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Abstract
This paper is concerned with the least squares inverse eigenvalue problem of recon-
structing a linear parameterized real symmetric matrix from the prescribed partial
eigenvalues in the sense of least squares, which was originally proposed by Chen and
Chu (SIAM J Numer Anal 33:2417–2430, 1996). We provide a geometric Gauss–
Newton method for solving the least squares inverse eigenvalue problem. The global
and local convergence analysis of the proposed method is established under some
assumptions. Also, a preconditioned conjugate gradient method with an efficient pre-
conditioner is proposed for solving the geometric Gauss–Newton equation. Finally,
somenumerical tests, including an application in the inverse Sturm–Liouville problem,
are reported to illustrate the efficiency of the proposed method.

Keywords Parameterized least squares inverse eigenvalue problem · Geometric
Gauss–Newton method · Preconditioner

Mathematics Subject Classification 65F18 · 65F15 · 15A18 · 58C15

1 Introduction

An inverse eigenvalue problem (IEP) aims to reconstruct a structured matrix from the
prescribed spectral data. Inverse eigenvalue problems (IEPs) arise in various applica-
tions such as structural dynamics, vibration, inverse Sturm–Liouville problem, control
design, geophysics, nuclear spectroscopy and molecular spectroscopy, etc. For the
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existence theory, numerical methods and applications of general IEPs, one may refer
to [11,13,14,20,24,25,43] and references therein.

Recently, one may find some new applications and numerical methods of IEPs
including the experiments for beaded strings [17], the inverse eigenvalue problem for
graphs [5,6,31], the solvability condition and numerical algorithm for the parameter-
ized generalized IEP [18], the weight optimization in a geodetic network [19], the
IEP in wireless communications [40], the transcendental inverse eigenvalue problem
in damage parameter estimation [36,37], the IEP for quantum channels [42], and the
IEP in microelectromechanical systems [38], etc. In many applications, the number
of distributed parameters in the required structured matrix is often smaller than the
number of measured eigenvalues (see for instance [9,22,39]). Thus it is desirable that
one can find a least square solution to a structured IEP. Sparked by this, in this paper,
we consider the following parameterized least squares inverse eigenvalue problem,
which was originally given by Chen and Chu [10].

PLSIEP I Given l + 1 real symmetric matrices A0, A1, . . . , Al ∈ R
n×n and m real

numbers λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
m (m ≤ n), find a vector c = (c1, c2, . . . , cl)T ∈ R

l and
a permutation σ = {σ1, σ2, . . . , σm} with 1 ≤ σ1 < σ2 < · · · < σm ≤ n to minimize
the function

f (c, σ ) := 1

2

m∑

i=1

(λσi (c) − λ∗
i )

2,

where the real numbers λ1(c) ≤ λ2(c) ≤ · · · ≤ λn(c) are the eigenvalues of the
matrix A(c) defined by

A(c) := A0 +
l∑

i=1

ci Ai .

This is a nonlinear least-squares problem, where l ≤ m ≤ n and the cost func-
tion f (c, σ ) is a function of a continuous variable c and a discrete variable σ . This
is a special kind of mixed optimization problem, where the function f (c, σ ) is non-
differentiable when the permutation σ is changed. For the PLSIEP I, there exists an
equivalent least-squares problem defined on a product manifold. Let D(m) and O(n)

denote the set of all real diagonal matrices of order m and the set of all real n × n
orthogonal matrices, respectively. DefineΛ∗

m := diag(λ∗
1, λ

∗
2, . . . , λ

∗
m), where diag(a)

denotes a diagonal matrix with a on its diagonal. Given a matrix Λ ∈ D(n − m),
blkdiag

(
Λ∗

m, Λ
)
denotes the block diagonal matrix obtained from Λ∗

m and Λ. Based
on Theorem 3.2 in [10], the PLSIEP I is equivalent to the following problem.

PLSIEP II Given l + 1 real symmetric matrices A0, A1, . . . , Al ∈ R
n×n and m real

numbers λ∗
1 ≤ λ∗

2 ≤ · · · ≤ λ∗
m (m ≤ n), find a vector c ∈ R

l , an orthogonal matrix
Q ∈ O(n), and a diagonal matrix Λ ∈ D(n − m) to minimize the function

h(c, Q,Λ) := 1

2
‖A(c) − Q blkdiag

(
Λ∗

m, Λ
)
QT ‖2F ,

where ‖ · ‖F denotes the Frobenius norm.
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The PLSIEP II is a nonlinear least-squares problem defined on the product manifold
R
l ×O(n)×D(n−m). To solve the PLSIEP II, Chen and Chu [10] proposed a lift and

projection (LP) method. This method is a modification of the alternating projection
method to an affine space and a Riemannian manifold. To solve the PLSIEP I, Chen
and Chu [10] proposed a hybridmethod called the LP-Newtonmethod. The idea is that
an initial guess of (c, σ ) is obtained by using the LP method to the PLSIEP II, then the
Newtonmethod is applied to the PLSIEP I by fixing the value of σ . As noted in [10], in
spite of non-smoothness of f in σ , one may still adopt the Newton method for solving
the PLSIEP I, where the Hessian matrix of f can be explicitly derived. However,
as the separation of eigenvalues decreases, the Hessian matrix becomes increasingly
ill-conditioned. Also, as noted in [23], when l < m, it is natural to consider the well-
known techniques in [21, Chap. 10] (e.g., the Gauss–Newtonmethod).Wang andVong
[41] proposed a Gauss–Newton-like method for a special case of m = n.

Optimization methods on smooth manifolds have been widely studied and applied
to various kinds of areas such as numerical linear algebra and dynamical systems (see
for instance [1–4,12,15,30,35] and references therein). Recently, some Riemannian
optimization methods were proposed for solving nonlinear eigenvalue problems and
inverse eigenvalue problems [44–47]. In this paper, we propose a geometric inexact
Gauss–Newton method for solving the PLSIEP II. Absil et al. [2] proposed a Rie-
mannian Gauss–Newton method for solving nonlinear least squares problems defined
between Riemannian manifold and Euclidean space, where the convergence analysis
was not discussed. Gratton et al. [27] gave some approximate Gauss–Newton methods
for solving nonlinear least squares problems defined on Euclidean space. Sparked by
[2,27],we present an efficient geometric inexactGauss–Newtonmethod for solving the
PLSIEP II. The global convergence and local convergence rate are also derived under
some assumptions. An effective preconditioner is proposed for solving the Rieman-
nian Gauss–Newton equation via the conjugate gradient (CG) method [26]. Finally,
some numerical experiments, including an application in the inverse Sturm–Liouville
problem, are reported to show the efficiency of the proposed method for solving the
PLSIEP II.

Throughout this paper, we use the following notation. The symbol AT denotes the
transpose of a matrix A. The symbol Diag(M) := diag(m11,m22, . . . ,mnn) denotes
a diagonal matrix containing the diagonal elements of an n × n matrix M = [mi j ].
Let 0m×n be the m × n zero matrix and ek be the kth column of the identity matrix In
of order n. Let R

n×n and SR
n×n be the set of all n-by-n real matrices and the set of

all n-by-n real symmetric matrices, respectively. Denote by tr(A) the trace of a square
matrix A. For twomatrices A, B ∈ R

n×n , the Lie Bracket [A, B] of A and B is defined
as the difference of the matrix products AB and BA, i.e., [A, B] := AB − BA [32,
p. 512]. Let vec(A) be the vectorization of a matrix A, i.e., a column vector obtained
by stacking the columns of A on top of one another. For two finite-dimensional vector
spacesX andY equipped with a scalar inner product 〈·, ·〉 and its induced norm ‖ ·‖,
let A : X → Y be a linear operator and the adjoint of A be denoted by A ∗. The
operator norm of A is defined by |||A ||| := sup{‖A x‖ | x ∈ X with ‖x‖ = 1}.

The remainder of this paper is organized as follows. In Sect. 2 we propose a geomet-
ric inexact Gauss–Newton method for solving the PLSIEP II. In Sect. 3 we establish
the global convergence and local convergence rate of the proposed approach under
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some assumptions. A preconditioner is also proposed for solving the geometricGauss–
Newton equation. Finally, we report some numerical tests in Sect. 4 and give some
concluding remarks in Sect. 5.

2 Geometric inexact Gauss–Newtonmethod

In this section, we present a geometric inexact Gauss–Newton method for solving the
PLSIEP II. Define an affine subspace and an isospectral manifold by

L :=
{
A0 +

l∑

i=1

ci Ai | ci ∈ R, i = 1, 2, . . . , l

}
,

M (Λ∗
m) := {

X = Q blkdiag
(
Λ∗

m,Λ
)
QT ∈ SR

n×n | Q ∈ O(n), Λ ∈ D(n − m)
}
.

We see that M (Λ∗
m) is the set of all real n × n symmetric matrices whose spectrum

contains the m real numbers λ∗
1, λ

∗
2, . . . , λ

∗
m . Thus, the PLSIEP II has a solution such

that h(c, Q,Λ) = 0 if and only ifL ∩ M (Λ∗
m) 
= ∅.

Denote

Z := R
l × O(n) × D(n − m) and Λ := blkdiag(Λ∗

m,Λ). (2.1)

Let H be a nonlinear mapping between Z and SR
n×n defined by

H(c, Q,Λ) := A(c) − QΛQT , (2.2)

for all (c, Q,Λ) ∈ Z . Then, the PLSIEP II can be written as the following minimiza-
tion problem:

min h(c, Q,Λ) := 1

2
‖H(c, Q,Λ)‖2F

subject to (s.t.) (c, Q,Λ) ∈ Z .
(2.3)

Sparked by the ideas in [2,27], we propose a geometric inexact Gauss–Newtonmethod
for solving Problem (2.3). We note that the dimension of the product manifold Z is
given by

dim(Z ) = l + n(n − 1)

2
+ n − m.

If l < m, then

dim(Z ) < dim(SR
n×n).

Therefore, the nonlinear equation H(c, Q,Λ) = 0n×n is an over-determined matrix
equation defined on the product manifold Z .
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Notice that Z is an embedded submanifold of the Euclidean space R
l × R

n×n ×
D(n − m). One may equip Z with the induced Riemannian metric:

g(c,Q,Λ)

(
(ξ1, η1, τ1), (ξ2, η2, τ2)

) := tr(ξ T1 ξ2) + tr(ηT1 η2) + tr(τ T
1 τ2),

for (c, Q,Λ) ∈ Z , and (ξ1, η1, τ1), (ξ2, η2, τ2) ∈ T(c,Q,Λ)Z , and its induced norm
‖ · ‖. The tangent space T(c,Q,Λ)Z of Z at (c, Q,Λ) is given by [2, p. 42]

T(c,Q,Λ)Z = {(r, QΩ,U ) | ΩT = −Ω, r ∈ R
l ,Ω ∈ R

n×n,U ∈ D(n − m)
}
.

Hence, (Z , g) is a Riemannian product manifold.
For simplification, we use the following notation:

Xk := (ck, Qk,Λk) ∈ Z and ΔXk := (Δck,ΔQk,ΔΛk) ∈ TXkZ .

A Riemannian Gauss–Newton method for solving Problem (2.3) can be stated as
follows. Given the current iterate Xk ∈ Z , solve the normal equation

(DH(Xk))
∗ ◦ DH(Xk)[ΔXk] = − (DH(Xk))

∗[H(Xk)],

for ΔXk ∈ TXkZ . Here,

DH(Xk) : TXkZ → TH(Xk )SR
n×n

is the Riemannian differential of H at the point Xk , which is given by

DH(Xk)[ΔXk] = (A(Δck) − A0) + [QkΛk Q
T
k ,ΔQkQ

T
k ] − (Qk P)ΔΛk(Qk P)T ,

(2.4)
where

Λk := blkdiag(Λ∗
m,Λk) and P :=

[
0m×(n−m)

I(n−m)×(n−m)

]
. (2.5)

With respect to the Riemannian metric g, the adjoint

(DH(Xk))
∗ : TH(Xk )SR

n×n → TXkZ

of DH(Xk) is given by

(DH(Xk))
∗[ΔZk] = (v(ΔZk), [QkΛk Q

T
k ,ΔZk]Qk,−Diag

(
(Qk P)TΔZk(Qk P)

))
,

(2.6)
where

v(ΔZk) := (tr(AT
1 ΔZk), tr(A

T
2 ΔZk), . . . , tr(A

T
l ΔZk)

)T
. (2.7)
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For explicit derivation of (2.4) and (2.6), one may refer to Appendix A. Based on (2.6),
the Riemannian gradient of h at a point X := (c, Q,Λ) ∈ Z is determined by [2, p.
185]:

grad h(X) = (DH(X))∗[H(X)] = (v(A(c) − QΛQT ), [QΛQT , A(c) − QΛQT ]Q,

−Diag
(
(QP)T (A(c) − QΛQT )(QP)

))
. (2.8)

Let ∇ denote the Riemannian connection of Z . By using (8.31) in [2, p. 185] we
obtain

∇2h(X)[ξX , ηX ] = 〈DH(X)[ξX ],DH(X)[ηX ]〉 + 〈H(X),∇2H(X)[ξX , ηX ]〉,
(2.9)

for all X := (c, Q,Λ) ∈ Z and ξX , ηX ∈ TXZ , where ∇2h is a (0, 2)-tensor field
and ∇2H(X)[·, ·] = [∇2Hi j (X)[·, ·]] ∈ SR

n×n [2, p. 109]. The Riemannian Hessian
Hess h(X) at a point X ∈ Z is determined by

∇2h(X)[ξX , ηX ] = 〈Hess h(X)[ξX ], ηX 〉, (2.10)

for all ξX , ηX ∈ TXZ . In particular, if X∗ is a solution of the equation H(X) = 0n×n ,
then we can obtain

Hess h(X∗) = (DH(X∗))∗ ◦ DH(X∗).

Based on the above discussion, a geometric inexact Gauss–Newton method for
solving Problem (2.3) can be described as follows.

Algorithm 1 A geometric inexact Gauss–Newton method

Step 0 Choose an initial point X0 ∈ Z , β, ηmax ∈ (0, 1), σ ∈ (0, 1
2 ). Let k := 0.

Step 1 Apply the CG method to finding an approximate solution ΔXk ∈ TXkZ of

(DH(Xk))
∗ ◦ DH(Xk)[ΔXk] = − grad h(Xk) (2.11)

such that

‖(DH(Xk))
∗ ◦ DH(Xk)[ΔXk] + (DH(Xk))

∗[H(Xk)]‖ ≤ ηk‖grad h(Xk)‖
(2.12)

and
〈grad h(Xk),ΔXk〉 ≤ − ηk〈ΔXk,ΔXk〉, (2.13)

where ηk := min{ηmax, ‖grad h(Xk)‖}. If (2.12) and (2.13) are not attainable,
then let

ΔXk := − grad h(Xk).
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Step 2 Let lk be the smallest nonnegative integer l such that

h
(
RXk (β

lΔXk)
)− h(Xk) ≤ σβl〈grad h(Xk),ΔXk〉. (2.14)

Set

Xk+1 := RXk (β
lkΔXk).

Step 3 Replace k by k + 1 and go to Step 1.

We point out that, in Step 2 of Algorithm 1, (2.14) is the Armijo condition (see [2,
Definition 4.2.2]) and R is a retraction on Z , which takes the form of

RXk (ΔXk) = (ck + Δck, Ro
Qk

(ΔQk),Λk + ΔΛk
)
, (2.15)

where Ro is a retraction on O(n), which may be chosen as [2, p. 58]:

Ro
Q(ηQ) = qf(Q + ηQ), ηQ ∈ TQO(n).

Here, qf(A) denotes the Q factor of the QR decomposition of an invertible matrix
A ∈ R

n×n as A = QR̂, where Q belongs to O(n) and R̂ is an upper triangular matrix
with strictly positive diagonal elements. For the retraction R defined by (2.15), there
exist two scalars ν > 0 and μν > 0 such that [2, p. 149]

ν‖ΔX‖ ≥ dist
(
X , RX (ΔX)

)
, (2.16)

for all X ∈ Z and
ΔX ∈ TXZ with ‖ΔX‖ ≤ μν, (2.17)

where “dist” means the Riemannian distance on the Riemannian product manifold
(Z , g) [2, p. 46]. Of course, one may choose other retractions on O(n) via the polar
decomposition, Givens rotation, Cayley transform, exponential mapping, or singular
value decomposition (see for instance [2, p. 58] and [45]).

3 Convergence analysis

In this section, we establish the global convergence and local convergence rate of
Algorithm 1.

3.1 Global convergence

For the global convergence of Algorithm 1, we have the following result. The proof
follows from Theorem 4.1 in [45]. Thus we omit it here.

Theorem 1 Any accumulation point X∗ of the sequence {Xk} (if exists) generated by
Algorithm 1 is a stationary point of the cost function h defined in Problem (2.3).
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Remark 1 In Step 2 of Algorithm 1, the Armijo condition (2.14) guarantees that the
objective function h is monotone decreasing. As in [2, Corollary 4.3.2], the sequence
{Xk} generated by Algorithm 1 must have an accumulation point if the level setL :=
{X ∈ Z | h(X) ≤ h(X0)} is bounded. In particular, if m = n and the matrices
A1, A2, . . . , Al are linearly independent, then it is easy to check that the level set L
is bounded for any initial point X0 ∈ Z (see for instance [47, Lemma 3.1]).

The search directions {ΔXk} generated byAlgorithm 1 have the following property.
The proof is similar to that of Lemma 4.3 in [45]. Thus we omit it here.

Lemma 1 Let X∗ be an accumulation point of the sequence {Xk} generated by Algo-
rithm 1. If DH(X∗) : TX∗Z → TH(X∗)SR

n×n is injective, then there exist five positive
constants ρ̄, κ0, κ1, d1, d2 > 0 such that for all Xk ∈ Bρ̄ (X∗), the linear operator
(DH(Xk))

∗ ◦ DH(Xk) : TH(X∗)SR
n×n → TH(X∗)SR

n×n is nonsingular,

|||(DH(Xk))
∗ ◦ DH(Xk)||| ≤ κ0, |||((DH(Xk))

∗ ◦ DH(Xk)
)−1||| ≤ κ1, (3.1)

and
d1 ‖grad h(Xk)‖ ≤ ‖ΔXk‖ ≤ d2 ‖grad h(Xk)‖, (3.2)

where Bρ̄ (X∗) := {X ∈ Z | dist(X , X∗) < ρ̄}.
Next, we discuss the global convergence of Algorithm 1. We need the following

assumption.

Assumption 1 Suppose the differential DH(X∗) : TX∗Z → TH(X∗)SR
n×n is injec-

tive and X∗ is an isolated local minimizer of h defined in Problem (2.3), where X∗ is
an accumulation point of the sequence {Xk} generated by Algorithm 1.

For the global convergence of Algorithm 1 related to an isolated local minima of
h, we have the following result. The proof follows from [8, Proposition 1.2.5].

Theorem 2 Let X∗ be an accumulation point of the sequence {Xk} generated by Algo-
rithm 1. Suppose that Assumption 1 holds, then {Xk} converges to X∗.

Proof By assumption, X∗ is an isolated local minimizer of h. Thus there exists a
parameter ρ̂ > 0 such that X∗ is the only stationary point of h in the neighborhood
Bρ̂ (X∗) and

h(X) > h(X∗), ∀X 
= X∗, X ∈ Bρ̂ (X∗).

Since h is continuously differentiable and X∗ is a stationary point of h, i.e.,
grad h(X∗) = 0X∗ , we obtain

lim
dist(X ,X∗)→0

grad h(X) = 0X∗ . (3.3)

By using (3.3), the norm ‖grad h(X)‖ can be as small as possible if X is sufficiently
close to X∗. Thus there exists a scalar 0 < ρ < min{ρ̂, ρ̄} such that

h
(
X∗
) ≤ h

(
X
)

and d2‖grad h(X)‖ < μν, ∀X ∈ Bρ(X∗), (3.4)
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where μν is defined in (2.17). By assumption, the differential DH(X∗) is injective.
Thus, by Lemma 1 we know that (3.2) holds for Xk ∈ Bρ(X∗) since ρ ≤ ρ̄.

Let

φ(t) := min{X |t≤dist(X ,X∗)≤ρ}
{
h(X) − h(X∗)

}
, ∀t ∈ [0, ρ].

We note that φ is a monotonically nondecreasing function of t and thus φ(t) > 0 for
all t ∈ (0, ρ]. Using (3.3), for any ε ∈ (0, ρ], there exists a constant r ∈ (0, ε] such
that

dist(X , X∗) + νd2‖grad h(X)‖ < ε, (3.5)

for all X ∈ Br (X∗), where ν is defined in (2.16). Define the open set

S := {X | dist(X , X∗) < ε, h(X) < h(X∗) + φ(r)
}
.

It is easy to see that S ⊂ Bρ(X∗) since ε ∈ (0, ρ].
We claim that if Xk ∈ S for some k, then Xk+1 ∈ S. Indeed, by using the definitions

of φ and S, if Xk ∈ S, then

φ
(
dist(Xk, X∗)

) ≤ h(Xk) − h(X∗) < φ(r). (3.6)

Since φ is monotonically nondecreasing we have dist(Xk, X∗) < r . This, together
with (3.5), yields

dist(Xk, X∗) + νd2‖grad h(Xk)‖ < ε. (3.7)

Thus, (3.2) holds for Xk since Xk ∈ S ⊂ Bρ(X∗). Using (2.16), (3.2), and (3.4) we
have

dist(Xk+1, X∗) ≤ dist(Xk, X∗) + dist
(
Xk+1, Xk

)

= dist(Xk, X∗) + dist
(
RXk (ρ

lkΔXk), Xk
)

≤ dist(Xk, X∗) + νρlk‖ΔXk‖ ≤ dist(Xk, X∗) + ν‖ΔXk‖
≤ dist(Xk, X∗) + νd2‖grad h(Xk)‖. (3.8)

Since h(Xk+1) ≤ h(Xk), it follows from (3.6), (3.7), and (3.8) that

dist(Xk+1, X∗) < ε, h(Xk+1) − h(X∗) < φ(r).

By the above inequalities and the definition of the set S we have Xk+1 ∈ S. This
completes the proof of the claim. Also, By using induction to the claim we have
Xi ∈ S for all i ≥ k if Xk ∈ S for some k.

Since X∗ is an accumulation point of the sequence {Xk}, there exists a subsequence
{Xk j } such that lim j→∞ Xk j = X∗. Thus there exists an integer kl̄ such that Xkl̄ ∈ S.
By using the claim we have Xk ∈ S for all k ≥ kl̄ . Since h(Xk+1) < h(Xk) for all
k ≥ kl̄ and limk j→∞ h(Xk j ) = h(X∗), it follows that

lim
k→∞ h(Xk) = h(X∗). (3.9)
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834 T.-T. Yao et al.

Using (3.6), Xk ∈ S for all k ≥ kl̄ , and (3.9) we have limk→∞ φ
(
dist(Xk, X∗)

) = 0.
Since φ is monotone nondecreasing, it follows that limk→∞ dist(Xk, X∗) = 0 and
thus Xk → X∗. The proof is complete. ��

3.2 Convergence rate

We discuss the local convergence rate of Algorithm 1. The pullbacks of H and h are
defined as Ĥ := H ◦ R and ĥ := h ◦ R, where R is the retraction defined in (2.15).
In addition, we use ĤX := H ◦ RX and ĥ X := h ◦ RX to denote the restrictions of Ĥ
and ĥ to the tangent space TXZ .

Since RX (0X ) = X [2, Definition 4.1.1], the value of H at X is equal to the value
of its pullback ĤX at 0X , i.e.,

H(X) = H(RX (0X )) = ĤX (0X ). (3.10)

It follows from (2.3) and (3.10) that

h(X) = ĥ X (0X ). (3.11)

Let IdTXZ denote the identity mapping on TXZ . Then one has DRX (0X ) = IdTXZ
[2, (4.2)]. Thus the differential of H at X is equal to the differential of its pull back
ĤX at 0X , i.e.,

DĤX (0X ) = D(H ◦ RX )(0X ) = DH(RX (0X )) ◦ DRX (0X ) = DH(X), (3.12)

for all X ∈ Z . Using (3.12) we have

(DĤX (0X ))∗ = (DH(X))∗, (3.13)

for all X ∈ Z . For the Riemannian gradient of h and the gradient of its pull back ĥ,
we have [2, p. 56]

grad h(X) = grad ĥ X (0X ), (3.14)

for all X ∈ Z .
Here, we need the following result on mean value inequality for differentiable

mapping defined between normed vector spaces.

Lemma 2 [16, Corollary 3.3] Let V and W be normed vector spaces, U an open subset
of V and F : U → W differentiable on U. Given two vectors a,b ∈ U, if the segment
between a and b is contained in U, then we have

‖F(b) − F(a) − DF(a)[b − a]‖W
≤ sup

θ∈[0,1]
|||DF(a + θ(b − a)) − DF(a)||| · ‖b − a‖V ,

where ‖ · ‖V and ‖ · ‖W denote the norms of V and W, respectively.

123



A geometric Gauss–Newton method for least squares… 835

For the stepsize βlk in (2.14), we have the following result [33].

Lemma 3 Let X∗ be an accumulation point of the sequence {Xk} generated by Algo-
rithm 1. Suppose that Assumption 1 holds and ‖H(X∗)‖F is sufficiently small, then
for k sufficiently large, lk = 0 satisfies (2.14).

Proof By hypothesis, Theorem 1, and Lemma 2 we have

lim
k→∞ Xk = X∗ and lim

k→∞ grad h(Xk) = grad h(X∗) = 0X∗ . (3.15)

By the definition of ηk in Algorithm 1 and (3.15) we have

lim
k→∞ ηk = lim

k→∞min{ηmax, ‖grad h(Xk)‖} = lim
k→∞ ‖grad h(Xk)‖ = 0. (3.16)

Since DH(X∗) is injective, it follows from (3.1) and (3.16) that the conditions (2.12)
and (2.13) are satisfied for all k sufficiently large. ThusΔXk is an approximate solution
to (2.11) for all k sufficiently large. Let ΔXGN

k denote the exact solution to (2.11).
Then we have

(DH(Xk))
∗◦DH(Xk)[ΔXk−ΔXGN

k ] = grad h(Xk)+(DH(Xk))
∗◦DH(Xk)[ΔXk].

(3.17)
From (2.11), (3.10), (3.12), and (3.13), it follows that

(DĤXk (0Xk ))
∗[ĤXk (0Xk )] + (DĤXk (0Xk ))

∗ ◦ DĤXk (0Xk )[ΔXGN
k ] = 0Xk . (3.18)

Using the definition of least-squares solution, (3.10), and (3.12) we find

ΔXGN
k := argmin

ξXk∈TXkZ
‖ĤXk (0Xk ) + DĤXk (0Xk )[ξXk ]‖F .

This implies that

‖ĤXk (0Xk ) + DĤXk (0Xk )[ΔXGN
k ]‖F

≤ ‖ĤXk (0Xk ) + DĤXk (0Xk )[0Xk ]‖F = ‖ĤXk (0Xk )‖F . (3.19)

By hypothesis, DH(X∗) is injective. Thus, by using Lemma1, (2.12), (3.1), and (3.17),
we have for all k sufficiently large,

‖ΔXk − ΔXGN
k ‖

= ∥∥((DH(Xk))
∗ ◦ DH(Xk)

)−1[grad h(Xk) + (DH(Xk))
∗ ◦ DH(Xk)[ΔXk]

]∥∥

≤ |||((DH(Xk))
∗ ◦ DH(Xk)

)−1||| · ∥∥grad h(Xk) + (DH(Xk))
∗ ◦ DH(Xk)[ΔXk]

∥∥

≤ κ1ηk‖grad h(Xk)‖ ≤ κ1‖grad h(Xk)‖2 ≤ κ1
d21

‖ΔXk‖2. (3.20)
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In addition, the adjoint (DĤX )∗ of DHX is Lipschitz-continuous at 0X uniformly in a
neighborhood of X∗. That is, there exist three scalars κ2, δ1, δ2 > 0 such that

|||(DĤX (ξX ))∗ − (DĤX (0X ))∗||| ≤ κ2‖ξX‖, (3.21)

for all X ∈ Bδ1(X∗) and ξX ∈ Bδ2(0X ). Let

G(Xk) := ĤXk (ΔXk) − ĤXk (0Xk ) − DĤXk (0Xk )[ΔXk]. (3.22)

By using Lemma 2, (3.21), and (3.22), we have

‖G(Xk)‖F ≤ sup
θ∈[0,1]

|||DĤXk (θΔXk) − DĤXk (0Xk )||| · ‖ΔXk‖ ≤ κ2‖ΔXk‖2,
(3.23)

for all k sufficiently large.
In the rest of the proof, for simplification, we drop the subindex k. Based on (3.11),

(3.14), and (3.22), we have

h
(
RX (ΔX)

) = ĥ X (ΔX) = 1
2‖ĤX (ΔX)‖2F

= 1
2‖ĤX (0X ) + DĤX (0X )[ΔX ] + G(X)‖2F

= 1
2‖ĤX (0X ) + DĤX (0X )[ΔX ]‖2F
+ 〈ĤX (0X ) + DĤX (0X )[ΔX ],G(X)

〉+ 1
2‖G(X)‖2F

= 1
2‖ĤX (0X )‖2F + 〈ĤX (0X ),DĤX (0X )[ΔX ]〉+ 1

2‖G(X)‖2F
+ 1

2

〈
DĤX (0X )[ΔX ],DĤX (0X )[ΔXk]

〉

+ 〈ĤX (0X ) + DĤX (0X )[ΔX ],G(X)
〉

= h(X) + 1
2

〈
grad h(X),ΔX

〉+ 1
2

〈
(DĤX (0X ))∗[ĤX (0X )],ΔX

〉

+ 1
2

〈
(DĤX (0X ))∗DĤX (0X )[ΔX ],ΔX

〉

+ 〈ĤX (0) + DĤX (0X )[ΔX ],G(X)
〉+ 1

2‖G(X)‖2F .

Using (3.1), (3.10), (3.18), (3.19), (3.20), (3.23), and the above equality, we have for
all k sufficiently large,

h
(
RX (ΔX)

)− h(X) − 1
2

〈
grad h(X),ΔX

〉

= 1
2

〈
(DĤX (0X ))∗[ĤX (0X )],ΔX

〉+ 1
2

〈
(DĤX (0X ))∗ ◦ DĤX (0X )[ΔX ],ΔX

〉

+ 〈ĤX (0X ) + DĤX (0X )[ΔX ],G(X)
〉+ 1

2‖G(X)‖2F
= 1

2

〈
(DĤX (0X ))∗[ĤX (0X )] + (DĤX (0X ))∗ ◦ DĤX (0X )[ΔXGN ],ΔX

〉

+ 1
2

〈
(DĤX (0X ))∗ ◦ DĤX (0X )[ΔX − ΔXGN ],ΔX

〉

+ 〈ĤX (0X ) + DĤX (0X )[ΔXGN ],G(X)
〉+ 1

2‖G(X)‖2F
+ 〈DĤX (0X )[ΔX − ΔXGN ],G(X)

〉

≤ 0 + 1
2 |||(DĤX (0X ))∗ ◦ DĤX (0X )||| · ‖ΔX − ΔXGN ]‖ · ‖ΔX‖
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+‖ĤX (0X ) + DĤX (0X )[ΔXGN ]‖ · ‖G(X)‖F + 1
2‖G(X)‖2F

+ |||DĤX (0X )||| · ‖ΔX − ΔXGN ]‖ · ‖G(X)‖F
≤ κ2‖H(X)‖F · ‖ΔX‖2 + 1

2
κ1κ0
d21

‖ΔX‖3 +
(

1
2κ

2
2 + κ1κ2

d21
|||DĤX (0X )|||

)
‖ΔX‖4.

Based on (3.15), if ‖H(X∗)‖F is sufficiently small, then ‖H(Xk)‖F is small enough
for all k sufficiently large. By using the above inequality, (2.14) holds with lk = 0 for
all k sufficiently large. This completes the proof. ��

We now establish the local convergence rate of Algorithm 1.

Theorem 3 Let X∗ be an accumulation point of the sequence {Xk} generated by Algo-
rithm 1. Suppose that Assumption 1 holds and ‖H(X∗)‖F is sufficiently small, then
the sequence {Xk} converges to X∗ linearly. Furthermore, if H(X∗) = 0n×n, then the
sequence {Xk} converges to X∗ quadratically.

Proof By hypothesis and using Lemma 3 we have Xk → X∗ and Xk+1 = RXk (ΔXk)

for all k sufficiently large. Using Lemma 7.4.8 and Lemma 7.4.9 in [2], there exist
three scalars τ0, τ1, τ2 > 0 such that for all k sufficiently large,

{
τ0dist(Xk, X∗) ≤ ‖grad h(Xk)‖ ≤ τ1dist(Xk, X∗),
‖grad h(Xk+1)‖ = ‖grad h(RXk (ΔXk)

)‖ ≤ τ2‖grad ĥ Xk (ΔXk)‖. (3.24)

By using Taylor’s formula we have for all k sufficiently large,

grad ĥ Xk (ΔXk) = grad ĥ Xk (0Xk ) + (DĤXk (0Xk ))
∗ ◦ DĤXk (0Xk )[ΔXk]

+Hess ĥ Xk (0Xk )[ΔXk] − (DĤXk (0Xk ))
∗ ◦ DĤXk (0Xk )[ΔXk]

+
∫ 1

0

(
Hess ĥ Xk (tΔXk) − Hess ĥ Xk (0Xk )

)[ΔXk]dt . (3.25)

Since H is twice continuously differentiable, it follows from (2.9) and (2.10) that
there exist two scalars κ3 > 0 and δ3 > 0 such that for all X ∈ Bδ3(X∗),

|||Hess ĥ Xk (0Xk ) − (DĤXk (0Xk ))
∗ ◦ DĤXk (0Xk )||| ≤ κ3‖H(Xk)‖F . (3.26)

Furthermore, the Hessian operator Hess ĥ X is Lipschitz-continuous at 0X uniformly
in a neighborhood of X∗, i.e., there exist three scalars κ4 > 0, δ4 > 0, and δ5 > 0,
such that for all X ∈ Bδ4(X∗) and ξX ∈ Bδ5(0X ), it holds that

|||Hess ĥ X (ξX ) − Hess ĥ X (0X )||| ≤ κ4‖ξX‖. (3.27)

In addition, H is Lipschitz-continuous in a neighborhood of X∗, i.e., there exist two
constants L > 0 and δ6 > 0 such that for all X ,Y ∈ Bδ6(X∗),

‖H(X) − H(Y )‖F ≤ Ldist(X ,Y ). (3.28)
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From Lemma 1, (2.12), (3.24), (3.25), (3.26), and (3.27), we have for k sufficiently
large,

τ0
τ2
dist(Xk+1, X∗) ≤ ‖grad ĥ Xk (ΔXk)‖
≤ ∥∥grad ĥ Xk (0Xk ) + (DĤXk (0Xk ))

∗ ◦ DĤXk (0Xk )[ΔXk]
∥∥

+ ∥∥Hess ĥ Xk (0Xk )[ΔXk] − (DĤXk (0Xk ))
∗ ◦ DĤXk (0Xk )[ΔXk]

∥∥

+
∥∥∥∥
∫ 1

0

(
Hess ĥ Xk (tΔXk) − Hess ĥ Xk (0Xk )

)[ΔXk]dt
∥∥∥∥

≤ ‖grad h(Xk) + (DĤXk (0Xk ))
∗ ◦ DĤXk (0Xk )[ΔXk]‖

+ κ3‖H(Xk)‖F · ‖ΔXk‖ + κ4‖ΔXk‖2
≤ ηk‖grad h(Xk)‖ + κ3d2‖H(Xk)‖F · ‖grad h(Xk)‖ + κ4d

2
2‖grad h(Xk)‖2

≤ κ3d2τ1‖H(Xk)‖Fdist(Xk, X∗) + (1 + κ4d
2
2 )‖grad h(Xk)‖2

≤ κ3d2τ1‖H(Xk)‖Fdist(Xk, X∗) + (1 + κ4d
2
2 )τ

2
1

(
dist(Xk, X∗)

)2
. (3.29)

Thus,

dist(Xk+1, X∗) ≤ τ1τ2
τ0

κ3d2‖H(Xk)‖Fdist(Xk, X∗) + τ 21 τ2
τ0

(1 + κ4d
2
2 )
(
dist(Xk, X∗)

)2

= c1‖H(Xk)‖Fdist(Xk, X∗) + c2
(
dist(Xk, X∗)

)2
,

where c1 := τ1τ2
τ0

κ3d2 and c2 := τ 21 τ2
τ0

(1 + κ4d22 ). If ‖H(X∗)‖F is sufficiently small,
then ‖H(Xk)‖F is small enough such that c1‖H(Xk)‖F < 1 for all k sufficiently
large. Thus if ‖H(X∗)‖ is sufficiently small, then{Xk} converges to X∗ linearly.

If H(X∗) = 0n×n , then we have from (3.28) for all k sufficiently large,

‖H(Xk)‖F = ‖H(Xk) − H(X∗)‖F ≤ Ldist(Xk, X∗). (3.30)

Using (3.29) and (3.30), we have

dist(Xk+1, X∗) ≤ τ1τ2
τ0

(
κ3d2L + (1 + κ4d

2
2 )τ1

)(
dist(Xk, X∗)

)2
.

Therefore, if H(X∗) = 0n×n , then {Xk} converges to X∗ quadratically. This completes
the proof. ��

As a direct consequence of (3.24) and (3.29), we have the following result.

Corollary 1 Let X∗ be an accumulation point of the sequence {Xk} generated by Algo-
rithm 1. Suppose the assumptions in Theorem 3 are satisfied. Then there exist two
constants μ1, μ2 > 0 such that for all k sufficiently large,

‖grad h(Xk+1)‖ ≤ μ1‖H(Xk)‖F‖grad h(Xk)‖ + μ2‖grad h(Xk)‖2.
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Furthermore, if H(X∗) = 0n×n, then there exists a scalar ν̄ > 0 such that for all k
sufficiently large,

‖grad h(Xk+1)‖ ≤ ν̄‖grad h(Xk)‖2.

3.3 Injectivity condition

We provide the injectivity condition of DH(X∗), where X∗ = (c∗, Q∗,Λ∗) is an
accumulation point of the sequence {Xk} generated by Algorithm 1. Based on (2.4),
DH(X∗) is injective if and only if the following matrix equation

{
(A(Δc) − A0) + Q∗Λ∗QT∗ ΔQQT∗ − ΔQΛ∗QT∗ − (Q∗P)ΔΛ(Q∗P)T = 0n×n,

s.t. (Δc,ΔQ,ΔΛ) ∈ TX∗Z ,

(3.31)
has a unique solution (Δc,ΔQ,ΔΛ) = (0l , 0n×n, 0(n−m)×(n−m)) ∈ TX∗Z , where
Λ∗ := blkdiag

(
Λ∗

m,Λ∗
)
and P is defined in (2.5).

For W ∈ R
n×n define v̂ec(W ) ∈ R

n(n−1)
2 by

v̂ec(W ) ( j−1)( j−2)
2 +i := Wi j , 1 ≤ i < j ≤ n.

This shows that v̂ec(W ) is a column vector obtained by stacking the strictly upper

triangular part of W . For w ∈ R
n(n−1)

2 define ŝkew(w) ∈ R
n×n by

v̂ec
(
ŝkew(w)

)
:= w, v̂ec

((
ŝkew(w)

)T ) := −w,

and

(
ŝkew(w)

)
i i = 0, i = 1, 2, . . . , n.

We observe that ŝkew(w) is a skew-symmetric matrix constructed from w. Therefore,
v̂ec and ŝkew are a pair of inverse operators. In addition, there exists a matrix P̂ ∈
R
n2× n(n−1)

2 such that
vec
(
ŝkew(w)

) = P̂w (3.32)

for all w ∈ R
n(n−1)

2 . Since ΔQ ∈ TQ∗O(n), there exists a skew-symmetric matrix
ΔΩ ∈ R

n×n such that ΔQ = Q∗ΔΩ . For ΔΩ ∈ R
n×n , it follows from (3.32) that

there exists a vector Δv ∈ R
n(n−1)

2 such that vec
(
ΔΩ

) = P̂Δv. Thus, we have

vec(ΔQ) = vec(Q∗ΔΩ) = (In ⊗ Q∗)vec(ΔΩ) = (In ⊗ Q∗)P̂Δv, (3.33)

where “⊗” means the Kronecker product [7, Definition 7.1.2]. Let Â be an n2 × l
matrix defined by

Â := [vec(A1), vec(A2), . . . , vec(Al)
] ∈ R

n2×l . (3.34)
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Since ΔΛ ∈ D(n − m), there exists a matrix G ∈ R
(n−m)2×(n−m) and a vector

Δw ∈ R
n−m such that

vec(ΔΛ) = GΔw. (3.35)

Based on (3.33), (3.34), and (3.35), the vectorization of the matrix equation (3.31) is
given by

[
Â, (Q∗ ⊗ Q∗)(In ⊗ Λ − Λ ⊗ In)P̂, (Q∗P) ⊗ (Q∗P)G

]
⎡

⎣
Δc
Δv
Δw

⎤

⎦ = 0n2 .

Based on the above analysis, we have the following injectivity condition of
DH(X∗).

Theorem 4 Let X∗ = (c∗, Q∗,Λ∗) be an accumulation point of the sequence {Xk}
generated by Algorithm 1. ThenDH(X∗) is injective if and only if the followingmatrix

[
Â, (Q∗ ⊗ Q∗)(In ⊗ Λ∗ − Λ∗ ⊗ In)P̂, (Q∗P) ⊗ (Q∗P)G

]

is of full rank.

3.4 Preconditioning technique

We propose a preconditioner for solving (2.11). Here we adapt a centered precon-
ditioner [34, p. 279]. For the CG method, instead of solving (2.11), we solve the
following preconditioned linear system

{
(DH(Xk))

∗ ◦ M−1
k ◦ DH(Xk)[ΔXk] = −(DH(Xk))

∗ ◦ M−1
k [H(Xk)],

s.t. ΔXk ∈ T(c,Q,Λ)Z ,

where Mk : TH(Xk )SR
n×n → TH(Xk )SR

n×n is a self-adjoint and positive definite
linear operator.

According to (2.4) and (2.6), for ΔZk ∈ TH(Xk )SR
n×n , we have

(
DH(Xk) ◦ (DH(Xk))

∗ + t̂IdTH(Xk )SR
n×n
)[ΔZk]

= (A(v(ΔZk)) − A0) + [QkΛk Q
T
k , [QkΛk Q

T
k ,ΔZk]

]

+ Qk P Diag
(
PT QT

k ΔZkQk P
)
PT QT

k + t̂ΔZk, (3.36)

where t̂ > 0 is a given constant, and IdTH(Xk )SR
n×n means the identity map-

ping on TH(Xk )SR
n×n . Replacing the matrix Diag

(
PT QT

k ΔZkQk P
)
in (3.36) by

PT QT
k ΔZkQk P , we can construct a centered preconditioner Mk in the following

form:
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Mk[ΔZk] := (A(v(ΔZk)) − A0) + (QkΛ
2
k Q

T
k )ΔZk − 2(QkΛk Q

T
k )ΔZk(QkΛk Q

T
k )

+ ΔZk(QkΛ
2
k Q

T
k ) + Qk PPT QT

k ΔZkQk PPT QT
k + t̂ΔZk, (3.37)

for all ΔZk ∈ TH(Xk )SR
n×n . Based on (3.36) and (3.37), the constructed precondi-

tioner Mk is an approximation of DH(Xk) ◦ (DH(Xk))
∗ + t̂IdTH(Xk )SR

n×n .

Given four matrices A, B,C, D ∈ R
n×n , we have the following properties of the

Kronecker product [7, pp. 400–401]:

⎧
⎨

⎩

vec(ABC) = (CT ⊗ A)vec(B), (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

(A + B) ⊗ C = A ⊗ C + B ⊗ C, C ⊗ (A + B) = C ⊗ A + C ⊗ B,

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C).

(3.38)

Using (3.34) we find

Â ÂT =
l∑

i=1

vec(Ai )vec(Ai )
T . (3.39)

From (2.7), (3.37), (3.38), (3.39) we have for any ΔZk ∈ TH(Xk )SR
n×n ,

vec
(
Mk[ΔZk]

)

= vec
( l∑

i=1

tr(AT
i ΔZk) · Ai

)
+ ((Qk InQ

T
k ) ⊗ (QkΛ

2
k Q

T
k )
)
vec(ΔZk)

− 2
(
(QkΛk Q

T
k )T ⊗ (QkΛk Q

T
k )
)
vec(ΔZk)

+((QkΛ
2
k Q

T
k )T ⊗ (Qk InQ

T
k )
)
vec(ΔZk)

+ ((Qk PPT QT
k )T ⊗ Qk PPT QT

k

)
vec(ΔZk) + t̂ In2vec(ΔZk)

=
l∑

i=1

(
vec(Ai )vec(Ai )

T )vec(ΔZk)

+
(
(Qk ⊗ Qk)

(
In ⊗ Λ

2
k − 2Λk ⊗ Λk + Λ

2
k ⊗ In

)
(QT

k ⊗ QT
k )
)
vec(ΔZk)

+ ((Qk ⊗ Qk)(PPT ⊗ PPT )(QT
k ⊗ QT

k )
)
vec(ΔZk)

+ ((Qk ⊗ Qk)(t̂ In2)(Q
T
k ⊗ QT

k )
)
vec(ΔZk)

= (Qk ⊗ Qk)
(
(In ⊗ Λk − Λk ⊗ In)

2 + (PPT ) ⊗ (PPT )

+ t̂ In2
)
(QT

k ⊗ QT
k )vec(ΔZk) + Â ÂT vec(ΔZk), (3.40)

where the equality In = Qk InQT
k is used. Let

B̂k := (Qk⊗Qk)
(
(In⊗Λk−Λk⊗ In)

2+(PPT )⊗(PPT )+ t̂ In2
)
(QT

k ⊗QT
k ) (3.41)

and
M̂k := B̂k + Â ÂT . (3.42)
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From (3.40) and (3.42) we have for ΔZk ∈ TH(Xk )SR
n×n ,

vec
(
Mk[ΔZk]

) = M̂kvec(ΔZk) = (B̂k + Â ÂT )vec(ΔZk). (3.43)

Given two nonsingular matrices C1 ∈ R
n×n and C2 ∈ R

m×m , we have

(C1 ⊗ C2)
−1 = C−1

1 ⊗ C−1
2 . (3.44)

By using the definition of the matrix P in (2.4) we have

PPT = blkdiag(0m, In−m).

Thus the matrix (In ⊗Λk −Λk ⊗ In)2 + (PPT )⊗ (PPT )+ t̂ In2 is a diagonal matrix
with positive diagonal entries. Then it follows that the matrix B̂k is invertible. Using
(3.41), and (3.44) we have

B̂−1
k = (Qk ⊗ Qk)

(
(In ⊗ Λk − Λk ⊗ In)

2 + (PPT ) ⊗ (PPT ) + t̂ In2
)−1

(QT
k ⊗ QT

k ).

Thus B̂−1
k can be easily computed.

By (3.39), the matrix Â ÂT is a low rank matrix, i.e., rank( Â ÂT ) ≤ l. By assump-
tion, l < m ≤ n < n2, thus M̂k is a low rank perturbation of B̂k . By using the
Sherman–Morrison–Woodbury formula [28] we find

M̂−1
k = (B̂k + Â ÂT )−1 = B̂−1

k − B̂−1
k Â

(
Il + ÂT B̂−1

k Â
)−1

ÂT B̂−1
k . (3.45)

We conclude from (3.45) that, for any vector x ∈ R
n2 , the matrix-vector product

M̂−1
k x can be computed efficiently, where the main computational cost is to calculate

the inverse of (Il + ÂT B̂−1
k Â) ∈ R

l×l .

4 Numerical experiments

In this section we report the numerical performance of Algorithm 1 for solving the
PLSIEP II. All the numerical tests are carried out by using MATLAB 7.1 running on a
workstation with a Intel Xeon CPU E5-2687W at 3.10 GHz and 32 GB of RAM. To
illustrate the efficiency of our algorithm, we compare Algorithm 1 with the LPmethod
in [10].

In our numerical tests, we set β = 0.5, ηmax = 0.01, σ = 10−4, and t̂ = 10−5. The
largest number of iterations inAlgorithm1and theLPmethod is set to be30000, and the
largest number of iterations in the CGmethod is set to be n3. Let ‘CT.’, ‘IT.’, ‘NF.’,
‘NCG.’, ‘Res.’, ‘grad.’ , and ‘err-c.’ denote the averaged total computing time
in seconds, the averaged number of outer Gauss–Newton iterations or LP iterations,
the averaged number of function evaluations, the averaged total number of inner CG
iterations, the averaged residual ‖H(Xk)‖F , the averaged residual ‖grad h(Xk)‖, and
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the averaged relative error ‖ck − ĉ‖∞/‖̂c‖∞ at the final iterates of the corresponding
algorithms, accordingly. Here, ‖ · ‖∞ means the vector ∞-norm.

The stopping criterion for Algorithm 1 and the LP method is set to be

‖grad h(Xk)‖ < ζ,

where ζ > 0 is the prescribed tolerance.
We consider the following two examples.

Example 1 We consider the Sturm–Liouville problem of the form:

− d2y

dx2
+ q(x)y = λy, 0 ≤ x ≤ π, (4.1)

where q is a real, square-integrable function and the following Dirichlet boundary
conditions are imposed

y(0) = y(π) = 0.

By using the Rayleigh–Ritz method in [29], the Rayleigh quotient of (4.1) is given by

R
(
y(x)

) =
∫ π

0

(
(y′(x))2 + q(x)y(x)2

)
dx

∫ π

0 y(x)2dx
.

Suppose that y(x) =∑n
j=1 w j sin( j x). By simple calculation, we have

R
(
y(x)

)

=
∑n

i=1
∑n

j=1 i · j · wi · w j · δij+ 2
π

·∑n
i=1
∑n

j=1 wi · w j
∫ π

0 q(x) sin(i x) sin( j x)dx
∑n

i=1
∑n

j=1 wi · w j · δij

,

i.e.,

R
(
y(x)

) = wT Aw
wTw

,

where w := (w1, w2, . . . , wn)
T and the entries of the symmetric matrix A = [ai j ] ∈

R
n×n are given by

ai j = i · j · δij + 2

π
·
∫ π

0
q(x) sin(i x) sin( j x)dx

= i · j · δij + 2

π

∫ π

0
q(x)

cos
(
(i − j)x

)− cos
(
(i + j)x

)

2
dx,
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for i, j = 1, 2, . . . , n. If q(x) = 2
∑l

k=1 ck cos(2kx), then one has

ai j = i · j · δij +
l∑

k=1

ck · (δ2k|i− j | − δ2ki+ j

)
, i, j = 1, 2, . . . , n.

Let Tk (k = 1, 2, . . . , n − 1) and Hk (k = 1, 2, . . . , 2n − 1) be n × n real matrices
generated by the MATLAB built-in functions toeplitz and hankel:

Tk = toeplitz(ek+1), k = 1, 2, . . . , n − 1

and

Hk =
{
hankel(ek, 0n), k = 1, 2, . . . , n,

hankel(0n, ek−n+1), k = n + 1, n + 2, . . . , 2n − 1.

Define

A0 = diag(1, 22, 32, . . . , n2), Ak =
⎧
⎨

⎩
T2k − H2k−1, 1 ≤ k ≤ min

{
l, n−1

2

}
,

− H2k−1, min
{
l, n−1

2

}
< k ≤ l.

Then

A = A0 +
l∑

k=1

ck Ak ≡ A(c).

To estimate the first l Fourier coefficients of the potential q(x) defined by [29]

q(x) =
∞∑

k=1

192

π4

1

k4
cos(2kx),

we consider the PLSIEP with above {Ak} and the n eigenvalues of A(̂c) as the pre-
scribed spectrum for varying n = m and l, where the entries of ĉ are given by

ĉk = 192

π4

1

k4
, k = 1, 2, . . . , l.

Example 2 We consider the PLSIEP with varying n, l, and m. Let ĉ ∈ R
l be a random

vector and A0, A1, . . . , Al be n× n random symmetric matrices, which are generated
by the MATLAB built-in function randn:

ĉ := randn(l, 1), Bk := randn(n, n), Ak = 1

2
(Bk + BT

k ), k = 0, 1, . . . , l.

We choose the m smallest eigenvalues of A(̂c) as the prescribed partial spectrum.
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Table 3 Numerical results for Example 1

(n, l,m) CT. (s) IT. NF. NCG. Res. grad. err-c.

(100, 50, 100) 0.09 5 6 1.2 3.24 × 10−11 5.79 × 10−11 1.49 × 10−11

(200, 60, 200) 0.38 5 6 1.2 2.46 × 10−10 3.42 × 10−10 6.45 × 10−11

(300, 70, 300) 1.04 5 6 1.2 5.73 × 10−10 9.52 × 10−10 1.61 × 10−10

(400, 75, 400) 2.36 5 6 1.2 1.78 × 10−9 1.87 × 10−9 4.00 × 10−10

(500, 80, 500) 3.82 5 6 1.2 2.97 × 10−9 3.14 × 10−9 4.01 × 10−10

(600, 85, 600) 5.86 5 6 1.2 4.76 × 10−9 4.74 × 10−9 9.18 × 10−10

(800, 90, 800) 12.03 5 6 1.2 1.12 × 10−8 9.54 × 10−9 2.29 × 10−9

Table 4 Numerical results for Example 2

(n, l,m) CT. (s) IT. NF. NCG. Res. grad. err-c.

(100, 60, 80) 0.09 3.0 4.0 27 3.04 × 10−11 4.17 × 10−10 3.73 × 10−14

(200, 120, 160) 0.66 3.0 4.0 33 6.86 × 10−11 1.85 × 10−9 4.00 × 10−14

(300, 160, 200) 3.36 3.7 4.7 64 2.14 × 10−11 1.43 × 10−9 3.71 × 10−14

(400, 220, 280) 10.70 4.0 5.0 65 9.42 × 10−12 2.51 × 10−9 4.19 × 10−14

(500, 340, 400) 22.92 4.0 5.0 48 2.48 × 10−11 5.64 × 10−9 6.29 × 10−14

(600, 420, 480) 46.97 4.2 5.2 54 2.13 × 10−11 9.58 × 10−9 7.95 × 10−14

For Algorithm 1 and the LP method in [10], the starting points are generated by the
MATLAB built-in function eig:

[
Q0, Λ̃

] = eig (A(c0), ′real′), Λ0 = Λ̃(m + 1 : n).

For Example 1, c0 is set to be a zero vector. For Example 2, c0 is formed by chopping
the components of ĉ to two decimal places for n < 100 and to three decimal places
for n ≥ 100.

We first apply the LP method and Algorithm 1 to Example 1 with ζ = 10−6.
Table 1 displays numerical results for Example 1, where the symbol “*” means the
largest number of iterations is reached. We observe that Algorithm 1 with PCG works
much better than the LP method in terms of computing time.

Next, we apply the LP method and Algorithm 1 to Example 2 with ζ = 10−8. For
comparison purposes, we repeat our experiments over 10 different problems. Table 2
shows numerical results for Example 2. We observe from Table 2 that Algorithm 1 is
more effective than the LP method in terms of computing time. We also see that the
proposed preconditioner can reduce the number of inner CG iterations effectively.

To further illustrate the efficiency of Algorithm 1, we apply Algorithm 1 with the
proposed preconditioner to Examples 1 and 2 for varying n, l,m with ζ = 10−8. The
corresponding numerical results are displayed in Tables 3 and 4. In Fig. 1, we give
the convergence history of Algorithm 1 for two tests. Figure 1 depicts the logarithm
of the residual versus the number of outer iterations. We see from Tables 3 and 4 that
Algorithm 1 with the proposed preconditioner works very efficient for different values
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Fig. 1 Convergence history of two tests

of n, l,m. Finally, the linear or quadratic convergence of Algorithm 1 is observed from
Fig. 1, which agrees with our prediction.

5 Conclusions

In this paper, we focus on the parameterized least squares inverse eigenvalue problem
where the number of parameters is smaller than the number of given eigenvalues. We
have proposed a geometric Gauss–Newton method for solving the problem. We have
established the global and linear or quadratic convergence of the proposed method
under the assumption that the Riemannian differential DH(·) is injective and the
residual ‖H(·)‖F is sufficiently small or equal to zero at an accumulation point X∗ of
the sequence {Xk} generated by our method.

In each outer iteration of the proposed method, the Riemannian Gauss–Newton
equation is solved approximately by theCGmethod.However, theRiemannianGauss–
Newton equation is often ill-conditioned. To improve the efficiency of our method,
we have constructed a preconditioner by investigating the special structure of the
Riemannian Gauss–Newton equation. Numerical results show that the proposed pre-
conditioner can reduce the number of inner CG iterations and the computational time
very effectively. Thus our method can be applied to solve large-scale problems.

Finally, we should point out that the proposed method may not be effective as
expected if the differential DH(X∗) is not injective or the residual ‖H(X∗)‖F is not
small enough. This needs further study.

Acknowledgements We are very grateful to the editor and the referees for their valuable comments and
suggestions, which have considerably improved this paper.

Appendix A

In this appendix, we deduce (2.4) and (2.6). To derive the Riemannian differential of
H : Z → SR

n×n defined by (2.2), we consider the following extended mapping

H̃ : R
l × R

n×n × D(n − m) → SR
n×n, (A.1)
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which is defined by

H̃(c, Q,Λ) := A(c) − QΛQT ,

for all (c, Q,Λ) ∈ R
l × R

n×n × D(n − m), where Λ is defined as in (2.1). Thus the
map H is the restriction of H̃ from the Euclidean space R

l × R
n×n × D(n − m) to

the Riemannian product manifold Z , i.e., H = H̃ |Z .
Similar to [2, (3.17)], for any (Δc,ΔQ,ΔΛ) ∈ T(c,Q,Λ)Z , one has

DH(c, Q,Λ)[(Δc,ΔQ,ΔΛ)] = DH̃(c, Q,Λ)[(Δc,ΔQ,ΔΛ)]. (A.2)

For a tangent vector (Δc,ΔQ,ΔΛ) ∈ T(c,Q,Λ)Z , the matrix ΔQQT is skew-
symmetric [2, (3.26)], i.e.,

(ΔQQT )T = −ΔQQT . (A.3)

By the definition of P in (2.5) we have

blkdiag(0m,ΔΛ) = PΔΛPT . (A.4)

Using (2.1), (2.5), (A.1), (A.3), and (A.4) we have

H̃(c + tΔc, Q + tΔQ,Λ + tΔΛ)

= A(c + tΔc) − (Q + tΔQ) blkdiag
(
Λ∗

m, Λ + tΔΛ
)
(Q + tΔQ)T

= A(c + tΔc) − (Q + tΔQ)Λ(Q + tΔQ)T

− (Q + tΔQ) blkdiag
(
0m, tΔΛ

)
(Q + tΔQ)T

= H̃(c, Q,Λ) + t(A(Δc) − A0) + t[QΛQT ,ΔQQT ]
− t(QP)ΔΛ(QP)T + O(t2),

where t ∈ R. Based on Proposition 2.5 in [16] and the above equality, we have

DH̃(c, Q,Λ)[(Δc,ΔQ,ΔΛ)]
= lim

t→0

H̃(c + tΔc, Q + tΔQ,Λ + tΔΛ) − H̃(c, Q,Λ)

t

= (A(Δc) − A0) + [QΛQT ,ΔQQT ] − (QP)ΔΛ(QP)T .

This, together with (A.2), yields

DH(c, Q,Λ)[(Δc,ΔQ,ΔΛ)]
= (A(Δc) − A0) + [QΛQT ,ΔQQT ] − (QP)ΔΛ(QP)T , (A.5)

for all (c, Q,Λ) ∈ Z and (Δc,ΔQ,ΔΛ) ∈ T(c,Q,Λ)Z , and thus (2.4) holds.
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Let (c, Q,Λ) ∈ Z . For the Riemannian differential DH(c, Q,Λ) and its adjoint
(DH(c, Q,Λ))∗ with respect to the Riemannian metric g, one has [2, p. 185],

tr
(
ΔZTDH(c, Q,Λ)[(Δc,ΔQ,ΔΛ)])
= g(c,Q,Λ)

(
(DH(c, Q,Λ))∗[ΔZ ], (Δc,ΔQ,ΔΛ)

)
, (A.6)

for any (Δc,ΔQ,ΔΛ) ∈ T(c,Q,Λ)Z and ΔZ ∈ TH(c,Q,Λ)SR
n×n . Using (3.36) in

[2], the definition of the linear operator v in (2.7), (A.5), and (A.6) we have

tr
(
ΔZ DH(c, Q,Λ)[(Δc,ΔQ,ΔΛ)])

= tr
(
ΔZ(A(Δc) − A0)

)− tr
(
ΔZQΛ(ΔQ)T

)

− tr
(
ΔZ(ΔQ)ΛQT )− tr

(
ΔZ(QP)ΔΛ(QP)T

)

= tr
(
ΔZ

m∑

i=1

(Δc)i Ai
)− 2tr

(
(ΔZQΛ)TΔQ

)− tr
(
(QP)TΔZ(QP)ΔΛ

)

=
m∑

i=1

(Δc)i tr(A
T
i ΔZ) − 2tr

((
Q skew(QTΔZQΛ)

)T
ΔQ

)

− tr
(
(QP)TΔZ(QP)ΔΛ

)

= (v(ΔZ)
)T

Δc + tr
(
([QΛQT ,ΔZ ]Q)TΔQ

)− tr
(
Diag

(
(QP)TΔZ(QP)

)
ΔΛ

)

= g(c,Q,Λ)

(
v(ΔZ), [QΛQT ,ΔZ ]Q,−Diag

(
(QP)TΔZ(QP)

)
, (Δc,ΔQ,ΔΛ)

)

= g(c,Q,Λ)

(
(DH(c, Q,Λ))∗[ΔZ ], (Δc,ΔQ,ΔΛ)

)
,

where skew(A) := 1
2 (A − AT ). Thus,

(DH(c, Q,Λ))∗[ΔZ ] = (v(ΔZ), [QΛQT ,ΔZ ]Q,−Diag
(
(QP)TΔZ(QP)

))

for all ΔZ ∈ TH(c,Q,Λ)SR
n×n . This proves (2.6).
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