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Abstract
Local discontinuous Galerkin (LDG) methods are popular for convection–diffusion
equations. In LDG methods, we introduce an auxiliary variable p to represent the
derivative of the primary variable u, and solve them on the same mesh. In this paper,
we will introduce a new LDGmethod, and solve u and p on different meshes. The sta-
bility and error estimates will be investigated. The new algorithm is more flexible and
flux-free for pure diffusion equations without introducing additional computational
cost compared with the original LDG methods, since it is not necessary to solve each
equation twice. Moreover, it is possible to construct third-order maximum-principle-
preserving schemes based on the new algorithm. However, one cannot anticipate
optimal accuracy in some special cases. In this paper, we will find out the reason
for accuracy degeneration which further leads to several alternatives to obtain optimal
convergence rates. Finally, several numerical experiments will be given to demonstrate
the stability and optimal accuracy of the new algorithm.
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1 Introduction

In this paper, we aim to construct new local discontinuous Galerkin (LDG) schemes
for solving the following nonlinear convection–diffusion equation

ut + f (u)x = b(u)xx , (1)

or equivalently

ut + f (u)x = (a2(u)ux )x , (2)

as well as their two-dimensional versions, where a2(u) = b′(u) ≥ 0. We also assume
that a(u) ≥ 0. The initial condition is given as u(x, 0) = u0(x).

The discontinuous Galerkin (DG) method was first introduced in 1973 by Reed
and Hill [24] in the framework of neutron linear transport. Subsequently, Cockburn et
al. developed Runge-Kutta discontinuous Galerkin (RKDG) methods for hyperbolic
conservation laws in a series of papers [5–8]. In [9], Cockburn and Shu introduced the
LDG method to solve the convection–diffusion equations. Their idea was motivated
by Bassi and Rebay [1], where the compressible Navier-Stokes equations were suc-
cessfully solved. As in traditional LDG methods, we introduce an auxiliary variable
p to represent a(u)ux and thus can rewrite (2) into the following system of first order
equations

{
ut + f (u)x = (a(u)p)x ,
p = A(u)x ,

(3)

where A(u) = ∫ u a(t) dt . Usually, u and p are solved on the same mesh.
The LDG method is one of the most important numerical methods for convection–

diffusion equations. However, for some special convection–diffusion systems, such as
chemotaxis model [19,22] and miscible displacements in porous media [10,11], the
LDG methods are not easy to construct and analyze. In each of the two models, the
convection term is the product of one of the primary variables and the derivatives of
the another primary variable. Most of the well established numerical fluxes for the
convection terms, such as the upwind fluxes, cannot be applied, since the coefficients
of the convection terms turn out to be discontinuous after the spatial discretization. It
is well known that hyperbolic equations with discontinuous coefficients are in general
not well-posed [13,18]. Therefore, the DG schemes may not be stable when applied
to those model equations. Within the DG framework, there are three different ways to
bridge this gap. Firstly, in [15,20,30] the authors combined the convection terms and
diffusion terms together and obtain the optimal error estimates. The idea was moti-
vated by Wang et. al. [25–27], where ux and the jump of u across the cell interfaces
were proved to be bounded by p. Moreover, to make the numerical solutions to be
physically relevant, we have to add a very large penalty which depends on the numer-
ical approximations of the derivatives of the primary variables [16,20]. The second
approach is to applied the flux-free numerical methods such as the Central DG (CDG)
methods [21]. However, for CDG methods, we have to solve each equation in (3) on
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both the primary and dual meshes, which double the computational cost. The last idea
is to apply the Staggered DG (SDG) methods [3]. However, the method requires some
continuity of the numerical approximations, which is not easy to apply limiters. In
this paper, we introduce a new LDG method, and solve u and p on the primitive and
dual meshes, respectively, and do not require any continuity across the cell interfaces.
Since p is continuous across the cell interfaces in the primitive mesh, we can apply the
upwind fluxes for the convection term for the complicated systems discussed above.

Finally, the most significant advantage of the new algorithm is the construction of
third-order maximum-principle-preserving (MPP) LDG methods. Recently, in Zhang
and Shu [31], genuinely MPP high-order DG schemes for scalar equations and two-
dimensional incompressible flows in vorticity-streamfunction formulation have been
constructed. Subsequently, positivity-preserving high order DG schemes for com-
pressible Euler equations were given in Zhang and Shu [32]. Later, the technique
was applied to other hyperbolic systems, such as pressureless Euler equations [29],
Extended MHD equations [34], relativistic hydrodynamics [23], etc, and the L1 sta-
bility was demonstrated. For parabolic equations, the extension was given in Zhang
and Shu [33], where second-orderMPP discontinuous Galerkin methods were demon-
strated, and the construction of third-order schemes seem to be not straightforward.
Later another approach based on the flux limiter were discussed in [17,28]. In Chen et
al. [2], the third-order MPP direct DG method was introduced. However, the scheme
was not easy to implement and we need to add two penalty terms. In Du and Yang [12],
we applied the new LDG method and constructed third-order MPP schemes. There
is a mild penalty which does not depend on the numerical approximations. Since the
dual meshes can be moved arbitrarily, we also showed that if the dual mesh agree
with the primitive mesh, the penalty coefficient turns out to be infinity. Therefore, our
algorithm does not violate the results given in Zhang and Shu [33].

In contrast to the above advantages, the new LDG method may not have optimal
convergence rates when applied to the pure diffusion equations if the dual mesh is
generated by the midpoint in each cell on the primitive mesh and piecewise odd order
polynomials are applied. This is themain reasonwhy in the SDGmethod the numerical
approximations are required to be continuous across some of the cell interfaces. In this
paper, we will theoretically study the stability and error estimates of new algorithm.
We will demonstrate the reason for the accuracy degeneration and introduce several
alternatives to gain the optimal convergence rates.

The organization of this paper is as follows. In Sect. 2, we construct the new
LDG scheme for nonlinear convection–diffusion equations on overlapping meshes in
one space dimension. The stability and error estimates will be given. The extension to
problems in two space dimensions will be discussed in Sect. 3. Numerical experiments
will be given in Sect. 4 to demonstrate the accuracy and good performance of the new
LDG scheme. Finally, we will end in Sect. 5 with concluding remarks.

2 Numerical scheme for one-dimensional case

In this section,wewill introduce the newLDGmethod for solving the one-dimensional
nonlinear convection–diffusion equation (3) on overlapping meshes.
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Fig. 1 Overlapping meshes

2.1 Overlappingmeshes

Different from the LDG method introduced in Cockburn and Shu [9], in which u and
p are solved on the same mesh, our new method solves (3) on two meshes, as shown
in Fig. 1. For simplicity, we consider periodic boundary conditions and the algorithms
for other boundary conditions will be discussed in the future.

Wefirst define the primitivemesh onwhich the primary variable u is solved. It is just
a decomposition of the computational domain � = [0, 1], which can be non-uniform.
We denote the i-th cell as

Ii =
[
xi− 1

2
, xi+ 1

2

]
, i = 1, . . . , Nx .

The cell length and the cell center of Ii are denoted as

�xi = xi+ 1
2

− xi− 1
2
, xi =

xi− 1
2

+ xi+ 1
2

2
,

respectively. We define �x = maxi �xi . In this paper, we consider regular meshes,
i.e. there exists a positive constant C ≥ 1 such that �x ≤ C mini �xi . Clearly, if
C = 1, then the mesh is uniformly distributed.

Based on the primitive mesh, we move each cell center within the corresponding
cell to obtain a new mesh called the P-mesh, which is used to solve the auxiliary
variable p, i.e. in each cell Ii , we choose a point x̃i given as

x̃i = xi + �xi
2

ξi 0, ξi 0 ∈ [−1, 1], i = 1, . . . , Nx . (4)

For simplicity, we consider ξi 0 to be a constant independent of i and denoted as
ξ0 ∈ [−1, 1]. It is easy to check x̃i ∈ [xi− 1

2
, xi+ 1

2
]. The (i − 1

2 )-th cell of the dual
mesh is defined as

Pi− 1
2

= [x̃i−1, x̃i ], i = 1, . . . , Nx ,

where we denote x̃0 = x̃Nx − 1. We further denote the cell length and the cell center
of Pi− 1

2
as

�x̃i− 1
2

= x̃i − x̃i−1, x̃i− 1
2

= x̃i−1 + x̃i
2

,

respectively. We can easily check that
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min{�xi−1,�xi } ≤ �x̃i− 1
2

≤ max{�xi−1,�xi },

and hence we have maxi �x̃i− 1
2

≤ �x . Due to the periodic boundary condition, we

can also define P1
2

= [0, x̃1] ∪ [x̃Nx , 1]. Therefore, we consider a polynomial on P1
2

as a polynomial on [x̃0, x̃1]. We define the dual mesh to be the P-mesh which consists
of all these P cells. Notice that when ξ0 = 0, we have x̃i = xi and Pi+ 1

2
= [xi , xi+1].

In this case, the cell interfaces of the dual mesh are exactly the cell centers of the
primitive mesh. This kind of mesh is the most commonly used overlapping mesh,
such as in the central discontinuous Galerkin (CDG) method [21]. When ξ0 = 1, we
have x̃i = xi+ 1

2
and hence the P-mesh is the same as the primitive mesh.

2.2 Norms

In this section, we proceed to define some norms to be used throughout the paper.
For any interval I , we define ‖u‖I and ‖u‖∞,I to be the standard L2- and L∞-norm

of u on I , respectively. For any natural number �, we consider the norm of the Sobolev
space H �(I ), defined by

‖u‖�,I =
⎧⎨
⎩

∑
0≤β≤�

∥∥∥∥∂βu

∂xβ

∥∥∥∥
2

I

⎫⎬
⎭

1
2

.

For convenience, if I is the whole computational domain, then the corresponding
subscript will be omitted.

Moreover, for any u ∈ C(Ii ), we define

‖u‖�i = |u−
i+ 1

2
| + |u+

i− 1
2
|,

Similarly, for any u ∈ C(Pi− 1
2
), we define

‖u‖�
i+ 1

2
= |u−

i | + |u+
i−1|.

2.3 LDGmethod on overlappingmeshes

In this section, we introduce the LDG methods for the following pure diffusion equa-
tion

{
ut = (a(u)p)x ,
p = A(u)x ,

(5)

where A(u) = ∫ u a(t)dt . We define the finite element spaces to be

Vh := {uh : uh |Ii ∈ Pk(Ii ), i = 1, . . . , Nx },
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Ph := {ph : ph |P
i− 1

2
∈ Pk(Pi− 1

2
), i = 1, . . . , Nx }.

Bymultiplying (5) with test functions and using the integration by parts, our new LDG
method on overlapping meshes is defined as follows: find (uh, ph) ∈ Vh × Ph , such
that for any test functions (v,w) ∈ Vh × Ph , we have

∫
Ii
(uh)tvdx = −

∫
Ii
a(uh)phvxdx + âi+ 1

2
p̂i+ 1

2
v−
i+ 1

2
− âi− 1

2
p̂i− 1

2
v+
i− 1

2
, (6)

∫
P
i− 1

2

phwdx = −
∫
P
i− 1

2

A(uh)wxdx + A(uh(x̃i ))w
−
i − A(uh(x̃i−1))w

+
i−1. (7)

where v−
i+ 1

2
= v−(xi+ 1

2
) and w−

i = w−(x̃i ). Likewise for v+
i− 1

2
and w+

i−1. For sim-

plicity, we denote v−
1
2

= v−
Nx+ 1

2
and v+

Nx+ 1
2

= v+
1
2
. The numerical flux â at the point

xi+ 1
2
is taken as

âi+ 1
2

=
[A(uh)]i+ 1

2

[uh]i+ 1
2

, (8)

where [s]i+ 1
2

:= s+
i+ 1

2
− s−

i+ 1
2
denotes the jump of a function s across the cell interface

x = xi+ 1
2
. Similarly, we can also denote the jump of w across x = x̃i on the P-mesh

as [w]i = w+
i − w−

i . Notice that ph is continuous at the interfaces of the primitive
cells and hence ph(xi+ 1

2
) is well defined. We choose the numerical flux p̂i+ 1

2
as the

value of ph evaluated at x = xi+ 1
2
with a penalty term

p̂i+ 1
2

= ph(xi+ 1
2
) +

αi+ 1
2

�x̃i+ 1
2

[uh]i+ 1
2
. (9)

Remark 1 The parameter αi+ 1
2
in (9) is used for optimal rates of convergence and the

maximum-principle-preserving technique introduced in Du and Yang [12].

Finally, we would like to define

Hu(uh, ph, v) = −
Nx∑
i=1

∫
Ii
a(uh)phvxdx −

Nx∑
i=1

âi− 1
2
p̂i− 1

2
[v]i− 1

2
, (10)

Hp(uh, w) = −
Nx∑
i=1

∫
P
i− 1

2

A(uh)wxdx −
Nx∑
i=1

A(uh(x̃i ))[w]i , (11)
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which would be useful in the stability analysis and error estimates. With the above
notations, the LDG scheme can be rewritten as

∫
�

(uh)tvdx = Hu(uh, ph, v), (12)
∫

�

phwdx = Hp(uh, w). (13)

2.4 Stability analysis

In this section, we proceed to demonstrate the stability of the new LDG method. We
would start with the following lemma.

Lemma 1 Suppose Hu and Hp are defined in (10) and (11), respectively, then we have

Hu(uh, ph, uh) + Hp(uh, ph) = −
Nx∑
i=1

[A(uh)]i− 1
2

[uh]i− 1
2

αi− 1
2
[uh]2i− 1

2

�x̃i− 1
2

= −
Nx∑
i=1

αi− 1
2
[A(uh)]i− 1

2
[uh]i− 1

2

�x̃i− 1
2

. (14)

Proof Taking w = ph in (11) and using integration by parts, we obtain

Hp(uh , ph) = −
Nx∑
i=1

∫
P
i− 1

2

A(uh)(ph)x dx −
Nx∑
i=1

A(uh(x̃i ))[ph ]i

= −
Nx∑
i=1

∫ x
i− 1

2

x̃i−1

A(uh)(ph)x dx −
Nx∑
i=1

∫ x̃i

x
i− 1

2

A(uh)(ph)x dx −
Nx∑
i=1

A(uh(x̃i ))[ph ]i

=
Nx∑
i=1

∫ x
i− 1

2

x̃i−1

a(uh)(uh)x phdx +
Nx∑
i=1

∫ x̃i

x
i− 1

2

a(uh)(uh)x phdx +
Nx∑
i=1

[A(uh)]i− 1
2
ph

(
xi− 1

2

)

=
Nx∑
i=1

∫
Ii
a(uh)(uh)x phdx +

Nx∑
i=1

[A(uh)]i− 1
2
ph

(
xi− 1

2

)
. (15)

Taking v = uh in (10), we obtain

Hu(uh, ph, uh) = −
Nx∑
i=1

∫
Ii
a(uh)ph(uh)xdx

−
Nx∑
i=1

[A(uh)]i− 1
2

[uh]i− 1
2

(
ph

(
xi− 1

2

) +
αi− 1

2

�x̃i− 1
2

[uh]i− 1
2

)
[uh]i− 1

2
.

(16)

Summing (15) and (16), we have (14). 
�
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By the definition of A(u) in (5), we can easily check
[A(uh)]i+ 1

2[uh ] j+ 1
2

≥ 0, which further

leads to the L2 stability of the LDG method on overlapping meshes. The proof is
straightforward, sowe omit it and only demonstrate the result as the following theorem.

Theorem 1 The LDG method introduced in (6) and (7) is stable and

1

2

d

dt
‖uh‖2 + ‖ph‖2 ≤ 0.

Remark 2 The above theorem is valid for all αi− 1
2

≥ 0. Especially, we can take the
penalty parameterαi− 1

2
= 0 for all i = 1, 2, . . . , Nx .However, numerical experiments

demonstrate that, this may lead to accuracy degeneration in some special cases.

2.5 Error estimates

In this section, we proceed to the error estimates. For simplicity, we consider linear
equations only, e.g. a(u) = 1 (A(u)=u), then (6) and (7) become

∫
Ii
(uh)tvdx = −

∫
Ii
phvxdx + p̂i+ 1

2
v−
i+ 1

2
− p̂i− 1

2
v+
i− 1

2
, (17)

∫
P
i− 1

2

phwdx = −
∫
P
i− 1

2

uhwxdx + uh(x̃i )w
−
i − uh(x̃i−1)w

+
i−1. (18)

Moreover, Hu in (10) can also be written as

Hu(uh, ph, v) = −
Nx∑
i=1

∫
Ii
phvxdx −

Nx∑
i=1

p̂i− 1
2
[v]i− 1

2
. (19)

We denote the error as eu = u − uh and ep = p − ph , then the error equations are

∫
Ii
(eu)tvdx = −

∫
Ii
epvxdx + êpi+ 1

2
v−
i+ 1

2
− êpi− 1

2
v+
i− 1

2
, (20)

∫
P
i− 1

2

epwdx = −
∫
P
i− 1

2

euwxdx + eu(x̃i )w
−
i − eu(x̃i−1)w

+
i−1. (21)

We first study some basic properties of the finite element space. Let us start with the
classical inverse properties.

Lemma 2 Assuming uh ∈ Vh, then there exists a constant C > 0 independent of �x
and uh such that for α ≥ 1

‖∂α
x uh‖Ii ≤ C�x−α

i ‖uh‖Ii , ‖uh‖�i ≤ C�x−1/2
i ‖uh‖Ii .
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Similarly, for any uh ∈ Ph, there exists a constant C > 0 independent of �x and uh
such that for α ≥ 1

‖∂α
x uh‖P

i+ 1
2

≤ C�x̃−α

i+ 1
2
‖uh‖P

i+ 1
2

‖uh‖�
i+ 1

2
≤ C�x̃−1/2

i+ 1
2

‖uh‖P
i+ 1

2
.

We also introduce the standard L2 projection P1
k into Vh and P2

k into Ph by:

∫
Ii
P1
k uv dx =

∫
Ii
uv dx , ∀v ∈ Pk(Ii ), and

∫
P
i+ 1

2

P2
k uv dx =

∫
P
i+ 1

2

uv dx , ∀v ∈ Pk(Pi+ 1
2
),

respectively. By the scaling argument, we obtain the following lemma [4].

Lemma 3 Suppose the function u(x) ∈ Ck+1(Ii ), then there exists a positive constant
C independent of �x and u, such that

‖u − P1
k u‖Ii + �xi‖(u − P1

k u)x‖Ii + �x
1
2
i ‖u − P1

k u‖∞,Ii ≤ C�xk+1
i ‖u‖k+1,Ii .

Moreover, if u(x) ∈ Ck+1(Pi+ 1
2
), then there exists a positive constant C independent

of �x and u, such that

‖u − P2
k u‖P

i+ 1
2

+ �x̃i+ 1
2
‖(u − P2

k u)x‖P
i+ 1

2
+ �x̃

1
2

i+ 1
2
‖u − P2

k u‖∞,P
i+ 1

2

≤ C�x̃ k+1
i+ 1

2
‖u‖k+1,P

i+ 1
2
,

where ‖u‖k+1,I is the standard Hk+1-norm over the interval I .

As the general treatment of the DG methods, we write the errors as

eu = ηu − ξu ep = ηp − ξp,

where

ηu = u − P1
k u, ξu = uh − P1

k u, ηp = p − P2
k p, ξp = ph − P2

k p.

With the above notations, we can rewrite the error equations (20) and (21) as

∫
Ii
(ξu)tvdx =

∫
Ii
epvxdx − êpi+ 1

2
v−
i+ 1

2
+ êpi− 1

2
v+
i− 1

2
, (22)

∫
P
i+ 1

2

ξpwdx =
∫
P
i+ 1

2

euwxdx − eu(x̃i+1)w
−
i+1 + eu(x̃i )w

+
i . (23)

Now, we can state the main theorem.
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Theorem 2 Suppose the exact solution u ∈ Ck+2(�) and the finite element space is
made up of piecewise polynomial of degree k in each cell. The numerical solutions
satisfy (17) and (18). Then the error between the numerical and exact solutions satisfy

‖eu‖ +
∫ T

0
‖ep‖ dt ≤ C�xk,

where C is independent of �x.

Proof Sum up (22) and (23) with v = ξu and w = ξp, and then sum up over i to
obtain

1

2

d

dt
‖ξu‖2 + ‖ξp‖2 =

Nx∑
i=1

∫
Ii
(ηp − ξp)(ξu)xdx

+
Nx∑
i=1

(
ηpi− 1

2
− ξpi− 1

2
+ αi− 1

2

[ηu − ξu]i− 1
2

�x̃i− 1
2

)
[ξu]i− 1

2

+
Nx∑
i=1

∫
P
i− 1

2

(ηu − ξu)(ξp)xdx +
Nx∑
i=1

(ηu − ξu)(x̃i )[ξp]i

=
Nx∑
i=1

∫
Ii

ηp(ξu)xdx +
Nx∑
i=1

(
ηpi− 1

2
+

αi− 1
2
[ηu]i− 1

2

�x̃i− 1
2

)
[ξu]i− 1

2

+
Nx∑
i=1

∫
P
i− 1

2

ηu(ξp)xdx +
Nx∑
i=1

ηu(x̃i )[ξp]i + Hu(ξu, ξp, ξu)

+Hp(ξu, ξp) = R1 + R2 + R3, (24)

where

R1 =
Nx∑
i=1

∫
Ii

ηp(ξu)xdx +
Nx∑
i=1

∫
P
i− 1

2

ηu(ξp)xdx,

R2 =
Nx∑
i=1

αi− 1
2
[ηu]i− 1

2

�x̃i− 1
2

[ξu]i− 1
2

+ Hu(ξu, ξp, ξu) + Hp(ξu, ξp),

R3 =
Nx∑
i=1

ηpi− 1
2
[ξu]i− 1

2
+

Nx∑
i=1

ηu(x̃i )[ξp]i .
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Now we estimate Ri i = 1, 2, 3 term by term.

R1 ≤
Nx∑
i=1

(
‖ηp‖Ii ‖(ξu)x‖Ii + ‖ηu‖P

i− 1
2
‖(ξp)x‖P

i− 1
2

)

≤
Nx∑
i=1

(
‖ηp‖P

i− 1
2
∪P

i+ 1
2
‖(ξu)x‖k+1,Ii + ‖ηu‖k+1,Ii−1∪Ii ‖(ξp)x‖P

i− 1
2

)

≤ C�xk
Nx∑
i=1

((
‖p‖k+1,P

i− 1
2

+ ‖p‖k+1,P
i+ 1

2

)
‖ξu‖Ii

+ (‖u‖k+1,Ii−1 + ‖u‖k+1,Ii

) ‖ξp‖P
i− 1

2

)

≤ C�xk
(‖p‖k+1‖ξu‖ + ‖u‖k+1‖ξp‖

)
. (25)

where in the first step, we applied Cauchy-Schwarz inequality, in the second step we
used Lemmas 2 and 3, and the last step follows from Cauchy-Schwarz inequality
again. Applying Lemma 1, we obtain the estimate of R2

R2 ≤
Nx∑
i=1

αi− 1
2

�x̃i− 1
2

(
[ηu]i− 1

2
[ξu]i− 1

2
− [ξu]2i− 1

2

)

≤ C
Nx∑
i=1

αi− 1
2

�x
[ηu]2i− 1

2

≤ C
Nx∑
i=1

αi− 1
2
�x2k

(
‖u‖2Ii−1

+ ‖u‖2Ii
)

,

≤ C�x2k, (26)

where in step 3, we applied Lemma 3, steps 2 and 4 follow from direct computation.
Finally, we estimate R3.

R3 ≤
Nx∑
i=1

‖ηp‖∞,P
i− 1

2

(‖ξu‖�i−1 + ‖ξu‖�i

) +
Nx∑
i=1

‖ηu‖∞,Ii

(
‖ξp‖�

i− 1
2

+ ‖ξp‖�
i+ 1

2

)

≤ C�xk
Nx∑
i=1

(
‖p‖k+1,P

i− 1
2

(‖ξu‖Ii−1 + ‖ξu‖Ii
) + ‖u‖k+1,Ii

(
‖ξp‖P

i− 1
2

+ ‖ξp‖P
i+ 1

2

))

≤ C�xk
(‖p‖k+1‖ξu‖ + ‖u‖k+1‖ξp‖

)
, (27)

where step 1 is straightforward, step 2 follows from Lemmas 2 and 3, and in the
last step we applied the Cauchy–Schwarz inequality. Substitute (25)–(27) into (24) to
obtain

1

2

d

dt
‖ξu‖2 + ‖ξp‖2 ≤ C�x2k + C�xk

(‖ξu‖ + ‖ξp‖
)
,
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which further yields

d

dt
‖ξu‖2 + ‖ξp‖2 ≤ C�x2k + ‖ξu‖2.

Finally, we can apply the Gronwall’s inequality and complete the proof. 
�
In Theorem 2, we only proved suboptimal convergence rate. Numerical experiments
in Sect. 4 demonstrate that in some cases the order of accuracy is exactly k. In the
traditional error estimates, one would like to study the steady state problem, and
construct the elliptic projection. We can show that the elliptic projection may not
exist. To explain this point, we use uniform meshes and denote �x as the mesh size
for both the primitive and P-meshes. We consider the following steady state problem

px = 0, p = ux ,

subject to periodic boundary condition. To make the problem well-posed, we need
another assumption that

∫
�
u(x) dx = 0. Then the numerical scheme turns out to be

0 = −
∫
Ii
phvxdx + p̂i+ 1

2
v−
i+ 1

2
− p̂i− 1

2
v+
i− 1

2
, (28)

∫
P
i+ 1

2

phwdx = −
∫
P
i+ 1

2

uhwxdx + uh(x̃i+1)w
−
i+1 − uh(x̃i )w

+
i . (29)

We take ξ0 = 0 in (4), i.e. the dual mesh is constructed by using the midpoint of
the primitive mesh and αi− 1

2
= 0 for all i = 1, 2, . . . , Nx . Moreover, we use P1

polynomials and assume

uh(x) = u0i + u1i Li (x), x ∈ Ii ,

ph(x) = p0
i+ 1

2
+ p1

i+ 1
2
Li+ 1

2
(x), x ∈ Pi+ 1

2
,

where Li (x) and Li+ 1
2
(x) are the scaled Legendre polynomial in cell Ii and Pi+ 1

2
,

respectively. Take v(x) = 1 and v(x) = Li (x) in (28), respectively, to obtain

0 = p0
i+ 1

2
− p0

i− 1
2
, 0 = −p0

i− 1
2

− 1

2
p1
i− 1

2
− p0

i+ 1
2

+ 1

2
p1
i+ 1

2
+ p0

i+ 1
2

+ p0
i− 1

2
,

(30)

which further yield

p0
i+ 1

2
= p0

i− 1
2
, p1

i+ 1
2

= p1
i− 1

2
.

Take w(x) = 1 and w(x) = Li+ 1
2
(x) in (29), respectively to obtain

�xp0
i+ 1

2
= u0i+1 − u0i ,

�x

3
p1
i+ 1

2
= −1

2
u1i + 1

2
u1i+1. (31)
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Clearly, (30) and (31) are not uniquely solvable, one nontrivial solution could be
uh(x) = Li (x) in Ii and ph = 0. It is easy to check that

∫
�
uh dx = 0. Therefore, for

the special case given above, the traditional elliptic projection does not exist, and the
LDG method cannot be used to solve the steady state problems. For time-dependent
problems, though the numerical approximations exist, numerical experiments demon-
strate only a suboptimal convergence rate. However, some slight modification of the
scheme can yield optimal convergence rates. They are listed as follows:

1. Use even order polynomials, i.e. k = 0, 2, . . .;
2. Take ξ0 = 0 with α = 0;
3. Take ξ0 = 0;

Besides the above, for convection–diffusion equations, we can always obtain optimal
rates of convergence even though we take ξ0 = α = 0.

3 Numerical scheme for two-dimensional case

In this section, we will construct the LDG scheme on overlapping meshes in two space
dimensions and study the following PDE over the domain � = [0, 1] × [0, 1],

⎧⎨
⎩
ut = (a(u)p)x + (b(u)q)y,

p = A(u)x ,

q = B(u)y,

(32)

subject to periodic boundary conditions, where A(u) = ∫ u a(t)dt and B(u) =∫ u b(t)dt .
We first define the primitive mesh for the primary variable u which is a regular

rectangular decomposition of �. Let 0 = x 1
2

< x 3
2

< · · · < xNx+ 1
2

= 1 and
0 = y 1

2
< y 3

2
< · · · < yNy+ 1

2
= 1 be the grid points in x and y directions, respectively,

and denote the i, j-th cell as

Ii j = Ii × J j , i = 1, . . . , Nx , j = 1, . . . , Ny .

where Ii = [xi− 1
2
, xi+ 1

2
] and J j = [y j− 1

2
, y j+ 1

2
]. Moreover, we denote

�xi = xi+ 1
2

− xi− 1
2
, xi =

xi− 1
2

+ xi+ 1
2

2
, �y j = y j+ 1

2
− y j− 1

2
, y j =

y j− 1
2

+ y j+ 1
2

2
.

and

�x = max
i

�xi , �y = max
j

�y j , h = max{�x,�y}
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We also move each cell horizontally to obtain the P-mesh: Pi− 1
2 , j = [x̃i−1, x̃i ] ×

[y j− 1
2
, y j+ 1

2
], where

x̃i = xi + �xi
2

ξ0, ξ0 ∈ [−1, 1], i = 1, 2, . . . , Nx , (33)

with x̃0 = x̃Nx − 1. Similarly, we can define the Q-mesh: Qi, j− 1
2

= [xi− 1
2
, xi+ 1

2
] ×

[ỹ j−1, ỹ j ], where

ỹ j = y j + �y j
2

η0, η0 ∈ [−1, 1], j = 1, 2, . . . , Ny, (34)

with ỹ0 = ỹNy − 1. The P-mesh and Q-mesh are used to solve the auxiliary variables
p and q, respectively. Similar to the problem in one space dimension, we can also
define P1

2 , j = ([0, x̃1] ∪ [x̃Nx , 1]) × J j and Q j, 12
= Ii × ([0, ỹ1] ∪ [ỹNy , 1]).

We define the finite element spaces to be

Vh := {uh : uh |Ii j ∈ Pk(Ii j ), i = 1, . . . , Nx , j = 1, . . . , Ny},
Ph := {ph : ph |P

i+ 1
2 , j

∈ Pk(Pi+ 1
2 , j ), i = 1, . . . , Nx , j = 1, . . . , Ny},

Qh := {qh : qh |Q
i, j+ 1

2
∈ Pk(Qi, j+ 1

2
), i = 1, . . . , Nx , j = 1, . . . , Ny}.

Given u ∈ Vh , we denote u
+
i− 1

2 , j
, u−

i+ 1
2 , j

, u+
i, j− 1

2
, u−

i, j+ 1
2
to be the traces of u on the four

edges of Ii j , respectively. Likewise for the traces of Pi+ 1
2 , j along the vertical edges

and those of Qi, j+ 1
2
along the horizontal edges. Moreover, we use [u] = u+ −u− and

{u} = 1
2 (u

+ + u−) as the jump and average of u at the cell interfaces, respectively.
Now,we can introduce the LDGmethod on overlappingmeshes: find (uh , ph, qh) ∈

Vh × Ph × Qh , such that for any test functions (v,w, z) ∈ Vh × Ph × Qh , we have

∫
Ii j

(uh)tvdxdy = −
∫
Ii j

a(uh)phvxdxdy +
∫
J j
âi+ 1

2 , j p̂i+ 1
2 , jv

−
i+ 1

2 , j
dy

−
∫
J j
âi− 1

2 , j p̂i− 1
2 , jv

+
i− 1

2 , j
dy,

−
∫
Ii j

b(uh)qhvydxdy +
∫
Ii
b̂i, j+ 1

2
q̂i, j+ 1

2
v−
i, j+ 1

2
dx

−
∫
Ii
b̂i, j− 1

2
q̂i, j− 1

2
v+
i, j− 1

2
dx, (35)

∫
P
i+ 1

2 , j

phwdxdy = −
∫
P
i+ 1

2 , j

A(uh)wxdxdy +
∫
J j

A(uh(x̃i+1))w
−
i+1dy

−
∫
J j

A(uh(x̃i ))w
+
i dy, (36)
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∫
Q
i, j+ 1

2

phzdxdy = −
∫
Q
i, j+ 1

2

B(uh)zydxdy +
∫
Ii
B(uh(ỹ j+1))z

−
j+1dx

−
∫
Ii
B(uh(ỹ j ))z

+
j dx . (37)

The numerical flux â along the edge x = xi+ 1
2
is taken as

âi+ 1
2 , j =

[A(uh)]i+ 1
2 , j

[uh]i+ 1
2 , j

Similarly, the numerical flux b̂ along the edge y = y j+ 1
2
is taken as

b̂i, j+ 1
2

=
[B(uh)]i, j+ 1

2

[uh]i, j+ 1
2

,

where [s]i+ 1
2 , j := s+

i+ 1
2 , j

− s−
i+ 1

2 , j
denotes the jump of a function s across the cell

boundary {xi+ 1
2
} × J j . Likewise for [s]i, j+ 1

2
. Moreover, we choose

p̂i+ 1
2 , j = ph(xi+ 1

2
, y) +

αi+ 1
2 , j

�x̃i+ 1
2 , j

[uh]i+ 1
2 , j ,

q̂i, j+ 1
2

= qh(x, y j+ 1
2
) +

αi, j+ 1
2

�x̃i, j+ 1
2

[uh]i, j+ 1
2

Following the same analyses for problems in one space dimension, we can obtain
the stability analysis and error estimates. Therefore, we will skip the proof and only
demonstrate the results in the following two theorems.

Theorem 3 The LDG methods introduced in (35)–(37) is stable and

1

2

d

dt
‖uh‖2 + ‖ph‖2 + ‖qh‖2 ≤ 0.

Theorem 4 Suppose the exact solution for linear parabolic equation (32)with a(u) =
b(u) = 1 satisfies u ∈ Ck+1(�) and the finite element space is made up of piecewise
polynomial of degree k in each cell. The numerical solutions satisfy (35)–(37). Then
the error between the numerical and exact solutions satisfy

‖u − uh‖ +
∫ T

0
(‖p − ph‖ + ‖q − qh‖) dt ≤ Chk,

where C is independent of h.
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Table 1 Example 1: midpoint, uniform mesh

k Number
of cells

No penalty α = 0.2

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 3.36E−02 – 7.43E−02 – 8.05E−03 – 1.76E−02 –

20 1.68E−02 1.00 3.73E−02 0.99 1.45E−03 2.47 2.84E−03 2.63

1 40 8.42E−03 1.00 1.87E−02 1.00 3.00E−04 2.27 5.46E−04 2.38

80 4.21E−03 1.00 9.34E−03 1.00 7.02E−05 2.10 1.40E−04 1.96

160 2.10E−03 1.00 4.67E−03 1.00 1.72E−E−05 2.03 3.54E−05 1.99

10 3.05E−04 – 8.61E−04 – 2.56E−04 – 6.86E−04 –

20 3.85E−05 2.99 1.11E−E−04 2.95 3.21E−05 3.00 8.99E−05 2.93

2 40 4.83E−06 3.00 1.40E−05 2.99 4.02E−06 3.00 1.14E−05 2.98

80 6.04E−E−07 3.00 1.75E−06 3.00 5.03E−07 3.00 1.43E−E−06 3.00

160 7.55E−08 3.00 2.19E−07 3.00 6.28E−08 3.00 1.79E−07 3.00

10 8.53E−06 – 1.50E−05 – 8.61E−06 – 1.42E−05 –

20 5.69E−07 3.91 1.12E−06 3.75 5.29E−07 4.02 8.80E−07 4.01

3 40 4.30E−08 3.72 9.91E−08 3.49 3.29E−08 4.01 5.51E−08 4.00

80 4.05E−09 3.41 1.08E−08 3.20 2.06E−09 4.00 3.45E−09 4.00

160 4.55E−10 3.15 1.29E−09 3.06 1.28E−10 4.00 2.15E−10 4.00

10 6.55E−07 – 1.84E−06 – 2.28E−07 – 5.80E−07 –

20 1.84E−08 5.16 5.19E−08 5.15 7.04E−09 5.02 1.95E−08 4.90

4 40 5.60E−10 5.04 1.58E−09 5.03 2.19E−10 5.01 6.20E−10 4.97

80 1.74E−11 5.01 4.92E−11 5.01 6.82E−12 5.00 1.95E−11 4.99

160 5.43E−13 5.00 1.54E−12 5.00 2.13E−13 5.00 6.12E−13 4.99

4 Numerical examples

In this section, we will use numerical experiments to demonstrate the stability and
the accuracy of the new LDG method on overlapping meshes. In all the numerical
experiments, we use piecewise polynomials of degree k = 1, 2, 3, 4. If not otherwise
stated we consider third-order SSP Runge-Kutta time discretization [14] with �t =
0.1�x2 if k = 1, 2 and �t = 0.01�x2 if k = 3, 4 to reduce the time error, and
take the final time T = 1. Moreover, the random mesh is generated by randomly and
independently perturbing each node in a uniform mesh by up to 20%.

Example 1 We solve the following heat equation in one space dimension

{
ut = uxx ,
u(x, 0) = sin(x),

x ∈ [0, 2π ]. (38)

Clearly, the exact solution is

u(x, t) = e−t sin(x).
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Table 2 Midpoint, random mesh (20%)

k Number
of cells

No penalty α = 0.2

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 3.99E−02 – 1.19E−01 – 8.30E−03 – 2.22E−02 –

20 1.82E−02 1.19 4.56E−02 1.45 1.51E−03 2.61 3.33E−03 2.90

1 40 9.13E−03 1.02 2.52E−02 0.88 3.50E−04 2.56 1.06E−03 2.00

80 4.55E−03 1.08 1.50E−02 0.80 7.93E−05 1.95 2.49E−04 1.90

160 2.28E−03 0.98 7.55E−03 0.98 1.95E−05 2.21 6.04E−05 2.23

10 3.25E−04 – 1.34E−03 – 3.27E−04 – 1.05E−03 –

20 4.66E−05 2.60 1.69E−04 2.77 3.74E−05 2.99 1.51E−04 2.66

2 40 5.64E−06 3.01 2.33E−05 2.82 5.04E−06 3.14 2.25E−05 2.99

80 7.37E−07 3.00 3.20E−06 2.93 6.02E−07 3.22 2.24E−06 3.49

160 9.50E−08 3.23 4.17E−07 3.21 7.92E−08 2.96 3.55E−07 2.69

10 1.44E−05 – 5.43E−05 – 1.70E−05 – 4.17E−05 –

20 1.22E−06 3.83 4.64E−06 3.81 7.59E−07 3.96 1.95E−06 3.90

3 40 1.05E−07 3.41 4.22E−07 3.34 5.58E−08 4.23 1.65E−07 4.01

80 1.40E−08 2.97 6.75E−08 2.70 3.08E−09 4.22 1.07E−08 3.98

160 1.57E−09 3.38 7.61E−09 3.37 1.93E−10 4.06 7.56E−10 3.89

10 1.04E−06 – 3.75E−06 – 3.00E−07 – 1.20E−06 –

20 3.67E−08 5.41 2.30E−07 4.52 1.23E−08 5.20 5.41E−08 5.05

4 40 1.12E−09 5.53 8.64E−09 5.21 3.24E−10 5.40 1.33E−09 5.49

80 3.84E−11 5.01 2.99E−10 4.99 1.01E−11 4.84 6.59E−11 4.20

160 1.16E−12 4.68 6.21E−12 5.18 3.30E−13 5.07 2.09E−12 5.10

We consider uniform mesh and take ξ0 = 0 in (4), i.e. the dual mesh is generated by
using themidpoint of the primitivemesh.We compute the error between the numerical
and exact solutions and the results under the L2- and L∞-norms are given in Table 1.

From the table, we can only observe suboptimal accuracy if k is an odd number
and the penalty parameter α = 0. To obtain optimal convergence rates, we can choose
α = 0 or use even order polynomials. We repeat the same example with random
meshes with results given in Table 2, we can observe exactly the same convergence
rates discussed above.

Another possible way to recover optimal convergence rates would be taking ξ0 = 0.
In Tables 3 and 4, we take α = 0, and choose ξ0 = 0.05 which is close to 0 and
ξ0 = √

3/3 which is away from 0. We can clearly observe optimal convergence rates.
Moreover, the errors for ξ0 = √

3/3 is less than those for ξ0 = 0.05.

Example 2 We solve the following convection–diffusion equation

{
ut + ux = uxx ,
u(x, 0) = sin(x),

x ∈ [0, 2π ]. (39)
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Table 3 ξ0 = 0.05 and ξ0 = √
3/3, uniform mesh

k Number
of cells

ξ0 = 0.05 ξ0 = √
3/3

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 3.13E−02 – 7.06E−02 – 3.82E−03 – 9.09E−03 –

20 1.29E−02 1.28 2.96E−02 1.25 9.56E−04 2.00 2.21E−03 2.04

1 40 3.75E−03 1.78 8.72E−03 1.77 2.39E−04 2.00 5.53E−04 2.00

80 8.46E−04 2.15 2.00E−03 2.12 5.98E−05 2.00 1.38E−04 2.00

160 1.98E−04 2.10 4.72E−04 2.08 1.49E−05 2.00 3.46E−05 2.00

10 3.08E−04 – 9.12E−04 – 3.09E−04 – 1.03E−03 –

20 3.88E−05 2.99 1.17E−04 2.96 3.76E−05 3.04 1.26E−04 3.03

2 40 4.85E−06 3.00 1.47E−05 2.99 4.67E−06 3.01 1.57E−05 3.01

80 6.07E−07 3.00 1.84E−06 3.00 5.83E−07 3.00 1.96E−06 3.00

160 7.59E−08 3.00 2.30E−07 3.00 7.28E−08 3.00 2.44E−07 3.00

10 2.12E−05 – 7.02E−05 – 6.01E−05 – 2.02E−04 –

20 3.36E−06 2.66 1.06E−05 2.72 3.85E−06 3.97 1.33E−05 3.93

3 40 2.73E−07 3.62 8.54E−07 3.64 2.21E−07 4.12 7.73E−07 4.10

80 1.74E−08 3.98 5.42E−08 3.98 1.33E−08 4.06 4.66E−08 4.05

160 1.09E−09 3.99 3.40E−09 3.99 8.20E−10 4.02 2.88E−09 4.02

10 6.71E−07 – 1.96E−06 – 4.75E−07 – 1.45E−06 –

20 1.87E−08 5.17 5.48E−08 5.16 1.48E−08 5.00 4.71E−08 4.94

4 40 5.69E−10 5.04 1.67E−09 5.04 4.63E−20 5.00 1.49E−09 4.99

80 1.77E−11 5.01 5.19E−11 5.01 1.45E−12 5.00 4.65E−11 5.00

160 5.51E−13 5.00 1.62E−12 5.00 4.53E−13 5.00 1.46E−12 5.00

Clearly, the exact solution is

u(x, t) = e−t sin(x − t).

We consider random meshes only and use upwind fluxes for the convection term. We
take ξ0 = α = 0 to test the accuracy and the results are given in Table 5. From the
table, we can observe optimal convergence rates.

Example 3 We solve the heat equation in two space dimensions:

{
ut = uxx + uyy,

u(x, 0) = sin(x) cos(y),
(x, y) ∈ [0, 2π ] × [0, 2π ]. (40)

Clearly, the exact solution is

u(x, t) = e−2t sin(x) cos(y).
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Table 4 ξ0 = 0.05 and ξ0 = √
3/3, random mesh (20%)

k Number
of cells

ξ0 = 0.05 ξ0 = √
3/3

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 3.82E−02 – 1.06E−01 – 4.24E−03 – 1.41E−02 –

20 1.38E−02 1.43 3.72E−02 1.47 1.08E−03 2.23 3.85E−03 2.11

1 40 3.97E−03 1.80 1.15E−02 1.69 2.81E−04 2.23 1.30E−03 1.80

80 9.28E−04 2.21 2.75E−03 2.18 7.05E−05 1.92 2.66E−04 2.20

160 2.20E−04 2.12 7.76E−04 1.86 1.71E−05 2.12 7.70E−05 1.86

10 4.91E−04 – 1.61E−03 – 4.37E−04 – 2.05E−03 –

20 5.71E−05 3.26 2.67E−04 2.72 5.29E−05 2.79 2.62E−04 2.72

2 40 6.14E−06 3.19 3.05E−05 3.10 6.00E−06 3.97 3.53E−05 3.65

80 7.45E−07 2.86 3.15E−06 3.08 8.31E−07 2.98 5.55E−06 2.78

160 9.47E−08 3.03 4.89E−07 2.74 1.14E−07 2.62 9.08E−07 2.38

10 2.40E−05 – 9.34E−05 – 7.52E−05 – 3.19E−04 –

20 5.36E−06 2.39 2.84E−05 1.89 4.67E−06 4.10 1.58E−05 4.43

3 40 3.57E−07 3.93 1.76E−06 4.04 2.78E−07 4.56 1.11E−06 4.29

80 2.79E−08 4.02 1.79E−07 3.60 1.82E−08 4.00 8.01E−08 3.86

160 1.74E−09 3.90 1.32E−08 3.67 1.14E−09 4.07 6.02E−09 3.80

10 9.42E−07 – 3.06E−06 – 9.23E−07 – 4.27E−06 –

20 4.14E−08 5.72 2.59E−07 4.52 3.26E−08 5.60 2.26E−07 4.92

4 40 1.17E−09 5.37 9.91E−09 4.92 7.79E−10 5.19 5.85E−09 5.09

80 3.47E−11 5.22 2.72E−10 5.34 2.58E−11 5.08 1.54E−10 5.42

160 1.39E−12 4.59 9.81E−12 4.73 1.10E−12 4.73 6.05E−12 4.84

Table 5 Example 2: ξ0 = α = 0. random mesh

Number
of cells

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

P1 P2

10 8.00E−03 – 1.71E−02 – 2.78E−04 – 8.53E−04 –

20 2.08E−03 1.92 5.19E−03 1.70 4.25E−05 2.94 1.45E−04 2.78

40 5.46E−04 1.78 1.38E−03 1.76 5.73E−06 3.22 2.60E−05 2.77

80 1.39E−04 2.20 3.60E−04 2.16 7.29E−07 2.96 3.72E−06 2.79

160 3.52E−05 1.93 9.10E−05 1.93 9.65E−08 2.84 4.82E−07 2.87

P3 P4

10 1.49E−05 – 5.33E−05 – 2.67E−07 – 9.82E−07 –

20 9.62E−07 4.51 3.95E−06 4.29 1.35E−08 5.15 7.46E−08 4.45

40 6.47E−08 3.89 2.43E−07 4.02 6.08E−10 4.50 3.23E−09 4.56

80 3.77E−09 4.10 1.56E−08 3.96 2.14E−11 4.67 1.43E−10 4.34

160 2.36E−10 4.04 1.06E−09 3.92 9.57E−13 5.01 5.05E−12 5.40
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Table 6 Example 3: ξ0 = η0 = α = β = 0, different meshes

k Number
of cells

Uniform mesh Random mesh

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 2.20E−02 – 5.08E−02 – 2.25E−02 – 6.25E−02 –

20 1.10E−02 1.01 2.46E−02 1.05 1.13E−02 0.99 3.44E−02 0.86

1 40 5.48E−03 1.00 1.22E−02 1.01 5.67E−03 1.00 1.75E−02 0.98

80 2.74E−03 1.00 6.09E−03 1.00 2.83E−03 1.00 9.42E−03 0.89

160 1.37E−03 1.00 3.04E−03 1.00 1.41E−03 1.00 4.72E−03 1.00

10 4.18E−03 – 2.01E−02 – 4.25E−03 – 2.44E−02 –

20 1.07E−03 1.97 5.24E−03 1.94 1.10E−03 1.96 7.27E−03 1.75

2 40 2.69E−04 1.99 1.32E−03 1.98 2.78E−04 1.98 1.96E−03 1.89

80 6.74E−05 2.00 3.32E−E−04 2.00 6.94E−05 2.00 6.56E−04 1.58

160 1.69E−05 2.00 8.31E−05 2.00 1.73E−05 2.00 1.54E−04 2.09

10 6.50E−05 – 3.59E−04 – 8.32E−05 – 7.01E−04 –

20 3.95E−06 4.04 2.25E−05 3.99 5.27E−06 3.98 5.45E−05 3.69

3 40 2.46E−07 4.01 1.42E−06 3.98 3.31E−07 3.99 3.67E−06 3.89

80 1.54E−08 4.00 8.93E−08 4.00 2.05E−08 4.01 2.13E−07 4.11

160 9.81E−10 3.97 5.62E−09 3.99 1.39E−09 3.89 1.53E−08 3.79

10 1.47E−05 – 1.08E−04 – 1.63E−05 – 1.71E−04 –

20 9.29E−07 3.98 7.11E−06 3.93 1.05E−06 3.96 1.26E−05 3.76

4 40 5.82E−08 4.00 4.46E−07 3.99 6.16E−08 4.09 7.57E−07 4.06

80 3.64E−09 4.00 2.79E−08 4.00 3.15E−09 4.29 5.71E−08 3.73

160 2.27E−10 4.00 1.75E−09 4.00 1.05E−10 4.90 1.75E−09 5.03

We first test the example with ξ0 = 0 in (33), η0 = 0 in (34) and α = β = 0. The
results are given in Table 6. From the table, we can only observe (k + 1)-th order
convergence rates for k = 3.

To recover the optimal convergence rates, we choose other penalty parameters and
the results are listed in Table 7. We use random meshes only and can observe that
if both penalty parameters are nonzero, we can obtain optimal rates of convergence.
However, if only one of the penalty parameters is nonzero, we still have the accuracy
degeneration if piecewise odd order polynomials are applied.

Moreover, following Example 1, we also choose random meshes and take different
values of ξ0 and η0. The results are provided in Table 8. We can observe that, if both
of them are nonzero, the optimal convergence rates can be recovered. However, if one
of them is zero, (e.g. ξ0 = 0), the optimal rates cannot be obtained for k = 1.

Example 4 We solve the convection–diffusion equation in two space dimensions

{
ut + ux + uy = uxx + uyy,

u(x, y, 0) = sin(x) cos(y),
(x, y) ∈ [0, 2π ] × [0, 2π ]. (41)
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Table 7 Example 3: ξ0 = η0 = 0, different α and β, random mesh

k Number
of cells

α = 0, β = 0.2 α = 0.2, β = 0.2

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 1.86E−02 – 6.48E−02 – 1.07E−02 – 3.95E−02 –

20 8.78E−03 1.08 3.09E−02 1.07 2.32E−03 2.21 9.68E−03 2.03

1 40 4.43E−03 0.99 1.89E−02 0.71 5.40E−04 2.10 2.85E−03 1.77

80 2.22E−03 0.99 9.76E−03 0.95 1.31E−04 2.05 7.09E−04 2.01

160 1.11E−03 1.00 4.47E−03 1.13 3.25E−05 2.01 1.89E−04 1.91

10 1.79E−03 – 1.07E−02 – 1.21E−03 – 7.55E−03 –

20 1.62E−04 3.47 1.10E−03 3.28 1.23E−04 3.29 9.67E−04 2.96

2 40 1.62E−05 3.32 1.23E−04 3.15 1.41E−E−05 3.13 1.13E−04 3.10

80 1.78E−06 3.19 1.45E−05 3.09 1.69E−06 3.07 1.38E−05 3.03

160 2.14E−07 3.05 1.82E−06 3.00 2.09E−07 3.02 1.74E−06 2.99

10 8.02E−05 – 6.45E−04 – 7.36E−05 – 5.64E−04 –

20 5.72E−06 3.81 5.76E−05 3.49 4.70E−06 3.97 4.92E−05 3.52

3 40 4.92E−07 3.54 3.76E−06 3.94 2.95E−07 4.00 3.22E−06 3.94

80 4.91E−08 3.33 3.32E−07 3.50 1.79E−08 4.04 1.76E−07 4.19

160 5.85E−09 3.07 3.81E−08 3.12 1.11E−09 4.01 1.32E−08 3.74

10 5.38E−06 – 4.54E−05 – 4.66E−06 – 3.82E−05 –

20 1.67E−07 5.01 1.96E−06 4.53 1.56E−07 4.90 1.76E−06 4.44

4 40 5.14E−09 5.02 6.15E−08 4.99 4.94E−09 4.99 5.59E−08 4.98

80 1.52E−10 5.08 1.87E−09 5.04 1.48E−10 5.06 1.73E−09 5.01

160 4.73E−12 5.01 5.99E−11 4.96 4.60E−12 5.01 5.61E−11 4.95

Clearly, the exact solution is

u(x, y, t) = e−2t sin(x − t) cos(y − t).

We consider random meshes only and use upwind fluxes for the convection term. We
take ξ0 = η0 = α = β = 0 to test the accuracy and the results are given in Table 9.
From the table, we can observe optimal convergence rates.

5 Conclusion

In this paper, we have introduced a new LDG method on overlapping meshes. The
scheme is stable but the order of accuracy may not be optimal. We demonstrated a
potential reason for the accuracy degeneration and provided several alternatives to
recover the optimal convergence rates.
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Table 8 Example 3: different ξ0 and η0, α = β = 0, random mesh

k Number
of cells

ξ0 = 0, η0 = 0.05 ξ0 = 0.05, η0 = 0.05

L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

10 2.21E−02 – 6.73E−02 – 2.18E−02 – 6.63E−02 –

20 1.07E−02 1.04 3.46E−02 0.96 1.01E−02 1.11 3.76E−02 0.82

1 40 4.78E−03 1.17 1.84E−02 0.91 3.74E−03 1.43 1.71E−02 1.14

80 2.11E−03 1.18 9.03E−03 1.02 9.24E−04 2.02 4.99E−03 1.78

160 1.01E−03 1.06 4.31E−03 1.07 2.15E−04 2.10 1.26E−03 1.98

10 4.06E−03 – 2.48E−02 – 3.95E−03 – 2.46E−02 –

20 9.46E−04 2.10 6.57E−03 1.92 8.18E−04 2.27 5.76E−03 2.09

2 40 1.59E−04 2.57 1.20E−03 2.45 1.12E−04 2.87 8.30E−04 2.80

80 1.76E−05 3.17 1.60E−04 2.91 1.12E−05 3.32 9.04E−05 3.20

160 1.79E−06 3.30 1.68E−05 3.25 1.21E−06 3.22 1.00E−05 3.17

10 8.45E−05 – 7.48E−04 – 8.50E−05 – 7.06E−04 –

20 5.70E−06 3.89 5.64E−05 3.73 6.02E−06 3.82 5.96E−05 3.57

3 40 4.25E−07 3.75 3.81E−06 3.89 4.88E−07 3.62 4.53E−06 3.72

80 2.59E−E−08 4.03 2.27E−07 4.07 3.11E−08 3.97 2.90E−07 3.97

160 1.65E−09 3.98 1.59E−08 3.84 1.93E−09 4.01 2.03E−08 3.84

10 1.54E−05 – 1.71E−04 – 1.49E−05 – 1.66E−04 –

20 8.58E−07 4.17 1.08E−05 3.99 7.10E−07 4.39 8.90E−06 4.22

4 40 3.05E−08 4.81 4.25E−07 4.67 2.11E−08 5.07 2.81E−07 4.99

80 7.83E−10 5.28 1.30E−08 5.03 5.34E−10 5.30 7.31E−09 5.26

160 2.06E−11 5.25 3.46E−10 5.23 1.50E−11 5.16 2.08E−10 5.13

Table 9 Example 4: ξ0 = η0 = α = β = 0. random mesh

Number of cells L2 norm Order L∞ norm Order L2 norm Order L∞ norm Order

P1 P2

10 1.01E−02 – 4.10E−02 – 1.04E−03 – 6.67E−03 –

20 2.69E−03 1.90 1.21E−02 1.76 1.43E−04 2.86 1.01E−03 2.73

40 6.86E−04 1.97 3.23E−03 1.90 1.87E−05 2.94 1.31E−04 2.94

80 1.72E−04 2.00 7.54E−04 2.10 2.38E−06 2.98 1.70E−05 2.95

160 4.30E−05 2.00 1.98E−04 1.93 3.00E−07 2.99 2.18E−06 2.96

P3 P4

10 7.36E−05 – 6.30E−04 – 4.66E−06 – 4.77E−05 –

20 4.85E−06 3.92 4.98E−05 3.66 1.65E−07 4.82 1.88E−06 4.67

40 3.10E−07 3.97 3.72E−06 3.74 5.35E−09 4.94 6.86E−08 4.78

80 1.90E−08 4.02 2.25E−07 4.05 1.64E−10 5.03 2.05E−09 5.06

160 1.20E−09 3.99 1.42E−08 3.98 5.15E−12 4.99 6.98E−11 4.88
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