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Abstract
The semi-implicit Euler–Maruyama (EM) method is investigated to approximate a
class of time-changed stochastic differential equations, whose drift coefficient can
grow super-linearly and diffusion coefficient obeys the global Lipschitz condition.
The strong convergence of the semi-implicit EM is proved and the convergence rate
is discussed. When the Bernstein function of the inverse subordinator (time-change)
is regularly varying at zero, we establish the mean square polynomial stability of the
underlying equations. In addition, the numericalmethod is proved to be able to preserve
such an asymptotic property. Numerical simulations are presented to demonstrate the
theoretical results.
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1 Introduction

In this paper, we study the numerical approximations to a class of time-changed
stochastic differential equations (SDEs) which are of the form
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dX(t) = f (E(t), X(t)) dE(t) + g(E(t), X(t)) dB(E(t)).

Here the coefficients f and g satisfy some regularity conditions (to be specified in
Sect. 2), B(t) represents a standard Brownian motion, and E(t) is an independent
time-change given by an inverse subordinator. The rigorous mathematical definitions
are postponed to Sect. 2.

Since it is in general impossible to derive the explicit solution to such SDEs, numer-
ical approximations become extremely important when one applies them to model
uncertain phenomenon in real life. This paper aims to construct a numerical method
for these time-changed SDEs. The strong convergence with the convergence rate and
the mean square stability of the numerical method are investigated.

To our best knowledge, [8] is the first paper to study the finite time strong con-
vergence of numerical methods for time-changed SDEs by directly discretizing the
equations. In [8], the authors used the duality principle established in [10] to construct
the Euler–Maruyama (EM) method. In a very recent work [6], the authors studied the
EM method for a larger class of time-changed SDEs without the duality principle.
However, both of these two works required the coefficients of the time-changed SDEs
to satisfy the global Lipschitz condition. This requirement rules out many interesting
SDEs like

dX(t) =
(

X(t) − X3(t)
)
dE(t) + X(t) dB(E(t)),

where some cubic term appears in the drift coefficient. Moreover, the EM is proved
to be divergent to SDEs with super-linear growing coefficients [5].

To cope with such super-linearity, we propose the semi-implicit EM method to
approximate the SDEs driven by time-changed Brownian motions in this paper. It
should be noted that the semi-implicit EM (also called the backward Euler method)
have been studied for approximating different types of SDEs driven by Brownian
motions, see [3,4,11,12,17,21,24,26] and the references therein.

Stabilities in different senses for SDEs driven by time-changed Brownian motion
have been discussed in [27]. See [19,20] for related results when the driven process is a
time-changed Lévy process. As far as we know, however, there is no result concerning
the stability analysis for numerical methods for time-changed SDEs.

In the three papers mentioned above, the global Lipschitz condition was required
for the coefficients of the equations. In this paper, building upon the ideas presented
in [8], we study the the mean square stability of the underlying time-changed SDEs,
where the global Lipschitz condition on the drift coefficients is not required. Then,
we investigate the capability of the semi-implicit EM method to reproduce such a
property under the similar condition.

The main contributions of this paper are as follows.

– The semi-implicit EMmethod is proved to be convergent to a class of time-changed
SDEs and the convergence rate is explicitly given.

– We establish the mean square stability of the underlying time-changed SDEs. In
addition, the numerical solution is proved to be able to preserve such a property.

– For various Berstein functions, the speed of the stability is observed to be
polynomial-like, which is significantly different from the classical SDEs but in
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line with the behaviour of the subdiffusion that is related to time-changed pro-
cesses.

The rest of this paper is organized as follows. Section 2 is devoted to some math-
ematical preliminaries for the time-changed SDEs to be considered in this paper, and
some necessary lemmas. The strong convergence of the numerical method is proved in
Sect. 3.1, and the mean square stabilities of both underlying and numerical solutions
are shown in Sect. 3.2. In Sect. 4, we present numerical simulations to demonstrate
the theoretical results derived in Sect. 3.

2 Preliminaries

Throughout this paper, unless otherwise specified, we will use the following notation.
Let | · | be the Euclidean norm in R

d and 〈x, y〉 be the inner product of vectors
x, y ∈ R

d . If A is a vector or matrix, its transpose is denoted by AT . If A is a matrix,

its trace norm is denoted by |A| = √
trace(AT A). For two real numbers u and v, we

use u ∧ v = min(u, v) and u ∨ v = max(u, v).
Moreover, let (Ω,F ,P) be a complete probability space with a filtration {Ft }t≥0

satisfying the usual conditions (that is, it is right continuous and increasing whileF0
contains all P-null sets). Let B(t) = (B1(t), B2(t), . . . , Bm(t))T be anm-dimensional
Ft -adapted standard Brownian motion. Let E denote the expectation under the prob-
ability measure P.

Let D(t) be anFt -adapted subordinator (without killing), i.e. a nondecreasingLévy
process on [0,∞) starting at D(0) = 0. The Laplace transform of D(t) is of the form

E e−r D(t) = e−tφ(r), r > 0, t ≥ 0,

where the characteristic (Laplace) exponent φ : (0,∞) → (0,∞) is a Bernstein
functionwithφ(0+) := limr↓0 φ(r) = 0, i.e. aC∞-function such that (−1)n−1φ(n) ≥
0 for all n ∈ N. Every such φ has a unique Lévy–Khintchine representation

φ(r) = ϑr +
∫

(0,∞)

(
1 − e−r x) ν(dx), r > 0,

where ϑ ≥ 0 is the drift parameter and ν is a Lévy measure on (0,∞) satisfying∫
(0,∞)

(1 ∧ x) ν(dx) < ∞. We will focus on the case that t �→ D(t) is a.s. strictly

increasing, i.e. ϑ > 0 or ν(0,∞) = ∞; obviously, this is also equivalent to φ(∞) :=
limr→∞ φ(r) = ∞.

Let E(t) be the (generalized, right-continuous) inverse of D(t), i.e.

E(t) := inf{s ≥ 0 ; D(s) > t}, t ≥ 0.

We call E(t) an inverse subordinator associated with the Bernstein function φ. Note
that t �→ E(t) is a.s. continuous and nondecreasing.
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We always assume that B(t) and D(t) are independent. The process B(E(t)) is
called a time-changed Brownian motion, which is trapped whenever t �→ E(t) is
constant.We remark that the jumps of t �→ D(t) correspond to flat pieces of t �→ E(t).
Due to these traps, the time-change slows down the original Brownian motion B(t),
and B(E(t)) is understood as a subdiffusion in the literature (cf. [18,25]).

Consider the following time-changed SDE

dX(t) = f (E(t), X(t)) dE(t) + g(E(t), X(t)) dB(E(t)), t ∈ [0, T ], (2.1)

with E|X(0)|γ < 0 for any γ ∈ (0,∞), where f : [0,∞) × R
d → R

d and

g : [0,∞) × R
d → R

d×m are measurable coefficients. We will need the follow-
ing assumptions on the drift and diffusion coefficients.

Assumption 2.1 There exists a constant K1 > 0 such that, for all t ≥ 0 and x, y ∈ R
d ,

〈x − y, f (t, x) − f (t, y)〉 ≤ K1|x − y|2.

Assumption 2.2 There exist constants K2 > 0, a ≥ 2 and γ ∈ (0, 2] such that, for all
t, s ≥ 0 and x ∈ R

d ,

| f (t, x) − f (s, x)|2 ≤ K2
(
1 + |x |a) |t − s|γ

and

|g(t, x) − g(s, x)|2 ≤ K2

(
1 + |x |2

)
|t − s|γ .

Assumption 2.3 Assume that there exist constants K3 > 0 and b ≥ 0 such that, for
all t ≥ 0 and x, y ∈ R

d ,

| f (t, x) − f (t, y)|2 ≤ K3

(
1 + |x |b + |y|b

)
|x − y|2

and

|g(t, x) − g(t, y)|2 ≤ K3|x − y|2.

Assumption 2.4 Assume that there exist constant p ≥ 2 and K4 > 0 such that, for all
t ≥ 0 and x ∈ R

d ,

〈x, f (t, x)〉 + p − 1

2
|g(t, x)|2 ≤ K4(1 + |x |2).

To avoid complicated notations, we further assume that both | f (t, 0)| and |g(t, 0)| are
bounded. Then by Assumption 2.3, we can see that there exists a constant K5 > 0
such that

| f (t, x)|2 ≤ K5(1 + |x |a) (2.2)
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and

|g(t, x)|2 ≤ K5(1 + |x |2) (2.3)

for all t ≥ 0 and x ∈ R
d .

According to the duality principle in [10], the time-changed SDE (2.1) and the
classical SDE of Itô type

dY (t) = f (t, Y (t)) dt + g(t, Y (t)) dB(t), Y (0) = X(0), (2.4)

have a deep connection.
The existence and uniqueness of the strong solution to (2.1) can be obtained in the

similar manner as Lemma 4.1 in [10]. Although the global Lipschitz condition was
assumed in Lemma 4.1 of [10], the proof there did not use this assumption explicity.
Actually, X(t) is a Gt -semimartingale, where Gt = FE(t). Then the exsitence and
uniqueness of the strong solution to (2.1) can be derived from the exsitence and
uniqueness of the strong solution to SDEs driven by semimartingale, see for example
[16] and [22]. Following the classical approach, the exsitence and uniqueness of the
strong solution to (2.4) can be obtained, see for example [9] and [15].

The next lemma states the relationship between the solution to (2.1) and the solution
to (2.4).

Lemma 2.1 Suppose Assumptions 2.1–2.3 hold. If Y (t) is the unique solution to the
SDE (2.4), then the time-changed process Y (E(t)), which is anFE(t)-semimartingale,
is the unique solution to the time-changed SDE (2.1). On the other hand, if X(t) is
the unique solution to the time-changed SDE (2.1), then the process X(D(t)), which
is an Ft -semimartingale, is the unique solution to the SDE (2.4).

Theproof ofLemma2.1 is similar to that ofTheorem4.2 in [10]. It should bementioned
that the global Lipschitz condition was assumed in Theorem 4.2 of [10], but such a
condition was just imposed to guarantee the existence and uniqueness of the strong
solution to the time-changed SDE.

The plan to numerically approximate the time-changed SDE (2.1) in this paper is as
follows. Firstly, we construct the numerical method for the SDE (2.4). Secondly, we
discretize the inverse subordinator E(t). Then the composition of the numerical solu-
tion of the SDE (2.4) and the discretized inverse subordinator is used to approximate
the solution to the time-changed SDE (2.1).

The semi-implicit EM method for (2.4) is defined as

yi+1 = yi + f (ti+1, yi+1)h + g(ti , yi )ΔBi , i ∈ N, (2.5)

with y0 = Y (0), where ΔBi is the Brownian increment following the normal distri-
bution with the mean 0 and the variance h > 0 and ti = ih.

Note that under Assumption 2.1, the semi-implicit EMmethod (2.5) is well defined
for any h ∈ (0, 1/K1) (see for example [17]). To be more precisely, this means that
given yi is known a unique yi+1 can be found. Throughout the paper, we always
assume h ∈ (0, 1/K1).
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We also define the piecewise continuous numerical solution by y(t) := yi for
t ∈ [ti , ti+1), i ∈ N.

We follow the idea in [2] to approximate the inverse subordinator E(t) in a time
interval [0, T ] for any given T > 0. Firstly, we simulate the path of D(t) by Dh(ti )
= Dh(ti−1) + Δi with Dh(0) = 0, where Δi is independently identically sequence
with Δi = D(h) in distribution. The procedure is stopped when

T ∈ [Dh(tn), Dh(tn+1)),

for some n. Then the approximate Eh(t) to E(t) is generated by

Eh(t) = (
min{n; Dh(tn) > t} − 1

)
h, (2.6)

for t ∈ [0, T ]. It is easy to see

Eh(t) = ih, when t ∈ [
Dh(ti ), Dh(ti+1)) .

The next lemma will be used as the approximation error of Eh(t) to E(t), whose
proof can be found in [8,13].

Lemma 2.2 Almost surely,

E(t) − h ≤ Eh(t) ≤ E(t)

holds for all t > 0.

The following lemma states that the inverse subordinator E(t) is known to have the
finite exponential moment, which was proved in [8,14]. Here, we give an alternative
proof, which can, furthermore, provide an explicit upper bound.

Lemma 2.3 For any δ > 0, there exists C = C(δ) > 0 such that

E eδE(t) ≤ eCt for all t ≥ 1.

Proof By the definition of E(t), it is clear that

P (E(t) ≤ s) = P (D(s) ≥ t) , t, s ≥ 0.

Note that

E eδE(t) =
∫ ∞

0
P

(
eδE(t) > r

)
dr

= 1 +
∫ ∞

1
P

(
E(t) >

1

δ
log r

)
dr
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= 1 +
∫ ∞

1
P

(
D

(
1

δ
log r

)
< t

)
dr

= 1 + δ

∫ ∞

0
P (D(r) < t) eδr dr .

Denote by φ−1 the inverse function of φ. By the Chebyshev inequality,

P (D(r) < t) = P

(
e−φ−1(2δ)D(r) > e−φ−1(2δ)t

)

≤ eφ−1(2δ)t
E e−φ−1(2δ)D(r)

= eφ−1(2δ)te−rφ(φ−1(2δ))

= eφ−1(2δ)t−2δr .

Thus, for all t > 0,

E eδE(t) ≤ 1 + δeφ−1(2δ)t
∫ ∞

0
e−δr dr = 1 + eφ−1(2δ)t ,

which immediately implies the assertion. �
The following result is taken from [15, Theorem 4.1, p. 59].

Lemma 2.4 Suppose that Assumptions 2.1–2.4 hold. Then the solution to (2.4) satisfies

E|Y (t)|p ≤ 2
p−2
2

(
1 + E|Y (0)|p) epK4t for all t ≥ 0.

The next lemma is easy; for the sake of completeness and our readers’ convenience,
we give a brief proof.

Lemma 2.5 Suppose that Assumptions 2.1–2.4 hold. Then for any q ∈ (1, 2p/a] and
t, s ≥ 0 with |t − s| ≤ 1,

E|Y (t) − Y (s)|q ≤ C |t − s|q/2eCt ,

where C > 0 is a constant independent of t and s.

Proof For any 0 ≤ s < t , we derive from (2.4) that

Y (t) − Y (s) =
∫ t

s
f (r , Y (r)) dr +

∫ t

s
g(r , Y (r)) dB(r).

When q > 2, by the elementary inequality

∣∣∣∣∣
n∑

i=1

ui

∣∣∣∣∣
q

≤ nq−1
n∑

i=1

|ui |q , ui ∈ R
d (2.7)
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with n = 2, the Hölder inequality and [15, Theorem 7.1, p. 39], we get

E|Y (t) − Y (s)|q ≤ |2(t − s)|q−1
E

∫ t

s
| f (r , Y (r))|q dr

+ 2q/2−1|q(q − 1)|q/2|t − s|q/2−1
E

∫ t

s
|g(r , Y (r))|q dr

Combining this with (2.2), (2.3) and Lemma 2.4, we obtain

E|Y (t) − Y (s)|q ≤ C
(
|t − s|q + |t − s|qeCt + |t − s|q/2 + |t − s|q/2eCt

)

≤ C |t − s|q/2eCt , (2.8)

where C > 0 is a generic constant independent of t and s that may change from line
to line.

When q ∈ (1, 2], the claim holds by (2.8) together with Jensen’s inequality. This
completes the proof. �

3 Main results

3.1 Strong convergence

Briefly speaking, the following theorem states the strong convergence with the rate of
(γ ∧ 1)/2 of the semi-implicit EM method, which is not surprising.

But to our best knowledge, it seems that no existing result fulfills our needs in this
paper. To be more precise, we need to carefully trace the temporal variable t so that
no term like ta for a > 1 would appear in the exponential function on the right hand
side of the inequality in the statement of Theorem 3.1. Since the t will be replaced by
E(t) in Theorem 3.2 and an expectation will be taken on it, by Lemma 2.3 a term like
ta with a > 1 will lead to the unboundedness of Eeδ(E(t))a

with a > 1.
In addition, it seems that no such a result exists on the semi-implicit EM method

for non-autonomous SDEs.

Theorem 3.1 Suppose that Assumptions 2.1–2.4 hold with p ≥ 2(a ∨ b) and the step
size satisfies h < 1/(2(K1+1)). Then the semi-implicit EM method (2.5) is convergent
to (2.4) with

E |Y (t) − y(t)|2 ≤ Chγ∧1 eCt , t ≥ 0,

where C is a constant independent of t and h.

Proof From (2.4) and (2.5), it holds that for i = 1, 2, . . .,
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Y (ti+1) − yi+1 = (Y (ti ) − yi ) +
∫ ti+1

ti
( f (s, Y (s)) − f (ti+1, yi+1)) ds

+
∫ ti+1

ti
(g(s, Y (s)) − g(ti , yi )) dB(s).

Multiplying both sides with Y (ti+1) − yi+1 yields

|Y (ti+1) − yi+1|2 = I1 + I2,

where

I1 :=
〈
Y (ti+1) − yi+1,

∫ ti+1

ti
( f (s, Y (s)) − f (ti+1, yi+1)) ds

〉

=
∫ ti+1

ti
〈Y (ti+1) − yi+1, f (s, Y (s)) − f (ti+1, yi+1)〉 ds

and

I2 :=
〈
Y (ti+1) − yi+1, (Y (ti ) − yi ) +

∫ ti+1

ti
(g(s, Y (s)) − g(ti , yi )) dB(s)

〉
.

To estimate I1, we rewrite the integrand of I1 into three parts

〈Y (ti+1) − yi+1, f (s, Y (s)) − f (ti+1, yi+1)〉
= 〈Y (ti+1) − yi+1, f (ti+1, Y (ti+1)) − f (ti+1, yi+1)〉

+ 〈Y (ti+1) − yi+1, f (s, Y (ti+1)) − f (ti+1, Y (ti+1))〉
+ 〈Y (ti+1) − yi+1, f (s, Y (s)) − f (s, Y (ti+1))〉

=: I11 + I12 + I13.

Using Assumption 2.1, we obtain

I11 ≤ K1 |Y (ti+1) − yi+1|2 .

Applying the elementary inequality

〈u, v〉 ≤ |u|2 + |v|2
2

, u, v ∈ R
d , (3.1)

we have

I12 ≤ 1

2
|Y (ti+1) − yi+1|2 + 1

2
| f (s, Y (ti+1)) − f (ti+1, Y (ti+1))|2 .

By Assumption 2.2, we can see

| f (s, Y (ti+1)) − f (ti+1, Y (ti+1))|2 ≤ K2
(
1 + |Y (ti+1)|a

) |s − ti+1|γ .
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Thus,

I12 ≤ 1

2
|Y (ti+1) − yi+1|2 + K2

2

(
1 + |Y (ti+1)|a

) |s − ti+1|γ .

Applying the elementary inequality (3.1) and Assumption 2.3 gives

I13 ≤ 1

2
|Y (ti+1) − yi+1|2 + 1

2
| f (s, Y (s)) − f (s, Y (ti+1))|2

≤ 1

2
|Y (ti+1) − yi+1|2 + K3

2

(
1 + |Y (s)|b + |Y (ti+1)|b

)
|Y (s) − Y (ti+1)|2 .

Combining the upper bound estimates of I11, I12 and I13, we conclude that

I1 ≤
∫ ti+1

ti

(
(K1 + 1) |Y (ti+1) − yi+1|2 + K2

2

(
1 + |Y (ti+1)|a

) |s − ti+1|γ

+ K3

2

(
1 + |Y (s)|b + |Y (ti+1)|b

)
|Y (s) − Y (ti+1)|2

)
ds.

(3.2)

By the Hölder inequality, we find

E

((
1 + |Y (s)|b + |Y (ti+1)|b

)
|Y (s) − Y (ti+1)|2

)

≤
(
E

(
1 + |Y (s)|b + |Y (ti+1)|b

)2)1/2 (
E |Y (s) − Y (ti+1)|4

)1/2
.

Taking expectations on both sides of (3.2) and applying Lemmas 2.4 and 2.5, we
obtain

EI1 ≤ (K1 + 1)hE |Y (ti+1) − yi+1|2 + Chγ+1 + Chγ+1 eCti+1 + Ch2 eCti+1

≤ (K1 + 1)hE |Y (ti+1) − yi+1|2 + Chγ+1 eCti+1 ,
(3.3)

where (and in what follows) C is a generic constant independent of i and the step size
h that may change from line to line.

Next, we bound I2. Applying the elementary inequality (3.1) again, we have

I2 ≤ 1

2
|Y (ti+1) − yi+1|2 + 1

2

∣∣∣∣(Y (ti ) − yi ) +
∫ ti+1

ti
(g(s, Y (s)) − g(ti , yi )) dB(s)

∣∣∣∣
2

=: 1
2

|Y (ti+1) − yi+1|2 + 1

2
I21.

Taking expectation on both sides and using the Itô isometry, it follows that

EI21 = E|Y (ti ) − yi |2 + E

∫ ti+1

ti
|g(s, Y (s)) − g(ti , yi )|2 ds.
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Rewriting the integrand of the second term on the right hand side, and using the
elementary inequality (2.7) with n = 3 and q = 2 and Assumptions 2.2 and 2.3, we
can see

|g(s, Y (s)) − g(ti , yi )|2 ≤ 3

(
|g(s, Y (s)) − g(s, Y (ti ))|2 + |g(s, Y (ti )) − g(ti , Y (ti ))|2

+ |g(ti , Y (ti )) − g(ti , yi )|2
)

≤ 3
(

K3|Y (s) − Y (ti )|2 + K2(1 + |Y (ti )|2)|s − ti |γ + K3|Y (ti ) − yi |2
)

.

Now applying Lemmas 2.4 and 2.5 gives

EI2 ≤ 1

2
E |Y (ti+1) − yi+1|2 + 1 + 3K3h

2
E |Y (ti ) − yi |2 + Ch(1+γ )∧2 eCti+1 .

(3.4)

Combining (3.3) and (3.4) yields

E |Y (ti+1) − yi+1|2 ≤
(
1

2
+ h(K1 + 1)

)
E |Y (ti+1) − yi+1|2

+ 1 + 3K3h

2
E |Y (ti ) − yi |2 + Ch(1+γ )∧2 eCti+1 ,

which implies that

E |Y (ti+1) − yi+1|2 ≤ 1 + 3K3h

1 − 2h(K1 + 1)

(
E |Y (ti ) − yi |2 + Ch(1+γ )∧2 eCti

)
.

Now summing both sides from 0 to i − 1 yields

i∑
l=1

E |Y (tl) − yl |2 ≤ 1 + 3K3h

1 − 2h(K1 + 1)

(
i−1∑
l=0

E |Y (tl) − yl |2 + iCh(1+γ )∧2 eCti

)
.

Due to the fact that ih = ti ≤ eCti , from combining same terms together on both sides
we can derive

E |Y (ti ) − yi |2 ≤ h(3K3 + 2K1 + 2)

1 − 2h(K1 + 1)

i−1∑
l=0

E |Y (tl) − yl |2 + Chγ∧1 eCti .

By the discrete version of the Gronwall inequality, we have

E |Y (ti ) − yi |2 ≤ Chγ∧1 eCti . (3.5)

Moveover, when t ∈ [ti , ti+1) for some i = 1, 2, . . ., Lemma 2.5 and (3.5) yield
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1144 C.-S. Deng, W. Liu

E |Y (t) − y(t)|2 = E |Y (t) − yi |2
≤ 2E |Y (t) − Y (ti )|2 + 2E |Y (ti ) − yi |2
≤ Ch eCt + Chγ∧1 eCti

≤ Chγ∧1 eCt .

Therefore, the proof is completed. �

Theorem 3.2 Suppose that Assumptions 2.1–2.4 hold with p > 2(a ∨ b) and the
step size satisfies h < 1/(2(K1 + 1)). Then the composition of the semi-implicit EM
solution, y(t), and the discretized inverse subordinator, Eh(t), i.e. y(Eh(t)), converges
strongly to the solution of (2.1) with

E |X(T ) − y(Eh(T ))|2 ≤ Chγ∧1eCT ,

where C is a constant independent of T and h.

Proof By Lemma 2.1 and (2.7) with n = 2 and q = 2,

E |X(T ) − y(Eh(T ))|2 = E |Y (E(T )) − y(Eh(T ))|2
≤ 2E |Y (E(T )) − Y (Eh(T ))|2 + 2E |Y (Eh(T ) − y(Eh(T ))|2 .

By Lemmas 2.2, 2.3 and 2.5, we can see

E |Y (E(T )) − Y (Eh(T ))|2 ≤ Ch E eC E(T ) ≤ CheC(T ∨1). (3.6)

On the other hand, it holds from Lemmas 2.2 and 2.3 and Theorem 3.1 that

E |Y (Eh(T ) − y(Eh(T ))|2 ≤ Chγ∧1
E eC Eh (T ) ≤ Chγ∧1

E eC E(T ) ≤ Chγ∧1eC(T ∨1). (3.7)

Combining (3.6) and (3.7), we obtain the required assertion. �

3.2 Stability

In the section, we always assume the existence and uniqueness of the solutions to (2.1)
and (2.4). In fact, Assumptions 2.1–2.3 are sufficient to guarantee it, but we do not
use them explicitly.

A function F : (0,∞) → (0,∞) is said to be regularly varying at zero with index
α ∈ R if for any c > 0,

lim
s↓0

F(cs)

F(s)
= cα.
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Denote by RVα the class of all regularly varying functions at 0. A function F ∈ RV0
is said to be slowly varying at 0. It is clear that every F ∈ RVα can be rewritten as

F(s) = sα
(s),

where 
 is a slowly varying function at 0.
In the following, we will assume that the Bernstein function φ ∈ RVα with α ∈

(0, 1). Typical examples are

– Let φ(r) = rα logβ(1+r)with 0 < α < 1 and 0 ≤ β < 1−α. Then φ ∈ RVα+β ;
– Let φ(r) = rα log−β(1 + r) with 0 < β < α < 1. Then φ ∈ RVα−β ;
– Let φ(r) = log (1 + rα) with 0 < α < 1. Then φ ∈ RVα;
– Let φ(r) = rα(1 + r)−α with 0 < α < 1. Then φ ∈ RVα .

We refer the reader to [23, Chapter 16] for more examples of such Bernstein functions.

Lemma 3.1 If the Bernstein function φ ∈ RVα with α ∈ (0, 1), then for any λ > 0

lim
t→∞

logE e−λE(t)

log t
= −α.

Proof Denote by Lt [F(t)] the Laplace transform of a function F(t). It follows from
[8, (3.10)] that for any s > 0 and λ > 0,

Lt

[
E e−λE(t)

]
(s) = φ(s)

s[φ(s) + λ] .

Since φ ∈ RVα , we get

sLt

[
E e−λE(t)

]
(s) = φ(s)

φ(s) + λ
∼ φ(s)

λ
= 1

λ
sα
(s), s ↓ 0,

where 
 is a slowly varying function at 0. Combining this with Karamata’s Tauberian
theorem (cf. [1, Theorem 1.7.6]), it holds that

E e−λE(t) ∼ 1

λ(1 − α)
t−α


(
1

t

)
, t → ∞. (3.8)

Noting that t �→ 
(1/t) is slowly varying at∞, one has (see [1, Proposition 1.3.6 (i)])

lim
t→∞

log
(1/t)

log t
= 0,

which, together with (3.8), implies the desired limit. �
Theorem 3.3 Assume that the Bernstein function φ ∈ RVα with α ∈ (0, 1), and that
there exists a constant L1 > 0 such that

〈x, f (t, x)〉 + 1

2
|g(t, x)|2 ≤ −L1|x |2, (x, t) ∈ R

d × [0,∞). (3.9)
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Then

lim sup
t→∞

logE|X(t)|2
log t

≤ −α.

In other words, the solution to (2.1) is mean square polynomially stable.

Proof Given (3.9), by [15, Theorem 4.4, p. 130] we know that the solution to (2.4) is
mean square exponentially stable

E|Y (t)|2 ≤ e−L1t
E|Y (0)|2.

Using Lemma 2.1, we obtain

E|X(t)|2 = E|Y (E(t))|2 ≤ E e−L1E(t) · E|Y (0)|2.

It remains to apply Lemma 3.1 to complete the proof. �
Remark 3.1 It is interesting to observe that the time-changed SDEs (2.1) is polynomi-
ally stable while the dual SDEs (2.4) is stable in the exponential rate. This may be due
to the effect of the time-changed Brownian, which slows down the diffusion.

Now, we present our result about the stability of the semi-implicit EM method.

Theorem 3.4 Assume that the Bernstein function φ ∈ RVα with α ∈ (0, 1), and that
there exist positive constants L2 and L3 with 2L2 > L3 such that

〈x, f (t, x)〉 ≤ −L2|x |2 and |g(t, x)|2 ≤ L3|x |2, (x, t) ∈ R
d × [0,∞).(3.10)

Then

lim sup
t→∞

logE|Y (Eh(t))|2
log t

≤ −α.

That is to say, the numerical solution to (2.1) is mean square polynomially stable.

Proof Assume that (3.10) holds with 2L2 > L3, the standard approach (see for exam-
ple [17]) gives

E|Y (ti )|2 ≤ e−L4ti E|Y (0)|2,

where L4 = (2L2 − L3)/(1 + 2L2). Now, replacing ti by Eh(t) and using Lemma
2.2, we have

E|Y (Eh(t))|2 ≤ E|Y (0)|2 · E e−L4Eh(t) ≤ E|Y (0)|2 · eL4h · E e−L4E(t).

Now, the application of Lemma 3.1 yields the desired assertion. �
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(a) (b)

(c)

Fig. 1 Numerical simulations of D(t), E(t) and X(t)

Remark 3.2 It is not hard to see that (3.10) together with 2L2 > L3 indicates (3.9)
in Theorem 3.3. Hence, it can be seen from Theorem 3.4 that the semi-implicit EM
method can preserve the mean square polynomial stability of the underlying time-
changed SDE.

4 Numerical simulations

In this section, we will present two numerical examples. The first example is used to
illustrate the strong convergence as well as the convergence rate. The second example
demonstrates the mean square stability of the numerical stability. Throughout this
section, we focus on the case that E(t) is an inverse 0.9-stable subordinator with
Bernstein function φ(r) = r0.9.
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Fig. 2 The L1 errors between the exact solution and the numerical solutions for step sizes Δ =
10−2, 10−3, 10−4

Example 4.1 A one-dimensional nonlinear autonomous time-changed SDE

dX(t) =
(

X(t) − X3(t)
)
dE(t) + X(t) dB(E(t)), with X(0) = 1, (4.1)

is considered.

It is not hard to check that Assumptions 2.1–2.3 hold for (4.1). Therefore, by
Theorem 3.2 the numerical solution proposed in this paper is strongly convergent to
the underlying solution with the rate of 1/2.

For a given step size h, one path of the numerical solution to (4.1) is simulated in
the following way.
Step 1 The semi-implicit EM method with the step size h is used to simulate the
numerical solution, y(t) = yi , when t ∈ [ih, (i + 1)h) for i = 1, 2, 3, . . ., to the duel
SDE

dY (t) =
(

Y (t) − Y 3(t)
)
dt + Y (t) dB(t), with Y (0) = 1.

Step 2 One path of the subordinator D(t) is simulated with the same step size h. (see
for example [7]).
Step 3 The Eh(t) is found by using (2.6).
Step 4 The composition, y(Eh(t)), is used to approximate (4.1).

One path of the 0.9-stable subordinator D(t) is plotted using h−6 in Fig. 1a. The
corresponding inverse subordinator E(t) is drawn in Fig. 1b. One path of the numerical
solution to Example 4.1 is displayed in Fig. 1c.

Now we illustrate the strong convergence and the convergence rate. Since the
explicit form of the true solution to (4.1) is hard to obtain. The numerical solution
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(a)

(b)

Fig. 3 Stabilities of numerical solutions

with a small step size, h0 = 10−6, is regarded as the true solution. The step sizes of
h = 10−2, 10−3 and 10−4 are used to calculated the numerical solutions. For the given
step size h, the L1 strong error is calculated by

1

N

N∑
i=1

∣∣yi (Eh0(T )) − yi (Eh(T ))
∣∣ .

Two hundreds (N = 200) sample paths are used to draw Loglog plot of the L1 error
against the step sizes in Fig. 2. The red solid line is the reference line with the slope
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of 1/2. It can be seen that the strong convergence rate is approximately 1/2. A simple
regression also shows that the rate is 0.4996, which is in line with the theoretical one.

Example 4.2 A one-dimensional nonlinear time-changed SDE

dX(t) =
(
−X(t) − X3(t)

)
dE(t) + X(t) dB(E(t)), with X(0) = 5, (4.2)

is considered.

It is not hard to check that (3.9) is satisfied, thus the underlying time-changed SDE
is stable in the mean square sense. In addition, (3.10) holds for (4.2) indicates the
numerical solution is also mean square stable.

One hundred paths are used to draw the mean square of the numerical solutions
from t = 0 to t = 10. It is clear in Fig. 3a that the second moments of the solution
tends to 0 as the time t advances, which indicates the numerical solution is mean
square stable. In addition, five sample paths are displayed in Fig. 3b.
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23. Schilling, R.L., Song, R., Vondraček, Z.: Bernstein Functions. Theory and Applications, Volume 37
of De Gruyter Studies in Mathematics, 2nd edn. Walter de Gruyter & Co., Berlin (2012)

24. Schurz, H.: Stability, Stationarity, and Boundedness of Some Implicit Numerical Methods for Stochas-
tic Differential Equations and applications. Logos Verlag, Berlin (1997)

25. Umarov, S., Hahn, M., Kobayashi, K.: Beyond the Triangle: Brownian Motion, Ito calculus, and
Fokker–PlanckEquation—FractionalGeneralizations.World Scientific PublishingCo. Pte. Ltd., Hack-
ensack (2018)

26. Wang, L., Wang, X.: Convergence of the semi-implicit Euler method for stochastic age-dependent
population equations with Poisson jumps. Appl. Math. Model. 34(8), 2034–2043 (2010)

27. Wu, Q.: Stability analysis for a class of nonlinear time-changed systems. Cogent Math. 3(1), 1228273
(2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Semi-implicit Euler–Maruyama method for non-linear time-changed stochastic differential equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	3.1 Strong convergence
	3.2 Stability

	4 Numerical simulations
	References




