
60

7.
9e

−0
9

2.
9e

−1
0

25
2

48
.8
%

12
.2

E
K
SM

D
ir
ec
t

–
–

–
20

16
0

3.
9e

−1
1

–
–

23
.9

L
R
-A

D
I

D
ir
ec
t

–
–

–
16

64
4.
4e

−0
9

–
–

77
.4

L
R
-A

D
I

M
IN

R
E
S

Fi
xe
d

1.
0e

−0
9

16
64

4.
4e

−0
9

9.
0e

−1
4

43
9

17
.2

L
R
-A

D
I

M
IN

R
E
S

R
el
ax

(3
.1
8a
)

5.
0e

−1
1

1.
1e

−0
3

16
64

4.
4e

−0
9

8.
7e

−1
4

30
1

31
.4
%

13
.5

L
R
-A

D
I

M
IN

R
E
S

R
el
ax

(3
.1
8b

)
5.
0e

−1
1

7.
7e

−0
3

16
64

4.
4e

−0
9

1.
3e

−1
1

27
0

38
.5
%

12
.2

f
e
m
3
d

R
K
SM

D
ir
ec
t

–
–

–
23

23
3.
5e

−0
9

–
–

44
.8

R
K
SM

B
IC
G
ST

A
B

Fi
xe
d

2.
00
e−

10
23

23
4.
0e

−0
9

1.
1e

−1
0

47
4

12
.4

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4a
)

3.
7e

−1
1

4.
5e

−0
2

23
23

6.
2e

−0
9

1.
2e

−0
9

30
9

34
.8
%

9.
8

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4b

)
3.
9e

−1
1

1.
0e

−0
1

23
23

4.
7e

−0
9

1.
4e

−1
0

29
9

36
.9
%

9.
9

123



1252 P. Kürschner, M. A. Freitag

Ta
bl
e
2

co
nt
in
ue
d

E
x.

O
ut
er

In
ne
r

St
op

m
in

τ
L
S

m
ax

τ
L
S

ito
ut

D
im

R
co
m
p

j
δ
R

j
iti
n

Sa
ve

T
im

e

E
K
SM

D
ir
ec
t

–
–

–
25

50
1.
9e

−0
9

–
–

5.
5

L
R
-A

D
I

D
ir
ec
t

–
–

–
27

27
4.
2e

−0
9

–
–

52
.2

L
R
-A

D
I

B
IC
G
ST

A
B

Fi
xe
d

2.
0e

−1
0

27
27

4.
2e

−0
9

1.
8e

−1
4

35
9

2.
2

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8a
)

5.
0e

−1
1

2.
7e

−0
4

27
27

4.
2e

−0
9

1.
8e

−1
1

24
6

31
.5
%

1.
6

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8b

)
5.
0e

−1
1

2.
8e

−0
3

27
27

4.
4e

−0
9

2.
5e

−1
0

20
9

41
.8
%

1.
5

m
s
d

R
K
SM

D
ir
ec
t

–
–

–
86

34
4

9.
5e

−0
9

–
–

12
0.
9

R
K
SM

B
IC
G
ST

A
B

Fi
xe
d

6.
67
e−

11
86

34
4

9.
6e

−0
9

2.
9e

−0
8

73
8

53
.6

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4a
)

2.
7e

−1
2

1.
4e

−0
2

86
34

4
8.
7e

−0
9

5.
8e

−1
2

66
8

9.
5%

51
.0

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4b

)
1.
0e

−1
2

3.
3e

−0
3

88
35

2
7.
9e

−0
9

2.
3e

−1
2

69
6

5.
7%

53
.0

E
K
SM

D
ir
ec
t

–
–

–
70

56
0

1.
5e

−0
9

–
–

17
.5

L
R
-A

D
I

D
ir
ec
t

–
–

–
66

26
4

1.
0e

−0
8

–
–

16
4.
4

L
R
-A

D
I

B
IC
G
ST

A
B

Fi
xe
d

6.
7e

−1
1

59
23

6
3.
0e

−0
9

1.
9e

−1
1

16
83

69
.3

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8a
)

2.
5e

−1
1

1.
5e

−0
3

62
24

8
9.
9e

−0
9

1.
1e

−1
3

14
51

13
.8
%

55
.4

L
R
-A

D
I

B
IC
G
ST

A
B

R
el
ax

(3
.1
8b

)
2.
5e

−1
1

1.
5e

−0
2

65
26

0
4.
7e

−1
0

1.
7e

−1
0

10
65

36
.7
%

43
.0

f
e
m
3
d
-
a
r
e

R
K
SM

D
ir
ec
t

–
–

–
22

22
5.
8e

−0
9

–
–

43
.6

R
K
SM

B
IC
G
ST

A
B

Fi
xe
d

2.
00
e−

10
22

22
5.
8e

−0
9

4.
8e

−1
4

43
6

34
.8

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4a
)

1.
1e

−1
0

1.
0e

−0
1

22
22

6.
7e

−0
9

2.
3e

−0
9

22
2

49
.1
%

12
.9

R
K
SM

B
IC
G
ST

A
B

R
el
ax

(2
.2
4b

)
1.
1e

−1
0

1.
0e

−0
1

22
22

6.
7e

−0
9

2.
3e

−0
9

22
2

49
.1
%

12
.9

T
he

co
lu
m
ns

de
no

te
th
e
ou

te
r
(i
.e
.,
E
K
SM

,R
K
SM

or
L
R
-A

D
I)
an
d
in
ne
r
m
et
ho

d
(w

hi
ch

K
ry
lo
v
su
bs
pa
ce

m
et
ho

d)
,t
he

us
ed

in
ne
r
st
op

pi
ng

cr
ite

ri
on

(fi
xe
d
or

re
la
xe
d)
,t
he

sm
al
le
st
an
d
la
rg
es
tg

en
er
at
ed

in
ne
r
so
lv
e
to
le
ra
nc
es

m
in

τ
L
S
,m

ax
τ
L
S
,t
he

nu
m
be
r
of

re
qu

ir
ed

ou
te
r
ite

ra
tio

ns
,c
ol
um

n
di
m
en
si
on

of
th
e
lo
w
-r
an
k
so
lu
tio

n
fa
ct
or
,t
he

fin
al

ob
ta
in

sc
al
ed

co
m
pu
te
d
re
si
du
al
no
rm

R
co
m
p

j
,t
he

di
ff
er
en
ce

δ
R

j
:=

|R
co
m
p

j
−
R
tr
ue j

|b
et
w
ee
n
th
e
tr
ue

an
d
th
e
co
m
pu

te
d
Ly

ap
un

ov
re
si
du

al
no

rm
,t
he

to
ta
ln

um
be
ro

fi
nn

er
ite
ra
tio

n
st
ep
s,
th
e
ac
hi
ev
ed

re
la
tiv

e
sa
vi
ng
s
re
ga
rd
in
g
th
e
am

ou
nt
of

in
ne
ri
te
ra
tio

n
st
ep
s
co
m
pa
re
d
to
th
e
ru
n
w
ith

a
fix

ed
in
ne
rt
ol
er
an
ce
,a
nd

th
e
co
m
pu

tin
g
tim

es
in
se
co
nd

s

123



Inexact methods for large scale Lyapunov equations 1253

Fig. 2 Results for Example heat3d: Scaled computed residual normsRcomp and inner tolerances τLS vs
iteration numbers obtained by (in)exact RKSM (left) and LR-ADI (right). Here, LR-ADI uses precomputed
shifts

efficient. For the three-dimensional examples heat3d, fem3d and fem3d-are the
iterative solvers significantly outperform the direct method.

Regarding the comparisonwith EKSM,we observe that EKSMachieves sometimes
the smallest computations times (e.g., examples cd2d, msd) but always generates the
largest subspace dimensions among all tested methods. Using a block-MINRES for
the heat3d example (with r = 4) largely led to very similar results in terms of the
numbers of inner iteration steps, but the overall computing times were slightly larger.

We point out that, in every experiment, RKSM, LR-ADI generated new shift param-
eters on their own. Interestingly andperhaps surprisingly, this did not lead to substantial
differences regarding the Lyapunov residual behaviour, although the employed adap-
tive shift generation techniques [12,21] are based on the eigenvalues of Tj (rational
Ritz values of A) and, hence, depend on the generated subspace. One explanation
might be that the eigenvalue generation itself can be seen as inexact rational Arnoldi
process for the eigenvalue problem and if the inner solve tolerances are chosen intelli-
gently, no large differences regarding the Ritz values should appear [23,31,42]. Some
small differences in the required number of outer iteration steps are observed for
example msd were, for instance, the inexact LR-ADI required less outer steps than
the exact LR-ADI. One possible explanation could be that for this example slightly
different shifts were generated in exact and inexact methods.

For the heat3d example precomputed shifts [54] were used within LR-ADI lead-
ing to almost indistinguishable residual curves (cf. right plot in Fig. 2) indicating that
the optimal shift approaches for certain problem classes still work under inexact solves.
Similar observations were made for the remaining examples when precomputed shifts
were used for both exact and inexact methods.

Figure 2 shows the scaled computed residual normsRcomp and inner tolerances τLS

vs iteration numbers obtained by (in)exact RKSM and LR-ADI for Example heat3d.
On the left we plot the convergence history for the exact RKSM (e.g. direct solves

within the inner iteration), the inexact RKSM with fixed small solve tolerance within
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1254 P. Kürschner, M. A. Freitag

the iterative solve and the inexact RKSMwith relaxation criterion (2.24a) and (2.24b)
within the iterative solution of the inner linear system.All computed residual norms are
decreasing and virtually indistinguishable. The solve tolerances when using relaxation
criterion (2.24a) are shown in dotted lines with diamonds and the ones using criterion
(2.24b) are shown in dashed lines with red circles. The relaxation criteria lead to
increasing inner solve tolerances, but as already observed in Table 2, both criteria for
inexact RKSM give nearly the same results.

The right plot in Fig. 2 shows the same results for LR-ADI. Again,the convergence
history of the residual norms for inexact LR-ADI using the two relaxation strategies
is not visibly distinguishable from the exact LR-ADI. However, we observe that the
second relaxation criterion (3.18b), shown in dashed lines with red circles, gives better
results, e.g. more relaxation and hence fewer inner iterations, than the first relaxation
criterion (3.18a), shown in dotted lineswith diamonds, a result also observed inTable 2.
Similar plots as in Fig. 2 can be obtained for other examples.

5 Conclusions and future work

The numerical solution of large scale Lyapunov equations is a very important problem
in many applications. The rational Krylov subspace method (RKSM) and the low-
rank alternating directions implicit (LR-ADI) iteration are well-established methods
for computing low-rank solution factors of large-scale Lyapunov equations. The main
task in both those methods is to solve a linear system at each step, which is usually
carried out iteratively and hence inexactly.

We observed empirically that, when solving the linear system at each iteration
step, the accuracy of the solve may be relaxed while maintaining the convergence to
the solution of the Lyapunov equation. In this paper we have presented a theoretical
foundation for explaining this phenomenon, both for the inexactRKSMmethod and the
inexact low-rank ADI iteration. For both methods we introduced a so-called residual
gap, which depends on the accuracy of the linear system solve and on quantities arising
from the solutionmethods for the large scale Lyapunov equation.We analyzed this gap
for each method which provided theoretical relaxation criteria for both inexact RKSM
and inexact ADI. These criteria are often not applicable in practice as they contain
unknown and/or overestimated quantities. Hence, we gave practical relaxation criteria
for both methods. Our numerical results indicate that using flexible accuracies gives
very good results and can reduce the amount of work for solving large scale Lyapunov
equations by up to 50%.

One numerical experiment with inexact RKSM indicated that relaxation strategies
might also be fruitful for low-rank methods for algebraic Riccati equations [6–8,
12,14,44,48], making this an obvious future research topic, together with inexact
linear solves in low-rank methods for Sylvester equations [9,13,30]. In this work,
we restricted ourselves to standard preconditioning techniques. Improved concepts
such as tuned preconditioners and similar ideas [15,23] might further enhance the
performance of the inner iteration process. Preliminary tests, however, did not yield
any performance gain from these techniques worth mentioning, further investigations
are necessary in this direction. A further research direction worth pursuing is to reduce
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the computational effort for solving the sequences of shifted linear systems by storing
theKrylov basis obtained from solving one (e.g., the first) linear system and employing
subspace recycling techniques as, e.g., discussed for LR-ADI in [32] and for rational
Krylov methods in the context of model order reduction in [1]. Allowing inexact
matrix vector products, and in case of generalized equations also inexact solves with
M , represents a further, more challenging research perspective.
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Appendix A: Proof of Lemma 2.2

Proof From ωH j = 0 we have for k ≤ j

0 = ω

⎡
⎣

Hk

e∗
k hk+1,k
0 j−k,k

∣∣∣∣H:,k+1: j

⎤
⎦ ,

which, for k = j , immediately leads to f ( j)
j = −ω1: j/(h j+1, jω j+1), the first equality

in (2.21a). Similarly, it is easy to show that for k < j , a left null space vector ω̂ ∈
C
1×k+1 of Hk is given by the first k + 1 entries of the null vector ω of H j . Hence,

f (k)
k = −ω1:k/(hk+1,kωk+1) holds for all k ≤ j .

For computing f (k)
j = e∗

k H
−1
j , k < j , we use the following partition of Hj and

consider the splitting f (k)
j = [u, y], u ∈ C

1×k , y ∈ C
1×k− j :

e∗
k = [

01,k−1
∣∣1∣∣ 01, j−k

] = f (k)
j H j = [u, y]

⎡
⎣

Hk−1
e∗
k−1hk,k−1

0 j−k,k−1

∣∣∣∣H:,k: j

⎤
⎦

=
[
u

[
Hk−1

e∗
k−1hk,k−1

] ∣∣∣∣[u, y]H:,k: j
]

.

This structure enforces conditions on [u, y], which we now explore. First, u has
to be a multiple of ω1:k . Here we exploited that due to the Hessenberg structure,
ω1:k Hk−1 = 0. In particular,

u1:k−1Hk−1 + uke
∗
k−1hk,k−1 = 0,

such that ukhk,k−1e∗
k−1H

−1
k−1 = −u1:k−1. Since f (k−1)

k−1 = e∗
k−1H

−1
k−1 we can infer

u1:k−1 = −ukhk,k−1 f
(k−1)
k−1 and, consequently, (2.21c) for k > 1. Similarly, [ω1:k, y]
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has to satisfy

01, j−k = [ω1:k, y]H:,k+1: j = ω1:k H1:k,k+1: j + yHk+1: j,k+1: j = ωH1: j+1,k+1: j
= ω1:k H1:k,k+1: j + ωk+1: j+1Hk+1: j+1,k+1: j ,

leading to

y = ωk+1: j+1Hk+1: j+1,k+1: j H−1
k+1: j,k+1: j = ωk+1: j + ω j+1h j+1, j e

∗
j−k H

−1
k+1: j,k+1: j ,

where e j−k is a canonical vector of length j − k. Hence,

v
(k)
j = [ω1:k, y] = ω1: j + [01,k, [01, j−k−1, h j+1, jω j+1]H−1

k+1: j,k+1: j ],

leading to (2.21b). Finally, the normalization constant φ(k)
j is obtained by the require-

ment [u, y]H1: j,k = 1. �

Appendix B: Setup of example msd

The example msd represents a variant of one realization of the series of exam-
ples in [52]. Set K := diag(I3 ⊗ K1, k0 + k1 + k2 + k3) + k+eT3n − e3nk+ ∈
R
n2×n2 , K1 := tridiag(−1, 2,−1) ∈ R

n1×n1 with k0 = 0.1, k1 = 1, k2 = 2,
k3 = 4, n2 = 3n1 + 1, and k+ := [(k1, k2, k3) ⊗ eTn1 , 0]T . Further, M1 :=
diag

(
m1 In1,m2 In1 ,m3 In1m0

) ∈ R
n2×n2 with m0 = 1000, m1 = 10, m2 = k2,

m3 = k3 and D := αM + β(K + K (M−1K ) + K (M−1K )2 + K (M−1K )3) +
ν[e1, en1 , e2n1+1][e1, en1 , e2n1+1]T , α = 0.8, β = 0.1, ν = 16. In [52] a different

matrix D was used involving a term M
1
2

√
M− 1

2 KM− 1
2 M

1
2 which was infeasible to

set up in a large scale setting (the middle matrix square is a dense matrix). The ver-
sion of D used here was similarly used in [10]. Construct the n × n, n := 2n2 block

matrices Â :=
[
0 In2
−K −D

]
, M̂ := diag

(
In2 , M1

)
representing a linearization of

the quadratic matrix pencil λ2M1 + λD + K . The right hand side factor is set up as

B̂ =
[
I2m 02m,n2−m

[
0m,n2−m Im

Im 0m,n2−m

]]T
∈ R

n×2m . In Sect. 4 we use n1 = 4000,

m = 2 leading to n = 24,002, r = 4. Finally, A := PT ÂP , M := PT M̂ P ,
B := PT B̂ as in [29, Section 5.6], where P is a perfect shuffle permutation: This
leads to banded matrices A, M , except for some sole off-band entries from the low-
rank update of D, resulting in noticable computational savings when applying sparse
direct solvers or computing sparse (incomplete) factorizations.Analternative to exploit
the structure in Â, M̂ within RKSM, LR-ADI is described in, e.g., [10,30].
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