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Abstract In this paper, we present some uniform relative perturbation bounds for
eigenvalues and eigenspaces of diagonalizable matrices under additive and multi-
plicative perturbations. Some existing perturbation bounds can be improved based on
the new bounds. Numerical experiments are given to demonstrate the advantage of the
new bounds.
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1 Introduction

The numerical analysis for an eigenpair of a matrix plays an important role in science
engineering computing, physical science et al. Usually, the numerical analysis for
eigenpairs contains two aspects:

– algorithms for computing the eigenvalue and the eigenvector;
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– (absolute and relative) perturbation analysis for additive perturbations and multi-
plicative perturbations, which can lead to the condition number for computing the
eigenvalue and the eigenvector.

There have been many significant results for the perturbation analysis (see, e.g.,
[20]). The classical bounds for the eigenpair perturbation are the Hoffman–Wielandt
theorem for eigenvalues [6] and the sinΘ theorem for eigenspaces [3], respectively.
Recently, some new perturbation bounds for eigenpairs have been obtained; see
[1,2,4,7,8,12–14,16,19]. Some combined perturbations for matrix decompositions
were established; see [2,14,16,17]. In particular, some combined perturbation bounds
for eigenpairs of Hermitian matrices were presented; see [14,16]. In order to give
combined bounds for eigenpairs of diagonalizable matrices, we first introduce some
notations.

Let Cm×n be the set of m × n complex matrices, and let 〈n〉 = {1, 2, . . . , n}. By
A∗ and I we denote the conjugate transpose of a matrix A and the identity matrix,
respectively. The Frobenius norm, the spectral norm, the minimum and maximum
singular value of a matrix are denoted by ‖·‖F , ‖·‖2, σmin(·) and σmax(·), respectively.

Let both A and its perturbed matrix ˜A be n × n diagonalizable matrices with the
following eigendecompositions:

AX = XΛ ≡ (

X1 X2
)

(

Λ1 0
0 Λ2

)

and ˜A˜X = ˜X ˜Λ ≡ (

˜X1 ˜X2
)

(

˜Λ1 0
0 ˜Λ2

)

,

(1.1)
where X and ˜X ∈ Cn×n are nonsingular, X1 and ˜X1 ∈ Cn×r , 1 ≤ r ≤ n,

Λ1 = diag(λ1, λ2, . . . , λr ), Λ2 = diag(λr+1, λr+2, . . . , λn), (1.2)
∼
Λ1 = diag(

∼
λ1,

∼
λ2, . . . ,

∼
λr ),

∼
Λ2 = diag(

∼
λr+1,

∼
λr+2, . . . ,

∼
λn), (1.3)

and λi and
∼
λ j may be complex. Partition

X−1 =
(

Y ∗
1

Y ∗
2

)

and ˜X−1 =
(

˜Y ∗
1

˜Y ∗
2

)

, (1.4)

where Y1, ˜Y1 ∈ Cn×r . Let

δ
(l,k)
i j = min

λ∈λ(Λi ),˜λ∈λ( ˜Λ j )

|λ −˜λ|
|λ|l |˜λ|k , i, j = 1, 2. (1.5)

For simplicity, we always use the notation δi j = δ
(0,0)
i j . Another relative gap is given

by

ρ
(l,k)
i j = min

λ∈λ(∧i ),
∼
λ∈λ(

∼∧ j )

| λ −˜λ |
|λ|l |˜λ|k

√
|˜λ |2 + | λ |2

, i, j = 1, 2, (1.6)

where k and l are nonnegative real numbers.
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Let X1 and ˜X1 ∈ Cn×r (n ≥ r) have full column rank r . Then the angle matrix
Θ(X1, ˜X1) between X1 and ˜X1 is defined by [20]:

Θ(X1, ˜X1) = arccos((X∗
1X1)

− 1
2 X∗

1
˜X1(˜X

∗
1
˜X1)

−1
˜X∗
1X1(X

∗X1)
− 1

2 )
1
2 .

In particular, if both X1 and ˜X1 have orthonormal columns, then for any unitarily
invariant norm ‖ · ‖ we have

‖ sinΘ(X1, ˜X1)‖ = ‖X∗
1
˜X2‖ = ‖˜X∗

1X2‖,

where (X1, X2) and (˜X1, ˜X2) are n × n unitary matrices.
Let A and ˜A = A+ ΔA have the decomposition (1.1)–(1.3). Here we consider the

relative perturbation for the eigenpair.
For the relative perturbation of eigenvalues and eigenspaces, Ipsen presented the

following general relative bounds

√

√

√

√

n
∑

i=1

∣

∣

∣

˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)

∣

∣

∣

2 ≤ κ
(

˜X
)

κ(X)‖˜A−kΔAA−l‖F (1.7)

and

‖ sinΘ(˜X1, X1)‖F ≤ κ(˜Y2)κ(X1)
‖˜A−kΔAA−l‖F

δ
(l,k)
12

, (1.8)

respectively, where κ(B) = ‖B‖2‖B−1‖2 for any nonsingular matrix B or κ(B) =
‖B‖2‖B†‖2 for any matrix B (see Theorem 6.1 and Corollary 3.3 of [8]).

The idea of this paper is to combine (1.7) and (1.8) together into one formula,
from which one may deduce some classical perturbation bounds for eigenvalues and
eigenspaces, respectively.

The rest of this paper is organized as follows. In Sect. 2, we present the combined
bound for eigenvalues and eigenspaces in the additive perturbation case. In Sect. 3,
we consider the multiplicative perturbation case, and get the combined bound for the
multiplicative perturbation. In Sect. 4, we give some numerical example to show the
theoretical results. Some concluding remarks are given in the final section.

2 Relative bounds for additive perturbation

In this section we will get a relative combined perturbation bound for the eigenpair.
First of all, we give some lemmas which will be used in this section.

The following Lemma 2.1 was implicitly hidden in the presentation of Sun [18],
but formally stated in Lemma 2.2 of Li [9], and also can be found in [13] and [15].

Lemma 2.1 Suppose that X = (X1, X2) ∈ Cn×n is a nonsingular matrix, where X1
∈ Cn×m, and its inverse has the block form (1.4). Then for the 2-norm or Frobenius
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norm ‖ · ‖ and any full column matrix ˜X1 ∈ Cn×m,

‖ sinΘ(X1,˜X1)‖ ≤ ‖Y †
2 ‖2‖˜X†

1‖2‖Y ∗
2
˜X1‖,

where by M† we denote the Moore–Penrose inverse of a matrix M.

The following lemma is Theorem 3.2 in [5], which is further generalized to more
general case in Proposition 3.1 of [11]; see also the last line of [5] for more details.

Lemma 2.2 [5] Let T ∈ Cn×n and Λi = diag(λ(i)
1 , . . . , λ

(i)
n ) ∈ Cn×n, i =

1, 2, 3, 4. Then there exists a permutation τ of 〈n〉 such that

σ 2
min(T )

n
∑

i=1

∣

∣

∣λ
(1)
i λ

(2)
τ (i) − λ

(3)
i λ

(4)
τ (i)

∣

∣

∣

2 ≤ ‖Λ1TΛ2 − Λ3TΛ4‖2F .

Now we present a combined perturbation bound for the relative measure.

Theorem 2.3 Let A and its perturbed matrix ˜A be two n × n nonsingular diag-
onalizable matrices with the eigendecompositions (1.1)–(1.3). Then there exists a
permutation τ of 〈r〉 such that

(

δ
(l,k)
12

)2

‖˜Y †
2 ‖22‖X†

1‖22
‖ sinΘ(˜X1, X1)‖2F + σ 2

min(
˜Y ∗
1 X1)

r
∑

i=1

|˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)|2

≤ ‖˜X−1
˜A−kΔAA−l X1‖2F , (2.1)

where δ
(l,k)
12 is given by (1.5).

Proof It is easy to check

˜A−k(A − ˜A)A−l = ˜A−k A1−l − ˜A1−k A−l ,

i.e.,

˜X ˜Λ−k
˜X−1XΛ1−l X−1 − ˜X ˜Λ1−k

˜X−1XΛ−l X−1 = ˜A−k(A − ˜A)A−l .

Hence,

˜Λ−k
˜X−1XΛ1−l − ˜Λ1−k

˜X−1XΛ−l = ˜X−1
˜A−k(A − ˜A)A−l X.

Let ΔA = A − ˜A. By (1.4) we have

˜X−1X1 =
(

˜Y ∗
1 X1

˜Y ∗
2 X1

)

.
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Then
(

˜Λ−k
1

˜Y ∗
1 X1Λ

1−l
1 − ˜Λ1−k

1
˜Y ∗
1 X1Λ

−l
1

˜Λ−k
2

˜Y ∗
2 X1Λ

1−l
1 − ˜Λ1−k

2
˜Y ∗
2 X1Λ

−l
1

)

= ˜X−1
˜A−kΔAA−l X1. (2.2)

Taking the Frobenius norm on both sides of (2.2) gives

∥

∥

∥

˜Λ−k
2

˜Y ∗
2 X1Λ

1−l
1 − ˜Λ1−k

2
˜Y ∗
2 X1Λ

−l
1

∥

∥

∥

2

F
+

∥

∥

∥

˜Λ−k
1

˜Y ∗
1 X1Λ

1−l
1 − ˜Λ1−k

1
˜Y ∗
1 X1Λ

−l
1

∥

∥

∥

2

F

=
∥

∥

∥

˜X−1
˜A−kΔAA−l X1

∥

∥

∥

2

F
. (2.3)

It is easy to see that

∣

∣

∣

∣

(

˜Λ−k
2

˜Y ∗
2 X1Λ

1−l
1 − ˜Λ1−k

2
˜Y ∗
2 X1Λ

−l
1

)

i j

∣

∣

∣

∣

2

=
(

λ1−l
j

˜λ−k
i − λ−l

j
˜λ1−k
i

)2 ∣

∣

∣

(

˜Y ∗
2 X1

)

i j

∣

∣

∣

2 ≥
(

δ
(l,k)
12

)2 ∣

∣(˜Y ∗
2 X1)i j

∣

∣

2
.

Thus
(

δ
(l,k)
12

)2 ∥

∥˜Y ∗
2 X1

∥

∥

2
F ≤

∥

∥

∥

˜Λ−k
2

˜Y ∗
2 X1Λ

1−l
1 − ˜Λ1−k

2
˜Y ∗
2 X1Λ

−l
1

∥

∥

∥

2

F
. (2.4)

By Lemma 2.1,

‖ sinΘ(˜X1, X1)‖F ≤ ‖˜Y †
2 ‖2‖X†

1‖2‖˜Y ∗
2 X1‖F ,

which together with (2.4) gives

(

δ
(l,k)
12

)2

‖˜Y †
2 ‖22‖X†

1‖22
∥

∥sinΘ(˜X1, X1)
∥

∥

2
F ≤

∥

∥

∥

˜Λ−k
2

˜Y ∗
2 X1Λ

1−l
1 − ˜Λ1−k

2
˜Y ∗
2 X1Λ

−l
1

∥

∥

∥

2

F
. (2.5)

It follows from Lemma 2.2 that there exists a permutation τ of 〈r〉 such that

σ 2
min

(

˜Y ∗
1 X1

)

r
∑

i=1

∣

∣

∣

˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)

∣

∣

∣

2 ≤
∥

∥

∥

˜Λ−k
1

˜Y ∗
1 X1Λ

1−l
1 − ˜Λ1−k

1
˜Y ∗
1 X1Λ

−l
1

∥

∥

∥

2

F
.

(2.6)
By (2.3), (2.5) and (2.6) we obtain

(

δ
(l,k)
12

)2

‖˜Y †
2 ‖22‖X†

1‖22
∥

∥sinΘ(˜X1, X1)
∥

∥

2
F + σ 2

min

(

˜Y ∗
1 X1

)

r
∑

i=1

∣

∣

∣

˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)

∣

∣

∣

2

≤
∥

∥

∥

˜X−1
˜A−kΔAA−l X1

∥

∥

∥

2

F
,

which proves the desired bound. �
Remark 2.1 Some existing bounds can be obtained from (2.1):
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604 Y. Chen et al.

– If we take X1 = X and ˜X1 = ˜X , then ‖ sinΘ(˜X1, X1)‖F = 0. For this case, (2.1)
reduces to

n
∑

i=1

∣

∣

∣

˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)

∣

∣

∣

2 ≤ ‖˜X−1
˜A−kΔAA−l X‖2F

σ 2
min(

˜X−1X)
.

Notice that

σmin(˜X
−1X) = ‖(˜X−1X)−1‖−1

2 ≥ ‖˜X‖−1
2 ‖X−1‖−1

2

and

‖˜X−1
˜A−kΔAA−l X‖F ≤ ‖˜X−1‖2‖X‖2‖˜A−kΔAA−l‖F .

Immediately, (1.7) follows from (2.1), which implies the proposed bound (2.1) is
sharper than the bound (1.7).

– By (2.2) and (2.5) it is easy to get the relative perturbation bound for eigenspaces:

‖ sinΘ(˜X1, X1)‖F ≤ ‖˜Y †
2 ‖2‖X†

1‖2
‖˜Y ∗

2
˜A−kΔAA−l X1‖F

δ
(l,k)
12

≤ κ(˜Y2)κ(X1)
‖˜A−kΔAA−l‖F

δ
(l,k)
12

,

which is the bound (1.8).
– If A and ˜A are Hermitian, then X and ˜X are unitary, and σ 2

min(
˜X∗
1X1) = 1 −

‖ sinΘ(˜X1, X1)‖22. Hence the bound (2.1) can be simplified as follows:

(

δ
(l,k)
12

)2 ‖ sinΘ(˜X1, X1)‖2F +
(

1 − ‖ sinΘ(˜X1, X1)‖22
)

r
∑

i=1

∣

∣

∣

˜λ−k
i λ1−l

τ(i) −˜λ1−k
i λ−l

τ(i)

∣

∣

∣

2

≤ ‖˜A−kΔAA−l X1‖2F , (2.7)

which is a generalization of (2.3) of [16]. Comparing the bound (2.16) in [16] with
(2.7), it is difficult to say which is sharper. When l = k = 0, this bound reduces
to (2.3) of [16]. In particular, by (2.7) we have

‖ sinΘ(˜X1, X1)‖F ≤ ‖˜A−kΔAA−l X1‖F
δ
(l,k)
12

. (2.8)

When l = k = 0, the bound (2.8) is the classical sinΘ theorem [3]. When
l = k = 1

2 , the bound (2.8) is givens as follows:

‖ sinΘ(˜X1, X1)‖F ≤ ‖˜A− 1
2 ΔAA− 1

2 X1‖F
δ
( 12 , 12 )

12

. (2.9)
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Relative perturbation bounds for… 605

In [4], the authors obtained

‖ sinΘ(˜X1, X1)‖F ≤ ‖˜A− 1
2 ΔAA− 1

2 ‖F
δ
( 12 , 12 )

12

, (2.10)

which can be derived from (2.9). Clearly, the bound (2.9) is sharper than the
existing one (2.10).

3 Relative bounds for multiplicative perturbation

In this section, we consider the combined multiplicative perturbation bounds for diag-
onalizable matrices, i.e., the perturbed matrix ˜A = D∗

1 AD2, where D1 and D2 are
nonsingular and close to the identity matrix. Assume that A and its perturbed matrix
˜A are two n × n nonsingular diagonalizable matrices with the eigendecompositions
(1.1)–(1.3).

The proof of the following lemma can be given similar to the proof of Lemma 2.2
in [13].

Lemma 3.1 Let Λ1 and ˜Λ2 satisfy ˜Λ1−k
2 BΛ−l

1 − ˜Λ−k
2 BΛ1−l

1 = ˜Λ2E + FΛ1. Then

‖B‖F ≤
√

‖E‖2F + ‖F‖2F/ρ
(l,k)
12 ,

where Λ1, ˜Λ2 and ρ
(l,k)
12 are given by (1.2), (1.3) and (1.6), respectively.

Lemma 3.2 Let Λ1 and ˜Λ1 satisfy ˜Λ1−k
1 BΛ−l

1 − ˜Λ−k
1 BΛ1−l

1 = ˜Λ1E + FΛ1, where
Λ1 and ˜Λ1 are given by (1.2) and (1.3), respectively. Then there is a permutation τ of
〈r〉 such that

σ 2
min(B)

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2) ≤ ‖E‖2F + ‖F‖2F .

Proof Similar to the proof of Lemma 2.2 in [13], we obtain easily

∣

∣

∣

∣

∣

λ−l
i

˜λ1−k
j − λ1−l

i
˜λ−k

j√
|λi |2 + |˜λ j |2

· b ji

∣

∣

∣

∣

∣

2

≤ |e ji |2 + | f j i |2, (3.1)

from which one can deduce that

r
∑

i, j=1

|λi −˜λ j |2
|λi |2l |˜λ j |2k(|λi |2 + |˜λ j |2) |b ji |2 ≤ ‖E‖2F + ‖F‖2F . (3.2)
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On the other hand, from the result given in the last line of [5], it is known that there is
a permutation τ of 〈r〉 such that

σ 2
min(B)

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2) ≤

r
∑

i, j=1

|λi −˜λ j |2
|λi |2l |˜λ j |2k(|λi |2 + |˜λ j |2) |b ji |2,

which together with (3.2) gives the desired bound. �
The following bound (3.3) is the combined form for eigenvalues and eigenspaces

of diagonalizable matrices.

Theorem 3.3 Let A and its perturbed matrix ˜A = D∗
1 AD2 be two n × n nonsin-

gular diagonalizable matrices with the eigendecompositions (1.1)–(1.3), where Di is
nonsingular, i = 1, 2. Then there is a permutation τ of 〈r〉 such that

(ρ
(l,k)
12 )

2

‖˜Y †
2 ‖22‖X†

1‖22
‖ sinΘ(X1,

∼
X1)‖2F + σ 2

min(
˜Y1

∗
X1)

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2)

≤ ‖˜X−1
˜A−k(I − D−1

2 )A−l X1‖2F + ‖˜X−1
˜A−k(D∗

1 − I )A−l X1‖2F . (3.3)

Proof From ˜A = D∗
1 AD2 one may get

˜A1−k A−l − ˜A−k A1−l = ˜A˜A−k(I − D−1
2 )A−l + ˜A−k(D∗

1 − I )A−l A. (3.4)

Multiplying by ˜X−1 and X1 from the left and right of (3.4) respectively gives

˜Λ1−k
˜X−1X1Λ

−l
1 − ˜Λ−k

˜X−1X1Λ
1−l
1

= ˜Λ˜X−1
˜A−k(I − D−1

2 )A−l X1 + ˜X−1
˜A−k(D∗

1 − I )A−l X1Λ1. (3.5)

Let Q = ˜X−1X1, Z = ˜X−1
˜A−k(I −D−1

2 )A−l X1 and ˜Z = ˜X−1
˜A−k(D∗

1 − I )A−l X1.

By (1.4),

Q =
(

˜Y ∗
1 X1

˜Y ∗
2 X1

)

.

Let

Z =
(

Z1
Z2

)

and ˜Z =
(

˜Z1
˜Z2

)

have the same block structure as Q. Rewriting (3.5) in the block form yields

(

˜Λ1−k
1

˜Y ∗
1 X1Λ

−l
1 − ˜Λ−k

1
˜Y ∗
1 X1Λ

1−l
1

˜Λ1−k
2

˜Y ∗
2 X1Λ

−l
1 − ˜Λ−k

2
˜Y ∗
2 X1Λ

1−l
1

)

=
(

˜Λ1Z1 + ˜Z1Λ1
˜Λ2Z2 + ˜Z2Λ1

)

.

Or equivalently,

˜Λ1−k
1

˜Y ∗
1 X1Λ

−l
1 − ˜Λ−k

1
˜Y ∗
1 X1Λ

1−l
1 = ˜Λ1Z1 + ˜Z1Λ1 (3.6)
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and
˜Λ1−k
2

˜Y ∗
2 X1Λ

−l
1 − ˜Λ−k

2
˜Y ∗
2 X1Λ

1−l
1 = ˜Λ2Z2 + ˜Z2Λ1. (3.7)

Applying Lemma 3.1 to (3.7) yields

(

ρ
(l,k)
1,2

)2 ‖˜Y ∗
2 X1‖2F ≤ ‖Z2‖2F + ‖˜Z2‖2F . (3.8)

It follows from Lemma 2.1 that

1

‖˜Y †
2 ‖2‖X†

1‖2
‖ sinΘ(X1, ˜X1)‖F ≤ ‖˜Y ∗

2 X1‖F . (3.9)

By (3.8) and (3.9) we get

(

ρ
(l,k)
1,2

)2

‖˜Y †
2 ‖22‖X†

1‖22
‖ sinΘ(X1, ˜X1)‖2F ≤ ‖Z2‖2F + ‖˜Z2‖2F . (3.10)

Applying Lemma 3.2 to (3.6) gives that there is a permutation τ of 〈r〉 so that

σ 2
min(

˜Y ∗
1 X1)

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2) ≤ ‖Z1‖2F + ‖˜Z1‖2F ,

which together with (3.10) gives that

(

ρ(l,k)
)2

‖˜Y †
2 ‖22‖X†

1‖22
‖ sinΘ(X1, ˜X1)‖2F + σ 2

min(
˜Y ∗
1 X1)

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2)

≤ ‖Z2‖2F + ‖˜Z2‖2F + ‖Z1‖2F + ‖˜Z1‖2F = ‖Z‖2F + ‖˜Z‖2F
= ‖˜X−1

˜A−k(I − D−1
2 )A−l X1‖2F + ‖˜X−1

˜A−k(D∗
1 − I )A−l X1‖2F .

This proves the theorem. �
Remark 3.1 From Theorem 3.3 and its proof, we can derive some existing bounds:

– If we take X1 = X and ˜X1 = ˜X , then ‖ sinΘ(X1, ˜X1)‖2 = ‖ sinΘ(X1, ˜X1)‖F =
0 and the bound (3.3) implies that

√

√

√

√

n
∑

i=1

|λi − λ̃τ (i)|2
|λi |2l |λ̃τ (i)|2k(|λi |2 + |λ̃τ (i)|2)

≤ 1

σmin(˜X−1X)

√

||˜X−1
˜A−k(I − D−1

2 )A−l X‖2F + ‖˜X−1
˜A−k(D∗

1 − I )A−l X‖2F

123



608 Y. Chen et al.

≤ ‖˜XX−1‖2‖X‖2‖˜X−1‖2
√

‖˜A−k(I − D−1
2 )A−l‖2F + ‖˜A−k(D∗

1 − I )A−l‖2F
≤ κ(X)κ(˜X)

√

‖˜A−k(I − D−1
2 )A−l‖2F + ‖˜A−k(D∗

1 − I )A−l‖2F .

When l = k = 0, the above bound reduces to the one given by Li [10].
– By (3.10) we may deduce the bound for eigenspaces. In fact,

(

ρ
(l,k)
1,2

)2

‖˜Y †
2 ‖22‖X†

1‖22
‖ sinΘ(X1, ˜X1)‖2F

≤ ‖˜Y ∗
2

˜A−k(I − D−1
2 )A−l X1‖2F + ‖˜Y ∗

2
˜A−k(D∗

1 − I )A−l X1‖2F ,

and thus

‖ sinΘ(X1, ˜X1)‖F

≤
κ(X1)κ(˜Y2)

√

‖˜A−k(I − D−1
2 )A−l‖2F + ‖˜A−k(D∗

1 − I )A−l‖2F
ρ

(l,k)
12

. (3.11)

When l = k = 0, the above bound is identical to the bound given in Remark 3.3
of [13].

– If A and ˜A = D∗AD are Hermitian, then X and ˜X are unitary, and σ 2
min(

˜X∗
1X1) =

1 − ‖ sinΘ(˜X1, X1)‖22. Hence the bound (3.3) can be rewritten as the following
form:

(

ρ
(l,k)
1,2

)2 ‖ sinΘ(˜X1, X1)‖2F + (1 − ‖ sinΘ(˜X1, X1)‖22)ε(λi ,˜λτ(i))

≤ ‖˜A−k(I − D−1)A−l X1‖2F + ‖˜A−k(D∗ − I )A−l X1‖2F , (3.12)

where by ε(λi ,˜λτ(i)) we denote the sum

r
∑

i=1

|λi −˜λτ(i)|2
|λi |2l |˜λτ(i)|2k(|λi |2 + |˜λτ(i)|2) .

If l = k = 0, then the bound (3.12) reduces to (2.2) of [14].

4 Numerical experiments

From Sects. 2 and 3, the perturbation bounds (2.1) and (3.3) not only generalize some
existing perturbation bounds but also can be used to produce new perturbation bounds.
In this section,wewill take somematrices from theUniversity of Florida SparseMatrix
collection to test the new perturbation bounds (2.8) and (3.11), respectively. The test
matrices are described in Table 1, where we denote Symmetric Positive Definite and
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Table 1 Name, sources and properties of the n × n test matrices A

Name Source n Nonzeros Type κ(A)

bcsstk14 Structural problem 1806 63454 SPD 1.19e+10

mhd1280b Electromagnetics 1280 22778 HPD 4.75e+12

SpaceStation9 Optimal Control 1180 19674 Symmetric 1.08e+12

nasa1824 Duplicate structural problem 1824 39208 Symmetric 5.89e+6

plskz362 2D/3D problem 362 1760 Unsymmetric 4.67e+5

Hermite Positive Definite by SPD and HPD, respectively. Note that these test matrices
have the large 2-norm condition numbers from the magnitude order 105 to 1012.

For all test matrices, the perturbations ΔA in (2.8) and Di (i = 1, 2) in (3.11) are
generated randomly by the MATLAB commands sprandsym and sprand, which are
explained in detail as follows:

– sprandsym(A): giving a sparse symmetric randommatrix with the same structure
as A, whose nonzero entries lie in the interval (0, 1);

– sprand(m, n, d): giving anm×n sparse randommatrix with approximately dmn
nonzero entries in the interval (0, 1) each time;

– sprand(A): giving a sparse randommatrix with the same structure as A each time,
whose nonzero entries locate in the interval (0, 1).

We run the above commands and then generate the additive and multiplicative
perturbations with small enough ε, which are given as follows:

– For the bound (2.8), let ΔA = εB with B = sprandsym(A);
– For the bound (3.11), let Di = I + εEi (i = 1, 2). We distinguish the following
cases:
– For the test matrices from bcsstk14, mhd1280b and nasa1824, let

α = sprand(n, 1, 1e − 2) and Ei = diag(α)

where diag(α) is a diagonal matrix with the elements of the vector α on the
main diagonal;

– For the test matrix from plskz362, let Ei = sprand(A). For this case, Di is
not necessarily diagonal.

As pointed out in Sects. 2–3, the derived bounds (2.8) and (3.11) are also gen-
eralizations of some existing bounds. In Tables 2 and 3 and Fig. 1, we give some
comparison results of the bounds (2.8) and (3.11) with different values of l and k. For
simplicity, we use notations Pbnew(l, k) and Pbold(l, k) to denote a new bound and
an existing one, respectively, which can be derived by the proposed bounds (2.8) or
(3.11). In other words, both Pbnew(l, k) and Pbold(l, k) are exactly (2.8) or (3.11) with
specific values for l and k. In addition, the notation Pbold is used to denote the existing
bound (2.10). Here we choose the quasi-optimal parameters l∗ and k∗ in the bounds
(2.8) and (3.11) by the following methods:
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Table 2 The additive perturbation bound (2.8) for SpaceStation9: ε = 10−5, (l∗, k∗) = (1, 0)

r = 200 r = 300 r = 400 r = 500

Pbold(0, 0) 4.40e−2 7.84e−3 8.46e−3 7.72e−3

Pbold 3.29e+5 2.36e+4 8.90e+3 1.83e+3

Pbnew(0.5, 0.5) 3.21e+2 2.50e+1 1.41e+1 5.37

Pbnew(l∗, k∗) 2.38e−2 3.78e−3 3.02e−3 1.72e−3

‖ sinΘ(X̃1, X1)‖F 3.36e−4 6.68e−5 1.17e−4 1.26e−4

Table 3 The multiplicative perturbation bound (3.11) for the matrices A: r = 300, ε = 10−5

Name (l∗, k∗) Pbold(0, 0) Pbnew(l∗, k∗) ‖ sinΘ(X̃1, X1)‖F
bcsstk14 (0.1, 0.2) 8.85e−4 4.16e−4 1.68e−6

mhd1280b (0.5, 0.4) 4.85e−4 2.15e−5 4.37e−6

nasa1824 (0.1, 0.2) 1.27e−3 8.36e−4 2.93e−6

plskz362 (0.2, 0.2) 8.03e−4 4.36e−4 1.04e−5
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 Pbold(0,0)

 Pbold
 Pbnew(0.5,0.5)

 Pbnew(l*,k*)

 NormS

Fig. 1 Additive perturbation bound (2.8) for the test matrix SpaceStation with r = 500: l∗ = 1, k∗ = 0

– For the additive perturbation bound (2.8), l∗ and k∗ are chosen by taking (l, k) =
(0, 0), (1, 0), (0, 1) and (0.5, 0.5), respectively, so that the associated perturbation
bound attains the minimum.

– For the multiplicative perturbation bound (3.11), l∗ and k∗ are obtained experi-
mentally by minimizing the bound (3.11) in the interval [0, 0.5].
By Table 2 we report the numerical results of the bound (2.8) for the test matrices

from the optimal control field with the different sizes X1 and X2, which are shown
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by the different r , in which one may see that the perturbation bound (2.8) with the
quasi-optimal parameters l∗ and k∗ is always tighter than the associated existing ones
Pbold(0, 0) and Pbold. The latter two ones are exactly the sinΘ theorem in [3] and the
bound in [4], respectively.

In Fig. 1 we denote by NormS the real value of ‖ sinΘ(X̃1, X1)‖F . From Fig. 1
it is known that the new bound Pbnew(l∗, k∗) is still sharper than the existing ones
for the different values of the perturbation ε. Moreover, Fig. 1 implies that the bound
(2.8) with l = k = 0.5 always outperforms the associated existing one (2.10), which
further confirms the theoretical analysis in Sect. 2.

In order to verify the effectiveness of the multiplicative perturbation bound (3.11),
we test the different matrices with r = 300 and ε = 10−5, where the bound Pbold(0, 0)
is given by Remark 3.3 of [13]. As expected, the quasi-optimal bound Pbnew(l∗, k∗)
from (3.11) is always sharper than the existing bound Pbold(0, 0).

Remark 4.1 From numerical results given in Tables 2 and 3 and Fig. 1, we can always
obtain the sharper new bounds by taking l and k. In particular, we test the additive
bound (2.8) and the multiplicative bound (3.11) by a large number of examples, which
show that quasi-optimal parameters are given by (l∗, k∗) = (1, 0) or (0, 1) for (2.8) and
|l∗−k∗| ≤ 0.1 for (3.11)when l, k ∈ [0, 0.5]. However,we are not able to present some
theoretical results for the optimal parameters in the proposed perturbation bounds. This
remains open.

5 Conclusions

In this paper, we have proposed two relative perturbation bounds (2.1) and (3.3),
which provide a general framework of relative bounds for additive and multiplicative
perturbations for eigenpairs of diagonalizable matrices, respectively. With suitable
choices of eigenspaces or the parameters l and k, the new bounds (2.1) and (3.3) not
only cover some classical perturbation bounds as their special cases, but also yield
some new perturbation bounds, for example, the new bounds (2.8) and (3.11).We have
shown that the bounds (2.1) and (3.3) may improve some existing ones. The numerical
experiments reveal that new perturbation bounds are sharper than the existing ones. In
the future we will consider to get the optimal parameters l and k in the bounds (2.1)
and (3.3) for some special structure matrices.
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