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Abstract
Inverse eigenvalue and singular value problems have been widely discussed for
decades. The well-known result is the Weyl-Horn condition, which presents the rela-
tions between the eigenvalues and singular values of an arbitrary matrix. This result
by Weyl-Horn then leads to an interesting inverse problem, i.e., how to construct a
matrix with desired eigenvalues and singular values. In this work, we do that andmore.
We propose an eclectic mix of techniques from differential geometry and the inexact
Newton method for solving inverse eigenvalue and singular value problems as well
as additional desired characteristics such as nonnegative entries, prescribed diagonal
entries, and even predetermined entries. We show theoretically that our method con-
verges globally and quadratically, and we provide numerical examples to demonstrate
the robustness and accuracy of our proposed method.
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1 Introduction

Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| ≥ 0 and σ1 ≥ · · · ≥ σn ≥ 0 be the eigenvalues
and singular values of a given n × n real matrix A. In [45] Weyl showed that sets of
eigenvalues and singular values satisfy the following necessary condition:

k∏

j=1

|λ j | ≤
k∏

j=1

σ j , k = 1, . . . , n − 1, (1.1a)

n∏

j=1

|λ j | =
n∏

j=1

σ j . (1.1b)

Moreover, Horn [29] proved that condition (1.1), called the Weyl-Horn condition, is
also sufficient for constructing triangular matrices with prescribed eigenvalues and
singular values. Research interest in inverse eigenvalue and singular value problems
can be tracked back to the open problem raised by Higham in [28, Problem 26.3], as
follows:

Develop an efficient algorithm for computing a unit upper triangular n×nmatrix
with the prescribed singular values σ1, . . . , σn , where

∏n
j=1 σ j = 1.

This problem, which was solved by Kosowski and Smoktunowicz [32], leads to the
following interesting inverse eigenvalue and singular value problem (IESP):

(IESP) Given two sets of numbers λ = {λ1, . . . , λn} and σ = {σ1, . . . , σn}
satisfying (1.1), find a real n × n matrix with eigenvalues λ and singular values
σ .

The following factors make the IESP difficult to solve:

– Often the desired matrices are real. This problem was solved by the authors of [9]
with prescribed real eigenvalues and singular values. The method for finding a
general real-valued matrix with prescribed complex–conjugate eigenvalues and
singular values was also investigated in [33]. In this work, we take an alternative
approach to tackle this problem and add further constraints.

– Often the desired matrices are structured. Corresponding to physical applications,
the recovered matrices often preserve some common structure such as nonnega-
tive entries or predetermined diagonal entries [8,46]. In this paper, specifically, we
offer the condition of the existence of a nonnegative matrix provided that eigen-
values, singular values, and diagonal entries are given. Furthermore, solving the
IESP with respect to the diagonal constraint is not enough because entries of the
recovered matrices should preserve certain patterns, for example, non-negativity,
which correspond to original observations. How to tackle this structured problem
is the main thrust of this paper.
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The IESP can be regarded as a natural generalization of the inverse eigenvalue prob-
lems, which is known for its a wide variety of applications such as the pole assignment
problem [6,20,34], applied mechanics [15,18,19,25,38], and inverse Sturm–Liouville
problem [3,24,26,37]. Thus applications of the IESP could be found in wireless com-
munication [17,39,43] and quantum information science [21,30,46]. Research results
advanced thus far for the IESP do not fully address the above scenarios. Often, given a
set of data, the IESP is studied in parts. That is, there have been extensive investigations
of the conditions for the existence of a matrix when the singular values and eigen-
values are provided (i.e., the Weyl-Horn condition [29,45]), when the singular values
and main diagonal entries are provided (i.e., the Sing-Thompson condition [41,42]),
or when the eigenvalues and main diagonal entries are provided (i.e., the Mirsky con-
dition [36]). Also, the above conditions have given rise to numerical approaches, as
found in [5,8,9,16,22,32,48].

Our work here not only provides a way to solve the IESP but also immediately use
the solution to address the IESP with the desired structure, for example, nonnegative
entries and fixed diagonal elements. For one relatively close result, see [46], where
the authors consider a new type of IESP that requires that all three constraints, i.e.,
eigenvalues, singular values, and diagonal entries, be satisfied simultaneously. Theo-
retically,WuandChugeneralize the classicalMirsky, Sing-Thompson, andWeyl-Horn
conditions and provide one sufficient condition for the existence of a matrix with pre-
scribed eigenvalues, singular values, and diagonal entries when n ≥ 3. Numerically,
Wu and Chu establish a dynamic system for constructing such a matrix, in which real
eigenvalues are given. In this work, we solve an IESP with complex conjugate eigen-
values and with entries fixed at certain locations. Note that, in general, the solution
of the IESP is not unique or difficult to find once structured requirements are added.
To solve an IESP with some specific feature, we combine techniques from differential
geometry and for solving nonlinear equations.

We organize this paper as follows. In Sect. 2, we propose the use of the Riemannian
inexact Newton method for solving an IESP with complex conjugate eigenvalues.
In Sect. 3, we show that the convergence is quadratic. In Sect. 4, we demonstrate
the application of our technique to an IESP with a specific structure that includes
nonnegative or predetermined entries to show the robustness and efficiency of our
proposed approaches. The concluding remarks are given in Sect. 5.

2 Riemannian inexact Newtonmethod

In this section, we explain how the Riemannian inexact Newton method can be
applied to the IESP. The problem of optimizing a function on a matrix manifold has
received much attention in the scientific and engineering fields due to its peculiarity
and capacity. Its applications include, but are not limited to, the study of eigen-
value problems [1,2,7,10,12–14,46,47,49–51], matrix low rank approximation [4,27],
and nonlinear matrix equations [11,44]. Numerical methods for solving problems
involving matrix manifolds rely on interdisciplinary inputs from differential geome-
try, optimization theory, and gradient flows.
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To begin, let O(n) ⊂ R
n×n be the group of n × n real orthogonal matrices, and let

λ = {λ1, . . . , λn} and σ = {σ1, . . . , σn} be the eigenvalues and singular values of an
n × n matrix. We assume without loss of generality that:

λ2i−1 = αi + βi
√−1, λ2i = αi − βi

√−1, i = 1, . . . , k,

λi ∈ R, i = 2k + 1, . . . , n,

where αi , βi ∈ R with βi �= 0 for i = 1, . . . , k, and we define the corresponding
block diagonal matrix

Λ = diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
αk βk

−βk αk

]
, λ2k+1, . . . , λn

}

and the diagonal matrix

Σ = diag {σ1, . . . , σn} .

Then the IESP, based on the real Schur decomposition, is equivalent to finding
matrices U , V , Q ∈ O(n), and

W ∈ W (n) := {W ∈ R
n×n |Wi, j = 0 if Λi, j �= 0 or i ≥ j, for 1 ≤ i, j ≤ n},

which satisfy the following equation:

F(U , V , Q,W ) = UΣV� − Q(Λ + W )Q� = 0. (2.1)

Here, we may assume without loss of generality that Q is an identity matrix and
simplify Eq. (2.1) as follows:

F(U , V ,W ) = UΣV� − (Λ + W ) = 0. (2.2)

Let X = (U , V ,W ) ∈ O(n) × O(n) × W (n). Upon using Eq. (2.2), we can see
that we might solve the IESP by

finding X ∈ O(n) × O(n) × W (n) such that F(X) = 0, (2.3)

where F : O(n) ×O(n) ×W (n) → R
n×n is continuously differentiable. By making

an initial guess, X0, one immediate way to solve Eq. (2.3) is to apply the Newton
method and generate a sequence of iterates by solving

DF(Xk)[ΔXk] = −F(Xk), (2.4)

for ΔXk ∈ TXk (O(n) × O(n) × W (n)) and set

Xk+1 = RXk (ΔXk),
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where DF(Xk) represents the differential of F at Xk and R is a retraction on O(n) ×
O(n) × W (n). Since Eq. (2.4) is an underdetermined system, it may have more than
one solution. Let DF(Xk)

∗ be the adjoint operator of DF(Xk). In our calculation, we
choose the solution ΔXk with the minimum norm by letting [35, Chap. 6]

ΔXk = DF(Xk)
∗[ΔZk], (2.5)

where ΔZk ∈ TF(Xk )(R
n×n) is a solution for

(
DF(Xk) ◦ DF(Xk)

∗) [ΔZk] = −F(Xk). (2.6)

Note that the notation ◦ represents the composition of two operators DF(Xk) and
DF(Xk)

∗. This implies that the operator DF(Xk) ◦ DF(Xk)
∗ is symmetric and pos-

itive semidefinite. If, as is the general case, the operator DF(Xk) ◦ DF(Xk)
∗ from

TF(Xk)(R
n×n) to R

n×n is invertible, we can compute the optimal solution in (2.5).
Note that solving for the solution of Eq. (2.6) could be unnecessary and computa-

tionally time-consuming, and that the linear model given by Eq. (2.6) is large-scale or
the resulting iteration Xk is far from the solution of condition (2.3) [40]. By analogy
with the classical Newton method [23], we adopt the “inexact” Newton method on
Riemannian manifolds, i.e., without solving Eq. (2.6) exactly, we repeatedly apply the
conjugate gradient (CG) method to find ΔZk ∈ TF(Xk)(R

n×n), such that:

‖(DF(Xk) ◦ DF(Xk)
∗)[ΔZk] + F(Xk)‖ ≤ ηk‖F(Xk)‖, (2.7)

for some constant ηk ∈ [0, 1), is satisfied. Then, we update Xk corresponding to ΔZk

until the stopping criterion is satisfied. Here, the notation ‖ · ‖ is the Frobenius norm.
Note that in our calculation, the elements in the product space R

n×n × R
n×n × R

n×n

are computed using the standard Frobenius inner product:

〈(A1, A2, A3), (B1, B2, B3)〉F := 〈A1, B1〉 + 〈A2, B2〉 + 〈A3, B3〉, (2.8)

where 〈A, B〉 := trace(AB�) for any A, B ∈ R
n×n and the induced norm ‖X‖F =√〈X , X〉F (or, simply, 〈X , X〉 and ‖X‖ without the risk of confusion) for any X ∈

R
n×n × R

n×n × R
n×n .

Then, the mapping DF(Xk) at ΔXk = (ΔUk,ΔVk,ΔWk) ∈ TXk (O(n) × O(n) ×
W (n)) is given by:

DF(Xk)[ΔXk] = ΔUkΣV�
k +UkΣΔV�

k − ΔWk .

Let DF(Xk)
∗ : TF(Xk )(R

n×n) → TXk (O(n) × O(n) × W (n)) be the adjoint of the
mapping DF(Xk). The adjoint DF(Xk)

∗ is determined by the following:

〈ΔZk,DF(Xk)[ΔXk]〉 = 〈DF(Xk)
∗[ΔZk],ΔXk〉

and can be expressed as follows:

DF(Xk)
∗[ΔZk]= (ΔUk,ΔVk,ΔWk),
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where

ΔUk = 1

2
(ΔZkVkΣ

� −UkΣV�
k ΔZ�

k Uk),

ΔVk = 1

2
(ΔZ�

k UkΣ − VkΣ
�U�

k ΔZkVk),

ΔWk = −H � ΔZk,

where the notation � represents the Hadamard product and H is a matrix satisfying

Hi, j =
{
0 if Λi, j �= 0 or i ≥ j
1 otherwise

(see [12,50] for a similar discussion).
There is definitely no guarantee that the application of the inexact Newton method

can achieve a sufficient decrease in the size of the nonlinear residual ‖F(Xk)‖. This
provides motivation for deriving an iterate for which the size of the nonlinear residual
is decreased. One way to do this is to update the Newton step ΔXk obtained from
Eq. (2.5) by choosing θ ∈ [θmin, θmax], with 0 < θmin < θmax < 1, and setting

Δ̂Xk = ΔXk, η̂k = ‖F(Xk) + DF(Xk)[ΔXk]‖
‖F(Xk)‖ , (2.9)

and ηk = η̂k . Note that the definition of η̂k is not well-defined if F(Xk) = 0.
However, we can prevent this happening by assuming without loss of generality that
F(X0) �= 0. Once F(Xk) = 0 is satisfied, we terminate our iterations and output the
solution X = Xk . Otherwise, we update

ηk ← 1 − θ(1 − ηk) and ΔXk ← 1 − ηk

1 − η̂k
Δ̂Xk, (2.10)

while

‖F(Xk)‖ − ‖F(RXk (ΔXk))‖ > t(1 − ηk)‖F(Xk)‖,

or, equivalently,

‖F(RXk (ΔXk))‖ < [1 − t(1 − ηk)]‖F(Xk)‖, (2.11)

for some t ∈ [0, 1) [23]. Let Q f (·) denote the mapping that sends a matrix to the Q
factor of its QR decomposition with its R factor having strictly positive diagonal ele-
ments [1, Example 4.1.3]. For all (ξU , ξV , ξW ) ∈ T(U ,V ,W ) (O(n) × O(n) × W (n)),
we can compute the retraction R using the following formula:

R(U ,V ,W )(ξU , ξV , ξW ) = (RU (ξU ), RV (ξV ), RW (ξW )),
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where

RU (ξU ) = Q f (U + ξU ), RV (ξV ) = Q f (V + ξV ), RW (ξW ) = W + ξW .

We call this the Riemannian inexact Newton backtracking method (RINB) and for-
malize this method in Algorithm 1. To choose the parameter θ ∈ [θmin, θmax], we
apply a two-point parabolic model [31,50] to achieve a sufficient decrease among
steps 6–9. That is, we use the iteration history to model an approximate minimizer of
the following scalar function:

f (λ) := ‖F(RXk (λΔXk))‖2

by defining a parabolic model, as follows:

p(λ) = f (0) + f ′(0)λ + ( f (1) − f (0) − f ′(0))λ2,

where

f (0) = ‖F(Xk)‖2,
f ′(0) = 2〈DF(Xk)[ΔXk], F(Xk)〉, and f (1) = ‖F(RXk (ΔXk))‖2.

It should be noted that the computational costs for constructing the parabolic p(λ) are
only O(n3) operations per iteration.

From (2.7), it can be shown that the function evaluation f ′(0) should be negative.
Since f ′(0) < 0, if p′′(λ) = 2( f (1)− f (0)− f ′(0)) > 0, then p(λ) has its minimum
at:

θ = − f ′(0)
2( f (1) − f (0) − f ′(0))

> 0;

otherwise, if p′′(λ) < 0, we choose θ = θmax. By incorporating two types of selection,
we can choose the following:

θ = min

{
max

{
θmin,

− f ′(0)
2( f (1) − f (0) − f ′(0))

}
, θmax

}
.

as the parameter θ in Algorithm 1 [31,50]. In the next section, we mathematically
investigate the convergence analysis of Algorithm 1.
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Algorithm 1: The Riemannian inexact Newton backtracking method
[X ] = RINB(σ , X0)

Input: An initial value X0 such that F(X0) �= 0.
Output: A numerical solution X satisfying F(X) = 0

1 begin

2 Let ηmax ∈ [0, 1), η0 = min{ηmax, ‖F(X0)‖}, and t ∈ [0, 1), and
0 < θmin < θmax < 1 be given.

3 repeat

4 Determine ΔZk by using the CG method to (2.6) until (2.7) holds.

5 Set ΔXk = (DF(Xk))
∗[ΔZk], η̂k = ‖F(Xk )+DF(Xk )[ΔXk ]‖‖F(Xk )‖ , Δ̂Xk = ΔXk ,

and ηk = η̂k .

6 repeat

7 Choose θ ∈ [θmin, θmax].

8 Update ηk ← 1 − θ(1 − ηk) and ΔXk ← 1−ηk
1−η̂k

Δ̂Xk .

9 until (2.11) holds;
10 Set Xk+1 = RXk (ΔXk) and ηk+1 = min {ηk, ηmax, ‖F(Xk+1)‖}.
11 Replace k by k + 1.
12 until ‖F(Xk)‖ < ε;
13 X = Xk .
14 end

3 Convergence analysis

By combining the classical inexact Newton method [23] with optimization techniques
on matrix manifolds, Algorithm 1 provides a way to solve the IESP. However, we have
yet to theoretically discuss the convergence analysis of Algorithm 1. In this section,
we provide a theoretical foundation for the RINB method, and show that this RINB
method converges globally and finally converges quadratically whenAlgorithm 1 does
not terminate prematurely. We address this phenomenon in the following:

Lemma 3.1 Algorithm 1 does not break down at some Xk if and only if F(Xk) �= 0
and the inverse of DF(Xk) ◦ DF(Xk)

∗ exists.

Next, we provide an upper bound for the approximate solution Δ̂Xk in Algorithm 1.
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Theorem 3.1 LetΔZk ∈ TF(Xk)(R
n×n) be a solution that satisfies condition (2.7) and

Δ̂Xk = DF(Xk)
∗[ΔZk].

Then,

(a) ‖̂ΔXk‖ ≤ (1 + η̂k)‖DF(Xk)
†‖‖F(Xk)‖, (3.1a)

(b) ‖σk(η)‖ ≤ 1 + ηmax

1 − ηmax
(1 − η)‖DF(Xk)

†‖‖F(Xk)‖, (3.1b)

where DF(Xk)
† is the pseudoinverse of DF(Xk), η̂k is defined in Eq. (2.9), and σk is

the backtracking curve used in Algorithm 1, which is defined by the following:

σk(η) = 1 − η

1 − η̂k
Δ̂Xk

with η̂k ≤ η ≤ 1, and

‖DF(Xk)
†‖ := max‖ΔZ‖=1

‖DF(Xk)
†[ΔZ ]‖

represents the norm of the pseudoinverse of DF(Xk).

Proof Let rk = (DF(Xk) ◦ DF(Xk)
∗)[ΔZk] + F(Xk). We see that

‖̂ΔXk‖ ≤ ‖DF(Xk)
∗ ◦ [DF(Xk) ◦ DF(Xk)

∗]−1‖‖rk − F(Xk)‖
≤ (1 + η̂k)‖DF(Xk)

†‖‖F(Xk)‖

and

‖σk(η)‖ = 1 − η

1 − η̂k
‖DF(Xk)

†(rk − F(Xk))‖ ≤ 1 + η̂k

1 − η̂k
(1 − η)‖DF(Xk)

†‖‖F(Xk)‖

≤ 1 + ηmax

1 − ηmax
(1 − η)‖DF(Xk)

†‖‖F(Xk)‖.

��
In our subsequent discussion, we assume that Algorithm 1 does not break down and

the sequence {Xk} is bounded. Let X∗ be a limit point of {Xk}. Since F is continuously
differentiable, we have the following:

‖DF(X)†‖ ≤ 2‖DF(X∗)†‖ (3.2)

whenever X ∈ Bδ(X∗) for a sufficiently small constant δ > 0. Here, the notation
Bδ(X∗) represents a neighborhood of X∗ consisting of all points X such that ‖X −
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X∗‖ < δ. By condition (3.1), we can show without any difficulty that whenever Xk is
sufficiently close to X∗,

‖̂ΔXk‖ ≤ (1 + ηmax)‖DF(X∗)†‖‖F(Xk)‖,
‖σk(η)‖ ≤ Γ (1 − η)‖F(Xk)‖, η̂k ≤ η ≤ 1, (3.3)

where Γ is a constant independent of k defined by

Γ = 2
1 + ηmax

1 − ηmax
‖DF(X∗)†‖.

Now, we show that the sequence of {F(Xk)} eventually converges to zero.

Theorem 3.2 Assume that Algorithm 1 does not break down. If {Xk} is the sequence
generated in Algorithm 1, then

lim
k→∞ F(Xk) = 0.

Proof Observe that

‖F(Xk)‖ = ‖F(RXk−1(ΔXk−1))‖ ≤ (1 − t(1 − ηk−1))‖F(Xk−1)‖

≤ ‖F(X0)‖
k−1∏

j=0

(1 − t(1 − η j )) ≤ ‖F(X0)‖e
−t

k−1∑
j=0

(1−η j )

.

Since t > 0 and limk→∞
∑k−1

j=0(1 − η j ) = ∞, we have limk→∞ F(Xk) = 0. ��
In our iteration, we implement the repeat loop among steps 6–9 by selecting a

sequence {θ j }, with θ j ∈ [θmin, θmax]. For each loop, correspondingly, we let η(1)
k = η̂k

and ΔX (1) = Δ̂Xk , and for j = 2, . . . , we let

η
( j)
k = 1 − θ j−1(1 − η

( j−1)
k ),

ΔX ( j)
k = 1 − η

( j)
k

1 − η̂k
Δ̂Xk . (3.4)

By induction, then, we can easily show that:

ΔX ( j)
k = Θ j−1Δ̂Xk, 1 − η

( j)
k = Θ j−1(1 − η̂k),

where

Θ j−1 =
j−1∏

�=1

θ�, j ≥ 2. (3.5)

123



Riemannian inexact Newton method for structured inverse… 685

In other words, the sequence {‖ΔX ( j)
k ‖} j is a strictly decreasing sequence satisfying

lim j→∞ ΔX ( j)
k = 0, and {η( j)

k } j is a sequence satisfying η
( j)
k ≥ η̂k for j ≥ 1, and

lim j→∞ η
( j)
k = 1. Based on these observations, next, we show that the repeat loop

terminates after a finite number of steps.

Theorem 3.3 Let {̂ΔXk} be the sequence generated from Algorithm 1, i.e.,

‖(DF(Xk)[̂ΔXk] + F(Xk)‖ ≤ ηk‖F(Xk)‖.

Then, once j is large enough, the sequence {η( j)
k } j satisfies the following:

‖F(Xk) + DF(Xk)[ΔX ( j)
k ]‖ ≤ η

( j)
k ‖F(Xk)‖,

‖F(RXk (ΔX ( j)
k ))‖ ≤ (1 − t(1 − η

( j)
k ))‖F(Xk)‖. (3.6)

Proof Let η̂k be defined in Eq. (2.9) with ΔXk = Δ̂Xk , and εk = (1−t)(1−η̂k)‖F(Xk )‖
‖̂ΔXk‖

.

Since F is continuously differentiable, for εk > 0, there exists a sufficiently small
δ > 0 such that ‖ΔX‖ < δ implies that:

‖F(RXk (ΔX)) − F(RXk (0Xk )) − DF(RXk (0Xk ))[ΔX ]‖ ≤ εk‖ΔX‖,

where 0Xk is the origin of TXk (O(n) × O(n) × W (n)).
For δ > 0, we let

ηmin = max

{
η̂k, 1 − (1 − η̂k)δ

‖̂ΔXk‖

}
.

Note that once j is sufficiently large,

η
( j)
k − ηmin ≥

(
δ

‖̂ΔXk‖
− Θ j−1

)
(1 − η̂k)≥0. (3.7)

For sufficiently large j , we consider the sequence {ΔX ( j)
k } j in Eq. (3.4) with η

( j)
k ∈

[ηmin, 1). We can see that:

‖ΔX ( j)
k ‖ = ‖1 − η

( j)
k

1 − η̂k
Δ̂Xk‖ ≤ 1 − ηmin

1 − η̂k
‖̂ΔXk‖ ≤ δ.

Note that

F(Xk) + DF(Xk)[ΔX ( j)
k ]=η

( j)
k − η̂k

1 − η̂k
F(Xk)+1 − η

( j)
k

1 − η̂k

(
DF(Xk)[̂ΔXk] + F(Xk)

)
.
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686 C.-Y. Chiang et al.

From triangle inequality, we have

‖F(Xk) + DF(Xk)[ΔX ( j)
k ]‖ ≤ η

( j)
k − η̂k

1 − η̂k
‖F(Xk)‖ + 1 − η

( j)
k

1 − η̂k
η̂k‖F(Xk)‖

= η
( j)
k ‖F(Xk)‖,

and

‖F(RXk (ΔX ( j)
k ))‖ ≤ ‖F(RXk (ΔX ( j)

k ) − F(RXk (0Xk )) − DF(RXk (0Xk ))[ΔX ( j)
k ]‖

+ ‖F(Xk) + DF(Xk)[ΔX ( j)
k ]‖

≤ εk‖ΔX ( j)
k ‖ + η

( j)
k ‖F(Xk)‖

= (1 − t)(1 − η̂k)‖F(Xk)‖
‖̂ΔXk‖

∥∥∥∥∥
1 − η

( j)
k

1 − η̂k
Δ̂Xk

∥∥∥∥∥ + η
( j)
k ‖F(Xk)‖

= (1 − t(1 − η
( j)
k ))‖F(Xk)‖.

��
From the proof of Theorem 3.3, we can see that for each k, the repeat loop for the

backtracking line search will terminate in a finite number of steps once condition (3.7)
is satisfied. Moreover, Theorem 3.2 and condition (3.3) imply the following:

lim
k→∞ ‖̂ΔXk‖ = 0.

That is, if k is sufficient large, i.e., ‖̂ΔXk‖ is small enough, then from the proof of
Theorem 3.3 we see that condition (2.11) is always satisfied, i.e., ηk = η̂k for all
sufficient large k.

To show thatAlgorithm1 is a globally convergent algorithm,we have one additional
requirement for the retraction RX , i.e., there exist ν > 0 and δν > 0 such that:

ν‖ΔX‖ ≥ dist(RX (ΔX), X), (3.8)

for all X ∈ O(n) ×O(n) ×W (n) and for all ΔX ∈ TX (O(n) × O(n) × W (n)) with
‖ΔX‖ ≤ δν [1]. Here the notation “dist(·, ·)” represents the Riemannian distance on
O(n) × O(n) × W (n). Under this assumption, our next theorem shows the global
convergence property of Algorithm 1. We have borrowed the strategy for this proof
from that used in [23, Theorem 3.5] to prove the nonlinear matrix equation.

Theorem 3.4 Assume that Algorithm 1 does not break down. Let X∗ be a limit point
of {Xk}. Then Xk converges to X∗ and F(X∗) = 0. Moreover, Xk converges to X∗
quadratically.

123



Riemannian inexact Newton method for structured inverse… 687

Proof Suppose Xk does not converge to X∗. This implies that there exist two sequences
of numbers {k j } and {� j } for which:

Xk j ∈ Nδ/ j (X∗),
Xk j+� j /∈ Nδ(X∗),
Xk j+i ∈ Nδ(X∗), if i = 1, . . . , � j−1

k j + � j ≤ k j+1.

From Theorem 3.3, we see that the repeat loop among steps 6–9 of Algorithm 1
terminates in finite steps. For each k, let mk be the smallest number such that condi-
tion (3.6) is satisfied, i.e., ΔXk = Θmk Δ̂Xk and ηk = 1 − Θmk (1 − η̂k) with Θmk

being defined in Eq. (3.5). It follows from condition (3.1b) that:

‖ΔXk‖ ≤ 2Θmk

(
1 + ηmax

1 − ηmax

)
(1 − ηk)‖DF(X∗)†‖‖F(Xk)‖, (3.9)

for a sufficiently small δ and Xk ∈ Bδ(X∗), so that condition (3.2) is satisfied. Let

Γmk = 2Θmk

(
1 + ηmax

1 − ηmax

)
‖DF(X∗)†‖.

According to condition (3.8), there exist ν > 0 and δν > 0 such that:

ν‖ΔX‖ ≥ dist (RX (ΔX), X) ,

when ‖ΔX‖ ≤ δν . Since F(Xk) approaches zero as k approaches infinity, for δν ,
condition (3.9) implies that there exists a sufficiently large k such that:

ν‖ΔXk‖ ≥ dist
(
RXk (ΔXk), Xk

)
(3.10)

is satisfied whenever ‖ΔXk‖ ≤ δν .
Then for a sufficiently large j , we can see from conditions (3.9) and (3.10) that:

δ

2
≤ dist(Xk j+� j , Xk j ) ≤

k j+� j−1∑

k=k j

dist(Xk+1, Xk)

=
k j+� j−1∑

k=k j

dist(RXk (ΔXk), Xk) ≤
k j+� j−1∑

k=k j

ν‖ΔXk‖

≤
k j+� j−1∑

k=k j

νΓmk (1 − ηk)‖F(Xk)‖ ≤
k j+� j−1∑

k=k j

νΓmk

t
(‖F(Xk)‖ − ‖F(Xk+1)‖)

≤ νΓmk

t

(‖F(Xk j )‖ − ‖F(Xk j+1)‖
)
.
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This is a contraction, since Theorem 3.2 implies that F(Xk j ) converges to zero as j
approaches infinity and Γmk is bounded. Thus, Xk converges to X∗, and immediately,
we have F(X∗) = 0. This completes the proof of the first part.

To show that Xk converges to X∗ quadratically once Xk is sufficiently close to X∗,
we let C1 and C2 be two numbers satisfying the following:

‖F(Xk+1) − F(Xk) − DF(Xk)[ΔXk]‖ ≤ C1‖ΔXk‖2,
‖F(Xk)‖ ≤ C2dist(Xk, X∗),

for a sufficiently large k. The above assumptions are true since F is second differen-
tiable and F(X∗) = 0. We can also observe that:

‖F(Xk+1)‖ ≤ ‖F(Xk+1) − F(Xk) − DF(Xk)[ΔXk]‖ + ‖F(Xk) + DF(Xk)[ΔXk]‖
≤ C1‖ΔXk‖2 + η̂k‖F(Xk)‖ ≤ C1(Γmk‖F(Xk)‖)2 + ‖F(Xk)‖2
≤

(
C1Γ

2C2
2 + C2

2

)
dist(Xk, X∗)2, (3.11)

where Γ = 2

(
1 + ηmax

1 − ηmax

)
‖DF(X∗)†‖.

Since Xk converges to X∗ as k converges to infinity, for a sufficiently large k, it
follows from conditions (3.9), (3.10), (3.6), and (3.11) that:

dist(Xk+1, X∗) = lim
p→∞ dist(Xk+1, X p) ≤

∞∑

s=k

dist
(
Xs+1, RXs+1(ΔXs+1)

)

≤
∞∑

s=k

ν‖ΔXs+1‖ ≤
∞∑

s=k

νΓms+1(1 + ηmax)‖F(Xs+1)‖

≤ νΓ (1 + ηmax)

∞∑

j=0

(1 − t(1 − ηmax))
j‖F(Xk+1)‖

≤ Cdist(Xk, X∗)2,

for some constant C = νΓ (1 + ηmax)
(
C1Γ

2C2
2 + C2

2

)

t(1 − ηmax)
. ��

It is true that we might assume without loss of generality that the inverse of
DF(Xk) ◦ DF(Xk)

∗ always exists numerically. However, once DF(Xk) ◦ DF(Xk)
∗

is ill-conditioned or (nearly) singular, we choose an operator Ek = σk idTF(Xk )
,

where σk is a constant and idTF(Xk )
is an identity operator on TF(Xk)(R

n×n) to make
DF(Xk) ◦ DF(Xk)

∗ + σk idTF(Xk )
well-conditioned or nonsingular. In the calculation,

this replaces the calculation in Eq. (2.6) with the following equation:

(DF(Xk) ◦ DF(Xk)
∗ + σk idTF(Xk )

)[Zk] = −F(Xk).
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That is, Algorithm 1 can be modified to fit in this case by replacing the satisfaction of
condition (2.7) with the following two conditions:

‖(DF(Xk) ◦ DF(Xk)
∗ + σk idTF(Xk )

)[Zk]‖ ≤ k‖F(Xk)‖, (3.12a)

‖(DF(Xk) ◦ DF(Xk)
∗)[ΔZk] + F(Xk)‖ ≤ ηmax‖F(Xk)‖, (3.12b)

where σk := min {σmax, ‖F(Xk)‖} is a selected perturbation determined by the
parameter σmax and ‖F(Xk)‖. Of course, we can provide the proof of the quadratic
convergence under condition (3.12) without any difficulty (see [50] for a simi-
lar discussion). Thus, we ignore the proof here. However, we note that even if a
selected perturbation is applied to an ill-conditioned problem, the linear operator
DF(Xk) ◦ DF(Xk)

∗ + σk idTF(Xk )
in condition (3.12a) might become nearly singu-

lar or ill-conditioned once σk is small enough. This will prevent the iteration in the CG
method from converging in fewer than n2 steps, and cause the value of f ′(0) to not be
negative. This possibility suggests that we apply Algorithm 1 without performing any
perturbation in our numerical experiments. If the CG method cannot terminate within
n2 iterations, it may be necessary to compute a new approximated solution ΔZk by
selecting a new initial value for X0.

4 Numerical experiments

To test the capacity and efficiency of our method, we generate sets of eigenvalues and
singular values from a series of randomly generated matrices. We performed all of the
computations in thiswork inMATLABversion 2016a on a desktopwith a 4.2GHz Intel
Core i7 processor and 32GBofmainmemory. For our experiments, we set ηmax = 0.9,
θmin = 0.1, θmax = 0.9, t = 10−4, and ε = 10−10. Also, in our computation, we
emphasize two things. First, once the CG method computed in Algorithm 1 cannot be
terminated within n2 iterations, restart Algorithm 1 with a different initial value X0.
Second, due to the rounding errors in numerical computation, care must be taken in
the selection of ηk so that the upper bound ηk‖F(Xk)‖ in condition (2.7) is not too
small to cause the CG method abnormal. To this end, in our experiments, we use the
condition

max{ηk‖F(Xk)‖, 10−12},

instead of ηk‖F(Xk)‖. The implementations of the Algorithm 1 are available
online: http://myweb.ncku.edu.tw/~mhlin/Bitcodes.zip.

Example 4.1 To demonstrate the capacity of our approach for solving problems that
are relatively large, we randomly generate a set of eigenvalues and a set of singular
values of different size, say, n = 20, 60, 100, 150, 200, 500, and 700 from matrices
given by the MATLAB command:

A = randn(n).
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Table 1 Comparison of the required CGIt�, INMIt�, Residual, Error values, and Time for solving the IESP
by Algorithm 1

n CGIt� INMIt� Residual Error Time

20 208 9.4 5.54 × 10−12 9.65 × 10−13 2.47 × 10−2

60 740 10 8.13 × 10−12 7.23 × 10−13 4.11 × 10−1

100 1231 10.4 1.06 × 10−12 9.74 × 10−14 2.22

150 1773 10.1 1.01 × 10−12 1.06 × 10−13 6.82

200 1939 10.5 1.20 × 10−12 1.49 × 10−13 19.3

500 6070 10.6 1.47 × 10−12 4.12 × 10−13 665

700 8905 10.6 5.42 × 10−12 7.24 × 10−13 2465

For each size, we perform 10 experiments. To illustrate the elasticity of our approach,
we randomly generate the initial value X0 = (U0, V0,W0) in the following way:

W0 = triu(randn(n)), W0(find()) = 0, and [U0, tmp, V0] = svd(Λ + W0).

In Table 1, we show the average residual value (Residual), the average final error
(Error), as defined by:

final error = ‖λ(Anew) − λ‖2 + ‖σ (Anew) − σ‖2,

the average number of iterations within the CG method (CGIt)�, the average number
of iterations within the inexact Newtonmethod (INMIt)�, and the average elapsed time
(Time), as performed by our algorithm. In Table 1, we can see that the elapsed time and
the average number of iterationswithin theCGmethod increase dramatically as the size
of the matrices increases. This can be explained by the fact that the number of degrees
of freedom of the problem increases significantly. Thus, the number of the iterations
required by the CGmethod and the required computed time increase correspondingly.
However, it is interesting to see that the required number of iterationswithin the inexact
Newton method remains almost the same for matrices of different sizes. One way to
speed up the entire process of iterations is to transform the problem (2.6) into a form
that is more suitable for the CG method, for example, apply the CG method with a
preselected preconditioner. Still, this selection of the preconditioner requires further
investigation.

Example 4.2 In this example, we use Algorithm 1 to construct a nonnegative matrix
with prescribed eigenvalues and singular values and a specific structure. We specify
this IESP and call it the IESP with desired entries (DIESP). The DIESP can be defined
as follows.

(DIESP) Given a subset I = {(it , jt )}�t=1 with double subscripts, a set of real
numbersK = {kt }�t=1, a set of n complex numbers {λi }ni=1, satisfying {λi }ni=1 =
{λ̄i }ni=1, and a set of n nonnegative numbers {σi }ni=1, find a nonnegative n × n

123



Riemannian inexact Newton method for structured inverse… 691

matrix A that has eigenvaluesλ1, . . . , λn , singular valuesσ1, . . . , σn and Ait , jt =
kt for t = 1, . . . , �.

Note that once it = jt = t for t = 1, . . . , n, we investigate a numerical approach
for solving the IESP with prescribed diagonal entries. As far as we know, the research
result close to this problem is only available in [46]. However, for a general structure,
no research has been conducted to implement this investigation. To solve the DIESP,
our first step is to obtain a real matrix A with prescribed eigenvalues and singular
values. Our second step is to derive entries of Q�AQ, where Q ∈ O(n), that satisfy
the nonnegative property and desired values determined by the sets I and K . We
solve the first step in the same manner as in Example 4.1, but for the second step, we
consider the following two setsL1 and L2, which are defined by:

L1 = {A ∈ R
m×n | Ait , jt = kt , for 1 ≤ t ≤ �; otherwise Ai, j = 0},

L2 = {A ∈ R
m×n | Ai, j = 0, for 1 ≤ i, j ≤ n and (i, j) ∈ I },

and then solve the following problem:

find P ∈ L2 and Q ∈ O(n) such that H(P, Q) = Â + P � P − QAQ� = 0,

(4.1)

with Â ∈ L1. Let [A, B] := AB − BA denote the Lie bracket notation. It follows
from direct computation that the corresponding differential DH and its adjoint DH∗
have the following form [50]:

DH(P, Q)[(ΔP,ΔQ)] = 2P � ΔP + [QAQ�,ΔQQ�],
DH(P, Q)∗[ΔZ ] =

(
2P � ΔZ ,

1

2
([QAQ�,ΔZ�] + [QA�Q�,ΔZ ])Q

)
,

and, for all (ξP , ξQ) ∈ T(P,Q)(L2 × O(n)), we can compute the retraction R using
the following formula:

R(P, Q) = (RP (ξP ), RQ(ξQ)),

where

RP (ξP ) = P + ξP , RQ(ξQ) = Q f (Q + ξQ).

For these experiments, we randomly generate nonnegative matrices 20×20 in size
by the MATLAB command “A = rand(20)” to provide the desired eigenvalues, sin-
gular values, and diagonal entries, i.e., to solve the DIESP with the specified diagonal
entries. We record the final error, as given by the following formula:

final error = ‖λ(Anew) − λ‖2 + ‖σ (Anew) − σ‖2 + ‖(Anew)it , jt − kt‖2.
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Table 2 Records of final errors and residual values for solving the DIESP by Algorithm 1

Interval Average

Final errors [7.27 × 10−13, 1.21 × 10−11] 2.91 × 10−12

Residual values [7.77 × 10−13, 4.93 × 10−12] 1.85 × 10−12

After randomly choosing 10 different matrices, Table 2 shows our results with the
intervals (Interval) containing all of the residual values and final errors, and their
corresponding average values (Average). These results provide sufficient evidence
that Algorithm 1 can be applied to solve the DIESP with high accuracy.

AlthoughExample 4.2 considers exampleswith a nonnegative structure, we empha-
size that Algorithm 1 can work with entries that are not limited to being nonnegative.
That is, to solve the IESP without nonnegative constraints but with another specific
structure, Algorithm 1 can fit perfectly well by replacing H(P, Q) in problem (4.1)
with

G(S, Q) := Â + S − QAQ�,

where Â ∈ L1, S ∈ L2 and Q ∈ O(n).

5 Conclusions

In this paper, we apply the Riemannian inexact Newton method to solve an initially
complicated and challenging IESP. We provide a thorough analysis of the entire iter-
ative processes and show that this algorithm converges globally and quadratically to
the desired solution. Wemust emphasize that our theoretical discussion and numerical
implementations can also be extended to solve an IESPwith a particular structure such
as desired diagonal entries and a matrix whose entries are nonnegative. This capac-
ity can be observed in our numerical experiments. It should be emphasized that this
research is the first to provide a unified and effective means to solve the IESP with or
without a particular structure.

However, the numerical stability for extremely ill-conditioned problems is a case
that we should pay attention to, though reselecting the initial values could be a strategy
to get rid of this difficulty. Another way to tackle this difficulty is to select a good
preconditioner. But, the operator encountered in our algorithm is nonlinear and high-
dimensional. Thus, the selection of the preconditioner could involve the study of tensor
analysis, where further research is needed.
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