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Abstract
By piecewise Chebyshevian splines we mean splines with pieces taken from different
Extended Chebyshev spaces all of the same dimension, and with connection matrices
at the knots. Within this very large and crucial class of splines, we are more specifi-
cally concerned with those which are good for design, in the sense that they possess
blossoms, or, equivalently, refinable B-spline bases. In practice, this subclass is known
to be characterised by the existence of (infinitely many) piecewise generalised deriva-
tives with respect to which the continuity between consecutive pieces is controlled by
identity matrices. Somehow inherent in the previous characterisation, the construc-
tion of all associated rational spline spaces creates an equivalence relation between
piecewise Chebyshevian spline spaces good for design, among which the famous clas-
sical rational splines. We investigate this equivalence relation along with the natural
question: Is it or not worthwhile considering the rational framework since it does not
enlarge the set of resulting splines? This explains the parentheses inside the acronym
NU(R)BS.

Keywords Piecewise Chebyshevian splines · Rational splines · NURBS · Shape
effects · Blossoms · Geometric design

Mathematics Subject Classification 65D07 · 65D17

1 Introduction

Since the introduction of the terminology by Schoenberg [53], polynomial splines
have been a popular tool in many areas of mathematics concerned with applications,
e.g., interpolation, approximation, smoothing and curve fitting, geometric design,mul-
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tiresolution, image processing, … e.g., [9,28,55,57,61]. This success is due to their
flexibility by comparison with polynomials, and to the ease of their implementation.
This in turn mainly results from the presence of B-splines and their crucial proper-
ties: minimal support, refinability, normalisation, total positivity, recurrence relations,
degree elevation, …After Ramshaw [51] we know that these properties can them-
selves be interpreted as straightforward consequences of the presence of blossoms in
polynomial spaces, that is, the one-to-one possibility of “blossoming” a polynomial
F of degree at most n into a symmetric multi-affine function f in n variables which
coincides with F on the diagonal.

Nevertheless, the need for building B-splines (with their main features) depending
on one or more parameters soon arose, both to increase their ability to produce inter-
esting shapes, and to improve the splines fitting to given data, for instance to avoid
undesired oscillations in spline interpolants which may result from strong jumps in
the data. Below we recall and comment some of the classical methods to introduce
parameters which, depending on the case, can act either globally or locally. We limit
ourselves to those which we are concerned with in the present work. For each of them,
our references represent very little compared to the existing literature.
1—Geometrically continuous polynomial B-splines [3,5,10,11,15,38,58]: at eachknot,
up to some orders, the left and right derivatives are linked by a lower triangular con-
nection matrix with positive diagonal entries. Let us illustrate this with the cubic case,
and with simple equispaced knots. As an instance, when inserting at each convenient
place (important jumps in the data) a diagonal matrix of the form (1, γ ), the cor-
responding parameters γ act as efficient local tension parameters and produce “C1

piecewise affine interpolants”, with either γ or 1/γ tending to +∞, depending on the
data, see Fig. 6 in [34]. A symmetric geometrically continuous cardinal B-spline can
also be obtained, this time with everywhere the matrix obtained with a unit diagonal
and the same entry β > − 4

h under it, where h is the knot spacing [42]. In that case, β
acts as a global tension parameter producing C1 piecewise affine interpolants when it
tends to +∞.
2—Non uniform rational B-splines (NURBS) [12–14,47] naturally result from ordi-
nary B-splines when projecting splines in R

d+1 on R
d . Obtaining the (normalised)

rational B-spline basis thus amounts to allocating each polynomial B-spline a pos-
itive coefficient. All these coefficients act as local shape parameters and therefore
increase the flexibility of the corresponding functions/curves. One famous advantage
of the rational spline setting lies in that, unlike its polynomial counterpart, it makes
it possible to represent exactly important shapes such as conics and quadrics, [1,46].
This is one of the main reasons why NURBS have long become the standard tool in
CAD/CAM systems. This, and their interest for the construction of exact geometric
models, has made NURBS the standard tool in Isogeometric Analysis during the last
decade or so [19]. It should also be mentioned that the rational parameters (rational
weights) can be used to ensure interpolation with shape preservation, see for instance
[17,18].
3—Chebyshevian B-splines are obtained by replacing the degree n polynomial space
by an (n + 1)-dimensional Extended Chebyshev (EC) space, from which all pieces of
the splines are taken, [26,56,57]. This large class permits to include many remarkable
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Geometrically continuous piecewise Chebyshevian NU(R)BS 689

curves, and in particular circles, if onlywith the early example of trigonometric splines
introduced in [54], where the EC-space is spanned on an interval of length less than
2π by the constants and the 2p functions cos( j x), sin( j x), j = 1, . . . p, see also
[23]. Among the famous examples we can cite the exponential splines in tension first
investigated by Schweikert [59] as a tool to eliminate undesired oscillations in cubic
spline interpolation. Initially, all pieces were taken from the same space spanned by
1, x, cosh(px), sinh(px), the well-known effect of the global parameter p being to
produce C2 piecewise affine interpolants at +∞. More flexibility was then obtained
with parameters changing from interval to interval [60], and these cubic tension splines
have since generated an important literature, e.g., [8,29,50]. Exponential B-splines in
tension were also investigated in higher dimensions, see [20–22]. Though not visible
at first sight, these examples are all within the framework of splines with pieces taken
from the same EC-space [24]. Accordingly, the existence and expected properties of
the corresponding B-splines can be viewed as resulting from blossoms, defined in this
context by means of osculating flats as initiated by Pottmann [49].

Over the years, some of themethods above have beenmixed to still improve the flex-
ibility when needed. For instance, geometrically continuous rational splines have been
investigated in a number of articles, e.g., [4,7,16,44,52]. The very large framework
of (geometrically continuous) piecewise Chebyshevian splines was first considered by
Barry [2]. The pieces being taken from different EC-spaces defined by given systems
of weight functions, B-splines were obtained under the assumption that the associ-
ated left/right generalised derivatives were connected by any regular lower triangular
totally positivematrices. This crucial result was nevertheless shown to be quite restric-
tive in [30], where a characterisation of all suitable spline spaces was achieved through
blossoms in the analogue of the cubic case. The characterisation in the general case
was achieved in [37]: it can briefly be stated as the existence of systems of weight
functions associated with the section-spaces with respect to which the connections are
expressed via identity matrices. These results are recalled in Sect. 2. In Sect. 3, we
explain why, as a special case, they provide rational geometrically continuous piece-
wise Chebyshevian B-splines, that we can name Geometrically continuous piecewise
Chebyshevian non-uniform rational B-splines (GCPCNURBS). How to describe all
rational spline algorithms through rational blossoms is explained in Sect. 4. Section 5
is concerned with Piecewise Chebyshevian Spline spaces in rationality, proving that
the rational setting does not increase the class of spline spaces which are suitable either
for interpolation or design. In other words, GCPCNURBS are GCPCNUBS. Still, in
Sect. 6 we provide a few illustrations which show that it can be interesting to combine
the rational weights with the parameters coming from both the section-spaces and the
connection matrices. We conclude this introduction with a sentence borrowed from
[48]: “It is time to drop the “R” from NURBS”, though here it has a different mean-
ing. Indeed, the classical NURBS are just examples of (parametrically continuous)
PCNUBS, therefore they are examples of the general setting of GCPCNUBS which
can be considered a general setting not only for design but also for, e.g., multireso-
lution [25] or Isogeometric Analysis [27], or any other convenient application.

NotationsThroughout the article, D stands for the ordinary (possibly left/right) differ-
entiation and 1 for the constant function 1(x) = 1 for any x in the concerned interval.
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690 M.-L. Mazure

Moreover, for any x ∈ R and any non-negative integer k, x [k] has the meaning of x
repeated k times.

2 Framework and background

We start with a concise presentation of Extended Chebyshev spaces and piecewise
Chebyshevian splines, limited to the results necessary to produce the rational context
investigated in the next sections. See [33,37] and other references therein.

2.1 Extended Chebyshev spaces

Given anon-trivial interval I and apositive integern, an (n+1)-linear spaceE ⊂ Cn(I )
is said to be an Extended Chebyshev space on I (for short, EC-space on I ) if any non-
zero F ∈ E vanishes at most n times on I , counting multiplicities up to (n + 1).
Equivalently, E is an EC-space on I if any Hermite interpolation problem in (n + 1)
data in I is unisolvent in E. As is well known, if E is an EC-space on I , then the set
of all G ∈ Cn+1(I ) such that DG := G ′ ∈ E is an (n + 2)-dimensional EC-space on
I , this being a simple consequence of Rolle’s theorem. By contrast, unless n = 0, the
converse is not true, as provedwith the space spanned by the three functions1, cos, sin
which is an EC-space on any interval I of length less than 2π , while for the space
spanned by the two functions cos, sin to be an EC-space on I , the length must be
less than π . On the other hand, multiplication by a sufficiently differentiable non-zero
function does not change the zeroes. Accordingly, given a system (w0, w1, . . . , wn)

of weight functions on I— i.e., for i = 0, . . . , n, wi ∈ Cn−i (I ) and is positive on
I—the set EC(w0, . . . , wn) of all F ∈ Cn(I ) such that Ln F is constant on I is
an EC-space on I , where the associated generalised derivative Ln is defined via the
classical procedure [57]

L0F := F

w0
, Li F := 1

wi
DLi−1F, 1 ≤ i ≤ n. (2.1)

Subsequently, we will deal with closed bounded intervals. On such intervals, an
EC-space is always of the form EC(w0, . . . , wn), and the infinitely many different
possibilities to write it so were described in [36]. As a special case, it yields the result
recalled below [36]. For a < b, a sequence (B0, . . . , Bn) in Cn([a, b]) is said to be
a Bernstein basis relative to (a, b) if it is normalised (i.e.,

∑n
i=0 Bi = 1) and if, for

each k = 0, . . . , n, Bk vanishes exactly k times at a and exactly (n − k) times at b,
and is positive on ]a, b[.
Theorem 2.1 Given an integer n ≥ 2, let E be an (n + 1)-dimensional EC-space on
some [a, b], with a < b, supposed to contain the constants, the following properties
are then equivalent:

1. E possesses a Bernstein basis relative to (a, b);
2. the space DE := {DF | F ∈ E} is an EC-space on [a, b];
3. blossoms exist in E.
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Geometrically continuous piecewise Chebyshevian NU(R)BS 691

Furthermore, if any of these properties is satisfied, then it is possible to develop all the
classical geometric design algorithms in E, and the Bernstein basis relative to (a, b)

is the optimal normalised totally positive basis in E.

For n = 1, the three properties are always true. For the sake of simplicity, we will
avoid giving the exact definition of blossoms. It should simply be understood that
they generate a special one-to-one correspondence generalising polynomial blossoms,
multi-affinity being replaced by multi-pseudoaffinity. This crucial property generates
the Bernstein basis with all expected properties, see [32]. This justifies the definition
below.

Definition 2.1 Given an (n + 1)-dimensional EC-space E on [a, b], with n ≥ 1,
we say that it is good for design on I if it contains the constants, and if the (n-
dimensional) space DE is anEC-space on I (or, equivalently, if it contains the constants
and possesses blossoms.

On a closed bounded interval [a, b], the class of all EC-spaces good for design is
therefore the class of all spaces of the form EC(1, w1, . . . , wn).

2.2 Piecewise Chebyshevian splines

From now on, we consider a fixed bi-infinite sequence T of knots tk , k ∈ Z, with
tk < tk+1 for all k, and the associated interval I :=] infk tk, supk tk[. Each tk is allocated
a non-negative multiplicity mk which is assumed to be less than or equal to n for the
sake of simplicity of the presentation. Moreover, we also assume that

∑

i≤0

mi =
∑

i≥0

mi = +∞. (2.2)

Due to (2.2), the knot-vectorK := (
tk [mk ])

k∈Z formed by the knots repeated with their
multiplicities can be written as a bi-infinite sequence

K = (
ξ�

)
�∈Z, with ξ� ≤ ξ�+1 and ξ� < ξ�+n for all � ∈ Z. (2.3)

To define a spline space on (I ;T), we additionally consider:

– a bi-infinite sequence of section-spaces Ek , k ∈ Z: each Ek is an (n + 1)-
dimensional EC-space good for design on [tk, tk+1];

– a bi-infinite sequence of connection matrices Mk , k ∈ Z: each Mk is a lower
triangular matrix of order (n − mk) with positive diagonal entries.

Based on these data, we consider the spline space S composed of all continuous
functions S : I → R meeting the following two requirements:

1. for each k ∈ Z, the restriction of S to [tk, tk+1] coincides with an element of the
section-space Ek ;

2. S satisfies the connection conditions:

(
S′(t+k ), . . . , S(n−mk )(tk

+)
)T = Mk

(
S′(t−k ) . . . , S(n−mk )(tk

−)
)T

, k ∈ Z. (2.4)
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The spline space S clearly contains the constants. Each S ∈ S is called a piecewise
Chebyshevian spline on (I ;T) (in short, PEC-spline): it is geometrically continuous
in the sense of continuity of the Frenet frame order (n − mk) at tk for each k ∈ Z.

Definition 2.2 A sequence N� ∈ S, � ∈ Z, is a B-spline basis if it meets the usual
requirements below:

– support property for each � ∈ Z, N� is zero outside [ξ�, ξ�+n+1];
– positivity property for each � ∈ Z, N� is piecewise positive on ]ξ�, ξ�+n+1[;
– normalisation property

∑
�∈Z N�(x) = 1 for all x ∈ I ;

– endpoint property for each � ∈, N� vanishes exactly (n − s + 1) times at ξ+
� and

exactly (n − s′ + 1) at ξ−
�+n+1, where s := #{ j ≥ � | ξ j = ξ�} and s′ := #{ j ≤

� + n + 1 | ξ j = ξ�+n+1}.
The space DS is also a PEC-spline space, but in a less restrictive sense: EC-section-
spaces (not necessarily good for design) and connections involving the spline itself
in addition to its derivatives. A priori a spline in DS is not a function defined on
I , but a piecewise function on (I ;T), defined separately on each [t+k , t−k+1]. Given
S ∈ S, there are indeed two reasons why it can satisfy DS(t+k ) 	= DS(t−k ) at a given
knot tk . Either mk = n and there is no relation between DS(t−k ) and DS(t+k ); or
mk ≤ n − 1 and the first diagonal entry of the connection matrix Mk is not equal to
1. Apart from this difference, we can define B-spline-like bases in the space DS, by
requiring the support, positivity, endpoint properties, with n replaced by (n − 1), but
no normalisation is needed.

A spline version of Theorem 2.1 can then be stated as follows (see [31,32,37] and
references therein).

Theorem 2.2 In the spline space S defined above (which contains the constants), with
n ≥ 1, the following three properties are equivalent:

1. S possesses a B-spline basis, and so does any spline space obtained from S by
knot insertion;

2. the space DS is a PEC-spline space, it possesses B-spline-like bases, and so does
any spline space obtained from DS by knot insertion;

3. blossoms exist in S.

Furthermore, if one of these properties is satisfied, then it is possible to develop all the
classical geometric design algorithms for splines in S, and its B-spline basis is totally
positive on I .

Theorem 2.2 highly justifies the following definition.

Definition 2.3 A PEC-spline space S being given, we say that S is good for design if
it possesses a B-spline basis and so does any spline space derived from S by insertion
of knots (or, equivalently, if S contains the constants and possesses blossoms).

Denote by An(K) the set of all admissible n-tuples (relative to the knot-vector K),
that is, all n-tuples (x1, . . . , xn) such that, for any k ∈ Z satisfying min(x1, . . . , xn) <

tk < max(x1, . . . , xn), the knot tk appears at least mk times in the sequence
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Geometrically continuous piecewise Chebyshevian NU(R)BS 693

(x1, . . . , xn). The symmetric set An(K) contains each [tk, tk+1]n , k ∈ Z. One can
similarly define Ap(K) for each positive integer p.

Assuming the PEC-spline space S to be good for design, the definition of blossoms
in terms of osculating flats contains the fact that the blossom s : An(K) → R

d of
any spline S ∈ S

d is a symmetric function which coincides with S on the diagonal
of I n . The difficult and crucial point to achieve is its pseudoaffinity in each vari-
able, as explained subsequently. Given any (x1, . . . , xn−1) ∈ An−1(K), any interval
J ⊂ I such that, for x, y ∈ J , admissible for (x1, . . . , xn−1, x, y) ∈ An+1(K),
any a, b ∈ J , with a < b, there exists a continuous strictly increasing function
β(x1, . . . , xn−1; a, b; .) : J → R (independent of S) such that:

s(x1, . . . , xn−1, x) = [
1 − β(x1, . . . , xn−1; a, b; x)

]
s(x1, . . . , xn−1, a)

+ β(x1, . . . , xn−1; a, b; x)s(x1, . . . , xn−1, b), x ∈ J .
(2.5)

Inherent in (2.5), is a generalised version of de Boor algorithm, which computes the
value of the blossom s of S at any admissible n-tuple as a strictly convex combination
(with coefficients independent of S) of at most (n +1) consecutive poles of S, defined
as the points

P� := s(ξ�+1, . . . , ξ�+n) ∈ R
d , � ∈ Z. (2.6)

This contains the description of all the classical algorithms, and in particular the
(strictly speaking) de Boor evaluation algorithm generating the total positive B-spline
basis N�, � ∈ Z, via

S(x) = s(x [n]) =
∑

�∈Z
N�(x)P�,

∑

�∈Z
N�(x) = 1, x ∈ I ,

thus proving the most challenging parts of Theorem 2.2. The crucial function β is
referred to as the pseudoaffinity function in S.

2.3 All PEC-splines good for design

A sequence (w0, . . . , wn) is a system of piecewise weight functions on (I ;T) if, for
i = 0, . . . , n, wi is Cn−i and positive separately on each [t+k , t−k+1], k ∈ Z—in other
words, restricted to each [t+k , t−k+1] it is system of weight functions on [t+k , t−k+1]. The
associated formulæ (2.1) are nowpiecewise equalities providing piecewise generalised
derivatives L0, . . . , Ln on (I ;T). With this terminology, the complete description of
all PEC-splines good for design achieved in [37] can be stated as follows.

Theorem 2.3 Given a PEC-spline space S on (I ,T) containing the constants, with
(n + 1)-dimensional section-spaces, the following properties are equivalent:

(i) S is good for design;
(ii) there exists a system (w1, . . . , wn) of piecewise weight functions on (I ;T) such

that S can be described as the set of all continuous functions on I for which, at
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694 M.-L. Mazure

each k ∈ Z, the piecewise function Ln S is constant on each [t+k , t−k+1] and the
piecewise functions L1S, . . . , Ln−mk S are continuous at tk , where the piecewise
generalised derivatives L0, . . . , Ln are associated with (1, w1, . . . , wn) through
(2.1).

For the implication (ii) ⇒ (i), see [33]. The converse (i) ⇒ (ii) is obtained by
iteration of the following result which will be the key-point for defining rational
splines in next section.

Theorem 2.4 Assume the PEC-spline space S to be good for design on (I ,T) and let
N�, � ∈ Z, be its B-spline basis, with n ≥ 2. Given a spline U ∈ S, expanded as
U (x) = ∑

�∈Z α�N�(x), x ∈ I , let the piecewise function w1 on (I ;T) be defined by
w1 := DU. Then, the following properties are equivalent:

(i) the poles α�, � ∈ Z, of the spline U form a strictly increasing sequence;
(ii) all coefficients of the expansion of w1 in any B-spline-like basis of DS are positive;
(iii) w1 is positive on each [t+k , t−k+1] and, denoting by L1 the piecewise generalised

derivative defined by L1V := DV
w1

for all piecewise functions on (I ;T), the space
L1S is a PEC-spline space good for design on (I ;T).

The proof, for which we refer to [37], is based on the properties of blossoms
and on Theorem 2.2. We just mention that the obvious fact that L1S contains the
constants comes from the fact1 = L1U . The section-spaces in L1S are n-dimensional.
Accordingly, we can say that the previous theorem describes one step of dimension
diminishing within the class of PEC-spline spaces good for design on (I ,T). We can
iterate the results, applying Theorem 2.4 to L1S instead of S. The only difference is
that the PEC-splines in L1S may be discontinuous (if, for some k, mk = n) and in
that case, we can apply Theorem 2.4 after splitting L1S on intervals on which we
have continuity. In the end, the iteration provides us with infinitely many sequences
of associated piecewise generalised derivatives satisfying (ii) of Theorem 2.3.

Remark 2.1 Let L0, . . . , Ln be the piecewise generalised derivatives associated with
a given system (w0, w1, . . . , wn) of piecewise weight functions on (I ;T). Denote by
EC P(w0, . . . , wn) the (n + 1)-dimensional space of all piecewise functions F on
(I ;T) for which Ln F is constant on I , and L0F, . . . , Ln−1F are continuous at each
tk , k ∈ Z. In this space, it is possible to count the total number of zeroes on I , including
multiplicities. A piecewise version of Rolle’s theorem shows that, for each non-zero
element, this number is bounded above by n [33]. This justifies the terminology
Extended Chebyshev Piecewise Space associated with (w0, w1, . . . , wn) and the nota-
tion EC P(w0, . . . , wn). We can then restate Theorem 2.3 as follows: a PEC-spline
space S on (I ,T) is good for design if and only if there exists a system (w1, . . . , wn)

of piecewise weight functions on (I ;T) such that EC P(1, w1, . . . , wn) ⊂ S.

3 GCPCNURBS

Two different classes of PEC-spline spaces on (I ;T), based on the knot-vector K,
have appeared in the previous section. On the one hand, the class PCn(I ;K) of all
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those for which we have existence of B-spline-like bases in all spaces derived by knot
insertion, including the initial space itself. On the other, the class PCn,0(I ;K) of
those which are good for design on (I ;T). The index n refers to the fact that the
section-spaces are (n + 1)-dimensional. From Theorem 2.2 and Definition 2.3 we can
state that

PCn,0(I ;K) ⊂ PCn(I ;K) = D

(

PCn+1,0(I ;K)

)

, n ≥ 0. (3.1)

Referring to [42], we would like to mention that the class PCn(I ;K) is the class
of all PEC-spline spaces S on (I ;T) which are good for (spline) interpolation, that
is, according to (3.1) and Remark 2.1, all those for which we can find a system
(w0, . . . , wn) of piecewise weight functions on (I ;T) such that EC P(w0, . . . , wn) ⊂
S. However, as announced in [41], what we are interested in, here, is using the results
surveyed earlier to construct GCPCNURBS: Geometrically Continuous Piecewise
Chebyshevian Non-Uniform Rational B-Splines!

3.1 Rational spline spaces based on S

Throughout this section, a PEC-spline spaceS ∈ PCn,0(I ;K) is given, andwe denote
by N�, � ∈ Z, its B-spline basis.

Theorem 3.1 Let Ω ∈ S be given by its poles ω�, � ∈ Z, i.e.,

Ω(x) :=
∑

�∈Z
ω�N�(x), x ∈ I . (3.2)

The following statements are then equivalent:

(i) the poles ω�, � ∈ Z, of Ω are all positive;
(ii) the blossom ω of the spline Ω is positive on An(K);
(iii) the spline Ω is positive on I ; if we denote by L0 the division by Ω , the space L0S

is a space of geometrically continuous piecewise Chebyshevian splines and it is
good for design on (I ;T);

(iv) the spline Ω is positive on I and there exists a system (w1, . . . , wn), of piecewise
weight functions on (I ;T) such that EC P(Ω,w1, . . . , wn) ⊂ S.

Proof • (i) ⇔ (ii) : For the part (ii) ⇒ (i) there is nothing to prove since the poles
of a spline are defined as values of its blossoms at specific points in An(K), see
(2.6). Let us now assume that (i) holds. As recalled in the previous section, the
generalised version of the de Boor algorithm permits the evaluation of the blossom
ω of the spline Ω at any (x1, . . . , xn) ∈ An(K ) as a strictly convex combination
of at most (n + 1) consecutive poles of Ω . This is a strictly convex combination
of positive numbers. We thus have

ω(x1, . . . , xn) > 0 for all (x1, . . . , xn) ∈ An(K ) (3.3)
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696 M.-L. Mazure

• (i) ⇔ (iii) : The equivalence between (ii) and (iii) of Theorem 2.4 can be read
as a property of the sole PEC-spline space DS. Given a spline space in the class
PCn(I ;K), piecewise division by a spline is possible and provides a spline space
inPCn,0(I ;K) if and only if the coefficients of this spline in a B-spline-like basis
all have the same strict sign. From (3.1), we can say that this property is valid in
particular in S. This exactly yields the claimed equivalence (i) ⇔ (iii) of Theorem
3.1.

• (i) ⇔ (iv) : follows from the fact that the PEC-spline space L0S is good for design
if and only if there exists a system (w1, . . . , wn), of piecewise weight functions
on (I ;T) such that EC P(1, w1, . . . , wn) ⊂ L0S (see Remark 2.1).

�
Theorem 3.2 Assuming that ω� is positive for each � ∈ Z, let Ŝ := L0S be the spline
space good for design presented in (iii) of Theorem 3.1. The B-spline basis of Ŝ is the
sequence N̂�, � ∈ Z, defined by

N̂� := ω�N�

Ω
, � ∈ Z. (3.4)

Moreover, the spline space Ŝ is the set of all functions of the form

Ŝ(x) :=
∑

�∈Z α�ω�N�(x)
∑

�∈Z ω�N�(x)
, x ∈ I , (3.5)

where the α� are any real numbers.

Proof The functions N̂�, � ∈ Z, defined in (3.4), all belong to the spline space Ŝ. They
satisfy the support, positivity, and endpoint properties exactly as the B-spline basis
N�, � ∈ Z, of S. Moreover, division of both sides of (3.2) by the positive function Ω

yields the normalisation property

∑

�∈Z
N̂�(x) = 1 for all x ∈ I .

The sequence N̂�, � ∈ Z, is thus the B-spline basis in Ŝ. The description of all elements
of the rational spline space Ŝ as in (3.5) results from the expansion of any spline Ŝ ∈ Ŝ

in the B-spline basis as

Ŝ(x) =
∑

�∈Z
α� N̂�(x), x ∈ I , (3.6)

where the α�’s are the poles of Ŝ, taking account of (3.2). �
For a while, imagine that S is the space of ordinary polynomial splines associated

with the knot-vector K. Then formula (3.5) describes the so-called rational splines
based on the positive rational weights ω�, � ∈ Z. Moreover, the corresponding func-
tions N̂�, � ∈ Z, are the famous Non Uniform Rational B-splines (NURBS). By
analogy we introduce the following definitions.
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Definition 3.1 For any sequence ω�, � ∈ Z, of positive numbers, the spline space

Ŝ = {Ŝ := S

Ω
| S ∈ S}

is called the rational spline space based on the spline space S and on the positive
weights ω�, � ∈ Z, or as well based on S and on Ω . We denote it R

(
S; (ω�)�∈Z

)
or

R
(
S;Ω

)
. The functions (3.4) are geometrically continuous piecewise Chebyshevian

NURBS.

3.2 Description of rational spline spaces

Select positiveω�, � ∈ Z, and consider the corresponding positive splineΩ defined
by (3.2). Subsequently, we investigate the rational spline space

Ŝ := R
(
S; (ω�)�∈Z

) = R
(
S;Ω

)
.

Below is a precise description of R
(
S; (ω�)�∈Z

)
, i.e., its section-spaces and its con-

nection matrices.

Theorem 3.3 Let Êk , k ∈ Z, the section-spaces of the rational spline space Ŝ, and by
M̂k, k ∈ Z, its connection matrices. They can be described as follows:

1. for each k, Êk is the rational space based on Ek and on the restriction Ωk of Ω

to [tk, tk+1], i.e.,

Êk = R(Ek;Ωk), k ∈ Z; (3.7)

2. for each k, the square matrix M̂k of order (n −mk) has the same diagonal as Mk;
it is obtained by deleting the first row and column in the lower triangular matrix
of order (n − mk + 1)

R̂k := Cn−mk (Ω, t+k )−1Rk Cn−mk (Ω, t−k ), (3.8)

where, for ε = ± and 0 ≤ j ≤ n, C j (Ω, tkε) = (
C j,p,q(Ω, tkε)

)
0≤p,q≤n−mk

stands for the lower triangular square matrix of order (n − mk + 1) defined by

C j,p,q(Ω, tk
ε)p,q := (

p
q) Ω(p−q)(tk

ε), 0 ≤ q ≤ p ≤ j, (3.9)

and where Rk denotes the block diagonal matrix (1, Mk).

Proof 1. The section-spaces Clearly, the section-spaces of the rational spline space Ŝ
can be described as

Êk =
{

Fk

Ωk
| Fk ∈ Ek

}

, k ∈ Z. (3.10)
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We know that the rational spline space Ŝ is good for design. This implies that, for each
k, the section-space Êk is good for design on [tk, tk+1]. This enables to identify the
EC-spaces (3.10) as the rational EC-spaces (3.7) via Theorem 4.1 of [39].
2. The connection matrices Given any Ŝ ∈ Ŝ, let us consider the spline S := Ω Ŝ ∈ S.
At any knot tk , the previous equality yields

(
S(tk), S′(tk ε), . . . , S(n−mk )(tk

ε)
)T = Cn−mk (Ω, tk

ε)
(
Ŝ(tk), Ŝ′(tk ε), . . . , Ŝ(n−mk )(tk

ε)
)T

(3.11)

the lower triangular matrix Cn−mk (Ω, tkε) being defined as explained in (3.9). Since
S belongs to S we know that

(
S(tk), S′(tk+), . . . , S(n−mk )(tk

+)
)T = Rk

(
S(tk), S′(tk−), . . . , S(n−mk )(tk

−)
)T

.

(3.12)

On account of (3.11), this leads to

(
Ŝ(tk), Ŝ′(tk+), . . . , Ŝ(n−mk )(tk

+)
)T = R̂k

(
Ŝ(tk), Ŝ′(tk−), . . . , Ŝ(n−mk )(tk

−)
)T

.

(3.13)

This equality holds in particular for the constant function Ŝ = 1 (obtained for S = Ω).
This shows that the first column of R̂k is (1, 0, . . . , 0). Accordingly, (3.13) reduces to

(
Ŝ′(t+k ), . . . , Ŝ(n−mk )(tk

+)
)T = M̂k

(
Ŝ′(t+k ), . . . , Ŝ(n−mk )(tk

+)
)T

, (3.14)

where M̂k is obtained as claimed in Theorem 3.3. That Mk and M̂k have the same
diagonal readily follows from all diagonal entries of both lower triangular matrices
Cn−mk (Ω, tk−) and Cn−mk (Ω, tk+) being equal to Ω(tk). �

4 Rational algorithms

We consider a PEC-spline space S good for design on (I ,K), and a rational spline
space based on it, Ŝ = R(S;Ω) = R

(
S; (ω�)�∈Z

)
. The rational spline space Ŝ being

good for design on (I ,K), we can develop all the classical spline algorithms in it. In this
section we investigate how to derive the rational algorithms from the corresponding
algorithms in the initial space S.

4.1 Rational blossoms and pseudoaffinity function

As recalled in Sect. 2, in a spline space good for design, each among the classical algo-
rithms consists in evaluating the blossoms at convenient admissible n-tuples, thanks to
the fundamental properties of blossoms, and in particular thanks to the pseudoaffinity
function. It is therefore necessary to identify in the rational space Ŝ the tools which
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are specific to spline spaces good for design: blossoms and pseudoaffinity function.
This is the object of the following theorem.

Theorem 4.1 Let S be any spline in S, and s : An(K) → R its blossom. Then, the

blossom ŝ : An(K) → R of the function Ŝ := S

Ω
∈ R

(
S; (ω�)�∈Z

)
is obtained as

ŝ(x1, . . . , xn) := s(x1, . . . , xn)

ω(x1, . . . , xn)
, (x1, . . . , xn) ∈ An(K). (4.1)

If β denotes the pseudoaffinity function in S, then the pseudoaffinity function β̂ in
R

(
S; (ω�)�∈Z

)
is given by

β̂(x1, . . . , xn−1; c, d; x) := β(x1, . . . , xn−1; c, d; x)
ω(x1, . . . , xn−1, d)

ω(x1, . . . , xn−1, x)
, (4.2)

for any (x1, . . . , xn−1) ∈ An−1(K) and any, c, d, x ∈ I , c < d, such that
(x1, . . . , xn−1, c, d) ∈ An+1(K) and x ∈ [c, d]. It also satisfies

1 − β̂(x1, . . . , xn−1; c, d; x) := (
1 − β(x1, . . . , xn−1; c, d; x)

) ω(x1, . . . , xn−1, c)

ω(x1, . . . , xn−1, x)
.

(4.3)

Proof From (3.2), (3.4) and (3.6), we clearly obtain

ŝ(ξ�+1, . . . , ξ�+n) = s(ξ�+1, . . . , ξ�+n)

ω(ξ�+1, . . . , ξ�+n)
for all � ∈ Z. (4.4)

Now take any (x1, . . . , xn) ∈ An(K). We know that we can select some knot-vector
K

∗ = (
ξ∗
�

)
�∈Z obtained fromK through insertion of knots, so that, up to permutation,

(x1, . . . , xn) = (
ξ∗
�0+1, . . . , ξ

∗
�0+n

)
for some �0 ∈ Z. (4.5)

Based onK∗, letS∗ be the spline space obtained fromS by knot insertion. The inclusion
S ⊂ S

∗ implies L0S ⊂ L0(S
∗). Moreover, since the blossom ω is positive on An(K),

the poles of Ω considered as an element of S∗ are all positive. Accordingly, L0(S
∗) is

the rational spline space based on S∗ andΩ . On the other hand, it is easily checked that
L0(S

∗) = (L0S)∗. The inclusion L0S ⊂ L0(S
∗) can therefore be written as follows:

R (S;Ω) ⊂ (
R (S;Ω)

)∗
.

Therefore, applied in
(
R (S;Ω)

)∗ instead of R (S;Ω), the equality (4.6) yields:

ŝ(ξ∗
�+1, . . . , ξ

∗
�+n) = s(ξ∗

�+1, . . . , ξ
∗
�+n)

ω(ξ∗
�+1, . . . , ξ

∗
�+n)

for all � ∈ Z. (4.6)
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In particular, due to (4.5), this proves the claimed equality (4.1) for our selected n-tuple
(x1, . . . , xn).

Given x1, . . . , xn−1, c, d, x as in (4.2), applying (4.6) and the pseudoaffinity prop-
erty in S, yields, with β := β(x1, . . . , xn−1; c, d; x),

ŝ(x1, . . . , xn−1, x) = (1 − β)s(x1, . . . , xn−1, c) + βs(x1, . . . , xn−1, d)

ω(x1, . . . , xn−1, x)
,

= (1 − β)ω(x1, . . . , xn−1, c)̂s(x1, . . . , xn−1, c) + βω(x1, . . . , xn−1, d )̂s(x1, . . . , xn−1, d)

ω(x1, . . . , xn−1, x)
.

(4.7)

This proves (4.2) and (4.3). �

4.2 Examples

Our illustrations will concern the case n = 3, with simple knots t�, � ∈ Z. We start
with two given bi-infinite sequence P�, P̂� ∈ R

d , � ∈ Z, and the associated splines
S ∈ S

d , Ŝ ∈ Ŝ
d defined by

P� = s(t�+1, t�+2, t�+3), P̂� = ŝ(t�+1, t�+2, t�+3), � ∈ Z.

We illustrate (4.2) and (4.3) with classical algorithms.

4.2.1 Insertion of a knot

Take k ∈ Z and a fixed t ∈ [tk, tk+1]. Let the knot-vector K� = (
t��

)
be obtained after

inserting t in K, with

t�� := t� for � ≤ k, t�k+1 := t, t�� := t�−1 for � ≥ k + 2,

and let S ⊂ S
� be the corresponding knot insertion procedure illustrated in Fig. 1

which we briefly recall subsequently. The poles of S considered as a spline in S
�d

being the points

P�
� = s(t��+1, t��+2, t��+3), � ∈ Z.

We therefore clearly have

P�
� = P� for � ≤ k − 3, P�

� = P�−1 for � ≥ k + 1,

P�
k−2 = P1

k−2, P�
k−1 = P1

k−1, P�
k = P1

k ,
(4.8)

where the points P1
i , i = k − 1, k − 1, k, are defined inside Fig. 1. In other words,

the two initial poles Pk−2, Pk−1, are replaced in Ŝ by the three points P1
k−2, P1

k−1, P1
k

obtained by really inserting t within the blossom whenever possible for admissible
triplets, while all other initial poles are maintained.
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Pk−3

Pk−2

Pk−1

Pk

P1
k−2

P1
k−1

P1
k

P2
k−1

P2
k

P3
k

X1
k−1

Y 1
k−1

X1
k

Y 1
k

Xk−2

Yk−2

Xk−1

Yk−1

Xk

YkX2
k

Y 2
k

P1
i := s(ti+1, ti+2,t) for i = k−2,k−1,k,

P2
i := s(ti+1,t,t) for i = k−1,k,

P3
k := s(t,t,t) = S(t).

Fig. 1 For t ∈ [tk , tk+1], evaluation of S(t) from the poles Pk−3, Pk−2, Pk−1, Pk of S. Modification of
the control polygon after insertion of the knot t

The knot insertion Ŝ ⊂ Ŝ
� can be described by the same Fig. 1, after simply adding

a hat above all capital letters and above the blossom s. Here we are interested in how
to derive the ratios X̂i , Ŷi of the rational case from the initial ratios Xi , Yi . Now, from
the symmetry and pseudoaffinity property (2.5) of blossoms, we know that we can
take

Xi := β(ti+1, ti+2; ti , ti+3; t) ∈ [0, 1], Yi := 1 − Xi , i = k − 2, k − 1, k.

(4.9)

Similar formulæ can be used in Ŝ, replacing β by the rational pseudoaffinity function
β̂. However, since we are indicating ratios, in the rational version of Fig. 1, we can
take

X̂i := ωi Xi , Ŷi := ωi−1 Yi , i = k − 2, k − 1, k. (4.10)

This readily follows from (4.2) and (4.3).

4.2.2 Evaluation (de Boor algorithm)

With the notations used in the previous subsection, evaluation of S(t) = s(t, t, t)
consists in inserting successively t , t [2], t [3] in the blossoms, starting again from the
four poles Pk−3, . . . , Pk of S. The first step was already described in the previous
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algorithm. The second step provides the points P2
k−1, P2

k , and the third one the point
P3

k , all defined inside Fig. 1. Similarly to (4.9), we can take

X1
i := β(ti+1, t; ti , ti+2; t), Y 1

i := 1 − X1
i , i = k − 1, k;

X2
k := β(t, t; tk, tk+1; t), Y 2

k := 1 − X2
k .

(4.11)

As a special case, when evaluating Ω(t) = ω(t, t, t) from its four poles ωk−3, ωk−2,
ωk−1, ωk , we obtain the intermediate pointsω1

i := ω(ti+1, ti+2, t), i = k −2, k −1, k,
and ω2

i := ω(ti+1, t, t), i = k − 1, k.
The same formulæ (4.11), with hats, are valid in the rational spline space Ŝ. How-

ever, since we are indicating ratios, due to (4.2) and (4.3), we can as well take

X̂1
i := ω

j
i X j

i , Ŷ j
i := ω

j
i−1 Y j

i , j = 0, 1, 2, i = k − 3 + j, . . . , k. (4.12)

4.2.3 From poles to Bézier points

The Bézier points Pk
0 , Pk

1 , Pk
2 , Pk

3 of the kth section of S are defined in terms of
blossoms as indicated inside Fig. 2. As a consequence, the ratios can be taken as
follows:

Xk := β(tk, tk+1; tk−1, tk+2; tk), Zk := 1 − β(tk, tk+1; tk−1, tk+2; tk+1),

Yk = 1 − Xk − Zk,

Ck := β(tk+1, tk+1; tk, tk+2; tk+1), Ak := 1 − Ck−1.

(4.13)

Pk−3

Pk−2

Pk−1

Pk

Pk
0

Pk
1

Pk
2

Pk
3

Xk

Yk

Zk

Ck−1

Ak

Ck
Ak+1

Pk
0 := s(tk ,tk ,tk) = S(tk),

Pk
1 := s(tk ,tk ,tk+1),

Pk
2 := s(tk ,tk+1,tk+1),

Pk
3 := s(tk+1,tk+1,tk+1) = S(tk+1).

Fig. 2 Conversion from the poles Pk−3, Pk−2, Pk−1, Pk of S to the Bézier points Pk
0 , Pk

1 , Pk
2 , Pk

3 of its
kth section
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Applying this construction to the poles ωk−3, ωk−2, ωk−1, ωk of the spline Ω ∈ S, we
obtain the Bézier points ωk

0 = Ω(tk), ωk
1, ω

k
2, ω

k
3 = Ω(tk+1), of its kth section. Due

to (4.2) and (4.3), we can then derive that the same algorithm in the rational spline
space Ŝ can be described with the following ratios

X̂k = ωk
2 ωk−1 Xk, Ŷk = ωk−2 ωk−1 Yk, Ẑk = ωk−2 ωk

1 Zk,

Ĉk = ωk+1
1 Ck, Âk = ωk−1

2 Ak
(4.14)

In this algorithm, assume that blossoms are affine in each variable on A3(K), that
is, β(x1, x2; a, b; x) = x−a

b−a in (2.5), then we get the passage from poles to Bézier
points in either the ordinary cubic spline space, or the associated rational algorithm,
see [12]. The same holds for the previous algorithms.

5 Piecewise Chebyshevian spline spaces in rationality

Any rational spline space based on a given S inPCn,0(K) also belongs toPCn,0(K).
Therefore we can in turn consider rational spline spaces based on it, as investigated
below.

Theorem 5.1 Any rational spline space based on a rational spline space based on
S ∈ PCn,0(K) is in turn a rational spline space based on S. More precisely, given
any two bi-infinite sequences of positive numbers ω�, ω̂�, � ∈ Z, we have

R

(

R
(
S; (ω�)�∈Z

); (ω̂�)�∈Z
)

= R
(
S; (ω� ω̂�)�∈Z

)
. (5.1)

Proof In accordance with earlier notations, let us successively set

Ω(x) :=
∑

�∈Z
ω�N�(x), Ω̂(x) :=

∑

�∈Z
ω̂� N̂�(x), x ∈ I ,

where N�, N̂�, � ∈ Z are the B-spline bases in S and Ŝ := R
(
S;Ω

)
, respectively.

On account of the obvious equality R
(
Ŝ; Ω̂

) = 1

Ω Ω̂
S, in order to prove (5.1), it is

sufficient to check that

Ω(x) Ω̂(x) =
∑

�∈Z
ω� ω̂� N�(x), x ∈ I .

This readily follows from (3.4). �

Taking account of the trivial identity R(S;1) = S, as a special case of (5.1), we
can state the following corollary.
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Corollary 5.1 Given any S ∈ PCn,0(K), and any bi-infinite sequence of positive
numbers ω�, � ∈ Z, we have

S = R

(

R
(
S;Ω

); 1

Ω

)

= R

(

R
(
S; (ω�)�∈Z

);
(

1

ω�

)

�∈Z

)

. (5.2)

The symmetry property pointed out in (5.2) suggests the following definition

Definition 5.1 Two spline spaces S,S� ∈ PCn,0(K) are said to be in rationality when
one of them is a rational spline space based on the other.

The previous results can then be interpreted as follows:

Corollary 5.2 Being in rationality is an equivalence relation within the class
PCn,0(K). It is closed under knot insertion.

Remark 5.1 Within the classPCn,0(K), let us introduce the binary relationR defined
by

SR S
� ⇐⇒ there exists a positive function Ω : I → R such that S = Ω S

�

(5.3)

Very clearly, this is an equivalence relation, which could have been the definition of
“being in rationality” and the starting point of the present work. Indeed, the equality
S = Ω S

� and the positivity of Ω on I implies that the sequence Ω N �
� , � ∈ Z, is

a B-spline-like basis in S. Therefore, for each � ∈ Z, there exists a positive ω� such
that Ω N �

� = ω�N�. Moreover, the normalisation property of the B-spline basis in S
�

implies that Ω(x) = ∑
�∈Z ω�N�(x), for all x ∈ I . Hence all poles of Ω ∈ S are

positive. This guarantees that S� = R(S;Ω), alongwith (3.4), that is, N �
� = ω�N�/Ω .

Moreover, out of symmetry, we also have S = R(S�; 1/Ω). Nevertheless, to clearly
describe the equivalence classes, we do need Theorem 2.4.

Subsequently, we consider two spline spaces S,S� in PCn,0(K), supposed to be
in rationality, as in (5.3). The equality S = ΩS

� transforms all nested sequences

EC P(1, w1) ⊂ EC P(1, w1, w2) ⊂ · · · ⊂ EC P(1, w1, . . . , wn) ⊂ S
�, (5.4)

(see Remark 2.1) into all nested sequences

EC P(Ω,w1) ⊂ EC P(Ω,w1, w2) ⊂ · · · ⊂ EC P(Ω,w1, . . . , wn) ⊂ S, (5.5)

and viceversa. While (5.4) puts emphasis on the constants (affine structure) with a
view to diminish the dimension through (left/right) differentiation, in (5.5) we forget
about this affine predominance. Let us recall that the set of all spaces of the form
EC P(1, w1) ⊂ S

� for which we can build a nested sequence (5.4) coincides with the
set of all two-dimensional Chebyshev spacesU� ⊂ S

� (for short, C-spaces on I , in the
sense that any non-zero element has at most one zero in I , not counting multplicities)
which can be reproduced by operators of the Schoenberg-type based on S�, according
to the definition below [40].
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Definition 5.2 A piecewise Chebyshevian Schoenberg operator based on S ∈
PCn,0(K) is a correspondenceS : C0(I ) → Smeeting the following requirements:

(PCSO)1 there exists a strictly increasing bi-infinite sequence η�, � ∈ Z, of nodes
such that, for all F ∈ C0(I ),

S F(x) :=
∑

�∈Z
F(η�)N�(x), x ∈ I ; (5.6)

(PCSO)2 it reproduces a two-dimensional C-space U on I , in the sense that it repro-
duces all elements of U, i.e.,

S F = F for any F ∈ U. (5.7)

Out of the normalisation property, any piecewise Chebyshevian Schoenberg opera-
tor reproduces the constants. Since it cannot reproduce three linearly independent
functions (see Prop. 3.7 of [35]) the two-dimensional space U reproduced by S is
necessarily of the formU = EC P(1, w1). Concerning the (simultaneous) approxima-
tion properties of piecewise Chebyshevian Schoenberg operators, we refer the reader
to [40].

In Theorem 5.2 below we examine the effect of “being in rationality” on such
operators. We first need the following definition.

Definition 5.3 A piecewise Chebyshevian Schoenberg-like operator based on S ∈
PCn,0(K) is a correspondenceS : C0(I ) → Smeeting the following requirements:

(PCSLO)1 there exists a bi-infinite sequence of positive numbers α�, � ∈ Z, and a
strictly increasing bi-infinite sequence η�, � ∈ Z, of nodes such that, for
all F ∈ C0([a, b]),

S F(x) :=
∑

�∈Z
F(η�)α�N�(x) x ∈ I ; (5.8)

(PCSLO)2 S reproduces a two-dimensional C-space on (I ;T).

Theorem 5.2 Let two spline spaces S,S� ∈ PCn,0(K) be in rationality, with S =
ΩS

� for some positive Ω . Then, the relation

S (Ω F) = Ω S �F for all F ∈ C0(I ), (5.9)

establishes a bijection between

(1) the set of all piecewise Chebyshevian Schoenberg operators S based on S
� and

the set of all piecewise Chebyshevian Schoenberg-like operators S based on S

which reproduce Ω;
(2) the set of all piecewise Chebyshevian Schoenberg operators S based on S and

the set of all piecewise Chebyshevian Schoenberg-like operators S based on S
�

which reproduce 1/Ω .
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Proof Let us start with a piecewise Chebyshevian Schoenberg-like operatorS based
on S, defined by (5.8), and assumed to reproduce Ω . Then Ω must belong to the
two-dimensional C-space U on I which is reproduced by S , see Prop. 3.7 of [35].
Accordingly, U is of the form U = ΩU

�, where U
� ⊂ S

� is a two-dimensional C-
space on I , containing the constants. Select a strictly increasing U � ∈ U

�. That Ω is
reproduced by S means that

Ω(x) = SΩ(x) =
∑

�∈Z
Ω(η�)α�N�(x) =

∑

�∈Z
ω�N�(x), x ∈ I ,

implying that the positive α�’s are given by

α� = ω�

Ω(η�)
, � ∈ Z. (5.10)

Accordingly, on account of (3.4), we obtain formula (5.9) with

S �F(x) :=
∑

�∈Z
F(η�)N �

� (x), x ∈ I , F ∈ C0(I ).

That ΩU � is reproduced byS means that the function U � satisfiesS �U � = U �, and
thereforeS � is the piecewise Chebsyhevian Schoenberg operator based on S� which
reproduces the function U �. We can go the reverse way as well, and therefore, the
statement (1) is proved. The second claim (2) is obtained by exchanging the roles of
S and S

�. �
Remark 5.2 We conclude this section with two remarks. First observe that when (5.9)
holds true, the two operators S and S � share the same sequence of nodes. Suppose
that we are in the case described in the proof of Theorem 5.2. That the strictly increas-
ing spline U � is reproduced by the piecewise Chebyshevian Schoenberg operator S�

requires that its poles u�
�, � ∈ Z, form a strictly increasing sequence, and the nodes

are provided by the equality [40]

η� := U �−1
(u�

�), � ∈ Z.

The second observation is that, afterwards, we can say that the set of all spaces of the
form EC P(Ω,w1) ⊂ S for which we can build a nested sequence (5.5) coincides
with the set of all two-dimensional C-spaces U ⊂ S which can be reproduced by a
Schoenberg-like operator based on S.

6 Illustrations

The class of all rational piecewise Chebyshevian spline spaces coinciding with the
class of all piecewise Chebyshevian spline spaces good for design, globally we have
not increased the possibility of shape effects.However, itmaybe interesting to combine

123



Geometrically continuous piecewise Chebyshevian NU(R)BS 707

the shape effects produced by a given piecewise Chebyshevian spline space good for
design with those derived from the rational weights.

6.1 Shape effects due to rational weights

Let us first explain the shape effects due to rationalweights. GivenS, Ŝ inPCn,0(I ;T)

be in rationality, with, as previoulsy, Ŝ = R
(
S; (ω�)�∈Z

) = R
(
S;Ω

)
. Let Ŝ ∈ Ŝ

d be
defined by given poles P̂� ∈ R

d , � ∈ Z, that is,

Ŝ(x) =
∑

�∈Z
N̂�(x)P̂� =

∑

�∈Z

ω�N�(x)

Ω(x)
P̂�, x ∈ I .

Selecting an integer �0 ∈ Z, and positiveω�, � 	= �0, let us investigate the variations of
the parametric spline Ŝ as ω�0 ranges over ]0,+∞[. Modifying ω�0 does not modify
Ŝ outside [ξ�0 , ξ�0+n+1]. Clearly, for each x ∈ I ,

lim
ω�0→0+ Ŝ(x) = Ŝ0(x) := S0(x)

Ω0(x)
,

where the splines S0 ∈ S
d , Ω0 ∈ S are defined by

S0(x) :=
∑

� 	=�0

ω�N�(x)P̂�, Ω0(x) :=
∑

� 	=�0

ω�N�(x), x ∈ I .

It should be observed that, unlike S0,Ω0, the function Ŝ0 : I → R
d is not a piecewise

Chebyshevian spline. Nevertheless, Ŝ0 produces a parametric curve in R
d which is

contained in the convex hull of the poles P̂�, � 	= �0. Consider an x0 ∈ I such that
N�0(x0) 	= 0. From the obvious equality

Ŝ(x0) = Ω0(x0)

Ω0(x0) + ω�0 N�0(x0)
Ŝ0(x0) + ω�0 N�0(x0)

Ω0(x0) + ω�0 N�0(x0)
P̂�0 .

we can see that the point Ŝ(x0) is always located on the segment [Ŝ0(x0), P̂�0 ]. Two
cases are to be considered:

– The point Ŝ(x0) coincides the pole P̂�0 independently of the positive weight ω�0 ,
in two different situations: firstly when P̂�0 = Ŝ0(x0), and secondly when x0 is a
knot tk of multiplicity mk = n and �0 is the greatest integer � such that ξ� < tk . In
the latter case, we have N�0(x0) = 1 and therefore Ω0(x0) = 0.

– In all other cases, as ω�0 increases in ]0,+∞[, the point Ŝ(x0) moves in a strictly
monotonic way along the open segment ]Ŝ0(x0), P̂�0 [, from the point Ŝ0(x0) to the
pole P̂�0 . In otherwords, given any point P in the open segment ]Ŝ0(x0), P̂�0 [⊂ R

d ,
we can uniquely determine a value of the weight ω�0 such that Ŝ0(x0) = P .

That the rational spline is attracted to the pole (resp., pushed away from it) when the
corresponding positive parameter goes to infinity (resp., to 0+) is independent of the
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initial piecewise spline space S: the influence of a single rational parameter is thus
exactly the same as in the case of the classical NURBS, see [45].

6.2 Combining with other shape effects

To provide illustrations, the major difficulty is not to build rational splines, but to start
with a suitable spline space, that is, a space of PEC-splines which is good for design.
This is why the two examples we will deal with here are directly taken from [43],
where we achieved necessary and sufficient conditions for a given PEC-spline space
with five-dimensional section-spaces and simple knots to be good for design. In both
examples, the knots are equispaced, with knot spacing equal to one.

6.2.1 Rational geometrically continuous quartic splines

Our initial spline space S is a space of geometrically continuous C2 quartic splines,
with a cardinal symmetric B-spline basis. This framework is obtained if and only if
all connection matrices are identical and are of the form [43]

M� := M :=
⎡

⎣
1 0 0
0 1 0
0 ε 1

⎤

⎦ for all � ∈ Z. (6.1)

where the single parameter ε on which the space S depends must satisfy ε > −4.
The shape effects in S due the parameter ε varying in ] − 4,+∞[ can be observed
in the middle line of Fig. 3, with successively (from left to right) ε = −3.99; 0 (C3

quartic splines); 10; 100. The same values of ε are used in the other lines of Fig. 3,
to illustrate the combination of these effects and those due to rational weights. In our
examples, the only poles P� which are allocated rational weights different from one
are those indicated with circles, where we succesively take ω� = 0.01 (first line);
ω� = 0.1 (second line); ω� = 10 (fourth line) and ω� = 100 (fifth line). The effect
of these rational weights on the standard rational quartic splines can be observed in
the second column from the left. Comparison of either the various columns or the
various lines clearly shows the fluent interaction between the rational and geometric
continuity parameters.

6.2.2 Rational parametrically continuous mixed splines

In [43] we investigated C3 splines obtained by mixing all possible kernels of linear
differential operators of order five, with constant coefficients and odd characteristic
polynomials. The class of such kernels comprises nine different spaces, and the num-
bering we use is consistent with the one used in [43]. Here we focus on C3 splines
obtained by mixing polynomial pieces (ker

[
D5

]
, represented by the number 7) with

pieces taken from the space spanned onR by the five functions 1, cosh(ax), sinh(ax),
cos(bx), sin(bx) ( i.e., ker

[
D5 + (b2 − a2)D3 − a2b2D

]
, represented by the number

3), with a > 0, 0 < b < π . Two things were discussed in [43], Example 7.11:
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Fig. 3 Geometrically continuous rationalC2 quartic spline curves, with connectionmatrix (6.1) everywhere
in the initial spaceS, andwith all rationalweights equal to 1, except at the two poles P� indicatedwith circles,
where from top to bottom, ω� = 0.01; 0.1; 1 (non-rational case); 10; 100. From left to right ε = −3.99; 0
(C3 quartic (rational) splines); 10; 100

– the theoretical conditions on a, b ensuring that the corresponding spline space S
is good for design;

– in practice, how to choose the parameters in order to obtain efficient limit shape
effects.

These considerations had led us to select the value b = 2.5 as permitting an interesting
amplitude of effects from a close to zero (splines rather similar to ordinary quartic
splines, see second picture from the left in the third line of Fig. 3) up to a = 5.8576,
which is close to the limit for mixed spline spaces S to be good for design. Corre-
sponding mixed splines are shown in Fig. 4, for various configurations, a “7” in front
of a pole P� meaning that the section-space E�+2 is the degree four polynomial space
on [t�+2, t�+3] (middle segment of the support of the B-spline N�), and analogously
concerning a “3”.

In Fig. 5, we consider examples of rational splines based on the spline spaces S
of Fig. 4. Our choice was to systematically allocate each pole “7” a rational weight
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Fig. 4 C3 spline curves mixing quartic pieces (indicated by the number 7) and pieces taken from the space
spanned by the five functions 1, cosh(ax), sinh(ax) cos(bx), sin(bx) (indicated by the number 3), with
b = 2.5 and a = 5.8576

Fig. 5 C3 rational spline curves based on the spline spaces of Fig. 4. Each pole P� indicated by a “3” is
allocated a rational weight ω� = 0.01 (up); 100 (down), all others being equal to 1

equal to one, and the same value for all poles “3”, namely 0.01 (up) and 100 (down).
The small differences between Fig. 4 and the first line of Fig. 5 can be explained by
the fact that the value 0.01 and the limit effect of the mixed trigonometric-hyperbolic
space numbered 3, are somewhat similar, and combining them simply results in a slight
enhancement of this effect. To the contrary, the effect of the value 100 is stronger.Wedo
not intend to more deeply analyse the resulting combined shape effects. Nevertheless,
it is necessary to first have an idea of the rational effect alone, and this is why in Fig. 6
we present to the reader standard C3 rational quartic splines. All pieces are therefore
polynomial ones, and here, the “3” are to be understood only as the poles which are
allocated rational weights different from 1, that is, as in Fig. 5, either 0.01 (up) or 100
(down).

7 Final comments

The main substance of this work is summarised below, where the integer n and the
pair (I ;K) being fixed, S�

n(I ;K) denotes the associated degree n polynomial spline
space, and Pn the degree n polynomial space on I .

1. Embedding polynomial splines in the larger framework of rational splines has
offered two unquestionable benefits: on the one hand, local flexibility and pre-
cision resulting from the presence of the rational weights; on the other, exact
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Fig. 6 Standard rational C3 spline curves with ω� = 0.01 (up); 100 (down) at each pole P� indicated by a
“3”, all others being equal to 1

representation of crucial shapes. The degree n and the knot-vector K being
given, rational splines (in the usual sense) can in turn be embedded in the larger
framework of (geometrically continuous) PEC-spline spaces good for design
with (n + 1)-dimensional section-spaces, that we have denoted asPCn,0(I ;K).
The multitude of exact representations and shape parameters at our disposal in
PCn,0(I ;K) naturally raises a doubt about the appropriateness of introducing
the associated rational context with its additional parameters. The doubt seems
to be confirmed by the fact that this rational context does not enlarge the class
PCn,0(I ;K). Nonetheless, the few examples presented in the previous section
show that, on the practical side, it can be useful to combine the shape effects
specific to a given spline space in PCn,0(I ;K) with those specific to rational
weights.

2. Decreasing the degree is a simple but crucial operation for either polynomials
or polynomial splines which is naturally done through the ordinary (left/right)
derivatives. The analogous operation for PEC-splines consists in a decrease of the
dimension of the section-spaces, and it requires to replace ordinary derivatives by
piecewise generalised derivatives. In this large context, this dimension diminish-
ing procedure is all themore crucial as it is not always possible. As amatter of fact,
we can perform it iteratively until we get piecewise constant splines if and only
if the initial spline space is good for design. This fundamental principle has even
served as the basis for the development of a numerical test to determine whether
a given PEC-spline space is or is not good for design [6]. One originality of this
work is precisely the connection between rational splines and such dimension
diminishing procedures: building rational spaces based on S ∈ PCn,0(I ;K) is
indeed exactly the same as executing one step of dimension diminishing through
piecewise generalised derivatives in the PEC-spline space in PCn+1,0(I ;K)

obtained from S by continuous integration (Theorem 3.1). This applies in partic-
ular to S

�
n(I ;K) viewed as an element of PCn,0(I ;K), and is connected with

the infinitely many existing inclusions of the form EC P(Ω,w1, . . . , wn) ⊂
S

�
n(I ;K)—and the infinitely many associated operators of the Schoenberg-like
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based on S�
n(I ;K)—while repeatedly decreasing the degree is specifically related

to the inclusion Pn = EC(1,1, . . . ,1) ⊂ S
�
n(I ;K).

3. The presentwork thus gives new insights into the classical polynomial and rational
splines. It is even more so though the equivalence relation that “being in ratio-
nality” expresses within the class PCn,0(I ;K). The polynomial spline space
S

�
n(I ;K) can now be viewed as the rational spline space based on infinitely

many different spaces in PCn,0(I ;K), namely all rational spline spaces based
on S

�
n(I ;K).

4. With no more difficulty we could have defined rational spline spaces in the whole
classPCn(I ;K) rather limiting ourselves to the subclassPCn,0(I ;K). Indeed,
as observed in the proof of Theorem 3.1, piecewise division by a spline whose
coefficients in a B-spline-like basis are all positive transforms a spline space in
PCn(I ;K) into a spline space inPCn,0(I ;K). In that case, we could interpret
one step of dimension diminishing (Theorem 2.4) as the composition of rational-
isation with ordinary piecewise differentiation, see [39]:

S ∈ PCn,0(I ;K)
D−→ DS ∈ PCn−1(I ;K)

R−→ L1S ∈ PCn−1,0(I ;K).

However, we have deliberatey focused on PCn,0(I ;K) to bring to the fore the
nice rationality equivalence relation within that class. Furthermore, only in the
class PCn,0(I ;K) we can investigate the combined shape effects as we did in
Sect. 6.
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