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Abstract
In this study, a general formulation for the fractional-order general Lagrange scal-
ing functions (FGLSFs) is introduced. These functions are employed for solving a
class of fractional differential equations and a particular class of fractional delay dif-
ferential equations. For this approach, we derive FGLSFs fractional integration and
delay operational matrices. These operational matrices and collocationmethod are uti-
lized to reduce each of the problems to a system of algebraic equation, which can be
solve employing Newton’s iterative method. We indicate convergence of this method.
Finally, some illustrative examples in order to observe the validity, effectiveness and
accuracy of the present technique are included. Also, by applying this method, we
solve the mathematical model of the noise effect on the laser device.
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1 Introduction

The fractional calculus is a field of mathematical study by changing the order of
derivative and integral from the integer to the non-integer. In fact, the fractional calculus
is the classical mathematical development. Since the beginning of this concept in the
theory of calculus and integrals, mathematicians such as Euler, Laplace, Riemann, and
Liouville developed it. The basic concepts of the theory of fractional calculation can
be found in [27].

The application of the concepts of fractional calculus can be found by researching
in various fields such as viscoelastic damping [1], robotics and control [16], signal
processing [29], and electric circuits [28].

In general, fractional differential equations do not always have the exact solution,
or it is difficult to obtain an analytical solution. For this reason, in recent years, the
study on the numerical solution of this type of equations has increased. Some of
the methods used to solve the fractional differential equations, such as Laplace trans-
forms [6], method based on operational matrices [2], variational iteration method [25],
finite difference method [22], Legendre wavelets method [10], Haar wavelet [36],
Bernoulli polynomials method [11], Chebyshev wavelets method [15], Fractional-
order Bernoulli wavelets method [33], and so on.

Time-delay systems have been very much considered in the last few decades.
Because many of these time-delay systems appear in many systems and branches
of science such as engineering, chemistry, physics, hydraulic networks, long trans-
mission lines, disease models [46], traffic control [42], etc.

In 1949, Myshkis introduced the theory of a general class of differential equations
with delayed arguments [24]. In addition, Krasovski [12], Bellman and Cooke [3],
El’sgol’c and Norkin [7], Hale [9] researched in this field.

Indeed, a strongmotivation for studying and research to solve fractional differential
equations with time delay comes from the fact that these equations describe efficiently
anomalous diffusion on fractals, physical objects of fractional dimension, like some
amorphous semiconductors or strongly porous materials, fractional random walk, etc.

Other applications of this kind of equation occur in the following fields: fluid
flow, viscoelasticity, control theory of dynamical systems, diffusive transport akin
to diffusion, electrical networks, probability and statistics, dynamical processes in
self-similar and porous structures, electrochemistry of corrosion, optics and signal
processing, rheology, etc.

In recent years, several numerical methods have been presented for solving delay
differential equations integer order and non-integer order, such as hybrid of block-
pulse functions and Taylor series [19], Legendre wavelet method [39], Chebyshev
polynomials [41], method in [45], fractional-order Bernoulli wavelet [32], and so on.

Lagrange interpolation is commendable for analytical tools. TheLagrange approach
is in most cases the method of choice for dealing with polynomial interpolation [5].
Lagrange polynomials are used to solve numerical types of equations. As examples,
this polynomials are used to solve the integral equation [34], differential equations
[44] and delay differential equations [20] and delay optimal control problems [18]
and so on. Also, the scaling interpolation functions is used to solve the differential
equations [14,35] and optimal control problems [8], and so on.
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Recently in [37], we introduced fractional-order Lagrange polynomials (FLPs)
and applied these new functions to solve the fractional differential equations and we
showed FLPs are proper for the approximation of smooth functions.

Now, in this paper, a new set of fractional functions are presented which are used
FLPs to construct them. By using these new functions, we solve a class of fractional
differential equations and fractional delay differential equations. We demonstrate that
FGSLFs are appropriate for the approximation of smooth and piecewise smooth func-
tions. Notice that FLPs are the special cases of FGSLFs which are obtained by taking
k = 1.

By considering zeros of orthogonal polynomials (such as Legendre polynomials,
Chebyshev polynomials, etc) as the nodes of Lagrange polynomials, the orthogo-
nal Lagrange polynomials are constructed [43], so we obtain FGLFs, the fractional
integration operational matrix of FGLFs and the delay operational matrix of FGLFs
generally, without considering the nodes of Lagrange polynomials.

As the result, by choosing the different nodes of Lagrange polynomials, we have
orthogonal and non-orthogonal Lagrange scaling functions. This is the most important
advantage of FGLFs over the fractional order Bernoulli wavelets given in Ref. [33].

Another advantage of FLGFs over the Bernoulli wavelets introduced in Ref. [32]
is the existence of the fractional-parameter, α. In presented examples in Sect. 7, we
can see that the influence this parameter to solve fractional differential equations and
fractional delay differential equations.

The rest of the paper is organized as follows. In Sect. 2, some necessary defi-
nitions and mathematical preliminaries required for our subsequent development is
given. In Sect. 3, we recall the fractional-order Lagrange polynomials, and then we
propose general Lagrange scaling functions and fractional-order general Lagrange
scaling functions. In Sect. 4, we achieve the FGLSFs operational matrices of frac-
tional order integration and delay. Section 5 is devoted to the numerical method for
solving the fractional differential equations and delay fractional differential equations.
In Sect. 6, the error analysis is given. In Sect. 7, we report numerical results and the
effectiveness of this method is shown by them. Also, in this section, we employ this
method for numerical solution of the Pieroux model in the problem of noise effect on
light in laser device.

2 Preliminaries

In this section, we give some basic definitions and properties of fractional calculus
theory which are used in this paper.

Definition 1 Let f : [a, b] → R be a function, ν > 0 a real number and n = �ν�,
where �ν� denotes the smallest integer greater than or equal to ν, the Riemann–
Liouville integral of fractional order is defined as [21]

I ν f (x) =
{ 1

Γ (ν)

∫ x
0 (x − t)ν−1 f (t)dt = 1

Γ (ν)
xν−1 ∗ f (x) ν > 0,

f (x) ν = 0,
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where xν−1 ∗ f (x) is the convolution product of xν−1 and f (x).
For the Riemann–Liouville fractional integral, we have [21]

I νxn = Γ (n + 1)

Γ (n + 1 + ν)
xν+n, n > −1,

Definition 2 Caputo’s fractional derivative of order ν is defined as [21]

Dν f (x) = 1

Γ (m − ν)

∫ x

0

f (m)(t)

(x − t)ν−m+1 dt,

for m − 1 < ν ≤ m, m ∈ N , x > 0. For the Caputo derivative we have [33]:

Dνxk =
{
0, ν ∈ N0, k < ν,

Γ (k+1)
Γ (k−ν+1) x

k−ν, otherwise

and Dνλ = 0, where λ is constant.

Also, this derivative can be expressed using the Riemann–Liouville integration as

Dν f (x) =
{
Im−ν f (m)(x), m − 1 < ν ≤ m, m ∈ N ,
dm f (x)
dxm , ν = m

For Caputo’s derivative, the following properties are established:

(Dν I ν f )(x) = f (x),

(I νDν f )(x) = f (x) −
�ν�−1∑
i=0

f (i)(0)
xi

i ! . (2.1)

Definition 3 (Generalized Taylor’s formula) [26] Suppose that Dkα f (x) ∈ C(0, 1]
for k = 0, 1, . . . , n + 1. Then, we have

f (x) =
n∑

k=0

xkα

Γ (kα + 1)
Dkα f (0+) + x (n+1)α

Γ ((n + 1)α + 1)
D(n+1)α f (ξ),

with 0 < ξ ≤ x, ∀x ∈ (0, 1]. Also, one has:
∣∣∣∣∣ f (x) −

n∑
k=0

xkα

Γ (kα + 1)
Dkα f (0+)

∣∣∣∣∣ ≤ Mα

x (n+1)α

Γ ((n + 1)α + 1)
,

where Mα ≥ supξ∈(0, 1] |D(n+1)α f (ξ)|.
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3 Fractional-order general Lagrange scaling functions

3.1 Lagrange polynomials

Suppose that the set of nodes be given by xi , i = 0, 1, . . . , n. The Lagrange interpo-
lating polynomials are defined as follows, for any fixed non negetive integer number
n:

Li (x) :=
n∏

j = 0
j 
= i

(x − x j )

(xi − x j )
.

Also, these polynomials are characterized by Kronecker property

Li (xl) = δil ,

where

δil =
{
1, i = l,
0, i 
= l

It is necessary to mention that there are no explicit formulas for the determination
of points xi .

Let Li (x), i = 0, 1, . . . , n are Lagrange polynomials on the set of nodes xi .
Lagrange polynomials in these points are described by [37]

Li (x) =
n∑

s=0

βis x
n−s, i = 0, 1, . . . , n. (3.1)

where

βi0 = 1∏n
j = 0
j 
= i

(xi − x j )

βis = (−1)s∏n
j = 0
j 
= i

(xi − x j )

n∑
ks=ks−1+1

. . .

n−s+1∑
k1=0

s∏
r=1

xkr ,

and i 
= k1 
= · · · 
= ks, s = 1, 2, . . . , n.

Lemma 1 Let Li (x), i = 0, 1, . . . , n are Lagrange polynomials. Then these polyno-
mials satisfy the following formula

∫ 1

0
Li (x)L j (x)dx =

n∑
s1=0

n∑
s2=0

βis1βis2

2n − s1 − s2 + 1
(3.2)

Proof Using Eq. (3.1), we have

123



106 S. Sabermahani et al.

∫ 1

0
Li (x)L j (x)dx =

n∑
s1=0

n∑
s2=0

βis1βis2

∫ 1

0
xn−s1xn−s2dx

=
n∑

s1=0

n∑
s2=0

βis1βis2

2n − s1 − s2 + 1
.

��

3.2 Fractional-order Lagrange polynomials

The fractional-order Lagrange polynomials are defined as follows [37]

Lα
i (x) =

n∑
s=0

βis x
α(n−s), i = 0, 1, 2, . . . , n. (3.3)

where 0 < α ≤ 1 and

βi0 = 1∏n
j = 0
j 
= i

(xi − x j )
,

βis = (−1)s∏n
j = 0
j 
= i

(xi − x j )

n∑
ks=ks−1+1

. . .

n−s+1∑
k1=0

s∏
r=1

xkr ,

and i 
= k1 
= · · · 
= ks, s = 1, 2, . . . , n.
These fractional functions on arbitrary nodal points are derived. Then, we can

have different choices for Lagrange polynomials. For example, the fractional-order
Lagrange polynomials, for n = 2, xi = i

n are as follows:

Lα
0 (x) = 1 − 3xα + 2x2α, Lα

1 (x) = 4xα − 4x2α, Lα
2 (x) = −xα + 2x2α.

Also, while xi are zeros of shifted Legendre polynomials and n = 2, these polynomials
are as

Lα
0 (x) = 1.47883 − 4.62433xα + 3.33333x2α,

Lα
1 (x) = −0.666667 + 6.66667xα − 6.66667x2α,

Lα
2 (x) = 0.187836 − 2.04234xα + 3.33333x2α.

3.3 Fractional-order general Lagrange scaling functions

3.3.1 General Lagrange scaling functions

Now, we define general Lagrange scaling functions. These functions are introduced
for arbitrary points of Lagrange polynomials.
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General Lagrange scaling functions are as follows:

ψ j i (x) =
{
2

k−1
2 L̃i (2k−1x − j̃), j̃

2k−1 ≤ x <
j̃+1
2k−1 ,

0, otherwise
(3.4)

with

L̃i (x) = 1√
wi

Li (x), (3.5)

where, wi are achieved from Eq. (3.2) and j̃ = j − 1, j = 1, 2, . . . , 2k−1, i =
0, 1, . . . , n.

It is worth tomention that if we consider xi as the roots of Legendre polynomials, we
find a special case of GLSFs, which is called interpolation scaling function [8,14,35].

3.3.2 Fractional-order general Lagrange scaling functions

In the following, we introduce a new set of fractional-order basis functions that are
called fractional-order general Lagrange scaling functions. These basic functions are
constructed using FLPs and GLSFs, which are indicated as ψα

j i (x).
Using Eqs. (3.4), (3.5), ψα

j i (x) is given as follows

ψα
j i (x) =

{
2

k−1
2 L̃i (2k−1xα − j̃), j̃

2k−1 ≤ xα <
j̃+1
2k−1 ,

0, otherwise
(3.6)

with

L̃i (2
k−1xα − j̃) = 1√

wi
Li (2

k−1xα − j̃), (3.7)

where, j̃ = j−1, j = 1, 2, . . . , 2k−1, i = 0, 1, . . . , n. For example, in xi = i
n , k =

2, n = 1, we have
For 0 ≤ xα < 1

2

ψα
10(x) = √

2L̃0(2xα) = √
6(1 − 2xα),

ψα
11(x) = √

2L̃1(2xα) = √
6(2xα),

for 1
2 ≤ xα < 1

ψα
20(x) = √

2L̃0(2xα − 1) = √
6(2 − 2xα),

ψα
21(x) = √

2L̃1(2xα − 1) = √
6(2xα − 1).

Moreover, Figs. 1 and 2 show graphs of FGLSFs for n = 2, k = 2, xi = i
n and

various values of α.
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Fig. 1 Graph of the FGLSFs with n = 2, k = 2, α = 1
2

3.4 Function approximation

A function f defined uniquely over [0, 1) can be expanded in terms of fractional-order
general Lagrange scaling functions as

f (x) �
2k−1∑
j=1

n∑
i=0

c jiψ
α
j i (x) = CTΨ α(x),

where C and Ψ α(x) are 2k−1(n + 1) × 1 vectors given by
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Fig. 2 Graph of the FGLSFs with n = 2, k = 2, α = 1
4

C = [c10, c11, . . . , c1n, c20, c21, . . . , c2n, . . . , c2k−10, . . . , c2k−1n]T
= [c0, c1, . . . , cn, cn+1, . . . , c2k−1n]T

and T indicates transposition.

Ψ α(x) = [ψα
10(x), . . . , ψ

α
1n(x), ψ

α
20(x), . . . , ψ

α
2n(x), . . . , ψ

α
2k−10(x), . . . , ψ

α
2k−1n(x)]T

= [ψα
0 (x), ψα

1 (x), . . . , ψα
n (x), ψα

n+1(x), . . . , ψ
α
2k−1n(x)]T . (3.8)

The coefficient vector C can be achieved as follows
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CT = FT D−1,

where

D = 〈Ψ α, Ψ α〉 =
∫ 1

0
Ψ α(x)Ψ αT (x)xα−1dx,

F = [ f10, f11, . . . , f1n, f20, f21, . . . , f2n, . . . , f2k−10, . . . , f2k−1n]T ,

and

f j i = 〈 f , ψα
j i 〉 =

∫ 1

0
f (x)ψα

j i (x)x
α−1dx, j = 1, . . . , 2k−1, i = 0, 1, . . . , n.

4 Operational matrices of delay and fractional integration

In this section, we derive the FGLSFs operational matrices of delay and fractional
integration. We obtain these matrices directly, without transformation to FLPs.

4.1 The fractional integration operational matrix of FGLSFs

The fractional integration operator of order ν > 0 of the vectorΨ α(x) can be expressed
by

I νΨ α(x) � P(ν, α)Ψ α(x),

Using definition of the operator I ν , we have

I νψα
j i (x) = 1

Γ (ν)
xν−1 ∗ ψα

j i (x), i = 0, 1, . . . , n, j = 1, 2, . . . , 2k−1. (4.1)

Now, by taking the Laplace transform to both sides of Eq. (4.1), we achieve

L
[
I νψα

j i (x)
]

= L

[
1

Γ (ν)
xν−1

]
L[ψα

j i (x)], i = 0, 1, . . . , n j = 1, 2, . . . , 2k−1.

(4.2)
where

L

[
1

Γ (ν)
xν−1

]
= r−v (4.3)

Also, for ψα
j i (x), we have

ψα
j i (x) = 2

k−1
2

(
μ(

j̃
2k−1

) 1
α
(x)L̃i (2

k−1xα − j̃) − μ(
j̃+1
2k−1

) 1
α
(x)L̃i (2

k−1xα − j̃)

)

= 2
k−1
2√
ωi

Li (2
k−1xα − j̃)

(
μ(

j̃
2k−1

) 1
α
(x) − μ(

j̃+1
2k−1

) 1
α
(x)

)
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= 2
k−1
2√
ωi

n∑
s=0

βis(2
k−1xα − j̃)α(n−s)

(
μ(

j̃
2k−1

) 1
α
(x) − μ(

j̃+1
2k−1

) 1
α
(x)

)
(4.4)

where μc(x) is unit step function defined as

μc(x) =
{
1 x ≥ c,
0 x < c.

Now, for every i, j, α, we have a known function. Then, the Laplace transform of
Eq. (4.4) can be obtained. On the other hand, according to Eqs. (4.2)–(4.4), Laplace
transform of I νψα

j i (x) can be achieved. By taking the inverse Laplace transform of
L(I νψα

j i (x)), yields

I νψα
j i (x) = ϕ̃

(ν,α)
j i (x). (4.5)

We can expand ϕ̃
(ν,α)
j i (x) in terms of FGLSFs as

ϕ̃
(ν,α)
j i (x) �

2k−1∑
τ=1

n∑
ρ=0

c̃τρψα
τρ(x) = C̃T

j, iΨ
α(x). (4.6)

Therefore, we have

P(ν,α) = [C̃ j, i ], j = 1, . . . , 2k−1, i = 0, 1, . . . , n.

For example, for k = 2, n = 2 and α = ν = 1, xi = i
n , the FGLSFs operational

matrix can be expressed as

P(1,1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.0166667 0.208333 0.0666667 0 0 0
−0.0166667 0.166667 0.183333 0 0 0
0.0166667 −0.0416667 0.0666667 0 0 0

0 0 0 1.6 3.375 1.65
0 0 0 −0.85 −1.5 −0.65
0 0 0 0.6 1.125 0.65

⎤
⎥⎥⎥⎥⎥⎥⎦

.

4.2 Delay operational matrix of FGLSFs

In the continue, we obtain delay operational matrix of FGLSFs.
Using Eq. (3.1), the Lagrange polynomials vector can be considered as

L(x) = ΛTn(x), (4.7)

where

Tn(x) = [1, x, x2, . . . , xn]T , L(x) = [L0(x), L1(x), . . . , Ln(x)]T
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and Λ = (γi, j )
n
i, j=0 is matrix of order (n + 1) × (n + 1), where γi, j = βi,n− j .

Also, for Taylor polynomials, we have [31]

Tn(x − ξ) = θ(ξ)Tn(x)

where θ(ξ) is the following matrix

θ(ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
−ξ 1 . . . 0
(−ξ)2 −2ξ . . . 0
...

...
. . .

...

(−ξ)n
(

n
n − 1

)
(−ξ)n−1 . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Using Eq. (4.7), we obtain

L(x − ξ) = Λθ(ξ)Tn(x) = Λθ(ξ)Λ−1L(x)

In addition, we can write

L(xα − ξ) = Λθ(ξ)Λ−1L(xα)

and
Lα(x − ξ) = Λθ(ξ)Λ−1Lα(x),

where, Lα(x) = [Lα
0 (x), Lα

1 (x), . . . , Lα
n (x)]T .

Let Mξ = Λθ(ξ)Λ−1 and

W =

⎡
⎢⎢⎢⎢⎣

1√
ω0

0 . . . 0

0 1√
ω1

. . . 0
...

...
. . .

...

0 0 . . . 1√
ωn

⎤
⎥⎥⎥⎥⎦ ,

also, we know
L(2k−1(xα − ξ) − j̃) = M2k−1ξ L(2k−1xα − j̃)

Then, we achieve
Ψ α(x − ξ) = ΩξΨ

α(x),

where

Ωξ = diag[Ω̃ξ , Ω̃ξ , . . . , Ω̃ξ︸ ︷︷ ︸
2k−1

]
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and

Ω̃ξ = WM2k−1ξW
−1

Ωξ is delay operational matrix of FGLSFs.

5 Numerical method

The matrices presented in the previous section are generally obtained. So, we can have
different choices for the nodes of Lagrange polynomials.

In this paper, we choose xi = i
n the points of Lagrange polynomials. Therefore,

we have a set of non-orthogonal polynomials.
We consider the following problems:

Problem 1 Fractional differential equations

{
F(x, y(x), Dν y(x)) = 0, 0 ≤ x ≤ 1, m − 1 < ν ≤ m,

y(i)(0) = λi , i = 0, 1, . . . ,m − 1,
(5.1)

Problem 2 Fractional delay differential equations

⎧⎨
⎩

F(x, y(x), y(x − ξ), Dν y(x)) = 0, 0 ≤ x ≤ 1, m − 1 < ν ≤ m, 0 < ξ < 1,
y(i)(0) = λi , i = 0, 1, . . . ,m − 1, m ∈ N
y(x) = Φ(x), x < 0.

(5.2)

We approximate Dν y(x) in these problems by the FGLSFs as

Dν y(x) � CTΨ α(x), (5.3)

so, using Eq. (2.1), operational matrix of fractional integration and initial conditions
of Problems 1, 2, we get

y(x) � I ν(CTΨ α(x)) +
m−1∑
k=0

xk

k! λk � CT P(ν,α)Ψ α(x) + ETΨ α(x) (5.4)

where

E(x) =
m−1∑
k=0

xk

k! y
(k)(0) =

m−1∑
k=0

xk

k! λk,

E(x) � ETΨ α(x).

For Problem 1, substituting Eqs. (5.3) and (5.4) in Eq. (5.1), we have an alge-
braic equation with 2k−1(n + 1) unknown. Then, we collocate this equation at
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xp = p
n2k−1 , p = 0, 1, 2, . . . , n2k−1. We have a system of algebraic equations, which

can be solved for the unknown vector C by using Newton’s iterative method.
For Problem 2, using Eq. (5.4), we get

y(x − ξ) �
{
ATΨ α(x) 0 ≤ x ≤ ξ,

CT P(ν,α)ΩξΨ
α(x) + ETΩξΨ

α(x) ξ < x ≤ 1
(5.5)

where, Φ(x − ξ) � ATΨ α(x).
Now, substituting Eqs. (5.3), (5.4) and (5.5) in Eq. (5.2), we get an algebraic equa-

tion. Then, by using collocation method and Newton’s iterative method, we can solved
this problem.

6 Error analysis

Theorem 1 Let Diα f ∈ C(0, 1], i = 0, 1, . . . , n, (2n + 2)α + α ≥ 1, (̂n =
2k−1(n+1)) and Y α

n = span{Lα
0 (x), Lα

1 (x), . . . , Lα
n (x)}. If fn(x) = AT Lα(x) is the

best approximation of f (x) out of Y α
n on the interval [ j−1

2k−1 ,
j

2k−1 ]. Then, for approxi-
mate solution fn̂(x) using FGLSFs on [0, 1], we derive

‖ f − fn̂‖2 ≤ supx∈[0,1]|D(n+1)α f (x)|
Γ (nα + α + 1)

√
(2n + 3)α

. (6.1)

Proof Define

f1(x) =
n∑

i=0

xiα

Γ (iα + 1)
Diα f (0+).

Using the generalized Taylor’s formula, we get

| f (x) − f1(x)| ≤ x (n+1)α

Γ ((n + 1)α + 1
supx∈Ik, j |D(n+1)α f (x)|,

where Ik, j = [ j−1
2k−1 ,

j
2k−1 ].

Given that fn(x) = AT Lα(x) is the best approximation of f (x) out of Y α
n on the

interval Ik, j , and f1(x) ∈ Y α
n , then

‖ f − fn̂‖2L2[0,1] = ‖ f − CTΨ α‖2L2[0,1] =
2k−1∑
j=1

‖ f − AT Lα‖2
L2[ j−1

2k−1 ,
j

2k−1 ]

≤
2k−1∑
j=1

‖ f − f1‖2L2[ j−1
2k−1 ,

j
2k−1 ]
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≤
2k−1∑
j=1

∫
Ik, j

[
x (n+1)α

Γ ((n + 1)α + 1)
supx∈Ik, j |D(n+1)α f (x)|

]2
xα−1dx

≤
∫ 1

0

[
x (n+1)α

Γ ((n + 1)α + 1)
supx∈[0,1]|D(n+1)α f (x)|

]2
xα−1dx

≤ 1

Γ (nα + α + 1)2((2n + 2)α + α)
(supx∈[0,1]|D(n+1)α f (x)|)2,

by taking the square roots, the proof is complete. Therefore, FGLSF’s approximations
of f (x) are convergent. ��

Theorem 2 Let H is a Hilbert space and Y is a close subspace of H such that dimY <

∞ and y1, y2, . . . , yn, is any basis for Y . Let z be an arbitrary element in H and y∗
be the unique best approximation to z out of Y . Thus [13]

‖z − y∗‖22 = G(z, y1, y2, . . . , yn)

G(y1, y2, . . . , yn)

where

G(x, y1, y2, . . . , yn) =

∣∣∣∣∣∣∣∣∣

〈x, x〉 〈x, y1〉 . . . 〈x, yn〉
〈y1, x〉 〈y1, y1〉 . . . 〈y1, yn〉

...
...

...
...

〈yn, x〉 〈yn, y1〉 . . . 〈yn, yn〉

∣∣∣∣∣∣∣∣∣
.

Lemma 2 Let g ∈ L2[0, 1] is approximated by FLPs as

g(x) � gn(x) = AT Lα(x),

so, we have

lim
n→∞ en(g) = 0.

where

en(g) =
∫ 1

0
[g(x) − gn(x)]2dx .

In the following, we find an upper bound for the error vector of fractional integration
operational matrix.

Suppose E (ν)
I is the error vector of the operational matrix P(ν,α). We consider this

vector as follows
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E (ν)
I = P(ν,α)Ψ α(x) − I νΨ α(x), E (ν)

I =

⎡
⎢⎢⎢⎣
eI0
eI1
...

eIn

⎤
⎥⎥⎥⎦ , (6.2)

From Eq. (4.6) and approximated ϕ̃
(ν,α)
j i (x), we get

ϕ̃
(ν,α)
j i (x) �

2k−1∑
τ=1

n∑
ρ=0

c̃τρψα
τρ(x),

we obtain c̃τρ with the best approximation. From Theorem 2, we have:

∥∥∥∥∥∥ϕ̃
(ν,α)
j i (x) −

2k−1∑
τ=1

n∑
ρ=0

c̃τρψα
τρ(x)

∥∥∥∥∥∥
2

=
(G(ϕ̃

(ν,α)
j i (x), ψα

0 , ψα
1 , . . . , ψα

2k−1n
)

G(ψα
0 , ψα

1 , . . . , ψα
2k−1n

)

) 1
2

.

Then, from Eqs. (4.2)–(4.6), we achieve

‖eI i‖2 =
∥∥∥∥∥∥I

νψα
j i (x) −

2k−1∑
τ=1

n∑
ρ=0

c̃τρψα
τρ(x)

∥∥∥∥∥∥

≤
∥∥∥∥∥∥ϕ̃

(ν,α)
j i (x) −

2k−1∑
τ=1

n∑
ρ=0

c̃τρψα
τρ(x)

∥∥∥∥∥∥
≤

(G(ϕ̃
(ν,α)
j i (x), ψα

0 , ψα
1 , . . . , ψα

2k−1n
)

G(ψα
0 , ψα

1 , . . . , ψα
2k−1n

)

) 1
2

.

By considering the above discussion and Theorem 1, we can see that by increasing
the number of the FGLSFs, the error vector E (ν) tends to zero.

We can show, the convergence of the present method for Problem 1. For simplicity,
we rewrite this problem in the following form:

Dν y(x) = a(x)y(x) + b(x), m − 1 ≤ ν < m, (6.3)

where, a(x), b(x) are known functions.
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Theorem 3 Suppose y(x) is the analytic solution to Eq. (6.3). In this case, the error
of the our method ‖Eŷn‖2 is as follows

‖Eŷn‖2 ≤ ‖a‖2
(
CT Eν

I + supx∈[0, 1]|D(n+1)αE(x)|
Γ (nα + α + 1)

√
(2n + 3)α

)

+‖ŷn‖2 supx∈[0, 1]|D(n+1)αa(x)|
Γ (nα + α + 1)

√
(2n + 3)α

+ supx∈[0, 1]|D(n+1)αb(x)|
Γ (nα + α + 1)

√
(2n + 3)α

Proof We define

Eŷn (x) = Dν y(x) − Dν ŷn(x),

then, from Eq. (6.3), we achieve

Eŷn (x) = (a(x)y(x) − an̂(x)ŷn(x)) + (b(x) − bn̂(x)).

Using Eqs. (6.1) and (6.2), we have

‖y − ŷn‖2 ≤ ‖CT I νΨ α − CT P(ν, α)Ψ α‖2 + ‖E − ETΨ α‖2
≤ CT Eν

I + supx∈[0, 1]|D(n+1)αE(x)|
Γ (nα + α + 1)

√
(2n + 3)α

Moreover, we have

‖ay − aŷn‖2 ≤ ‖a‖2‖y − ŷn‖2
≤ ‖a‖2

(
CT Eν

I + supx∈[0, 1]|D(n+1)αE(x)|
Γ (nα + α + 1)

√
(2n + 3)α

)
(6.4)

‖aŷn − an̂ ŷn‖2 ≤ ‖ŷn‖2‖a − an̂‖2 ≤ ‖ŷn‖2 supx∈[0, 1]|D(n+1)αa(x)|
Γ (nα + α + 1)

√
(2n + 3)α

(6.5)

and

‖b − bn̂‖2 ≤ supx∈[0, 1]|D(n+1)αb(x)|
Γ (nα + α + 1)

√
(2n + 3)α

(6.6)

Using Eqs. (6.4)–(6.6), we achieve

‖Eŷn‖2 ≤ ‖a‖2
(
CT Eν

I + supx∈[0, 1]|D(n+1)αE(x)|
Γ (nα + α + 1)

√
(2n + 3)α

)

+‖ŷn‖2 supx∈[0, 1]|D(n+1)αa(x)|
Γ (nα + α + 1)

√
(2n + 3)α

+ supx∈[0, 1]|D(n+1)αb(x)|
Γ (nα + α + 1)

√
(2n + 3)α
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Table 1 The absolute error with k = 2, n = 2 various values of α in Example 7.1

x ν = 0.25 ν = 0.5

α = 1 α = 0.25 α = 1 α = 0.5

0.1 2.41676 × 10−2 0 1.67182 × 10−2 5.55112 × 10−17

0.3 2.25179 × 10−2 2.22045 × 10−16 5.21543 × 10−3 1.11022 × 10−16

0.5 7.65604 × 10−3 3.33067 × 10−16 4.71405 × 10−3 0

0.7 3.15443 × 10−3 4.44089 × 10−16 1.43861 × 10−2 0

0.9 5.17371 × 10−4 5.55112 × 10−16 2.58112 × 10−2 1.11022 × 10−16

For Problem 2, it can be shown similarly that our method is convergent. ��

7 Illustrative test problems

In this section, we apply the proposed method to solve the following test examples.

Fractional differential equations

Example 7.1 Consider the fractional differential equation [4]

{
Dν y(x) + y(x) = Γ (λ+1)

Γ (λ−ν+1) x
λ−ν + xλ, 0 ≤ ν ≤ λ ≤ 1, x ∈ [0, 1]

y(0) = 0.

The exact solution of this equation is y(x) = xλ.We solve this problem by applying
the method described in Sect. 5, the above equation is transformed as following

CTΨ α(x) + CT P(ν,αΨ α(x) = ETΨ α(x),

where Γ (λ+1)
Γ (λ−ν+1) x

λ−ν + xλ � ETΨ α(x). By collocation above equation at xp =
p

n2k−1 , p = 0, 1, . . . , n2k−1 and using Newton’s iterative method, we obtain the
unknown vector C .

Table 1 displays the absolute error obtained between the approximate solutions and
the exact solution for k = 2, n = 2 and various values of ν = λ. Also, Fig. 3 shows
the absolute error obtained between the approximate solutions and the exact solution
for k = 2, n = 2 with α = ν = λ.

So, Table 1 and Fig. 3 demonstrate the validity and effectively of the our method
for this problem.

Example 7.2 Consider the following nonlinear initial value problem

D
1
2 y(x) + y(x)D

1
2 y(x) = f (x), 0 ≤ x ≤ 1,
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Fig. 3 The absolute error obtained between the approximate solutions and the exact solution for k = 2, n =
2 with a) α = ν = 1 b) α = ν = 1

2 , in Example 7.1

subject to

y(0) = 1.

where

f (x) =
⎧⎨
⎩

√
π

2 +
√

π

2 (1 + √
x), 0 ≤ x < 1

4√
π

2 + 8
√
x√

π
+

√
π

√
x

2 + 8x√
π

+ 2
√

πx + 32x
3
2√

π
1
4 ≤ x ≤ 1,

whose exact solution is given by

y(x) =
{√

x + 1, 0 ≤ x < 1
4 ,

4x + √
x, 1

4 ≤ x ≤ 1.
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Table 2 Comparison of the
absolute error our method for
α = 1, 1

2 in Example 7.2

x α = 1 α = 1
2

0.1 1.58454 × 10−3 1.98996 × 10−12

0.2 1.79207 × 10−3 3.34421 × 10−12

0.3 1.46410 × 10−2 1.81403 × 10−10

0.4 1.19628 × 10−2 1.44686 × 10−10

0.5 1.00484 × 10−2 1.23817 × 10−10

0.6 8.36381 × 10−3 1.09054 × 10−10

0.7 7.00597 × 10−3 9.69882 × 10−11

0.8 6.12117 × 10−3 8.69367 × 10−11

0.9 5.64602 × 10−3 7.94831 × 10−11

We employ proposed method for solving this problem for k = 2, n = 4 and α = 1, 1
2 .

In Table 2, the absolute error obtained between the our numerical results in α = 1
and 1

2 and the exact solution for various of x . Table 2 demonstrates the validity and
effectively of our method for this problem.

Example 7.3 Consider the following nonlinear fractional equation [10]

Dνu(x) = −u2(x) + 1, 0 < ν ≤ 1,

where

u(0) = 0.

the exact solution for ν = 1 is given by

u(x) = e2x − 1

e2x + 1
.

By employing the our method, the problem reduces to

CTΨ α(x) = −(CT F (ν,α)Ψ α(x))(CT P(ν,α)Ψ α(x))T + ETΨ α(x),

and

1 � ETΨ α(x).

We apply the present approach to solve this problem with n = 4, k = 1. The
approximation solution for this problem by Legendre wavelet method in k = 1, M =
25, ν = 1 is plotted in [10]. From figure in [10] and Fig. 4, we can see that we obtain a
good approximation for the exact solution. In addition, Fig. 4 shows the approximation
solutions obtained for α = ν = 1, n = 4, k = 2 and different values of ν = α using
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Fig. 4 The comparison of y(x) for k = 2, n = 4 and various of α = ν and the exact solution, in Example
7.3

the FGLSF scheme. From these results, it is seen that the approximation solutions
converge to the exact solution.

The exact solutions for the values of ν 
= 1 don’t exist. Therefore, similar to [37]
for indicate an effectiveness of the our method in this example, we consider the norm
of residual error as follows

‖Resn‖2 =
∫ 1

0
Res2n (x)dx .
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Table 3 The ‖Resn‖2 with various values of ν = α for Example 7.3

ν = 0.65 ν = 0.75 ν = 0.85 ν = 0.95

n = 6, k = 1 [37] 5.87081 × 10−6 9.82935 × 10−6 1.99058 × 10−7 3.11952 × 10−8

n = 6, k = 2 8.03667 × 10−8 3.12708 × 10−9 5.15031 × 10−10 3.98973 × 10−11

where

Resn(x) = CTΨ α(x) + (CT P(ν,α)Ψ α(x))(CT P(ν,α)Ψ α(x))T − ETΨ α(x),

Table 3 shows ‖Resn‖2 with some n, k and various values of ν = α. Numerical
results display the advantage of the proposed technique to solve this nonlinear problem.

Fractional delay differential equations

Example 7.4 Consider the following fractional delay differential equation

{
Dν y(x) = y(x − ξ) + f (x), 0 ≤ x ≤ 1,
y(x) = √

x, −ξ ≤ x ≤ 0

where

f (x) =
⎧⎨
⎩

√
π

2 + √
x − ξ, 0 ≤ x < 1

4 ,

ξ − 2
√
x√

π
− x + 8x

3
2

3
√

π
+ (x − ξ)2, 1

4 ≤ x ≤ 1

the analytic solution of this problem for ν = 1
2 , ξ = 0.000001 is

y(x) =
{√

x, 0 ≤ x < 1
4 ,

x2 − x, 1
4 ≤ x ≤ 1

We apply the present method for solving this problem for k = 2, n = 4 and different
values of α. In Table 4, the absolute error achieved between the numerical results
in α = 1, 1

2 and the exact solution for various of x . Table 4 shows the validity and
effectively of the present method for this problem.

Example 7.5 Consider the following fractional delay differential equation for 0 < ν ≤
1 [32] ⎧⎨

⎩
Dν y(x) = y(x − ξ) − y(x) + 2

Γ (3−ν)
x2−ν

− 1
Γ (2−ν)

x1−ν + 2ξ x − ξ2 − ξ, 0 ≤ x ≤ 1,
y(x) = 0, x ≤ 0

The exact solution of this problem is y(x) = x2 − x , when ν = 1.
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Table 4 Comparison of the
absolute error our method for
α = 1, 1

2 in Example 7.4

x α = 1 α = 1
2

0.1 1.3178 × 10−3 7.58573 × 10−8

0.2 1.9939 × 10−3 7.01903 × 10−8

0.3 7.4942 × 10−1 3.52562 × 10−8

0.4 7.2213 × 10−1 1.36233 × 10−8

0.5 4.1689 × 10−3 1.27839 × 10−8

0.6 3.2503 × 10−3 3.38740 × 10−8

0.7 1.6453 × 10−3 7.71325 × 10−7

0.8 2.5623 × 10−3 1.42434 × 10−7

0.9 1.2799 × 10−3 7.94831 × 10−7

Fig. 5 The comparison of our results for n = 2, k = 2, ξ = 0.01 with α = ν and exact solution in
Example 7.5

We employ this method for ν = α = 1, k = 2, n = 2 and various choices of ξ . In
Fig. 5, the approximate solutions obtained for different values of α = ν and the exact
solution in ξ = 0.01 are shown.

Table 5 shows the efficiency and accuracy of FGLSFs to solve this fractional delay
differential equation. From these results, it is seen that the approximate solutions
converge to the exact solution.

Example 7.6 Consider the following fractional delay differential equation

{
Dν y(x) = −y(x) − y(x − 0.3) + e−x+0.3, 0 ≤ x ≤ 1, 2 < ν ≤ 3,
y(x) = 1, y

′
(0) = −1, y

′′
(0) = 1, y(x) = e−x x ≤ 0

The analytic solution of this problem, for ν = 3, is y(x) = e−x .
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Table 5 The absolute errors of our approximation in k = 2, n = 2 with various values of ξ for Example 7.5

ξ = 0.0001 ξ = 0.001 ξ = 0.01

0.1 0 0 0

0.3 2.7756 × 10−17 2.7756 × 10−17 2.7756 × 10−17

0.5 9.9920 × 10−16 1.2212 × 10−15 1.2212 × 10−15

0.7 7.7716 × 10−16 1.2212 × 10−15 1.1102 × 10−15

0.9 5.5511 × 10−16 1.2212 × 10−15 1.1102 × 10−15

Table 6 Comparison of the approximate solution with exact solution in Example 7.6

x Exact solution Hermit wavelet [40] Bernoulli wavelet [32] Our method
n̂ = 25 n̂ = 14 n̂ = 7

0.2 0.81873 0.8187 0.8187 0.81872

0.4 0.67032 0.6703 0.6703 0.67032

0.6 0.54881 0.5488 0.5488 0.54882

0.8 0.44933 0.4493 0.4493 0.44936

Table 6 shows the numerical results obtained for different values of x using our
method in k = 1, n = 6, α = 1 or n̂ = 7, the Hermite wavelet method in n̂ = 25
[40], Bernoulli wavelets method with k = 2, M = 7 or n̂ = 14 [32], and the exact
solution. Also, Fig. 6 displays the approximate solutions obtained with various values
of ν and the exact solution for n = 6, k = 1, α = 1.

Example 7.7 We consider the fractional delay differential equation [17]

Dν y(x) = xy(x − ξ1) + x2y2(x − ξ2) + g(x), 0 ≤ x ≤ 1, 0 < ν ≤ 1,

where y(0) = 1 and

g(x) =
{
x, 0 ≤ x ≤ 1

2 ,
1
2 ,

1
2 ≤ x ≤ 1,

ξ1 =
{

1
2 , 0 ≤ x ≤ 3

4 ,

1
4 ,

3
4 ≤ x ≤ 1,

ξ2 =
{

1
4 , 0 ≤ x ≤ 1

2 ,

3
4 ,

1
2 ≤ x ≤ 1.

The exact solution of this problem for ν = 1 is

y(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 + 1
2 x

2, 0 ≤ x < 1
4 ,

20,373
20,480 + 1

2 x
2 + 11

32 x
3 − 1

16 x
4 + 1

10 x
5, 1

4 ≤ x < 1
2 ,

48,191
61,440 + 1

2 x + 9
16 x

2 − 1
6 x

3 + 1
8 x

4, 1
2 ≤ x < 3

4 ,

1,289,743
1,966,080 + 1

2 x + 14,287
40,960 x

2 + 187
384 x

3 − 1
256 x

4 + 1
24 x

5 + 1
48 x

6, 3
4 ≤ x ≤ 1.
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Fig. 6 The comparison of y(x) for k = 1, n = 6, ν = 3 and various of α and the exact solution, in
Example 7.6

By employing our method for k = 3, n = 7 and α = 1, we obtain the exact
solution.

Example 7.8 This example is a model which is based on the effect of noise on light
which is reflected from laser to mirror has been introduced by Pieroux [30]. Figure 7
shows this model taken from Ref. [23].

{
Dν y(x) = − 1

ε
y(x) + 1

ε
y(x)y(x − ξ), 0 ≤ x ≤ 1,

y(x) = 0.9, −ξ ≤ x ≤ 0
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Fig. 7 Semiconductor laser subject to an optoelectronic feedback. The figure illustrates the optoelectronic
device used by Saboureau et al. [38]. The feedback operates on the pump of the laser by using part of the
output light which is injected into a photodetector connected to the pump. The delay of the feedback is
controlled by changing the length of the optical path [23]

Table 7 The ‖Resn‖2 with various values of ν, α for Example 7.8

ν = α = 1 ν = 0.5, α = 1 α = ν = 0.5

n = 2, k = 2 8.32330 × 10−3 1.62683 × 10−4 1.15286 × 10−9

n = 6, k = 1 3.05355 × 10−6 9.98795 × 10−5 1.20490 × 10−11

The exact solution of this equation is not available [23]. Then to display an efficiency
of the proposedmethod for this problem,wedefine thenormof residual error as follows

Resn(x) = CTΨ α(x) + 1

ε
(CT P(ν,α)Ψ α(x) + 0.9)

−1

ε
(CT P(ν,α)Ψ α(x) + 0.9)(CT P(ν,α)ΩξΨ

α(x) + 0.9)T ,

‖Resn‖2 =
∫ 1

0
Res2n (x)dx .

Table 7 shows ‖Resn‖2 with ε = 0.1, ξ = 0.3, n = 6, k = 1 and various values
of ν = α. This table displays the advantage of the present technique for solving this
nonlinear problem.

8 Conclusion

The purpose of this study is to provide a new set of basis functions for solving
two classes of fractional equations. First, we provide general Lagrange scaling func-
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tions(GLSF). These functions are constructed based on the Lagrange polynomials.
In other words, these functions are introduced regardless of the nodes of Lagrange
polynomials. In continue, using FLPs we introduce a new set of functions that are
called fractional-order general Lagrange scaling functions(FGLSF). In the following,
the fractional integration operational matrix of FGLSFs and delay operational matrix
of FGLSFs are presented. The the operational matrix of fractional integration is cal-
culated using the Laplace transform. Also, we obtain this matrix directly, without
transformation to FLPs. These matrices and the collocation method are used to solve
two classes of problems, the fractional differential equations and fractional delay dif-
ferential equations. Numerical examples demonstrate the ability and effectiveness of
our method. Also, in these numerical examples, we can see that the present method is
convergent.
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