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Abstract
We prove convergence of a finite difference scheme to the unique entropy solution
of a general form of the Ostrovsky–Hunter equation on a bounded domain with non-
homogeneous Dirichlet boundary conditions. Our scheme is an extension ofmonotone
schemes for conservation laws to the equation at hand. The convergence result at the
center of this article also proves existence of entropy solutions for the initial-boundary
value problem for the general Ostrovsky–Hunter equation. Additionally, we show
uniqueness using Kružkov’s doubling of variables technique. We also include numer-
ical examples to confirm the convergence results and determine rates of convergence
experimentally.
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1 Introduction

We consider the initial-boundary value problem

ut + f (u)x = γ

∫ x

0
u(y, t) dy, (1a)

u(x, 0) = u0(x), (1b)

u(0, t) = α(t), (1c)

u(1, t) = β(t), (1d)

with f ∈ C 2(R) and γ > 0. Equation (1a) is derived by integrating the nonlinear
evolution equation

(ut + f (u)x )x = γ u, (2)

in space. This equationwas posed byOstrovsky [27] andHunter [18]with f (u) = 1
2u

2

as a model for small-amplitude long waves on a shallow rotating fluid and is referred
to as the Ostrovsky–Hunter equation [3,7,23], short wave equation [18], Vakhnenko
equation [25,28,34–36], Ostrovsky–Vakhnenko equation [4,24] and reduced Ostro-
vsky equation [27,29,33]. If f (u) = − 1

6u
3, Eq. (2) is known as the short pulse

equation, which was introduced by Schäfer and Wayne [32] as a model for the propa-
gation of ultra-short light pulses in silica optical fibers (see also [1,22]). In the present
paper, however, we will consider an arbitrary flux f ∈ C 2(R) and will refer to Eq.
(1a) with general f as Ostrovsky–Hunter equation.

In order to derive Eq. (1a), we integrate Eq. (2) in space to get

ut + f (u)x = γ P,

Px = u. (3)

The function P must then be further specified by an additional constraint, e.g.
P(−∞, t) = 0 (which leads to P = ∫ x

−∞ u; see [8]) or
∫
P = 0 (implying

P = ∫ x
−∞ u − ∫ ∞

−∞ u on the real line or P = ∫ x
0 u − ∫ 1

0 u in the unit interval;
see [6,18,23,33]). Here we will consider the unit interval and choose P(0, t) = 0,
which gives

P[u](x, t) =
∫ x

0
u(t, y) dy . (4)

Concerning the initial and boundary data, we will assume

u0 ∈ B.V.(0, 1) and α, β ∈ B.V.(0, T ). (5)

Coclite et al. developed a global well-posedness analysis utilizing the concept of
entropy solutions defined in a distributional sense [see (6) in Definition 1 below] on the
domainsR×R

+ andR+×R
+ in [7–12,30] and on [0, 1]×R

+ with non-homogeneous
Dirichlet boundary conditions in [13]. Their proofs are based on a vanishing viscosity
regularization and a compensated compactness argument.
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A convergent finite difference scheme for… 777

In this paper, we aim to show existence of entropy solutions (as defined in Defini-
tion 1 below) to the initial-boundary value problem (1) by proving the convergence of
a finite difference scheme. We will base our construction of the numerical scheme on
the classical theory of monotone schemes for conservation laws and use central differ-
ences for the nonlocal source term. In order to get compactness of the scheme, we will
employ Helly’s theorem together with appropriate a priori bounds of the piecewise
constant interpolation. Then, we will show convergence towards the entropy solution
using discrete versions of the entropy conditions in the interior of the domain and at
the boundary. Furthermore, we prove uniqueness of entropy solutions by showing L1

stability using Kružkov’s ‘doubling of variables’ technique.
Without convergence proof, numerical methods for Eq. (2) are used in [15,18,23],

including Fourier pseudo-spectral methods and a finite difference scheme based on the
Engquist–Osher scheme. So far the only rigorous numerical analysis of theOstrovsky–
Hunter equation is performed by Coclite et al. [6]. The authors, however, consider the
case of periodic boundary conditions and initial data with zero mean. The present
paper directly extends these results to the setting of non-periodic boundary condi-
tions. Although we follow the general strategy of [6], the non-periodicity complicates
matters throughout. In particular, we will present new versions of Harten’s lemma and
Kružkov’s ‘doubling of variables’ technique that properly address the contributions
of the boundary terms.

We will consider entropy solutions of (1) based on the following definition:

Definition 1 (Entropy solution) A function u ∈ C ([0, T ];L1(0, 1)) ∩ L∞((0, 1) ×
(0, T )) is called an entropy solution of the Ostrovsky–Hunter equation (1) if for all
entropy pairs (η, q), i.e. convex functions η ∈ C 2(R), and q such that q ′ = η′ f ′,

∫ T

0

∫ 1

0
(η(u)φt + q(u)φx + γ η′(u)P[u]φ) dx dt+

∫ 1

0
η(u0(x))φ(x, 0) dx

−
∫ 1

0
η(u(x, T ))φ(x, T ) dx ≥ 0, (6)

for all nonnegative φ ∈ C∞
c ((0, 1) × R), and

q(uτ
0(t)) − q(α(t)) − η′(α(t))( f (uτ

0(t)) − f (α(t))) ≤ 0

≤ q(uτ
1(t)) − q(β(t)) − η′(β(t))( f (uτ

1(t)) − f (β(t))) (7)

holds for a. e. t ∈ (0, T ). Here P[u] is as in (4) and uτ
0 and u

τ
1 denote the strong traces

of u at the boundary x = 0 respectively x = 1.

Remark 1 Note that by an approximation argument, cf. [17, pp. 57–58], a function
u ∈ C ([0, T ];L1(0, 1)) is an entropy solution if and only if inequalities (6) and (7)
hold for all Kružkov entropy pairs,

η(u, k) = |u − k|, q(u, k) = sign(u − k)( f (u) − f (k)), k ∈ R.
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778 J. Ridder, A. M. Ruf

Remark 2 This is the usual definition of entropy solutions of Eq. (1). However, regard-
ing the entropy boundary condition instead of working with the original condition due
to Bardos et al. [2], we will use the entropy boundary condition (7) introduced by
Dubois and LeFloch [14]. Due to the regularizing effect of the P Eq. (4) we have
that u ∈ L∞((0, 1) × (0, T )) implies P[u] ∈ L∞(0, T ;W1,∞(0, 1)). Therefore, if
u ∈ L∞((0, 1) × (0, T )) satisfies the entropy condition (6), then [5, Theorem 1.1]
assures the existence of strong traces uτ

0, u
τ
1 and hence boundary entropy condition

(7) is well-defined.

The paper is organized as follows. In Sect. 2 we specify the numerical scheme
under consideration. Section 3 contains discrete a priori bounds which are used to
show compactness of the scheme. In the next section we will develop discrete entropy
inequalities both in the interior and at the boundary which will lead to our first main
result, the convergence of the numerical solutions to an entropy solution, see Theorem
1 in Sect. 4. Our second main result, the L1 stability and thus uniqueness of entropy
solutions, is shown in Sect. 5, Theorem 2, using Kružkovs ‘doubling of variables’
technique. Finally, the last section provides some numerical experiments.

2 The numerical scheme

We discretize the domain [0, 1] × [0, T ] using (N + 1) · (M + 2) grid points with
�x = 1/N and �t = T

M+1 , such that for j = 0, . . . , N and n = 0, . . . , M + 1,

unj ≈ u(x j , t
n), where x j = j�x and tn = n�t .

As a shorthand notation for the sequence (unj )
N
j=0 we will write un . We will also

frequently use the notation I j = [x j− 1
2
, x j+ 1

2
) for the interval in space, I n = [tn, tn+1)

for the interval in time and I nj = I j × I n for the rectangle in [0, 1]×[0, T ]. Here, we fix
the convention that x j+ 1

2
= ( j+ 1

2 )�x , j = 0, . . . , N−1, aswell as x− 1
2

= x0 = 0 and

xN+ 1
2

= xN = 1. In order to get from the sequence un to a function on [0, 1]× [0, T ]
we define the piecewise constant interpolation

u�t (x, t) = unj , for (x, t) ∈ I nj .

The discrete initial datum u0 is constructed from u0 ∈ B.V.(0, 1) via

u0j = 1

�x

∫
I j
u0(x) dx, for j = 0, . . . , N .

Then, the numerical scheme we want to employ reads as follows: For n ≥ 0 we set
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

un+1
0 = 1

�t

∫ tn+1

tn α(s) ds,

un+1
N = 1

�t

∫ tn+1

tn β(s) ds,

un+1
j = unj − λ

(
Fn
j+ 1

2
− Fn

j− 1
2

)
+ γ�t Pn

j if j = 1, . . . , N − 1,

(8)

where Pn
j is the following approximation to the integral of u,

Pn
j = �x

⎛
⎝1

2
un0 +

j−1∑
i=1

uni + 1

2
unj

⎞
⎠ ,

and the flux at (x j+ 1
2
, tn) is approximated by

Fn
j+ 1

2
= F(unj , u

n
j+1), (9)

where the discrete flux F is a Lipschitz continuous function in two variables. We will
assume that F can be written in the form

F(u, v) = F1(u) + F2(v),

where F1, F2 ∈ C1(R), and that F is consistent with f and monotone in the sense that

F(u, u) = f (u) and F ′
1 ≥ 0, F ′

2 ≤ 0. (10)

Furthermore, we will assume

max
u

λ(F ′
1(u) − F ′

2(u)) ≤ 1, (11)

where λ = �t
�x . Two examples for discrete flux functions with the assumed properties

are the Lax–Friedrichs flux, i.e.

F1(u) = 1

2
f (u) + 1

2λ
u, F2(v) = 1

2
f (v) − 1

2λ
v,

and the Engquist–Osher flux, i.e.

F1(u) =
∫ u

0
max( f ′(z), 0) dz+ f (0), F2(v) =

∫ v

0
min( f ′(z), 0) dz+ f (0),

which satisfy (10) and (11) provided that the grid satisfies the CFL condition

max
u

| f ′(u)|λ ≤ 1.
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780 J. Ridder, A. M. Ruf

Note that, using our scheme, we can recover a discrete version of (3), since

Dt+unj + D−Fn
j+ 1

2
= γ Pn

j

D−Pn
j = 1

2

(
unj + unj−1

)
,

were we used the following difference operators:

Dt+an = 1

�t

(
an+1 − an

)
and D−a j = 1

�x

(
a j − a j−1

)
.

3 Discrete a priori estimates

In this section we aim to prove compactness of the scheme using Helly’s theorem.
This requires an L∞ bound, a BV bound and a bound on the discrete time derivative of
the numerical solution. These bounds are similar to the ones in [6], but the boundary
conditions lead to additional terms.

Lemma 1 (L∞ bound) For n�t ≤ T , the solution un of the numerical scheme (8)
satisfies ∥∥un∥∥∞ ≤ eγ T

(∥∥∥u0
∥∥∥∞ + ‖α‖∞ + ‖β‖∞

)
.

Proof For j = 1, . . . , N − 1 we define vnj = ‖un‖∞. Then vnj ≥ unj for all j =
1, . . . , N − 1 and thus, by monotonicity and consistency of the scheme (10)–(11),

unj − λ(F(unj , u
n
j+1) − F(unj−1, u

n
j ))

= unj − λ(F1(u
n
j ) − F2(u

n
j )) + λF1(u

n
j−1) − λF2(u

n
j+1)

≤ vnj − λ(F1(v
n
j ) − F2(v

n
j )) + λF1(v

n
j−1) − λF2(v

n
j+1)

= vnj − λ(F(vnj , v
n
j+1) − F(vnj−1, v

n
j ))

= vnj .

Hence, we have
|un+1

j | ≤ ∥∥un∥∥∞ + γ�t |Pn
j |.

for j = 1, 2, . . . , N − 1. Because N�x = 1, also Pn
j is bounded:

∣∣∣Pn
j

∣∣∣ ≤ �x
j∑

i=0

|uni | ≤ N�x
∥∥un∥∥∞ = ∥∥un∥∥∞ . (12)

Regarding the boundary terms, clearly

|un+1
0 | ≤ ‖α‖∞ as well as |un+1

N | ≤ ‖β‖∞ .
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Thus, we have

∥∥un∥∥∞ ≤ (1 + γ�t)n
(∥∥∥u0

∥∥∥∞ + ‖α‖∞ + ‖β‖∞
)

≤ eγ n�t
(∥∥∥u0

∥∥∥∞ + ‖α‖∞ + ‖β‖∞
)

≤ eγ T
(∥∥∥u0

∥∥∥∞ + ‖α‖∞ + ‖β‖∞
)

for n�t ≤ T . 
�
The next lemma is a version of Harten’s lemma [16] on bounded domains that

additionally uses the L∞ bound from Lemma 1 to estimate the contribution of the
source term to the total variation.

Lemma 2 (B.V. bound) For n�t ≤ T , the solution un of the numerical scheme (8)
satisfies

|un|B.V.(0,1) ≤ CT

(
|u0|B.V.(0,1) + |α|B.V.(0,1) + |β|B.V.(0,1)

+
∥∥∥u0

∥∥∥∞ + ‖α‖∞ + ‖β‖∞
)

where CT denotes a constant depending on γ and T .

Proof For n = 0, . . . , M , we have

|un+1|B.V.(0,1) =
N−1∑
j=0

|un+1
j+1 − un+1

j |

= |un+1
1 − un+1

0 | +
N−2∑
j=1

|un+1
j+1 − un+1

j | + |un+1
N − un+1

N−1|. (13)

The scheme (8) can then be written in conservative form, i.e. for j = 1, . . . , N − 1
we have

un+1
j = unj + Cn

j+ 1
2
(unj+1 − unj ) − Dn

j− 1
2
(unj − unj−1) + γ�t Pn

j ,

where

Cn
j+ 1

2
= λ

f (unj ) − Fn
j+ 1

2

unj+1 − unj
for j = 1, . . . , N − 1

Dn
j+ 1

2
= λ

f (unj+1) − Fn
j+ 1

2

unj+1 − unj
for j = 0, . . . , N − 2.
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782 J. Ridder, A. M. Ruf

Using the consistency of the numerical flux and the mean value theorem, we get

Cn
j+ 1

2
= λ

F(unj , u
n
j ) − F(unj , u

n
j+1)

unj+1 − unj

= −λF ′
2(ξ) ≥ 0

and similarly

Dn
j+ 1

2
= λ

F(unj+1, u
n
j+1) − F(unj , u

n
j+1)

unj+1 − unj

= λF ′
1(ζ ) ≥ 0

for all j in {1, . . . , N − 1} and {0, . . . , N − 2} respectively. Furthermore, using the
mean value theorem on the difference F1 − F2 a similar calculation shows that the
CFL condition (11) assures Cn

j+ 1
2
+ Dn

j+ 1
2

≤ 1 for j = 1, . . . , N −2. Now, regarding

the sum on the right hand side of (13), we can estimate

|un+1
j+1 − un+1

j | ≤∣∣∣∣unj+1 − unj + Cn
j+ 3

2
(unj+2 − unj+1) − (Dn

j+ 1
2

+ Cn
j+ 1

2
)(unj+1 − unj ) + Dn

j− 1
2
(unj − unj−1)

∣∣∣∣
+γ�t |Pn

j+1 − Pn
j |

Regarding the first sum, we get

N−2∑
j=1

∣∣∣∣unj+1 − unj + Cn
j+ 3

2
(unj+2 − unj+1) − (Dn

j+ 1
2

+ Cn
j+ 1

2
)(unj+1 − unj ) + Dn

j− 1
2
(unj − unj−1)

∣∣∣∣

≤
N−2∑
j=1

Cn
j+ 3

2
|unj+2 − unj+1| +

N−2∑
j=1

(1 − Dn
j+ 1

2
− Cn

j+ 1
2
)|unj+1 − unj | +

N−2∑
j=1

Dn
j− 1

2
|unj − unj−1|

=
N−1∑
j=2

Cn
j+ 1

2
|unj+1 − unj | +

N−2∑
j=1

(1 − Dn
j+ 1

2
− Cn

j+ 1
2
)|unj+1 − unj | +

N−3∑
j=0

Dn
j+ 1

2
|unj+1 − unj |

=
N−2∑
j=1

|unj+1 − unj | − Cn
3
2
|un2 − un1 | + Cn

N− 1
2
|unN − unN−1| − Dn

N− 3
2
|unN−1 − unN−2|

+ Dn
1
2
|un1 − un0 |

On the other hand, regarding the boundary terms in (13), since Dn
1
2

≤ 1 and (12), we

find
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|un+1
1 − un+1

0 |
≤ |un1 − un+1

0 − λ(F3
2

− F1
2
)| + γ�t |Pn

1 |
≤ |un+1

0 − un0| + |un1 − un0 − λ(F3
2

− f (un1) − (F1
2

− f (un1)))| + γ�t
∥∥un∥∥∞

= |un+1
0 − un0| + |un1 − un0 + Cn

3
2
(un2 − un1) − Dn

1
2
(un1 − un0)| + γ�t

∥∥un∥∥∞
≤ |un+1

0 − un0| + Cn
3
2
|un2 − un1| + (1 − Dn

1
2
)|un1 − un0| + γ�t

∥∥un∥∥∞

and similarly

|un+1
N − un+1

N−1|
≤ |un+1

N − unN | + (1 − Cn
N− 1

2
)|unN − unN−1| + Dn

N− 3
2
|unN−1−unN−2

|
+ γ�t

∥∥un∥∥∞

Moreover, we will estimate the P term with the help of Lemma (1) as follows

γ�t
N−2∑
j=1

|Pn
j+1 − Pn

j | = γ�t
�x

2

N−2∑
j=1

|unj+1 + unj |

≤ γ�t(�xN )
∥∥un∥∥∞

≤ γ�teγ T
(∥∥∥u0

∥∥∥∞ + ‖α‖∞ + ‖β‖∞
)

.

In summary we get

|un+1|B.V.(0,1) ≤ |un|B.V.(0,1) + |un+1
0 − un0| + |un+1

N − unN |
+ γ�teγ T

(∥∥∥u0
∥∥∥∞ + ‖α‖∞ + ‖β‖∞

)
.

Furthermore, we note that

M∑
n=0

|un+1
0 − un0| ≤ |α|B.V.(0,T ),

and similarly for the right boundary. Therefore we get

|un |B.V.(0,1) ≤ CT
(|u0|B.V.(0,1) + |α|B.V.(0,1) + |β|B.V.(0,1) + ∥∥u0∥∥∞ + ‖α‖∞ + ‖β‖∞

)
.


�

Lastly, we have a bound on the discrete time derivative of u�t .
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784 J. Ridder, A. M. Ruf

Lemma 3 (Bound of the time derivative) For n�t ≤ T , the solution of the numerical
scheme (8) satisfies

�x
N∑
j=0

∣∣∣Dt+unj
∣∣∣ ≤ Cλ

(
|u0|B.V.(0,1) +

∥∥∥u0
∥∥∥∞ + ‖α‖∞ + ‖β‖∞

)
,

where Cλ depends on γ, T , the Lipschitz constant of the discrete flux F and λ.

Proof Using the definition of the numerical scheme (8), the Lipschitz continuity of F ,
the L∞ bound for P as seen in (12), and the BV and L∞ bounds of un from Lemma
2 and 1, we get

�x
N∑
j=0

|Dt+unj | = �x
N−1∑
j=1

|Dt+unj | + �x |Dt+un0| + �x |Dt+unN |

≤ �x
N−1∑
j=1

|D−F(unj , u
n
j+1)| + γ�x

N−1∑
j=1

|Pn
j | + 1

λ

(|α|B.V.(0,1) + |β|B.V.(0,1)
)

≤ C�x
N−1∑
j=1

(
|D−unj | + |D−unj+1|

)
+ γ�xN

∥∥un∥∥∞

+ 1

λ

(|α|B.V.(0,1) + |β|B.V.(0,1)
)

≤ C
(|un|B.V.(0,1) + ∥∥un∥∥∞

) + 1

λ

(|α|B.V.(0,1) + |β|B.V.(0,1)
)

≤ Cλ

(
|u0|B.V.(0,1) + |α|B.V.(0,1) + |β|B.V.(0,1) +

∥∥∥u0
∥∥∥∞ + ‖α‖∞ + ‖β‖∞

)


�
With the help of these three boundswefinally can apply a version ofHelly’s theorem

to show compactness of the scheme.

Lemma 4 (Convergence) Let u�t be the family of solutions of the numerical scheme
(8) defined by u�t (x, t) = unj for (x, t) ∈ [x j− 1

2
, x j+ 1

2
) × [tn, tn+1). Further, let

λ = �t
�x be fixed such that the discrete flux satisfies (10) and (11). Then there is a

sequence �tk and a function u ∈ Lip([0, T ];L1(0, 1)) such that �tk → 0 and u�tk
converges to u in C ([0, T ];L1(0, 1)).

Proof We want to apply Helly’s theorem [17, Theorem A.11]. This requires an L∞
bound, a bound on the variation in space that is independent of �t , and L1 continuity
in time as �t → 0. An application of Lemma 1 gives

‖u�t (·, t)‖L∞(0,1) ≤ eγ T
(∥∥∥u0

∥∥∥
L∞(0,1)

+ ‖α‖∞ + ‖β‖∞
)

≤ eγ T (‖u0‖L∞(0,1) + ‖α‖∞ + ‖β‖∞
)
.
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Furthermore, by using Lemma 2, we find

‖u�t (· + ε, t) − u�t (·, t)‖L1(0,1) ≤ ε|u�t (·, t)|B.V.(0,1)

≤ ε
(
|u0|B.V.(0,1)+C

(∥∥∥u0
∥∥∥∞ + ‖α‖∞ + ‖β‖∞

))

≤ ε
(|u0|B.V.(0,1) + C

(‖u0‖∞ + ‖α‖∞ + ‖β‖∞
))

→ 0, as ε → 0 uniformly in �t .

Finally, in order to show continuity in time, we employ Lemma 3. For t ∈ [tn, tn+1)

and s ∈ [tn, tn+1) with n > n we find

∫ 1

0
|u�t (x, t) − u�t (x, s)| dx = �x

N∑
j=0

|unj − unj |

≤ �x
n−1∑
l=n

N∑
j=0

|ul+1
j − ulj |

= �t
n−1∑
l=n

�x
N∑
j=0

|Dt+ulj |

≤ �t(n − n)Cλ

(|u0|B.V.(0,1) + ∥∥u0∥∥∞ + ‖α‖∞ + ‖β‖∞
)

= (tn − tn)Cλ

(|u0|B.V.(0,1) + ∥∥u0∥∥∞ + ‖α‖∞ + ‖β‖∞
)

≤ Cλ|t − s| + O(�t).

An application of Helly’s theorem assures the existence of a sequence �tk → 0 and a
function u ∈ Lip([0, T ];L1(0, 1)) such that such that u�tk converges to u in the space
C ([0, T ];L1(0, 1)) as k → ∞. 
�

4 Convergence towards the entropy solution

In this section we prove that the numerical scheme converges to an entropy solution
of the Ostrovsky–Hunter equation. This fact hinges on discrete entropy inequalities
for the interior of the domain and the boundary. These inequalities require a discrete
version of the entropy flux that is consistent with the numerical flux function (9):

Qn
j+ 1

2
= Q(unj , u

n
j+1), Qn

j− 1
2

= Q(unj−1, u
n
j ), (14)

where

Q(u, v) =
∫ u

c
η′(z)F ′

1(z) dz+
∫ v

c
η′(z)F ′

2(z) dz,

and c ∈ R is an arbitrary constant. Note that since F1 and F2 are Lipschitz continuous,
and if η′ is bounded, also Q is Lipschitz continuous in both variables.

We will now derive discrete versions of the entropy conditions (6) and (7). The
entropy condition in the interior of the domain has already been proven in [6].
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786 J. Ridder, A. M. Ruf

Lemma 5 (Discrete entropy inequalities) For any convex entropy η ∈ C 2(R) with
entropy flux q given by q ′ = η′ f ′, let Qn

j+ 1
2
and Qn

j− 1
2
be defined by (14). Then the

solutions of the scheme satisfies for each n

Dt+ηnj + D−Qn
j+ 1

2
− γ η

′,n+1
j Pn

j ≤ 0 (15)

for j = 1, . . . , N − 1, as well as

Qn
1
2

− q(un0) − η′(un0)(Fn
1
2

− f (un0)) ≤ 0 (16)

and
Qn

N− 1
2

− q(unN ) − η′(unN )(Fn
N− 1

2
− f (unN )) ≥ 0.

Proof The first inequality is derived in [6, Lemma 5] (see also [19, Lemma 6.1]). For
the second inequality we use a Taylor approximation and the convexity of the flux

Qn
1
2

− q(un0) − η′(un0)(Fn
1
2

− f (un0))

= Q(un0, u
n
1) − Q(un0, u

n
0) − η′(un0)(F(un0, u

n
1) − F(un0, u

n
0))

=
∫ un1

c
η′(z)F ′

2(z) dz−
∫ un0

c
η′(z)F ′

2(z) dz−η′(un0)(F2(un1) − F2(u
n
0))

=
∫ un1

un0

η′(z)F ′
2(z) dz−

∫ un1

un0

η′(un0)F ′
2(z) dz

=
∫ un1

un0

η′′(ξ)(z − un0)F
′
2(z) dz

= sign(un1 − un0)
∫ max(un0 ,u

n
1)

min(un0 ,u
n
1)

η′′(ξ)(z − un0)F
′
2(z) dz

=
∫ max(un0 ,u

n
1)

min(un0 ,u
n
1)

η′′(ξ)|z − un0|F ′
2(z) dz ≤ 0

The proof of the third inequality can be done analogously. 
�
Thus far, we only know that a sequence of solutions of the numerical scheme (8)

converges to some u ∈ C ([0, T ];L1(0, 1)). By passing to the limit in the discrete
entropy conditions of Lemma 5 we can now show that u is in fact an entropy solution.
To accomplish that we will employ similar techniques as in [6] in regards to the
entropy condition and as in [31] in regards to the entropy boundary condition. While
the following theorem only provides the convergence of a subsequence of u�t , the
uniqueness result in Sect. 5 ensures that the whole sequence converges to the unique
entropy solution.

Theorem 1 (Convergence towards the entropy solution) Let u0 ∈ B.V.(0, 1) and
α, β ∈ B.V.(0, T ) and fix λ = �t

�x such that the discrete flux in the scheme defined by
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A convergent finite difference scheme for… 787

(8) satisfies the (10) and (11). Then for any sequence (�tn)n such that�tn → 0, there
is a subsequence �tnk such that the piecewise constant interpolations u�tnk

defined

by the scheme (8) converge in C ([0, T ];L1(0, 1)) towards an entropy solution of the
Ostrovsky–Hunter equation as k → ∞.

Proof Let (u�tnk
) be a sequence of approximate solutions that converges to u in the

space C ([0, T ];L1(0, 1)) as �tnk → 0 (cf. Lemma 4). For simplicity, we will omit
any indices on �t . According to Lemma 5, the function u�t satisfies the discrete
entropy and entropy boundary conditions.

First, we show that u satisfies the entropy condition (6). Multiplying the discrete
entropy condition (15) by �t�xφn

j , where φn
j = 1

�t�x

∫∫
I nj

φ(x, t) dx dt for some

nonnegative test function φ ∈ C∞
c ((0, 1)×R), and taking the sum over n = 0, . . . , M

and j = 1, . . . , N − 1 gives

0 ≥ �t�x
M∑
n=0

N−1∑
j=1

(
φn
j D

t+ηnj + φn
j D−Qn

j+ 1
2

− γφn
j η

′,n+1
j Pn

j

)

= �x
N−1∑
j=1

(φM+1
j ηM+1

j − φ0
jη

0
j ) − �t�x

M∑
n=0

N−1∑
j=1

ηn+1
j Dt+φn

j (17)

− �t�x
M∑
n=0

N∑
j=1

Qn
j− 1

2
D−φn

j − γ�t�x
M∑
n=0

N−1∑
j=1

φn
j η

′,n+1
j Pn

j ,

where we have used that φn
0 = φn

N = 0 for �x small enough. As in [6] we can pass
to the limit �t → 0 in inequality (17).

More precisely, the continuity of η and the convergence of u�t imply that η(u�t )

converges to η(u) in C ([0, T ];L1(0, 1)). On the other hand, since both the numerical
and continuous entropy fluxes are Lipschitz continuous and u�t (·, t) has bounded
variation for all t ∈ [0, T ], we find

M∑
n=0

N∑
j=1

∫∫
I nj

∣∣∣∣Qn
j− 1

2
− q(u(x, t))

∣∣∣∣ dx dt

≤
M∑
n=0

N∑
j=1

∫∫
I nj

(
|Qn

j− 1
2

− q(unj )| + |q(unj ) − q(u(x, t))|
)
dx dt

≤ C
M∑
n=0

N∑
j=1

∫∫
I nj

(
|unj−1 − unj | + |unj − u(x, t)|

)
dx dt

≤ CT�x + C
∫ T

0

∫ 1

0
|u�t − u| dx dt → 0.

Finally, the L1 convergence of u�t implies L∞ convergence of the P term, since for
x ∈ I j we have
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788 J. Ridder, A. M. Ruf

|Pn
j − P[u](x, t)| =

∣∣∣∣∣∣�x

⎛
⎝

j−1∑
i=0

uni + 1

2
unj

⎞
⎠ −

∫ x

0
u(y, t) dy

∣∣∣∣∣∣
≤

∫ x

0
|u�t (y, t) − u(y, t)| dy+C�x ‖u�t (·, t)‖L∞(0,1)

≤ ‖u�t (·, t) − u(·, t)‖L1(0,1) + C�x ‖u�t (·, t)‖L∞(0,1) → 0.

Thus we can pass to the limit �t → 0 in (17) and get

0 ≥
∫ 1

0
η(u(x, T ))φ(x, T ) dx−

∫ 1

0
η(u(x, 0))φ(x, 0) dx

−
∫ T

0

∫ 1

0

(
η(u)φt + q(u)φx + γ η′(u)P[u]φ)

dx dt

and therefore u satisfies the entropy condition in the interior of the domain.
Regarding the entropy boundary condition (7), rearranging (15) yields

Qn
j+ 1

2
≤ Qn

j− 1
2

− �xDt+ηnj + γ�x Pn
j η

′,n+1
j

Multiplying by �tψn , where ψn = 1
�t

∫ tn+1

tn ψ(s) ds for some nonnegative test func-
tion ψ ∈ C 1

c ([0, T ]), and summing over n = 0, . . . , M , we get

�t
M∑
n=0

Qn
j+ 1

2
ψn ≤ �t

M∑
n=0

Qn
j− 1

2
ψn − �x�t

M∑
n=0

Dt+ηnjψ
n

+ γ�x�t
M∑
n=0

Pn
j η

′,n+1
j ψn

= �t
M∑
n=0

Qn
j− 1

2
ψn + �x�t

M∑
n=0

ηn+1
j︸︷︷︸

≤‖η′‖∞‖u�t‖∞+C

Dt+ψn

︸ ︷︷ ︸
‖ψ ′‖∞

+ γ�x�t
M∑
n=0

Pn
j η

′,n+1
j ψn

≤ �t
M∑
n=0

Qn
j− 1

2
ψn + CT�x + γ�x�t

M∑
n=0

Pn
j η

′,n+1
j ψn .

Repeating this argument and using the discrete entropy boundary condition (16) yields

�t
M∑
n=0

Qn
j+ 1

2
ψn ≤ �t

M∑
n=0

Qn
1
2
ψn + jCT�x + γ�x�t

j∑
i=1

M∑
n=0

Pn
i η

′,n+1
i ψn
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≤ �t
M∑
n=0

(q(un0) + η′(un0)(Fn
1
2

− f (un0)))ψ
n + jCT�x

+ γ�x�t
j∑

i=1

M∑
n=0

Pn
i η

′,n+1
i ψn . (18)

In order to recover the entropy boundary condition (7)we nowpass to the limit�t → 0
and then x → 0.

Firstly, since u�t converges to u inC ([0, T ];L1(0, 1)) and thus also in L1((0, 1)×
(0, T )), using the Lipschitz continuity of Q, we find

M∑
n=0

N∑
j=0

∫∫
I nj

|Q j+ 1
2

− q(u(x, t))| dx dt

≤
M∑
n=0

N∑
j=0

∫∫
I nj

(|Q(unj , u
n
j+1)

− Q(u(x, t), unj+1)| + |Q(u(x, t), unj+1) − q(u(x, t))|) dx dt

≤ C
M∑
n=0

n∑
j=0

∫∫
I nj

(|unj − u(x, t)| + |unj+1 − u(x, t)|) dx dt

≤ C
M∑
n=0

n∑
j=0

∫∫
I nj

(|u�t (x, t) − u(x, t)| + |u�t (x + �x, t) − u�t (x, t)|) dx dt

≤ C

(∫ T

0

∫ 1

0
|u�t (x, t) − u(x, t)| dx dt+T�x sup

0≤n≤M+1
|un|B.V.(0,1)

)
→ 0.

Thus the left hand side of (18) converges to
∫ T
0 q(u(x, t))ψ(t) dt for almost every

x ∈ (0, 1).
Because of the Lipschitz continuity of F and the L∞ bound in Lemma 1, the

piecewise constant interpolation in time of the values Fn
1
2
is bounded in L∞(0, T ).

Thus there exists a subsequence such that Fn
1
2

∗−⇀ f̃0(t) in L∞(0, T ) for some f̃0 ∈
L∞(0, T ).

Since un0 = 1
�t

∫ tn

tn−1 α(s) ds converges to α(t) for almost all t ∈ (0, T ), the con-
tinuity of q, η′ and f assures convergence of the remaining terms on the right hand
side of (18).

Thus, by passing to the limit �t → 0 in (18), we get

∫ T
0 q(u(x, t))ψ(t) dt ≤ ∫ T

0

(
q(α(t)) + η′(α(t))

(
f̃0(t) − f (α(t))

))
ψ(t) dt+CT x

+γ
∫ x
0

∫ T
0 η′(u)P[u]ψ(t) dt dx .
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790 J. Ridder, A. M. Ruf

Because u(x, ·) is of bounded variation in time, we have strong convergence in
L1(0, T ). The limit can only be the strong trace, i.e. u(x, ·) → uτ

0, as x → 0. Thus,
by passing to the limit x → 0 in the foregoing inequality, we get

∫ T

0
q(uτ

0(t))ψ(t) dt ≤
∫ T

0

(
q(α(t)) + η′(α(t))

(
f̃0(t) − f (α(t))

))
ψ(t) dt (19)

and since ψ ∈ C 1
c ([0, T ]) is arbitrary
q(uτ

0(t)) ≤ q(α(t)) + η′(α(t))
(
f̃0(t) − f (α(t))

)

for almost every t ∈ (0, T ). It remains to show that f̃0(t) = f (uτ
0(t)). By an approxi-

mation argument, (19) also holds true forKružkov entropy pairsη(u) = |u−k|,q(u) =
sign(u−k)( f (u)− f (k))with arbitrary k ∈ R. Choosing k > max(uτ

0(t), α(t)) yields

−( f (uτ
0(t)) − f (k)) ≤ −( f (α(t)) − f (k)) − (

f̃0(t) − f (α(t))
)

and thus
f (uτ

0(t)) ≥ f̃0(t).

On the other hand, choosing k < min(uτ
0(t), α(t)) gives f (uτ

0(t)) ≤ f̃0(t), and
therefore f̃0(t) = f (uτ

0(t)). This proves the entropy boundary condition at x = 0.
The boundary at x = 1 can be handled similarly. 
�

5 L1 stability and uniqueness

We now want to prove L1 stability of solutions following the ‘doubling of variables’
method introduced by Kružkov [20].

Theorem 2 (L1 stability) If u and v are entropy solutions of the Ostrovsky–Hunter
equation with initial datum u0 and v0 respectively, then

‖u(·, T ) − v(·, T )‖L1(0,1) ≤ eγ T ‖u0 − v0‖L1(0,1) .

In particular, this implies that entropy solutions to the initial-boundary value problem
are unique.

Proof Let u and v be entropy solutions with initial datum u0 and v0 respectively.
We will now consider the entropy inequality (6) with Kružkov entropy pairs and a
nonnegative test function φ with support away from t = 0 and t = T . By taking (6)
for u in the variables (x, t) and for v in the variables (y, s) both with the test function
φ(x, t, y, s), integrating each with respect to the respective other two variables and
adding them we get

∫ T

0

∫ 1

0

∫ T

0

∫ 1

0

(
|u(x, t) − v(y, s)|(φt + φs) + q(u(x, t), v(y, s))(φx + φy)

+γ sign(u(x, t) − v(y, s))(P[u](x, t) − P[v](y, s))φ
)
dx dt dy ds ≥ 0
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Now, let φ = ψ(
x+y
2 , t+s

2 )ωε(x − y)ωε0(t − s), where 0 ≤ ψ ≤ 1 is a test function to
be chosen later and ωε,ε0 are symmetric standard mollifiers. Then, using [17, Lemma
2.9], we find that the terms not involving P converge towards

∫ T

0

∫ 1

0

(
|u − v|ψt + q(u, v)ψx

)
dx dt,

as ε, ε0 → 0. Regarding the remaining term, we use

|P[u](x, t) − P[v](y, s)| ≤ |P[u](x, t) − P[v](x, s)| + |P[v](x, s) − P[v](y, s)|
≤ ‖u(·, t) − v(·, s)‖L1(0,1) + |x − y| · ‖v(·, s)‖L∞(0,1)

≤ ‖u(·, t) − v(·, t)‖L1(0,1)

+ ‖v(·, t) − v(·, s)‖L1(0,1) + |x − y| · ‖v(·, s)‖L∞(0,1) .

Hence, using that weak solutions of bounded variation are Lipschitz continuous in
time [17, Theorem 7.10], we find

∫ T

0

∫ 1

0

∫ T

0

∫ 1

0
|P[u](x, t) − P[v](y, s)|φ dx dt dy ds

≤
∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt

+
∫ T

0

∫ T

0
‖v(·, t) − v(·, s)‖L1(0,1) ωε0(t − s) dt ds

+
∫ T

0

∫ 1

0

∫ 1

0
|x − y| · ‖v(·, s)‖L∞(0,1) ωε(x − y) dx dy ds

≤
∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt

+ C
∫ T

0

∫ T

0
|t − s|ωε0(t − s) dt ds+ε ‖v‖L∞((0,1)×(0,T ))

≤
∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt+CT (ε0 + ε)

→
∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt

as ε, ε0 → 0. Consequently, u and v satisfy

∫ T

0

∫ 1

0

(
|u − v|ψt + q(u, v)ψx

)
dx dt+γ

∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt ≥ 0.

Let now

χδ,a(ξ) =
∫ ξ

0

(
ωδ/2(ζ − δ/2) − ωδ/2(ζ − (a − δ/2))

)
d ζ
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792 J. Ridder, A. M. Ruf

which is a smooth approximation to χ[0,a]. Then we define ψ(x, t) = χδ,1(x)χδ,T (t).
Taking δ → 0, we get

∫ 1

0
|u0(x) − v0(x)| dx−

∫ 1

0
|u(x, T ) − v(x, T )| dx

+γ

∫ T

0
‖u(·, t) − v(·, t)‖L1(0,1) dt

≥
∫ T

0
q(uτ

1(t), v
τ
1 (t)) dt−

∫ T

0
q(uτ

0(t), v
τ
0 (t)) dt . (20)

Note that by choosing

k(t) =

⎧⎪⎨
⎪⎩
uτ
0(t) if uτ

0(t) ∈ I [α(t), vτ
0 (t)]

α(t) if α(t) ∈ I [vτ
0 (t), u

τ
0(t)]

vτ
0 (t) if vτ

0 (t) ∈ I [uτ
0(t), α(t)]

in the boundary entropy condition (7) we get

q(uτ
0(t), v

τ
0 (t)) ≤ 1

2

(
q(uτ

0(t)) − q(α(t)) − η′(α(t))( f (uτ
0(t)) − f (α(t)))

+q(vτ
0 (t)) − q(α(t)) − η′(α(t))( f (vτ

0 (t)) − f (α(t)))
) ≤ 0

and similarly q(uτ
1(t), v

τ
1 (t)) ≥ 0 for a.e. t . Thus the right-hand side of (20) is non-

negative. An application of Gronwall’s lemma finishes the proof. 
�

6 Numerical experiments

In this section we want to conduct two numerical experiments to illustrate our results.
Here, we choose f (u) = u2/2 and γ = 1. Our first numerical experiment uses a
well-studied travelling wave solution of the Ostrovsky–Hunter equation with initial
datum given by the ‘corner wave’:

u0(x) =
{

1
6 (x − 1

2 )
2 + 1

6 (x − 1
2 ) + 1

36 , if x ∈ [0, 1
2 ],

1
6 (x − 1

2 )
2 − 1

6 (x − 1
2 ) + 1

36 , if x ∈ [ 12 , 1].

The ‘corner wave’ consists of two parabolas forming a sharp corner at x = 1
2

(cf. Fig. 1). The travelling wave solution is

uex(x, t) = u0

(
x − t

36
−

⌊
x − t

36

⌋)
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Fig. 1 Initial datum for both
numerical experiments

Fig. 2 Explicit and numerical
solution for Experiment 1 at
T = 36

which returns to its initial state after a period of T = 36. The ‘corner wave’ is the
limit case of a family of smooth travelling wave solutions that has been investigated
by several authors [3,18,27,29,33]. In this section we will not consider P(0) = 0, but∫ 1
0 P = 0, which gives

(P[u])(x, t) =
∫ x

0
u(y, t) dy−

∫ 1

0

∫ y

0
u(z, t) dz .

This is motivated by the fact that the latter choice limits the growth of the L∞
norm of the solution for our experiments. Figure 2 shows the exact entropy solution
and a numerical solution both at T = 36. The numerical solution is calculated by the
Lax–Friedrichs method with boundary conditions set as the explicit solution at x = 0
and x = 1 respectively and a grid discretization parameter of �x = 2−7.

For this and all subsequent numerical experiments we use1 �t/�x = 25. Addi-
tionally, for the first experiment the known exact entropy solution is used to calculate
the error:

err1L1(�t) = ‖u�t (·, 36) − uex(·, 36)‖L1(0,1) .

1 Here,we have
∥∥ f ′(u0)

∥∥
L∞(0,1) = 1/36 and thereforeλ = �t/�x should satisfyλ ≤ 36.However, since

the L∞ bound from Lemma 1 allows for some growth of
∥∥un∥∥∞ choosing a smaller λ can be neccessary.
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Table 1 L1 errors and
convergence rates for
Experiment 1

�x Lax–Friedrichs Rate Engquist–Osher Rate

2−6 2.84 · 10−3 1.39 · 10−3

2−7 1.72 · 10−3 0.72 6.92 · 10−4 1.00

2−8 9.71 · 10−4 0.82 3.61 · 10−4 0.94

2−9 5.32 · 10−4 0.86 1.90 · 10−4 0.93

2−10 2.83 · 10−4 0.91 1.01 · 10−4 0.91

Fig. 3 Numerical solutions for
Experiment 2 at T = 36
calculated with the
Lax–Friedrichs flux and
�x = 2−7 (dashed) and with
the Engquist–Osher flux and
�x∗ = 2−11 (straight)

Table 1 shows the L1 error between various numerical solutions and the exact solution,
as well as the respective experimental convergence rates. Comparing these results to
Table 1 in [6], we see that our numerical scheme is consistent with the periodic case.

In our second experiment we use the same initial datum, but set the right boundary
datum to zero. Figure 3 displays two numerical solutions, one on a moderate mesh
(�x = 2−7) calculated with the Lax–Friedrichs flux and one on a fine mesh (�x∗ =
2−11) calculated with the Engquist–Osher flux. With no explicit entropy solution at
handwe consider a numerical solution on a fine grid (�x∗ = 2−11) in order to calculate
the L1 errors in the second experiment, i.e.,

err2L1(�t) = ‖u�t (·, 36) − u�t∗(·, 36)‖L1(0,1) .

Here, u�t and u�t∗ are always calculated based on the same numerical method.
Finally, in Table 2 we compare the L1 errors between various numerical solutions and
provide the experimental convergence rates. One clearly sees that the Engquist–Osher
flux leads to a better approximation in this experiment. This is due to the fact that the
homogeneous boundary condition at x = 1 constitutes a shock that propagates into
the domain and that shocks are resolved better with the Engquist–Osher flux.

For conservation laws in R without source term the classical result concerning
convergence rates in L1, due to Kuznetsov [21], gives a convergence rate of O(�x1/2).
The same convergence rate was shown in [6] for the Ostrovsky–Hunter equation with
periodic boundary conditions. Although theoretical results estimating the convergence
rate in the case of Dirichlet boundary conditions are highly desirable, such results are
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Table 2 L1 errors and
convergence rates for
Experiment 2

�x Lax–Friedrichs Rate Engquist–Osher Rate

2−6 3.00 · 10−3 1.36 · 10−3

2−7 1.90 · 10−3 0.66 6.60 · 10−4 1.04

2−8 1.16 · 10−3 0.71 3.24 · 10−4 1.03

2−9 6.88 · 10−4 0.75 1.50 · 10−4 1.11

2−10 4.05 · 10−4 0.76 5.83 · 10−5 1.36

currently not at hand. However, in the absence of source terms Ohlberger and Vovelle
[26] proof a rate of O(�x1/6) in a very general setting.
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