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Abstract
We consider Arnoldi-like processes to obtain symplectic subspaces for Hamiltonian
systems. Large dimensional systems are locally approximated by ones living in low
dimensional subspaces, and we especially consider Krylov subspaces and some of
their extensions. These subspaces can be utilized in two ways: by solving numerically
local small dimensional systems and then mapping back to the large dimension, or
by using them for the approximation of necessary functions in exponential integrators
applied to large dimensional systems. In the former case one can expect an excellent
energy preservation and in the latter this is so for linear systems. We consider second
order exponential integrators which solve linear systems exactly and for which these
two approaches are in a certain sense equivalent. We also consider the time symmetry
preservation properties of the integrators. In numerical experiments these methods
combined with symplectic subspaces show promising behavior also when applied to
nonlinear Hamiltonian problems.

Keywords Hamiltonian systems · Exponential integrators · Krylov subspace
methods · Symplectic integrators · Symmetric integrators · Hamiltonian Lanczos
algorithm

Mathematics Subject Classification 65P10 · 37M15 · 65F60 · 65F10

1 Introduction

Symplectic methods have shown to be very effective in long time integration of Hamil-
tonian systems (see [11]). Many of them are implicit and necessitate the solution of
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58 T. Eirola, A. Koskela

systems of equations. If the differential equation system is large and sparse, a natural
approach is to use Krylov subspace techniques to approximate the solution of the
algebraic equations. A related approach is to use Krylov approximations of the matrix
exponential in exponential integrators (see [13]). This has turned out to be a superior
technique for several classes of problems.

Krylov subspace techniques canbe viewed as local lowdimensional approximations
of the large system. For Hamiltonian systems standard Arnoldi-type iterations produce
low dimensional systems that are no longer Hamiltonian. In this paper special attention
is paid to produce symplectic bases for Krylov subspaces.

This is an extended version of the slides by Eirola, presented at the Workshop
on Exponential Integrators in Innsbruck in 2004 (see [7]). Some of the results were
introduced in the master’s thesis of the second author [15] which was supervised
by Eirola. The original ideas of Eirola came from considering linear Hamiltonian
systems in R2n as R-linear systems in C

n (see [8]). The slides [7] were written using
that language, but the present version is written in a more standard form.

2 Hamiltonian systems

Given a smooth function H : R
2n → R, consider the Hamiltonian system

x′(t) = J−1
n ∇H(x(t)), x(0) = x0, (2.1)

where Jn = [
0 I−I 0

] ∈ R
2n×2n . A matrix A ∈ R

2n×2n is called Hamiltonian, if
AT = JAJ, and symplectic, if AT JnA = Jn . The Jacobian of ∇H(x) is a symmetric
matrix at every point. Thus D J−1

n ∇H(x) is a Hamiltonian matrix.
The system (2.1) has a unique solution and we write it x(t) = ϕt (x0). It holds:

– Energy is preserved: H(x(t)) is constant in t .
– For every t the mapping ϕt : R

2n → R
2n is symplectic (or canonical), that is,

its derivative is a symplectic matrix at every point.
– The mapping ϕt is time symmetric, i.e. ϕ−t (x(t)) = x0 for every t .

Symplectic integrators produce symplectic one step maps for Hamiltonian systems
(see [11]). For example, the implicit midpoint rule

x j+1 = x j + h J−1
n ∇H((x j + x j+1)/2)

is such. For linear systems, i.e., when H is of the form H(x) = 1
2 x

TS x + cT x, S
symmetric, the energy is also preserved in the numerical solution with this and many
other symplectic methods. One step methods are called symmetric the map given by
the integrator is time symmetric, i.e. changing h to −h is equivalent to switching x j

and x j+1. The implicit midpoint rule, for example, is symmetric.
For large systems implicit methods may become expensive. In this paper we con-

sider several low dimensional Hamiltonian approximations and the use of exponential
integrators for these.
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Krylov integrators for Hamiltonian systems 59

3 Symplectic subspaces and low dimensional approximations

Recall some basic definitions and properties in R
2n (see e.g. [1]). Denote the non-

degenerate skew-symmetric bilinear form ω(x, y) := xT Jny. A subspace V is
isotropic, if ω(x, y) = 0 for all x, y ∈ V , and a subspace W is symplectic, if for
every nonzero x ∈ W there exists y ∈ W such that ω(x, y) �= 0. Then the dimension
of W is even. A basis e1, . . . , ek, f 1, . . . , f k ∈ W is called symplectic, or a Darboux
basis, if for all i, j = 1, . . . , k holds ω(ei , e j ) = ω(f i , f j ) = 0 and ω(ei , f j ) = δi, j .

If V is an isotropic subspace with an orthonormal basis e1, . . . , ek , then e1, . . . , ek
are also ω–orthogonal and W = V ⊕ JnV is a symplectic subspace and e1, . . . , ek,
J−1
n e1, . . . , J−1

n ek is a symplectic basis of W .
We call also a matrix U ∈ R

2n×2k symplectic, if UT JnU = Jk , where Jk =[
0 I−I 0

] ∈ R
2k×2k . Then U† = J−1

k UT Jn is a left inverse of U if and only if U is
symplectic.

We will consider local approximations of the Hamiltonian system

x′(t) = f (x(t)) = J−1
n ∇H(x(t)). (3.1)

Assume that at a point x0 ∈ R
2n we are given a symplectic matrix U ∈ R

2n×2k .
Consider theHamiltonian system inR2k corresponding to the function η(ξ ) = H(x0+
Uξ). Then we get

ξ ′ = J−1
k ∇η(ξ) = J−1

k UT∇H(x0 + Uξ),

which is Hamiltonian in R2k . Denote U† = J−1
k UT Jn . Then

ξ ′(t) = U†f (x0 + Uξ(t)). (3.2)

One strategy is to solve (3.2) numerically from ξ0 = 0 up to ξ1 ≈ ξ(t1) and set
x1 = x0 + Uξ1. Clearly, if we use an energy preserving scheme for the system (3.2),
we will conserve the energy of the large system too, i.e. H(x1) = H(x0).

Note that if the sets of constant energy of the original system are bounded, then
they are such for the small dimensional approximations too. This implies that the
approximations inherit stability of equilibria in a natural way.

Wewill consider also another strategy: instead of solving low-dimensional systems,
we approximate the matrix functions appearing in exponential integrators in the low
dimensional space R2k .

The idea of approximating a Hamiltonian system by another of smaller dimension
is not new. See, for example the discussion in [16]. A novelty here is to use local (later
Krylov subspace) approximations.

If U is symplectic and does not depend on x0, then using a symplectic method for
(3.2) induces a map ψ : x0 → x1 that is symplectic in R(U), that is

ω(Dψ(x0)d, Dψ(x0)̃d) = ω(d, d̃) for all d, d̃ ∈ R(U).
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60 T. Eirola, A. Koskela

But in order to get efficient algorithms we letU to depend on x0 and then this approach
generally does not produce a symplectic map.

4 Exponential integrators

The use of approximations of the matrix exponential as a part of time propagation
methods for differential equations has turned out to be very effective (see e.g. [13]).We
consider application of three second order exponential integrators to the Hamiltonian
system (2.1). In what follows, the matrixH denotes the Jacobian of the right hand side
of (3.1) at x0, i.e., H = Df (x0). The methods can be seen as exponential integrators
applied to semilinear equations which are local linearizations of (2.1). In the literature
methods of this type are also called exponential Rosenbrock methods [14].

4.1 Exponential Euler method

As a first method we consider the exponential Euler method (EE)1

x+ = x + h φ(hH) f (x), (4.1)

where φ(z) = ∫ 1
0 etz dt = z−1 (ez − 1) and H = Df (x).

Note that if f is linear, then x+ = ϕh(x), i.e., the method gives exact values of the
solution.

Assume now that the system x′ = f (x) is Hamiltonian in R
2n and U ∈ R

2n×2k is
symplectic. Then H = Df (x) is a Hamiltonian matrix as well as F = U†HU.

If we use the exponential Euler method (4.1) for the low dimensional system (3.2)
we produce

x+ = x + h U φ(h F)U†f (x). (4.2)

For linear problems this will preserve energy exactly:

Lemma 4.1 Assume the system is of the form f(x) = J−�
n ∇H(x) = Hx + c , whereH

is a constant Hamiltonian matrix. Then the exponential Euler method (4.2) preserves
energy, i.e., H(x+) = H(x).

Proof The local problem now is (see (3.2))

ξ ′(t) = F ξ(t) + U† (Hx + c), ξ(0) = 0.

Then ξ+ = ξ(h) = h φ(h F)U† (Hx + c), i.e., the exponential Euler approximation
gives the exact solution for the problem in R

2k . Hence the energy is preserved in the
small system and consequently also for x+ = x + U ξ(h). 	


1 We use the shorthand notation x = x j , x+ = x j+1 etc. for the rest of the manuscript.
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Krylov integrators for Hamiltonian systems 61

4.2 Explicit exponential midpoint rule

We consider next the explicit exponential midpoint rule (EEMP)

x+ = x + ehH(x− − x) + 2h φ(hH) f (x), (4.3)

where H = Df (x) (see also [13]). For linear Hamiltonian problems f (x) = Hx + c
this gives

x+ = x + ehH(x− − x) + 2 (ehH − I) x + 2h φ(hH) c

= ehH(x− + x) − x + 2h φ(hH) c,

i.e., 1
2 (x+ + x) = ehH 1

2 (x + x−) + h φ(hH) c = x̃(h), where x̃ is the solution of
x̃′(t) = J−1

n ∇H (̃x(t)), x̃(0) = 1
2 (x + x−). Hence the energy of the averages is

preserved:
H( 12 (x+ + x)) = H( 12 (x + x−)). (4.4)

Remark 4.1 In [9] it was noticed that the explicit midpoint rule (for the homogeneous
problem)

x+ = x− + 2hHx

preserves another quantity: ω(Hx, x+) = ω(Hx−, x). Equation (4.4) implies this,
too.

Again we approximate (4.3) with

x+ = x + U ehF U†(x− − x) + 2h U φ(hF)U†f (x). (4.5)

For this we have the following.

Theorem 4.1 Let the right hand side f of theHamiltonian system be linear,U ∈ R
2n×2k

symplectic, and assume that x−x− is in the range ofU. Then (4.4) holds for the scheme
(4.5).

Proof Now U†U = I. Write x̂+ = 1
2 (x+ + x), x̂ = 1

2 (x + x−). By the assumption
there exists ζ ∈ R

2k such that 1
2 (x − x−) = Uζ . Then x = x̂ + Uζ . From (4.5) and

zφ(z) = ez − 1 we get

x̂+ = x − U ehF ζ + h U φ(hF)U†(H(̂x + Uζ ) + c
)

= x̂ + h U φ(hF)U†(Hx̂ + c) + U [I − ehF + h φ(hF)F] ζ

= x̂ + h U φ(hF)U†(Hx̂ + c).

Thus the x̂-vectors propagate according to the exponential Euler method (4.2) and we
get the result by Lemma 4.1. 	
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62 T. Eirola, A. Koskela

We also have the following.

Lemma 4.2 Assume that U is a full rank matrix at x with a left inverse U†, and that
R(U) contains x− − x. Then, the approximate explicit exponential midpoint rule is
symmetric.

Proof Multiplying (4.5) with U e−hF U† gives

U e−hF U†(x+ − x) = x− − x + 2h U e−hF φ(hF)U†f (x).

Since e−zφ(z) = φ(−z) we get

x− = x + U e−hF U†(x+ − x) − 2h U φ(−hF)U†f (x).

Thus the steps backward can be taken by replacing h with −h. 	


4.3 Implicit exponential midpoint rule

As a third exponential integrator, we consider the implicit exponential midpoint rule
(IEMP)

0 = ehH(x − x̂) + h φ(hH) f (̂x),

x+ = x̂ + e2hH(x − x̂) + 2h φ(2hH) f (̂x)
(4.6)

(see [4]). This gives a symmetric method when the linear part H of f is fixed. When
H comes from a linearization of a nonlinear Hamiltonian system (2.1), the method is
symmetric if H = Df (̂x), where x̂ satisfies (4.6).

For linear systems of the form f (x) = Hx + c, the second equation of (4.6) can
be written equivalently as x+ = x+ 2h φ(2hH) f (x) . Then, x+ propagates according
to the exponential Euler method and the energy is preserved in case U is symplectic
(Lemma 4.1).

When we apply (4.6) to the local system, the total approximation is symmetric if
H is evaluated at the midpoint x̂.

Lemma 4.3 Assume that U is a full rank matrix with a left inverse U†. Suppose H is
evaluated at x̂, i.e., H = Df(̂x), where x̂ satisfies (4.6). Consider the approximation

x+ = x + Uξ+, (4.7)

where ξ is obtained from applying (4.6) to the local system. Then, (4.7) gives a sym-
metric method.

Proof Applying (4.6) to the local system (3.2) gives

0 = −ehFξ + h φ(hF)U†f (x + Uξ)

ξ+ = ξ − e2hFξ + 2h φ(2hF)U†f (x + Uξ).
(4.8)
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We show that (4.8) leads to a symmetric approximation of the full system.Multiplying
the upper equation of (4.8) by ehF, and using the relation ezφ(z) = 2φ(2z) − φ(z)
gives

−e2hFξ + 2h φ(2hF)U†f (x + Uξ) = h φ(hF)U†f (x + Uξ).

Combining this and both equations of (4.8) gives

ξ+ = ξ + ehFξ .

Multiplying this from left by U and adding x gives

x+ − x̂ = UehFU†(̂x − x),

where x̂ = x + Uξ and x+ = x + Uξ+. Replacing here h with −h and multiplying
from the left by UehFU† shows the symmetry. 	


The IEMP is symmetric if the Jacobian H and the basis U are the same when
considering stepping from x to x+ and vice versa. This is the case if H is evaluated at
x̂, and if U is generated at x̂ using the Krylov subspace methods described in Sect. 5.

Our numerical strategy is to perform one time step h using the exponential Euler
method from x to x̃ in order to approximate the midpoint x̂. Then after evaluating the
Jacobian H and forming the basis U at x̃ using Krylov subspace methods, we solve
the implicit equation using fixed point iteration and perform the step of size 2h to
obtain ξ+ and x+ = x + Uξ+.

5 Forming the local basis using Krylov subspacemethods

We discuss next the approximation of matrix valued φ functions using Krylov sub-
space methods and show how they are naturally connected to the local approximation
discussed in Sect. 4.

When matrix A is large but the operation v → Av inexpensive, it is reasonable to
use Krylov subspace methods. These work in Krylov subspaces

Kk(A, v) = span{v,Av,A2v, . . . ,Ak−1v}.

ThenwehaveA Kk(A, v) ⊂ Kk+1(A, v). TheArnoldi iteration uses theGram-Schmidt
process and produces an orthonormal basis q1, . . . , qk for Kk(A, v). Denote Qk =
[q1 . . . qk] and Fk = QT

k AQk , which is a Hessenberg matrix.
If the iteration stops, i.e. Akv ∈ Kk(A, v), then

a) AKk(A, v) ⊂ Kk(A, v) and K j (A, v) = Kk(A, v) for all j ≥ k,
b) AQk = QkFk and for the spectra we have �(Fk) ⊂ �(A),
c) If ϕ(z) = ∑

j a j z j has convergence radius larger than the spectral radius of A
and w ∈ R(Qk), then

ϕ(A)v = Qk ϕ(Fk)QT
k v.
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The effectivity of Krylov subspace methods is based on the fact that if the component
of Akv orthogonal to Kk(A, v) is small, then things are approximately as above and
this can happen already for a reasonable size k. This motivates us to consider the
approximation

ϕ(A)v ≈ Qk ϕ(Fk)QT
k v

(see [6] and [10]). We refer to [12] for a detailed error analysis.
In case Qk gives a symplectic basis for Kk(A, v), one easily verifies that things

are as above for Fk = Q†
kAQk and with QT

k replaced by Q†
k . In this case we use the

approximation
ϕ(A)v ≈ Qk ϕ(Fk)Q

†
kv. (5.1)

We show next how the Krylov approximation (5.1) is naturally connected to the
strategy of applying exponential integrators to the local system (3.2).

5.1 Equivalence of the Krylov and the local system approximations

Consider the local system (3.2) corresponding to the basisU which gives a symplectic
basis for Kk(H, f (x)). Recall from Sect. 4 the strategy of solving the local system

ξ ′(t) = U†f (x + Uξ(t))

numerically from ξ(0) = 0 up to ξ(h) = ξ1 and setting x+ = x + Uξ1. As shown
in Sect. 4.1, applying the exponential Euler method to the local system gives the
approximation

x+ = x + hUφ(hF)U†f (x).

We immediately see from (5.1) that this is the Krylov subspace approximation of the
exponential Euler step (4.1).

As shown in Sect. 4.2, applying the exponential explicit midpoint rule to the local
system gives

x+ = x + U ehF U†(x− − x) + 2h U φ(hF)U†f (x).

This can be seen as a Krylov subspace approximation of the EEMP step (4.3). Here
the vector x− − x has to be in the range of U. This is discussed in Sect. 5.2.1.

Similarly, if we perform aKrylov approximation of the IEMP step (4.6), and denote
ξ = x̂ − x and ξ+ = x+ − x, we get the small dimensional system (4.8).

In case the basis matrix U has orthonormal columns, we get the equivalence of the
Krylov and local systems approximations by replacing U† by UT above.

We next consider iterations which produce a symplectic basis for the Krylov sub-
space Kk(H, f (x0)), where H is Hamiltonian.
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5.2 Symplectic Krylov processes

In order to obtain good local approximations for a Hamiltonian system with linear
part H we would like to have

a) A symplectic subspace W with a corresponding basis.
b) Kk(H, f ) ⊂ W in order to have polynomials of H applied to f represented in W .

We expect this to be worth pursuing for approximations of ϕ(H)f .

Consider first the Krylov subspace corresponding to H and v:

Kk(H, v) = span{v,Hv,H2v, . . . ,Hk−1v},

and set Wk = Kk(H, v) + Jn Kk(H, v).

– Now HWk(H, v) �⊂ Wk+1(H, v), generally.
– If p is a degree k − 1 polynomial, then p(H)v ∈ Kk(H, v) ⊂ Wk .

The construction of a symplectic basis for Wk is slightly more complicated than the
standard Arnoldi process. We consider the following three processes.

Symplectic Arnoldi
In the first approach we simply reorthogonalize with respect to 〈 ·, · 〉 and ω( ·, · ) the
〈 ·, · 〉—orthogonal vectors provided by the standardArnoldi. The result is a symplectic
and orthonormal matrix.

1. q = v/ ‖v‖ , Q = [q] V = Q
2. for 	 = 2, . . . , k do r = H q

r ← r − QQT r,
if r �= 0, set q = r/ ‖r‖, Q ← [Q, q],
r = q − VVT q − JnVVT JTn q,
V ← [V, r/ ‖r‖].

else stop.
3. Set U = [V JnV], F = UTHU.

Here the columns of Q form an orthonormal basis for Kk(H, v) and those of U a
symplectic basis for Wk .

Remark 5.1 There is a way to construct matrix F more economically from the com-
putations of step 2. But anyway the reorthogonalization stays the costly part of this
approach.

Isotropic Arnoldi
Mehrmann and Watkins [17] suggest the isotropic Arnoldi process, which is a direct
〈 ·, · 〉 and ω( ·, · )—orthogonalization in the Arnoldi process:

1. q = v/ ‖v‖ , Q = [q]
2. for 	 = 2, . . . , k do r = H q

r ← r − QQT r − JnQQT JTn r,
if r �= 0, set q = r/ ‖r‖, Q ← [Q, q],
else stop.
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3. Set U = [Q JnQ], F = UTHU.

Herewe obtain a symplecticmatrixwith orthonormal columns.However its range does
not necessarily contain the Krylov subspace Kk(H, v). Thus, generally, this iteration
does not have the property that p(H)v is in the span of u1, . . . ,uk for every polynomial
p of degree k − 1. Since our present aim is to approximate matrix functions, this
iteration can be expected to be less effective for our purposes.2 We will see this in the
numerical tests.

Also there is a possibility of a breakdown: after orthogonalization wemay get r = 0
without obtaining any useful information about Kk(H, v).

Hamiltonian Lanczos
Benner, Faßbender, and Watkins have several versions of Hamiltonian Lanczos pro-
cesses (see [2,18]). The following is a promising one from Watkins (Algorithm 4 of
[18]):

1. u0 = 0, u1 = v/ ‖v‖ , β0 = 0,
2. for j = 0, 1, . . . , k do

if j > 0, then
x = H u j , α j = 〈

Jnv j , x j
〉

u j+1 = x − α ju j − β j−1u j−1
if j < k, then
v j+1 = Hu j+1, τ = 〈

Jnv j+1,u j+1
〉

if τ ≈ 0 then stop (breakdown).
σ = √|τ |, δ j+1 = sgn τ

u j+1 ← u j+1/σ , v j+1 ← δ j+1v j+1/σ

if j > 0, then β j = σ

3. Form the matrices

U = [u1, . . . ,uk, v1, . . . , vk], F =
[
0 T
D 0

]
,

where T =
⎡

⎣
α1 β1
β1 α2 β2

β2
... ...
... ... βk−1

βk−1 αk

⎤

⎦ and D =
[ δ1

δ2 ... ...
δk

]

.

Then U : R
2k → R

2n is symplectic, its range contains the vectors H j v, j =
0, . . . , 2k − 1, and F = U†HU.

Due to short recursion this is an economic iteration. But it has similar problems as the
usual biorthogonal Lanczos, e.g., near breakdowns and loss of orthogonality. These
can be partly circumvented. For small k this may be a good choice.

By the very construction of these symplectic maps we get the following:

Proposition 5.1 Combining any of the symplectic Krylov processes with a method that
preserves energy for the small dimensional system (3.2) will preserve the energy of
the original system, too.

2 Mehrmann and Watkins use the iteration for computing eigenpairs of skew-Hamiltonian/Hamiltonian
pencils.
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The costs of these algorithms are approximately as follows. To produce a basis of
dimension k, the Hamiltonian Lanczos requires k matvecs (matrix vector multiplica-
tions) and 2k inner products, the Arnoldi iteration k matvecs and k2/2 inner products,
the Isotropic Arnoldi k/2 matvecs and k2 inner products, and the Symplectic Arnoldi
k/2 matvecs and 2k2 inner products. However, only the Hamiltonian Lanczos and the
Arnoldi iteration provide then also a basis for a Krylov subspace of dimension k. Thus
the Hamiltonian Lanczos process is the cheapest alternative to obtain a basis for a
Krylov subspace of a given dimension.

The main weaknesses of each of these algorithms are

– Arnoldi in R2n : the approximation is not Hamiltonian.
– Hamiltonian Lanczos: breakdown, early loss of symplecticity.
– Isotropic Arnoldi: does not include a Krylov subspace.
– Symplectic Arnoldi: expensive.

5.2.1 Symplectic reorthogonalization of a vector to the basis

When using the EEMP method (4.3), the vector x− − x needs to be added to the basis
Uk at each time step. For orthogonal and/or isotropic basis this is straightforward. For
the symplectic basis, a symplectic version of the Gram–Schmidt algorithm adds x and
Jnx to the basis U = [V W]. This algorithm is shown in the following pseudocode.
Here the symplectic orthogonalization can also be performed in a modified Gram–
Schmidt manner, one vector at a time. Notice also that in the second step the vector x̂
could be scaled with any constant.

1. x̂ = x − ∑n
	=1 ω(w	, x)v	 + ∑n

	=1 ω(v	, x)w	

2. vk+1 ← x̂
3. x ← Jn x̂
4. x̃ = x − ∑n

	=1 ω(w	, x)v	 + ∑n
	=1 ω(v	, x)w	

5. wk+1 ← − x̃
ω(vk+1 ,̃x)

6 Numerical tests

We compare numerically the three exponential time integrators of Sect. 4 and the
four Arnoldi like processes of Sect. 5 to produce the local basis Uk . We apply the
methods to large sparse Hamiltonian systemswhich are obtained fromfinite difference
discretizations of one dimensional nonlinear wave equations. For ease of presentation,
we first illustrate by an example our approach of deriving large sparse Hamiltonian
systems from Hamiltonian PDEs. For further examples we refer to [5].

6.1 Spatial discretization of Hamiltonian PDEs

As an example consider the nonlinear Klein–Gordon equation in one dimension,

utt = uxx − f (u), (6.1)
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where u(x, t) is a scalar valued periodic function (u(0, t) = u(L, t) for some L >

0) and f is a smooth function. To obtain a Hamiltonian system approximating the
equation (6.1), we perform a discretization with respect to x on an equidistant grid
with an interval Δx = L/n, n ∈ N, and denote by qi (t) and pi (t) the approximations
to u(iΔx, t) and ut (iΔx, t). For the second derivative uxx weuse the central difference
approximation. Expressing the approximations as vectors q(t) and p(t) (i.e. (q)i = qi
and (p)i = pi ), we get the approximation of the PDE in a matrix form as

p′(t) = Δnq(t) − f (q(t)),

where {f (q)}i = f (qi ) and Δn ∈ R
n×n is the discretized Laplacian with periodic

boundary conditions,

Δn = 1

(Δx)2

⎡

⎢⎢⎢⎢⎢
⎣

−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎤

⎥⎥⎥⎥⎥
⎦

. (6.2)

Defining the Hamiltonian function

H(q, p) = 1

2
pT p − 1

2
qTΔnq +

n∑

i=1

F(qi ), (6.3)

where F ′(u) = f (u), we see that

p′(t) = −∇qH(q(t), p(t)).

Setting x(t) =
[
q(t)
p(t)

]
, we have the Hamiltonian system in R

2n

x′(t) = J−1
n ∇H(x(t)), x(0) = x0, (6.4)

where x0 = [ q0
p0

]
comes from the discretization of the initial values of (6.1).

6.2 Linear wave equation

As a first numerical example we consider the linear wave equation with the Dirichlet
boundary conditions,

∂t u(x, t) = ∂xxu(x, t) + g(x)

u(x, 0) = u0(x), ut (x, 0) = v0(x)

u(0, t) = u(L, t) = 0,
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where x ∈ [0, L], t ∈ [0, T ], and

g(x) = 1

8

(
x(x − L)

)2
, u0(x) = 1

1 + sin2(πx)
− 1, v0(x) = 0.

Performing spatial discretization on an equidistant grid of size n using central
differences leads to a Hamiltonian system of the form (6.4) with the Hamiltonian
(6.3), where F(q) = −cT q, (c)i = g(xi ). Here the initial data x0 = [ q0

p0

]
, where

(q0)i = u0(xi ), (p0)i = v0(xi ), xi = iΔx , and Δx = L/(n+ 1). Here the discretized
Laplacian is given by

Δn = 1

(Δx)2

⎡

⎢⎢
⎢⎢
⎣

−2 1

1
. . .

. . .

. . .
. . . 1
1 −2

⎤

⎥⎥
⎥⎥
⎦

.

We set L = 2, n = 400, and we integrate up to T = 50 with the step size h = T /nt ,
where nt = 2000.

Using this linear example we illustrate the differences between the iterative pro-
cesses of Sect. 5 to produce the basis Uk ∈ R

2n×2k . We apply the exponential Euler
method (4.2) to the small dimensional system (3.2) obtained from the projection using
Uk .

As illustrated in Fig. 1, the approximation obtained using the Arnoldi iteration
results generally in a linear growth of the energy error, whereas the symplectic basis
gives a bounded energy error. Figure 2 shows that, as opposed to the Hamiltonian
Lanczos approximation, the energy error of the Arnoldi approximation is dependent
on the accuracy of the approximation. Notice that in both cases

K	(H, f 0) ⊂ Range(Uk), where 	 = dim(Uk), (6.5)

and f 0 is the right hand side of (6.4) evaluated at x(0). Property (6.5) means that these
processes give a polynomial approximation of degree 	 for the exponential Euler step
which gives the exact solution at t = h. This effect is also seen in Fig. 3, which depicts
the solution errors for the Arnoldi iteration and the Hamiltonian Lanczos process.
When dim(Uk) = 16, the methods give errors not far from each other, however for
smaller basis size the symplectic alternative gives more accurate results.

When increasing the basis size also the isotropicArnoldi and the symplecticArnoldi
start to perform better (see Fig. 4). Need for a larger dimension is expected for the
symplectic Arnoldi since instead of (6.5), only K	/2(H, f 0) ⊂ Range(Uk), where
	 = dim(Uk). IsotropicArnoldi performsworse as expected due to its poor polynomial
approximation properties. However, both processes give bounded energy errors as in
both cases Uk is symplectic (Fig. 5).
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Fig. 1 Linear wave equation and relative energy errors for the EE, when Uk is produced by the Arnoldi
iteration (Uk ∈ R

2n×16) and the Hamiltonian Lanczos process (Uk ∈ R
2n×12)

Fig. 2 Linear wave equation and
relative energy errors for the EE,
when Uk is produced by the
Arnoldi iteration and the
Hamiltonian Lanczos process
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Fig. 3 Linear wave equation and
relative solution errors for the
EE, when Uk is produced by the
Arnoldi iteration and the
Hamiltonian Lanczos process
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6.3 Nonlinear Schrödinger equation

Consider next a one dimensional nonlinear Schrödinger equation (NLS) on [−4π, 4π ]
with periodic boundary conditions (see [3]),

i∂tψ(x, t) = − 1
2 ∂xxψ(x, t) + |ψ(x, t)|2 ψ(x, t) − V0 sin

2(x)ψ(x, t)

ψ(x, 0) = ψ0(x), for all x ∈ [−4π, 4π ]
ψ(−4π, t) = ψ(4π, t).
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Fig. 4 Linear wave equation and
relative solution errors for the
EE, when Uk is produced by the
symplectic Arnoldi iteration and
the isotropic Arnoldi process
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Fig. 5 Linear wave equation and
relative energy errors for the EE,
when Uk is produced by the
symplectic Arnoldi iteration and
the isotropic Arnoldi process
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The initial value is given by

ψ0(x) =
√
V0 sin2(x) + B e i θ(x), (6.6)

where the phase function θ(x) satisfies

tan(θ(x)) = ±√
1 + V0/B tan(x)

(see Fig. 6). We set V0 = B = 1.0 which gives a stable soliton solution (see [3]).
We first carry out a spatial discretization on an equidistant grid with grid size

Δx = 8π/n and denote by qi (t) and pi (t) the approximations to Reψ(iΔx, t) and
Imψ(iΔx, t). This leads to a Hamiltonian system with the energy functional

H
(
p, q

) = −1

4

(
qTΔn q + pTΔn p

)
+ 1

4

n∑

i=1

(
q2i + p2i

)2

− V0
2

n∑

i=1

sin2(xi )
(
q2i + p2i

)
,

(6.7)
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Fig. 6 The phase function θ(x)
of the initial data (6.6)
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Fig. 7 NLS and relative solution
errors for the EE and the EEMP,
when Uk is produced by the
Arnoldi iteration. Here
dim(Uk ) = 20
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where Δn is a discretized Laplacian of the form (6.2). We get from (6.7) the Hamil-
tonian system

[
q′(t)
p′(t)

]
= −1

2
J−1

[
Δn 0
0 Δn

] [
q(t)
p(t)

]
+ J−1

[(
q(t) ◦ q(t) + p(t) ◦ p(t)

) ◦ q(t)(
q(t) ◦ q(t) + p(t) ◦ p(t)

) ◦ p(t)

]

− J−1V0

[
sin2(x) ◦ q(t)
sin2(x) ◦ p(t)

]
,

(6.8)
where {x}i = iΔx , ◦ denotes the Hadamard product, (u ◦ v)i = uivi , and sin2(x)i =
sin2(xi ). The initial condition

[ q0
p0

]
comes from the discretization of ψ0(x).

We set n = 500 and integrate first from 0 to T = 40π with the step size
h = T /nt , nt = 8000. The benefits obtained from the symmetry properties of the
EEMP (Lemma 4.2) are illustrated by Figs. 7 and 8 which depict the relative energy
errors and solution errors given by the EE and the EEMP, when dim(Uk) = 20. The
nonsymmetric EE shows a linear growth in energy error and quadratic growth in solu-
tion error whereas the EEMP gives a bounded energy error and a linear growth in
solution error.

We then integrate from 0 to T = 80π with the step size h = T /nt , nt = 10000,
which implies that the norm of hH is now bigger and thus larger dimension for Uk

is required. Differences resulting from the symplecticity of the basis Uk can be seen
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Fig. 8 NLS and relative energy errors for the EE and the EEMP, when Uk is produced by the Arnoldi
iteration. Here dim(Uk ) = 20

Fig. 9 NLS and relative energy
errors for the IEMP when the
basis Uk is produced by the
Arnoldi and by the Hamiltonian
Lanczos iteration. Here
dim(Uk ) = 24
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in Fig. 9 where we compare the IEMP when dim(Uk) = 24 and Uk is given by the
Arnoldi iteration and the Hamiltonian Lanczos process. The Arnoldi iteration shows
a growth of energy error whereas the Hamiltonian Lanczos iteration shows bounded
energy error.

6.4 Nonlinear Klein–Gordon equation

As a last numerical example we consider the nonlinear Klein–Gordon equation with
periodic boundary conditions,

∂t t u(x, t) = ∂xxu(x, t) − m2u(x, t) − gu(x, t)3

u(x, 0) = u0(x), for all x ∈ [0, L]
u(0, t) = u(L, t).

After a spatial discretization on the interval [0, L] using the finite differences with
the grid size Δx = L/n, we get a Hamiltonian system of the form (6.4) with the
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Fig. 10 Klein–Gordon equation and relative energy (left) and solution (right) errors for the EE and the
EEMPwhen the basisUk ∈ R

2n×20 is resp. given by the Arnoldi and by the Hamiltonian Lanczos iteration

Fig. 11 Klein–Gordon equation
and relative energy errors for the
IEMP, when the basis
Uk ∈ R

2n×22 is produced using
the Arnoldi iteration and the
Hamiltonian Lanczos process
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Hamiltonian (6.3), where F(qi ) = m2

2 q2i + g
4q

4
i . We set the initial data

u(x, 0) = A

(
1 + cos

(2π
L

x
))

ut (x, 0) = 0.

Set A = 1, m = 0.5, L = 1, g = 1 and n = 400. We integrate from 0 to T = 180
with the step size h = T

nt
, nt = 9000.

Here applying the EEMP combined with the Arnoldi iteration results in an unsta-
ble method. However, the Hamiltonian Lanczos process gives a stable alternative.
Figure 10 show the relative energy and solution errors for the EEMP combined with
the Hamiltonian Lanczos, and for the EE combined with the Arnoldi iteration. For
the energy error the EEMP combined with a symplectic basis gives a bounded energy
error and also a smaller solution error than the EE combined with the Arnoldi iteration.

When applying the IEMP, the effect of the symplecticity ofUk shows up. Figure 11
shows the relative energy errors when dim(Uk) = 22 and Uk is produced using the
Arnoldi iteration and the Hamiltonian Lanczos process.

123



Krylov integrators for Hamiltonian systems 75

7 Conclusions and outlook

The theoretical background of this researchwas the following. By backward error anal-
ysis it can be shown that applying a symplectic integrator to an integrable Hamiltonian
systems gives a symplectic map x j → x j+1 and also

(#)

{
small error in energy uniformly,

error growth linear in t

for exponentially long times (see [11, Ch.X]). Behavior (#) can also be shown for
symmetric time integrators when applied to integrable Hamiltonian systems (see [11,
Ch.XI]).

Here we have considered exponential integration methods which give symplectic
maps when applied to linear Hamiltonian systems. When using the approximations
to nonlinear systems the resulting maps are not symplectic, but (#) can anyway be
observed numerically. This is especially true when using the exponential explicit mid-
point rule

x j+1 = x j + U ehF U†(x j−1 − x j ) + 2h U φ(hF)U†f (x j )

in such a way that the range of U contains

span{ x j−1 − x j , f (x j ), Hf (x j ), . . . , Hk−1f (x j )}.

Then the method becomes symmetric. The effect of symplecticity of U can be seen
numerically when applying the implicit exponential midpoint rule (Sect. 4.3) to non-
linear Hamiltonian problems (see e.g. Fig. 11).

The numerical experiments clearly show that both preserving theHamiltonian struc-
ture and the time symmetry are important when applying exponential integrators with
Krylov approximations to large scale Hamiltonian systems. The Hamiltonian Lanczos
method appears to be the most efficient method to produce a symplectic basis Uk

among those alternatives that give a Krylov subspace of a given dimension. However,
further study is needed to find iterations with shortω-orthogonalization recursions that
are more efficient and numerically stable for the approximation of the φ functions.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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