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Abstract
Consider linear algebraic systems A(p)x = b(p), where the matrix and the right-hand
side vector depend linearly on a number of parameters p = (p1, . . . , pK )� that vary
within given intervals. For each interval parameter, the structure of the dependencies
can be presented by a finite sum of rank one matrices. This representation implies
new more general and powerful sufficient conditions for regularity of a parametric
interval matrix and a flexible general methodology for solving parametric interval
linear systems with an expanded scope of applicability.
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1 Introduction

Let R be the standard notation for real numbers and Rm,Rm×n denote the sets of real
m-vectors and real m × n matrices, respectively. A real compact interval is defined by
a = [a, a] := {a ∈ R | a ≤ a ≤ a, a, a ∈ R}. Denote the set of all intervals by IR

and IR
m , IRm×n denote the sets of interval m-vectors and interval m × n matrices,

respectively. We consider systems of linear algebraic equations

A(p)x = b(p),
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where the matrix and the right hand side vector depend linearly on a number of
parameters p = (p1, . . . , pK )�, which are uncertain and vary within given intervals
p = (p1, . . . ,pK )�. In the worst-case analysis of an uncertain system, represented
by interval parameters, one is interested to obtain componentwise interval bounds for
the so-called united parametric solution set of this system

Σuni (A(p), b(p),p) := {
x ∈ R

n | ∃p ∈ p : A(p)x = b(p)
}
. (1.1)

Most of the interval methods for enclosing Σuni (A(p), b(p),p), e.g., [2,4,5,16,22],
either require or verify the so-called strong regularity [15] of the parametric interval
matrix. A numerical method is proposed in [11] by Neumaier and Pownuk, which
does not require strong regularity of A(p) on p, and which has an expanded scope
of applicability shown in [19]. The only requirement of the method is a particular
structure of the parameter dependencies, so that the system is presented as

(A0 + LDpR)x = b0 + Fq, p ∈ p, q ∈ q, (1.2)

where L, R, F are real matrices and the parameters p are isolated in a diagonal matrix
Dp. In [18] some constructive sufficient conditions for a parametric matrix A(p) to
be representable in the form A0 + LDpR are proven and the method is generalized
to parametric systems involving dependencies between the matrix and the right hand
side. In [19] a more general constructive theorem specifies how any parametric linear
system in general form can be transformed into a form similar to (1.2). Based on this
representation, a new sufficient condition for regularity of a parametric matrix in the
interval vector of the parameters is proven therein. This condition corresponds to the
background requirement of the method of Neumaier and Pownuk, and its power is
demonstrated on some numerical examples.

The present article is based on the ability to represent the linear parameter dependen-
cies in any parametric matrix, or system of equations, by a sum of rank one matrices.
Such representations and their properties are discussed in Sect. 2.1. The notion strong
regularity of a parametric interval matrix, naming a number of equivalent sufficient
conditions for regularity of a parametric matrix in an interval vector for the param-
eters, is generalized in Sect. 3 to cover a wider class of parametric matrices. It is
proven therein that the sufficient conditions, based on optimal rank one representation
(Definition 2.3) of the parameter dependencies are more general than the available
so far sufficient conditions for regularity of a parametric interval matrix. In Sect. 4
we present a general methodological framework for solving parametric interval linear
systems1 having optimal rank one representation of the parameter dependencies. The
presented methodology has the same expanded scope of applicability as the method of
Neumaier and Pownuk [11] and its generalization [18], and eliminates the implemen-
tation features required by the latter method. Some numerical examples, presented in
this section, illustrate the advantages of the newly proposed methodology. The article
ends by some conclusions.

1 The abbreviation “parametric interval linear system” is used in this and other articles as a synonym of
the abbreviation “interval parametric linear system” used, e.g., in [4,5], although the second one might be
more appropriate.
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2 Notation and basic definitions

Denote the identity matrix of appropriate dimension by I and the spectral radius of
A ∈ R

n×n by ρ(A). A diagonal matrix, whose diagonal entries are the elements of
a vector x ∈ R

n , is denoted by Dx = diag(x1, . . . , xn). For a matrix Ak ∈ R
m×n ,

denote its i-th row by Ak,i• and its j-th column by Ak,• j . For a number of matrices
A1, . . . , Ak ∈ R

m×n , A = (A1| . . . |Ak) denotes the matrix A ∈ R
m×kn obtained by

stacking the columns of A1, . . . , Ak .
For an interval a = [a, a], define its midpoint by ǎ = mid(a) := (a + a)/2, radius

by â = rad(a) := (a − a)/2 and absolute value (magnitude) |a| := max{|a|, |a|}.
These functions are applied to interval vectors and matrices componentwise. For a
nonempty and bounded set Σ ⊂ R

m , its interval hull is defined by

�Σ :=
⋂

{x ∈ IR
m | x ⊇ Σ}.

For an interval matrix A ∈ IR
m×m and a given scaling vector u ∈ R

m , u > 0, the
corresponding scaled maximum norm is

||A||u = max
i=1,...,m

∑m
j=1 |Ai j |u j

ui
.

Definition 2.1 For a given interval vector p ∈ IR
K , such that p̂k > 0 for each 1 ≤

k ≤ K , the set of real matrices

{A(p),p} :=
{

A(p) = A0 +
K∑

k=1

pk Ak ∈ R
m×n | p ∈ p

}

(2.1)

is called anm×n parametric interval matrix involving linear parameter dependencies
represented by the matrices Ak ∈ R

m×n , 0 ≤ k ≤ K .

A parametric interval matrix is not an interval matrix and {A(p),p} is a short
notation for a family of real matrices specified by A(p), where p ∈ p. This notation
follows the style of notation (1.1).

For every parametric interval matrix {A(p),p} of Definition 2.1, there is a corre-
sponding nonparametric interval matrix

A(p) := �{A(p),p} = A0 +
K∑

k=1

pk Ak . (2.2)

Nonparametric interval matrices A ∈ IR
m×n can be considered as a special class of

parametric interval matrices. Namely, A ∈ IR
m×n can be considered as a parametric

interval matrix involving m × n interval parameters ai j ∈ ai j , 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Thus, the following Definition 2.2 comprises both the parametric and nonparametric
interval matrices. In this article we will consider square parametric matrices.
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Definition 2.2 A square parametric interval matrix {A(p),p} is called regular if A(p)
is regular for every p ∈ p.

{A(p),p} is said singular if Definition 2.2 is not satisfied, i.e., if A(p) is singular
for some p ∈ p.

2.1 Equivalent representations of a parametric matrix

For a square parametric matrix A(p) ∈ R
n×n , beside the representation (2.1), in this

article we consider another equivalent representation, called LDR representation,

A(p) = A0 + LDg(p)R (2.3)

with suitable matrices L, R� ∈ R
n×s and a parameter vector g(p) ∈ R

s , s ≥ K ,
which is obtained from p by possibly involving some parameters pk , 1 ≤ k ≤ K ,
more than once.

An equivalent LDR representation (2.3) can be found for any parametric matrix
(2.1). A simple way is if for each 1 ≤ k ≤ K , we consider Ak and define Lk, R�

k ∈
R
n×sk , Ak = Lk Rk , by the sk nonzero rows of Ak . Namely, Rk,i• = Ak,i•, Lk,•i

= e(i), where e(i) is the i-th coordinate unit vector inRn , and i is the i-th nonzero row
of Ak , 1 ≤ i ≤ sk ≤ n. Thus, with gk(pk) = (pk, . . . , pk)� ∈ R

sk , 1 ≤ k ≤ K and
L = (L1| . . . |LK ), R = (

R�
1 | . . . |R�

K

)�
, g(p) = (

g�
1 (p1)| . . . |g�

K (pk)
)�

, we have
an equivalent LDR representation (2.3). It is discussed below that a parametric matrix
may have many equivalent LDR representations which differ in their properties.

For every parameter pk in (2.1), 1 ≤ k ≤ K , we consider a full rank factorization
of its coefficient matrix Ak ∈ R

n×n

Ak = Lk Rk, Lk ∈ R
n×sk , Rk ∈ R

sk×n, sk = rank(Ak). (2.4)

Also, pk Ak = LkDgk (pk )Rk , where gk(pk) = (pk, . . . , pk)� ∈ R
sk . For a given

matrix Ak ∈ R
n×n with rank(Ak) = sk , there are variousways to obtain a factorization

(2.4), cf. [6,13]. A full-rank LDR representation can be obtained by the reduced singu-
lar value decomposition (SVD), [6], Ak = LkDσk R

�
k , where σk = (σk,1, . . . , σk,sk )

�
are the nonzero singular values of Ak and Lk, Rk ∈ R

n×sk are the corresponding
orthogonal matrices. However, obtaining SVD of a matrix has high computational
complexity and the decomposition may not be exact even if the input data are exact.
Other approaches for obtaining a decomposition (2.4) are those based on (a) a basis
of the column space of Ak and (b) the row reduced echelon form of Ak . These decom-
positions are exact in exact arithmetic but not unique, cf. [6,13]. An approach similar
to (a) is applied in [19].

Definition 2.3 For a parametricmatrix A(p) = A0+∑K
k=1 pk Ak , the following LDR-

representation
A0 + LDg(p)R, (2.5)

where g(p) ∈ R
s , s = ∑K

k=1 sk , g(p) = (
g�
1 (p1)| . . . |g�

K (pK )
)�

,

L = (L1| . . . |LK ) ∈ R
n×s , R = (

R�
1 | . . . |R�

K

)� ∈ R
s×n and for 1 ≤ k ≤ K ,
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gk(pk) = (pk, . . . , pk)� ∈ R
sk , pk Ak = LkDgk (pk )Rk , is an equivalent, optimal,

rank one representation of A(p) if

(i) (2.5) restores A(p) exactly, that is

A(p) = A0 + LDg(p)R = A0 +
K∑

k=1

LkDgk (pk )Rk;

(ii) for each 1 ≤ k ≤ K , matrices Lk, Rk provide a full rank factorization (2.4) of Ak .

Definition 2.3 implies that if we introduce new parameters ti , 1 ≤ i ≤ s, by
ti := gi (p), ti ∈ gi (p), then the coefficient matrix (denoted by Ai ) for each parameter
ti has rank one, that is Ai = L•i Ri•. Section 3 presents that although the coefficient
matrices Ak of the parameters pk , 1 ≤ k ≤ K , may not have rank one in general, the
sufficient conditions for regularity of a parametric interval matrix (used also by the
methods for enclosing the solution set Σuni (A(p), b(p),p)) are based on approxi-
mating the parametric matrix by another one with rank one uncertainty structure.

Inwhat follows, except if it is explicitly specified, wewill not distinguish the variety
of equivalent optimal rank one LDR representations (2.5) of a parametric matrix A(p)
in (2.1).

Definition 2.4 A parametric matrix A(p) ∈ R
n×n , p ∈ R

K , involves only column
dependencies if for every 1 ≤ k ≤ K there exists j ∈ {1, . . . , n} such that Ak,• j 	= 0
and Ak,•i = 0 for all i 	= j .

A parametric matrix A(p) involves row dependencies if A�(p) involves column
dependencies. Column dependencies are “true” (most general) if Ak,• j 	= 0 has more
than one nonzero component. Column dependencies and row dependencies are special
cases of rank one dependency structure. Therefore,we say that a parameter dependence
has “true” (most general) rank one dependency structure if Ak = ukv�

k is such that
both uk, vk ∈ R

n have more than one nonzero component.
In some proofs belowwe use the following statement, known asWoodbury formula

[23], [6]. If A ∈ R
n×n is nonsingular and if U ∈ R

n×s , S ∈ R
s×s , V ∈ R

s×n are
such that I + V A−1US is nonsingular, respectively S − V A−1U is nonsingular, then
A +USV is nonsingular, respectively A −US−1V is nonsingular and

(A +USV )−1 = A−1 − A−1US(S + SV A−1US)−1SV A−1,

(A −US−1V )−1 = A−1 + A−1U (S − V A−1U )−1V A−1.

3 Strong regularity of parametric interval matrices

3.1 The evolution of strong regularity

We study regularity of parametric intervalmatrices in the context of solving parametric
interval linear systems. Since proving regularity is NP-hard, cf. [14], the focus is on
sufficient conditions for regularity of the parametric interval matrix.
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Some sufficient conditions for regularity of a parametric interval matrix {A(p),p}
are based on sufficient conditions for regularity of the corresponding nonparametric
interval matrix A(p). Regularity of A(p) implies regularity of A(p) ∈ A(p) for each
p ∈ p, which (by Definition 2.2) is regularity of the parametric interval matrix. The
term strong regularity of a nonparametric interval matrixA is introduced by Neumaier
in [8] and further developed in [9] to name a number of equivalent sufficient conditions,
[9, Proposition 4.1.1], for regularity of A. Since, for an arbitrary matrix R with the
dimension of A(p),

ρ (I − rad(RA(p))) < 1 (3.1)

implies strong regularity of A(p) and therefore regularity of {A(p),p}, the sufficient
condition (3.1) is used by the first self-verified method for solving parametric interval
linear systems [3] and by its generalization developed by Rump in [21]. In [15], strong
regularity of a nonparametric interval matrix A is generalized for parametric interval
matrices as a general term of a number of equivalent sufficient conditions for regularity
of a parametric interval matrix.

Definition 3.1 ([15]) A square parametric interval matrix {A(p),p} is single-sided
strongly regular if A( p̌) is nonsingular and some of the following interval matrices is
regular

B := �{A−1( p̌)A(p) | p ∈ p}, B′ := �{A(p)A−1( p̌) | p ∈ p}. (3.2)

Single-sided strong regularity of a parametric interval matrix is called up to now just
“strong regularity”. We specify Definition 3.1 as single-sided in order to reflect its
property to account for true column- or row-dependencies but not both, which will be
discussed latter on. As above, single-sided strong regularity of a parametric interval
matrix implies regularity of the latter. The equivalence of some necessary and sufficient
conditions for single-sided strong regularity of a parametric interval matrix are proven
in [15]. A parametric generalization of the condition (3.1) and its verifiable in floating
point arithmetic forms are also presented in [15]. Since Definition 3.1 defines a more
general and more powerful sufficient condition for regularity of a parametric matrix
than strong regularity of A(p), cf. [15, Theorem 2], the single-sided strong regularity
condition

ρ(rad(B)) < 1, (3.3)

which implies regularity of {A(p),p}, is required by most of the methods for solving
parametric interval linear systems and elsewhere in the theory where regularity of
{A(p),p} is needed. An improved self-verified method for solving parametric interval
linear systems, [16], verifies by floating point interval computations the parametric
generalization of (3.1), namely ρ(I − rad(C)) < 1, where C = �{RA(p) | p ∈ p}
for an arbitrary matrix R with the dimension of A(p).

Definition 3.2 The row dependencies in a parametricmatrix dominate over the column
ones if ρ(rad(B′)) < ρ(rad(B)).

In [19, Theorem 7] a new sufficient condition for regularity of parametric interval
matrices {A(p),p} is proven and it is demonstrated by numerical examples that this
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condition is more powerful than the conditions based on Definition 3.1. This motivates
us, in what follows, to expand the existing definition of single-sided strong regularity
of parametric interval matrices, to prove that the expanded definition is more general
than Definition 3.1 and to present some of its equivalent or sufficient conditions.

3.2 Generalized sufficient conditions

First, wemention that,with Ǎ−1 := A−1( p̌), it holds A(p) Ǎ−1 =
(
( Ǎ�)−1A�(p)

)�
.

Since regularity of A ∈ R
n×n is equivalent to regularity of A� ∈ R

n×n , the matrix B′
in Definition 3.1 can be equivalently replaced by the matrix

B′ := �
{(

A−1( p̌)
)�

A�(p) | p ∈ p
}

. (3.4)

Definition 3.3 Let {A(p),p} be a square parametric interval matrix with equiva-
lent optimal rank one representations A(p) − A0 = LDg(p)R and (A(p) − A0)

�
= L ′Dg′(p)R′, defined in (2.5) and obtained in the same manner, e.g., via a basis of
the column space of Ak , respectively of A�

k , for each 1 ≤ k ≤ K . For any p0 ∈ p, such
that A(p0) is nonsingular, define two new parametric interval matrices {G(p0, p),p},
{G ′(p0, p),p} by

G(p0, p) := Is×s − RA−1(p0)LDg(p0−p), p ∈ p, (3.5)

G ′(p0, p) := Is×s − R′(A�(p0))
−1L ′Dg′(p0−p), p ∈ p, (3.6)

and the corresponding nonparametric interval matrices

G(p0) := �{G(p0, p) | p ∈ p} = I −
(
RA−1(p0)L

)
Dg(p0−p), (3.7)

G′(p0) := �{G ′(p0, p) | p ∈ p} = I −
(
R′(A−1(p0))

�L ′) Dg′(p0−p). (3.8)

Definition 3.4 A square parametric interval matrix {A(p),p} is rank one strongly
regular if Ǎ = A( p̌) is nonsingular and some of the interval matrices G( p̌),G′( p̌) of
Definition 3.3 is regular.

Strong regularity by Definition 3.4 is called rank one strong regularity because this
definition is basedonan equivalent optimal rankone LDR representationof A(p). This
definition accounts for both column- and row-dependencies of the parameters whose
coefficient matrices have rank one, in contrast to the single-sided strong regularity of
Definition 3.1.

For the matrices G( p̌), G′( p̌) we have mid(G( p̌)) = mid(G′( p̌)) = I and

rad(G( p̌)) = |R Ǎ−1L|Dg( p̂) = |I − G( p̌)|,
rad(G′( p̌)) = |R′( Ǎ�)−1L ′|Dg′( p̂) = |I − G′( p̌)|.

Then, the following theorem holds true.
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Theorem 3.1 Let {A(p) ∈ R
n×n,p ∈ IR

K } be a parametric interval matrix involving
linear dependencies and A(p), A�(p) have equivalent optimal rank one represen-
tations specified in Definition 3.3. For nonsingular Ǎ = A( p̌) and some H ∈
{G( p̌),G′( p̌)}, the following conditions are equivalent

(i) {A(p),p} is rank one strongly regular,
(ii) H is regular,
(iii) ρ(rad(H)) < 1,
(iv) ||rad(H)||u < 1 for some u > 0,
(v) I − rad(H) is an M-matrix,
(vi) H is an H-matrix,
(vii) forty necessary and sufficient conditions for regularity of H, enlisted in [20,

Theorem 4.1].

Proof The proof of Theorem 3.1 goes the same way as the proof of Proposition 4.1.1
in [9], see also the proof of Theorem 1 in [15]. ��
Proposition 3.1 If {A(p),p} is rank one strongly regular, then it is regular.

Proof IfG( p̌) is regular, then for each p ∈ p the matrix Is×s − RA−1( p̌)(LDg( p̌−p))

is regular. Then, the second Woodbury formula implies regularity of A( p̌) −
LDg( p̌−p)R = A(p) for each p ∈ p. The latter means regularity of {A(p),p} by
Definition 2.2. Similarly, regularity of G′( p̌) implies regularity of {A(p),p}, which
finishes the proof. ��

For single-sided strong regularity we have a theorem similar to Theorem 3.1. How-
ever, rank one strong regularity of Definition 3.4 and Theorem 3.1 are more general
than single-sided strong regularity of Definition 3.1 (and its respective Theorem 3.1
with B,B′). The following theorem proves this statement.

Theorem 3.2 Let {A(p) ∈ R
n×n,p ∈ IR

K } be a parametric interval matrix involving
linear dependencies. Let B,B′ be those of Definition 3.1 andG( p̌),G′( p̌) be those of
Definition 3.4. Then,

ρ(rad(G( p̌))) ≤ ρ(rad(B)), (3.9)

similarly, ρ(rad(G′( p̌))) ≤ ρ(rad(B′)). For some parametric interval matrices we
have ρ(rad(G( p̌))) < ρ(rad(B)) or ρ(rad(G′( p̌))) < ρ(rad(B′)).

Proof We prove the relation (3.9). The other one can be proven in a similar way.
The interval matrix B has the following equivalent LDR representation

B = I − |R̃ Ǎ−1 L̃|Dv,

which is obtained by L̃k = Ak , R̃k = I , 1 ≤ k ≤ K . In L̃k the zero columns of Ak

are removed, as well as the corresponding rows of I , so that vk(pk) ∈ R
t̃k and t̃k is

the number of nonzero columns of Ak . Then v = (v1, . . . , vsB ) with sB = ∑K
k=1 t̃k ,

vi ∈ vi = vi ([− p̂, p̂]), 1 ≤ i ≤ sB .
G( p̌)) is that of Definition 3.4 and has an equivalent representation

G( p̌)) = I − |R Ǎ−1L|Du, obtained via the basis of the column space of Ak for
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every 1 ≤ k ≤ K , where u = (u1, . . . , usG ), ui ∈ ui = ui ([− p̂, p̂]), 1 ≤ i ≤ sG and
sG = ∑K

k=1 tk , tk = rank(Ak).
For every matrix G ∈ G( p̌) there exists a matrix B ∈ B and since, in general,

the LDR representation of B may not be optimal, the reverse is not always true. This
statement is well visible if we substitute the interval parameters vi , 1 ≤ i ≤ sB and
ui , 1 ≤ i ≤ sG into the matrix A(p), by which we obtain

{A(u),u} ⊆ {A(v), v}.

Assume that B is regular and there exists a singular matrix G ∈ G( p̌). Then B will
contain a singular matrix, which contradicts the assumption. This means that if B is
regular thenG( p̌) is also regular, however, ifG( p̌) is regularBmay not be so. Then, the
equivalent conditions of Theorem 3.1 imply (3.9). The numerical examples presented
in Sect. 4 show that for classes of parametric matrices we have true inequality in (3.9)
and for some p

ρ(rad(G( p̌))) < 1 ≤ ρ(rad(B)).

If A(p) involves only column dependencies and in some other special cases of para-
metric interval matrices we may have equality in (3.9). ��

The following theorem expands the scope of applicability of the condition (iii) of
Theorem 3.1 to arbitrary p0 ∈ p. This is important for computational verification of
the regularity of {A(p),p}. The generalization proven in Theorem 3.2 holds true also
for the condition in Theorem 3.3. Theorem 3.3 slightly improves Theorem 7 in [19]
in the last part of its proof.

Theorem 3.3 Let {A(p),p} be a square parametric interval matrix with equivalent
optimal rank one representations specified in Definition 3.3. If for any nonsingular
A(p0), p0 ∈ p, and for someM ∈ {I − G(p0), I − G′(p0)},

ρ (|M|) < 1, (3.10)

then {A(p),p} is regular.
Proof By [9, Corollary 3.2.3], � (|M|) < 1 is equivalent to |M|u < u for some vector
u > 0. The latter is equivalent to ||M||u < 1 for some vector u > 0. Since the last
relation is equivalent to ||I − (I − M) ||u < 1 for some u > 0, then [9, Proposition
3.7.2] implies that H = I −M is an H-matrix and therefore a regular interval matrix.
From now on the proof continues separately and similarly for the matricesG(p0) and
G′(p0). We present it for the matrix G′(p0). Since G′(p0) is regular, for each p ∈ p

I − R′(A�(p0))
−1L ′Dg′(p0−p) is regular.

Then, the secondWoodbury formula, where Ss×s = Is×s , implies that for each p ∈ p

A�(p0) − L ′Dg′(p0−p)R
′ = A�(p) is regular.
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Since regularity of A�(p) is equivalent to regularity of A(p), the proof is
completed. ��

Any other sufficient (and necessary) conditions applicable to parametric inter-
val matrices can be applied to the parametric interval matrices {G(p0, p),p},
{G ′(p0, p),p}, specified in Definition 3.3, in order to prove regularity of {A(p),p}.

In view of its wide applicability, the sufficient condition (iii) of Theorem 3.3,

ρ
(
|(RA−1(p0)L)Dg(p0−p)|

)
< 1 or ρ

(
|(R′(A�(p0))

−1L ′)Dg(p0−p)|
)

< 1,

with p0 = p̌ or arbitrary p0 ∈ p, will be called sufficient condition for regularity of a
parametric interval matrix based on its equivalent optimal rank one LDR representa-
tion.

4 Solving parametric linear systems

Consider a parametric interval linear algebraic system in the general form

A(p)x = b(p, q), p ∈ p, q ∈ q, (4.1)

where the parameter dependencies are linear and described by

A(p) := A0 +
K∑

k=1

pk Ak, b(p, q) := b0 +
K∑

k=1

pkbk +
Q∑

k=1

qkbk, (4.2)

with Ak ∈ R
n×n , 0 ≤ k ≤ K , bl ∈ R

n , 0 ≤ l ≤ K + Q. The parametric united
solution set of the system (4.1) is defined by

Σuni (A(p), b(p, q),p,q) := {
x ∈ R

n | (∃p ∈ p, ∃q ∈ q)(A(p)x = b(p, q))
}
.

(4.3)
In what follows we present a methodology for enclosing Σuni (A(p), b(p, q),p,q),
which is basedon an equivalent optimal rankone representations specified inDefinition
3.3. Assume that the system (4.1) has an equivalent representation

(
A0 + LDg(p)R

)
x = b0 + LDg(p)t + Fq, p ∈ p, q ∈ q (4.4)

with suitable matrices L, R and a parameter vector g(p), specified in Definition 3.3
and vector t such that

∑K
k=1 pkbk = LDg(p)t . In the representation (4.4) and in the

numerical methods belowwewill not distinguish between LDR originated from A(p)
or from A�(p); this difference is essential for the applications, see Example 4.3.

Theorem 4.1 Let the system (4.1) have an equivalent optimal representation (4.4),
based on Definition 3.3, and for any p0 ∈ p the matrix C0 := A(p0) be nonsingular.
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Denote x0 = C−1
0 b(p0, q0), q0 ∈ q. If

�
(∣∣∣(RC−1

0 L)Dg(p0−p)

∣∣∣
)

< 1, (4.5)

then Σuni (A(p), b(p, q),p,q) and the united solution set Σuni((4.6)) of the system

G(p0, p)y = RC−1
0 b(p, q), p ∈ p, q ∈ q (4.6)

are bounded, y ⊇ Σuni((4.6)) is computable, and every x ∈ Σuni (A(p), b(p, q),p,q)

satisfies
x ∈ x0 − (C−1

0 F)(q0 − q) + (C−1
0 L)

(
Dg(p0−p)(y − t)

)
. (4.7)

Proof If (4.5) holds, by Theorem 3.3, the parametric interval matrices {G(p0, p),p}
and {A(p),p} are regular. Hence, the united solution set of (4.6) and respectively
Σuni (A(p), b(p, q),p,q) are bounded. The parametric matrix G(p0, p) involves
only column dependencies with respect to each parameter gi ∈ gi (p) and, by Theorem
3.3 (see the proof), the nonparametricmatrixG(p0) is anH-matrix. This implies single-
sided strong regularity of G(p0, p) by Definition 3.1. Therefore, the parametric linear
system (4.6) is solvable by any of the available parametric methods based on single-
sided strong regularity (Definition 3.1, its equivalent condition of the corresponding
Theorem 3.1 or the sufficient condition of the corresponding Theorem 3.3). Hence
y ⊇ Σuni((4.6)) is computable. The solution x of the parametric interval linear system

(
I − C−1

0 LDg(p0−p)R
)
x = C−1

0 b(p, q), p ∈ p, q ∈ q, (4.8)

which is equivalent to (4.1) (respectively to (4.4)), and the solution y of the system
(4.6) are related via y = Rx . Hence, each solution x̃ ∈ Σuni (A(p), b(p, q),p,q)

satisfies

x̃ = x0 − (C−1
0 F)(q0 − q̃) + (C−1

0 L)Dg(p0− p̃)(y − t).

for some p̃ ∈ p, q̃ ∈ q and y ∈ Σuni((4.6)). Then, the inclusion isotonicity of interval
operations gives (4.7). ��

Theorem4.1 specifies ageneral framework for enclosingΣuni (A(p), b(p, q),p,q)

basing on an equivalent optimal rank one representation (4.4) of the initial system (4.1).
The particular implementation (and its properties) of this general framework depends
on the particular parametric method that will be chosen for computing the enclosure
y ⊇ Σuni ((4.6)). Since p0 = p̌ provides minimum of the magnitude |y|, cf. [9, The-
orem 4.1.10], Theorem 4.1 applies with p0 = p̌, q0 = q̌ . Below we discuss some
implementation schemes and their properties.

The parametric methods applicable to system (4.6) can be classified in two general
classes:

(s1) Methods, which are not self-verified. They require nonsingularity of A( p̌) and
enclose the solution set when the error of floating point computations is small
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compared to data uncertainties and the overestimation of the method. Exam-
ples of such methods are Skalna’s direct method [22], called in [2] parametric
Bauer-Skeel method, and the methods of Kolev [4], [5]. An enclosure y, equiv-
alent to that obtained by the direct method, is y = y( p̌, q̌) + �Σ(B,b), where
B = I − (R Ǎ−1L)Dg( p̌−p), b = R Ǎ−1b0 + (R Ǎ−1F)q + (R Ǎ−1LDt )Dg(p)

and�Σ(B,b) is obtained by themethod of Hansen–Bliek–Rohn–Ning–Kearfott
[12].

(s2) Self-verified parametric methods, which verify the sufficient condition (4.5) and
provide guaranteed solution enclosure in floating point arithmetic. Such para-
metric methods applicable with Theorem 4.1 are based on [16, Theorem 2.3] or
on [21, Theorem 4.8]. Rigorous enclosure y in floating point arithmetic can be
obtained also by the algorithm of Neumaier [10] applied to the nonparametric
interval system

(
I − (RCL)Dg( p̌−p)

)
y = RCb0 + (RCF)q+ (RCLDt )Dg(p),

where C is a guaranteed enclosure of Ǎ−1.

In floating point arithmetic, although the enclosure y ⊇ Σuni ((4.6)) can be guar-
anteed, for ill-conditioned problems the relation (4.7) may not hold true for every
x ∈ Σuni (A(p), b(q),p,q). A guaranteed enclosure of Σuni (A(p), b(p, q),p,q)

can be obtained if x0 and/or C
−1
0 in (4.7) are replaced by their guaranteed enclosures

x0 � x0, respectively, C0 � C−1
0 .

With equivalent optimal LDR representation, specified in Definition 3.3, the gen-
eralized method of Neumaier and Pownuk [18, Theorem 4] and the new enclosure
methodology, defined in Theorem 4.1, have the same expanded scope of applicability
compared to most2 existing so far numerical interval methods for solving paramet-
ric interval linear systems. The advantage of the two methodologies is pronounced
for some parametric systems involving “true” rank one parameter dependencies, see
Theorem 3.2 and the numerical examples below.

Example 4.1 Consider the parametric interval linear system

⎛

⎝
1 + p1 − p2, −p1 + p2, 1 + p1
2 + p1 + p2, −1 − p1 − p2 + p3, −1 + p1 − 2p3

1 + p1, −3 − p1 − 2p3, 6 + p1 + 4p3

⎞

⎠ x =
⎛

⎝
1
1
1

⎞

⎠ ,

p1 ∈ [−δ, δ],
p2 ∈ [−δ, δ],
p3 ∈ [−δ, δ].

An equivalent optimal rank one representation of the parametric matrix is defined by
Dp and

L =
⎛

⎝
1 1 0
1 −1 1
1 0 −2

⎞

⎠ , R =
⎛

⎝
1 −1 1

−1 1 0
0 1 −2

⎞

⎠ .

For δ = 1/3 and B, B′ specified in Definition 3.1, we have the relations

ρ(rad(G( p̌))) ≈ 0.41 < 0.667 ≈ ρ(rad(B′)) < 1.25 ≈ ρ(rad(B)).

The available methods for solving parametric interval linear systems, which are based
onρ(rad(B)) < 1, are not able to provide solution enclosure for the systemwith param-

2 An exception is the method based on the methodology presented in [17].
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eters defined by δ = 1/3. Note that for this δ, we have ρ(rad(B))/ρ(rad(G( p̌))) > 3.
The application of Theorem 4.1 gives a solution enclosure

([0.4076, 1.638], [−0.1032, 0.8175], [−0.0268, 0.4554])� .

For δ = 1/4 the following inequalities hold

ρ(rad(B)) ≈ 0.94 > ρ(rad(B′)) ≈ 0.5 > ρ(rad(G( p̌))) ≈ 0.304.

By some of the parametric methods enlisted in (s1), (s2) above, all of them based on
ρ(rad(B)) < 1, and p0 = p̌, we obtain

x′ = ([−2.1481, 3.7196], [−2.5230, 3.2373], [ − 1.7408, 2.1694])� .

The same parametric methods yield an enclosure y ⊇ Σuni((4.6))

y = ([0.4597, 0.82595], [−0.6706,−0.1867], [ − 0.1371,−0.00582])� .

Then, (4.7) of Theorem 4.1 gives

x′′ = ([0.5393, 1.0321], [0.0654, 0.6489], [0.062, 0.3666])� .

The percentage by which x′ overestimates x′′ is

100

(
1 − x̂′′

x̂′

)
≈ (91.6, 89.9, 92.2)� %.

The method of Neumaier and Pownuk [11], its generalization [18], and Theorem
4.1 are the only interval methods providing solution enclosure for parametric interval
linear systems where the row parameter dependencies dominate over the column ones,
cf. Examples 4.1 and 4.3.

The two methodologies (generalized method of Neumaier and Pownuk [18, Theo-
rem 4] and Theorem 4.1) differ in the following aspects:

d1. With w as the vector with all entries one and C = (A0 + LDp0 R)−1,

w′ :=w − | Diag(p0 − p)||RCL|w,

w′′ :=| Diag(p0 − p)||RCb0 + (RCF)q + RCLD0t − t |,

and basing on an initial enclosure of

h ∈ h := [−αw, αw], α = max
i

w′′
i

w′
i
, (4.9)
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the generalized method of Neumaier and Pownuk [18, Theorem 4] iterates

y = (RCb0 + (RCF)q + (RCL)(D0t + h)) ∩ y,

h = ( diag(p0 − p)(y − t)) ∩ h.

In contrast, Theorem 4.1 prescribes that any parametric method, based on single-
sided strong regularity of Definition 3.1, provides an (sharper) enclosure of y.
It will be shown by some numerical examples below that the methodology of
Theorem 4.1 allows a better accounting for the parameter dependencies between
the matrix and the right-hand side vector in the system than the generalized
method of Neumaier and Pownuk.

d2. The generalized method of Neumaier and Pownuk possesses some specific fea-
tures that require special treatment in its implementation. These are (cf. [19]):

d2.1 In case of dependencies between the matrix and the right-hand side vector,
some modified values of L, R and t may provide a better solution enclosure.

d2.2 In [11, Theorem 4.1], if w′ 	> 0, the method requires computing the largest
eigenvalue � of Dg( p̂)|RCL| and if � < 1, to take w as the eigenvector
associated to �.

d2.3 If the matrix R involves zero rows, these should be excluded from the com-
putation of h in (4.9).

The methodology of Theorem 4.1 has the flexibility to use any of the parametric
methods based on single-sided strong regularity (e.g., those in (s1), (s2)), and does
not depend on the above features. The following examples illustrate this.

Example 4.2 ([19, Example 6]) Consider the parametric interval linear system

⎛

⎝
1
2 − p2 p2 p1
p1 −p2 p3
p1 p3 1

⎞

⎠ x =
⎛

⎝
p2
2p2
3p2

⎞

⎠ ,

p1 ∈ [ 34 , 5
4 ],

p2 ∈ [ 12 , 3
2 ],

p3 ∈ [ 12 , 3
2 ].

For the parametric matrix of this system and B, B′ specified in Definition 3.1 we have
the relation

ρ(rad(B)) ≈ 0.969 < ρ(rad(B′)) ≈ 1.12, (4.10)

which means dominating column dependencies in the parametric matrix. We con-
sider an equivalent optimal LDR representation conforming to Definition 3.3
and to the system, which is specified by Diag((p1, p1, p2, p2, p2, p3, p3)),
t = (0, 0,−3,−2, 3, 0, 0)� and

L =
⎛

⎝
0 1 −1 1 0 0 0
1 0 0 −1 0 0 1
1 0 0 0 1 1 0

⎞

⎠ , R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0
0 0 1
1 0 0
0 1 0
0 0 0
0 1 0
0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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With this representationwe have ρ(rad(G( p̌))) = ρ(rad(B)). The generalizedmethod
ofNeumaier and Pownuk, applied to this LDR representation possesses all the specific
features d2.1–d2.3 and the obtained solution enclosure is

([−81.334, 84.001], [−38.667, 39.667], [−73.001, 75.334])� .

An application of Theorem 4.1, with the same LDR representation, p0 = p̌, C0 ≈
A−1( p̌), and an enclosure y ⊇ Σuni((4.6))

y = ([−30, 32.68], [−28.23, 30.56], [−14.78, 15.78], [−32.67, 30],
(
[−10−68, 10−68], [−28.23, 30.56], [−14.78, 15.78]

)�
,

yields the solution enclosure

([−33.278, 35.945], [−16.278, 17.278], [−29.223, 31.556])� .

Thus, the application of Theorem 4.1 provides a better solution enclosure without
any specific requirements for the implementation. The sharper solution enclosure is
because the parametric methods (s1), (s2) account better for the dependencies between
the matrix and the right-hand side vector.

Example 4.3 ([19, Example 8]) Denote by A(p), b(p), p ∈ p the parametric matrix,
right-hand side vector and the parameter intervals, respectively, for the system in
Example 4.2. Consider the parametric interval linear system

A�(p)x = b(p), p ∈ p.

Due to the relation (4.10), the parametric matrix A�(p) involves dominating row
dependencies. Let A(p) − A0 = LDg(p)R as in Example 4.2 and (A(p) − A0)

�
= L ′Dg′(p)R′ be an equivalent optimal rank one representation, and these formG(p0),
respectively G′(p0). Since ρ(rad(G( p̌))) ≈ 0.969 < ρ(rad(G′( p̌))) ≈ 1.006, we
have to solve the parametric system via the equivalent representation of A(p) − A0.
Due to (A(p) − A0)

� = R�Dg(p)L�, we consider the parametric interval system of
this example in the following equivalent representation

(
A�
0 + L ′′Dg(p)R

′′) x = L ′′Dg(p) t̃, p ∈ p,

where L ′′ = R�, R′′ = L� and L ′′•5 = L•5, R′′
5• = R5•. The last two substitutions

aim at retaining the dependency of b(p) on p2. The choice of L ′′, R′′ implies a new
t̃ = (0, 0, 1, 2, 3, 0, 0)�.

As mentioned in [19], the generalized method of Neumaier and Pownuk applied to
an equivalent optimal LDR representation of A�(p) − A�

0 , was the only numerical
interval method providing solution enclosure for this example, where row dependen-
cies dominate over the column parameter dependencies. With a special treatment of
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Fig. 1 One-bay 20-floor truss cantilever after [7]

the zero rows in the matrix R′′, the generalized method of Neumaier and Pownuk
yields the following solution enclosure

([−41.12, 43.79], [−43.12, 44.12], [−51.89, 54.23])� . (4.11)

An application of Theorem 4.1, with the same LDR representation, p0 = p̌,
C0 ≈ A−1( p̌), and an enclosure y ⊇ Σuni((4.6))

y = ([−18.97, 22.30], [−24.75, 27.41], [−27.41, 24.75], [−32.01, 33.68],
(
[−10−68, 10−68], [−32.18, 34.51], [−26.97, 27.97]

)�
,

yields a better solution enclosure

([−26.741, 29.408], [−27.797, 28.797], [−32.871, 35.204])�

without any specific requirements for the implementation and for the choice of the
method for obtaining y ⊇ Σuni((4.6)).

Example 4.4 Consider a finite element model of a one-bay 20-floor truss cantilever
presented in Fig. 1 and proposed in [7].
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Table 1 Example 4.4: bounds for the normalized displacement at corner D by two approaches

Method UD,x Overestimation UD,y Overestimation

Thm 4.1 [16704.253, 19712.669] [−874.33974,−738.98458]
[2,22] [12493.758, 23923.164] 73.7% [−1667.7737, 54.449351] 92%

The structure consists of 42 nodes and 101 elements. The bay is L = 1m, every
floor is 0.75L , the element cross-sectional area is A = 0.01 m2, and the crisp value
for the element Young modulus is E = 2× 1011N/m2. Twenty horizontal loads with
nominal value P = 1000 N are applied at the left nodes. The boundary conditions
are determined by the supports: at A the support is a pin, at B the support is roller.
We assume δE% uncertainty in the modulus of elasticity Ek of each element, that is
Ek ∈ E[1− δE/2, 1+ δE/2], k = 1, . . . , 101, and δP% uncertainty in the loads, that
is Pm ∈ P[1 − δP/2, 1 + δP/2], m = 1, . . . , 20. The goal is to find interval estimate
for the normalized (nondimensional) displacements U , that is U EA

PL .
The parametric linear systems resulting from finite element models of truss struc-

tures have the representation (4.4) since the coefficient numerical matrix for each
parameter Ek , k = 1, . . . , 101, has rank one, see, e.g., [11, Section 6]. For δE = 6%,
k = 1, . . . , 101, and δP = 10%, m = 1, . . . , 20, we solve a parametric interval linear
system of 81 equations involving 101 interval parameters in the matrix and 20 interval
parameters in the right-hand side. The normalized horizontal and vertical displace-
ments at the right upper corner (node D) of the truss, obtained by Theorem 4.1, where
y is obtained by the single step method, and a solution estimate obtained by the single
step method [2,22], are presented in Table 1. Note that for this level of uncertainty
the methods based on single-sided strong regularity condition (3.3) yield enclosure of
UD,y which is so wide that does not guarantee the sign of the displacement, Table 1.
The method of Neumaier and Pownuk took 6 iterations to provide solution enclosure
with maximal overestimation3 of the solution enclosure obtained by Theorem 4.1 less
than 5.3 × 10−6.

A reviewer required comparison of the computing time. In the interpretative envi-
ronment of Mathematica®, the implementation of Theorem 4.1, where y is obtained
by the single stepmethod, was at least four times faster on Example 4.4 than the imple-
mentation of the generalized method of Neumaier and Pownuk. The Mathematica®

function Timing gives approximately 0.21 and 0.85 seconds, respectively. This is
probably because matrix inversion is a built-in function while the latter method is iter-
ative with more complicated code due to features d2.2, d2.3. Time difference might be
different when running executable code on examples that do not possess the specific
features d2.2, d2.3, since the implementation of Theorem 4.1 requires inversion of two
point matrices while the method of Neumaier and Pownuk avoids the second inver-
sion. Although Theorem 4.1 gives freedom in its implementation, estimating y via a
parameterized p-solution, e.g., [4,5], is not recommended since p-solutions demand
more computation and memory. In any case, choosing a method for an outer estimate

3 Overestimation is defined at the end of Example 4.1.
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of a parametric united solution set should be guided by the properties of the particular
problem and the structure of the parameter dependencies.

5 Conclusion

Basing on an equivalent optimal rank one representation of the linear parameter depen-
dencies in a parametric intervalmatrix, respectively a parametric interval linear system,
we presented a set of sufficient conditions for regularity of a parametric interval matrix
and a methodology for enclosing the united solution set of a parametric interval linear
system. It is proven that both the sufficient conditions and the solution methodology
are more general than the existing so far ones, and more powerful for many parametric
problems.

It was presented in Sect. 4 that the enclosure methodology of Theorem 4.1 allows
more flexible implementation than the method of Neumaier and Pownuk [11] and its
generalization [18]. Furthermore, the methodology of Theorem 4.1 is not affected by
the implementation features of the generalized method of Neumaier and Pownuk and
accounts better for the dependencies between thematrix and the right hand side vector,
as it is illustrated by the considered numerical examples.

The mathematical models of many domain specific problems, e.g., models of elec-
trical circuits [1,6,18] and static analysis of mechanical structures modeled by linear
finite elements [11], involve rank onematrices describing the parameter dependencies.
On the other hand, rank one matrices are widely used in classical numerical analysis
for approximation. These two general directions determine the application of the pre-
sented methodology for an improved interval uncertainty quantification. Although
the presented theory concerns matrices/linear systems involving linear parameter
dependencies, it is applicable after a linearization to matrices/linear systems involv-
ing nonlinear parameter dependencies. Any other mathematical theory or application
which checks regularity of a parametric interval matrix or solves parametric interval
linear systems could have an expanded scope of applicability if it uses the results
presented in this article.

Acknowledgements Thiswork is partly supported by theGrantBG05M2P001-1.001-0003 of theBulgarian
Ministry of Science and Education.
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