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Abstract
Matrix functions have amajor role in science and engineering. One of the fundamental
matrix functions, which is particularly important due to its connections with certain
matrix differential equations and other special matrix functions, is the matrix gamma
function. This research article focus on the numerical computation of this function.
Well-known techniques for the scalar gamma function, such as Lanczos, Spouge and
Stirling approximations, are extended to the matrix case. This extension raises many
challenging issues and several strategies used in the computation of matrix functions,
like Schur decomposition and block Parlett recurrences, need to be incorporated to
make the methods more effective. We also propose a fourth technique based on the
reciprocal gamma function that is shown to be competitive with the other three meth-
ods in terms of accuracy, with the advantage of being rich in matrix multiplications.
Strengths and weaknesses of the proposed methods are illustrated with a set of numer-
ical examples. Bounds for truncation errors and other bounds related with the matrix
gamma function will be discussed as well.
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1 Introduction

It is well-known that the scalar gamma function is analytic everywhere in the complex
plane, with the exception of non-positive integer numbers Z

−
0 (see [5,31] and the

references therein). Hence, the general theory of primary matrix functions [24,26]
ensures that the matrix gamma function Γ (A) is well defined for a given matrix
A ∈ C

n×n with no eigenvalues on Z−
0 . In the particular case of A having eigenvalues

with positive real parts (i.e., Re(λ) > 0, for all λ belonging to the spectrum of A,
σ(A)), the matrix gamma function allows the integral representation [29]

Γ (A) =
∫ ∞

0
e−t t A−I dt, (1.1)

where t A−I := exp((A− I ) log t). Recall that if z is a complex number not belonging
to the closed negative real axis R−

0 , we can define the “scalar-matrix exponentiation”
zM as the function fromC×C

n×n toCn×n which assigns to each pair (z, M) the n×n
square complexmatrix zM := eM log z , with log(z) standing for the principal logarithm.
This function is a particular case of the more general “matrix–matrix exponentiation”
addressed recently in [10].

Likewise, bearing in mind that the reciprocal gamma function, here denoted by
Δ(z) := 1

Γ (z) , is an entire function, we can define Δ(A) = (Γ (A))−1, for any matrix
A ∈ C

n×n .
The matrix gamma function has connections with other special functions, which in

turn play an important role in solving certain matrix differential equations; see [29]
and the references therein. Two of those special functions are the matrix beta and
Bessel functions. If both A, B ∈ C

n×n have eigenvalues with positive real parts, the
matrix beta function [29] is defined by

B(A, B) :=
∫ 1

0
t A−I (1 − t)B−I dt .

In the case when A and B commute, beta and gamma functions can be related by
B(A, B) = Γ (A)Γ (B)Δ(A + B). The matrix Bessel function is defined by [36]:

JA(z) =
∞∑
k=0

(−1)kΔ(A + (k + 1)I )

k!
( z
2

)A+2k I
,

where A is assumed to have eigenvalues with positive real parts and z is a complex
number lying off the closed negative real axis.

There are several approaches to the computation of direct and reciprocal scalar
gamma functions. The most popular are the Lanczos approximation [30,35], Spouge
approximation [35,40], Stirling’s formula [35,39], continued fractions [11], Taylor
series [16], Schmelzer and Trefethen techniques [37] and Temme’s formula [41]. In
his Ph.D. thesis, Pugh [35] states that the Lanczos approximation is the most feasible
and accurate algorithm for approximating the scalar gamma function. If extended to
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matrices in a convenient way, we will see that, with respect to a compromise between
efficiency and accuracy, the Lanczos method can also be viewed as a serious candidate
for the best method for the matrix gamma function.

Another method for computing Γ (A) that performs well in terms of accuracy is
based on a Taylor expansion of Δ(A) around the origin, combined with the reciprocal
version of the so-called Gauss multiplication formula (see [1, (6.1.20)]):

Δ(z) = (2π)
m−1
2 m

1
2−z

m−1∏
k=0

Δ

(
z + k

m

)
, (1.2)

where m is a positive integer. The key point of this formula is that it exploits the fact
that such a Taylor expansion is more accurate around the origin. To be more precise,
suppose that z is far from the origin so that |z| ≥ 1 andm > 1. Hence |z| ≥ k/(m−1),
because k ∈ {0, . . . ,m − 1}, which implies that

|z| ≥ |z| + k

m
≥
∣∣∣∣ z + k

m

∣∣∣∣ ,

showing that z+k
m in the right-hand side of (1.2) is closer to the origin than z, for all k.

We also extend the Spouge and Stirling approximations tomatrices in Sects. 4.2 and
4.3, respectively. However, this extension yields poor results if we simply replace the
scalar variable z by A. The same holds for Lanczos andTaylor seriesmethods.Wemust
pay attention to some issues arising when dealing with matrices, namely the fact that a
matrix may have eigenvalues with positive and negative real parts simultaneously. Our
strategy has some similarities with the one used in [13], which includes, in particular,
an initial Schur decomposition A = UTU∗, with U unitary and T upper triangular,
a reorganization of the diagonal entries of T in blocks with “close” eigenvalues and a
block Parlett recurrence. It is important to ensure, in particular, a separation between
the eigenvalues with negative and positive real parts.

Little attention has been paid to the numerical computation of the matrix gamma
function. According to our knowledge, we are the first to investigate thoroughly the
numerical computation of this function. Indeed, we have found only two marginal ref-
erences to the numerical computation of the matrix gamma function in the literature.
Schmelzer and Trefethen [37] mentioned that the Hankel contour integral represen-
tation given in [37, Eq. (2.1)] can be generalized to square matrices A, and that their
methods can be used to computeΔ(A). They state to have confirmed this by numerical
experiments but no results are reported in their paper. They also state that “a drawback
of such methods is that it is expensive to compute s−A

k for every node; methods based
on the algorithms of Spouge and Lanczos might be more efficient”. In [23], at the end
of Section 2, Hale et al. mention that their method for computing certain functions of
matrices having eigenvalues on or close to the positive real axis can be applied to the
gamma function of certain matrices and give an example with a diagonalizable matrix
of order 2.

The paper is organized as follows. In Sect. 2 we revisit some properties of the scalar
gamma function and recall some of the most well-known methods for its numerical
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computation. Section 3 is focused on theoretical properties of the matrix gamma
function and on the derivation of bounds for the norm of the matrix gamma and its
perturbations. The extension of Lanczos, Spouge and Stirling approximations to the
matrix case is carried out in Sect. 4, where a Taylor series expansion of the reciprocal
gamma function is also proposed for computing the matrix gamma. To make the
approximation techniques more reliable, in Sect. 4.5 we show how to incorporate the
Schur–Parlett method and point out its benefits. Numerical experiments are included
in Sect. 5 to illustrate the behaviour of the methods and some conclusions are drawn
in Sect. 6.

2 Revisiting the scalar gamma and related functions

This section includes a brief revision of some topics related with the scalar gamma
function that are relevant for the subsequent material. For readers interested in a more
detailed revision, we suggest, among the vast literature, the works [1, Ch. 6], [5] and
[14]. See also the references included in [7].

2.1 Definition and properties

Among the many equivalent definitions of the scalar gamma function, the following
seems to be common:

Γ (z) =
∫ ∞

0
e−t t z−1dt, Re(z) > 0. (2.1)

This integral function can be extended by analytic continuation to all complex numbers
except the non-positive integers z ∈ Z

−
0 = {0,−1,−2, . . .}, where the function has

simple poles. Unless otherwise is stated, we shall assume throughout the paper that
z /∈ Z

−
0 . Integrating (2.1) by parts, yields

Γ (z + 1) = z Γ (z). (2.2)

Another important identity satisfied by the gamma function is the so-called reflection
formula

Γ (z) = π

Γ (1 − z) sin(π z)
, z /∈ Z, (2.3)

which is very useful in the computation of the gamma function on the left-half plane.
Closely related to this function is the reciprocal gamma function Δ(z), which is

an entire function. Due to the amenable properties of the reciprocal gamma function,
some authors have used it as a means for computing Γ (z). Two reasons for this are:
Δ(z) can be represented by the Hankel integral [1,37,42]

Δ(z) = 1

2π i

∫
C
t−zet dt,
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Fig. 1 Graph of the reciprocal gamma function for real arguments

where the path C is a contour winding around the negative real axis in the anti-
clockwise sense, and by the Taylor series with infinite radius of convergence [1,16,
45,46]

Δ(z) =
∞∑
k=0

akz
k, |z| < ∞, (2.4)

where a1 = 1, a2 = γ (here γ stands for the Euler–Mascheroni constant), and the
coefficients ak (k ≥ 2) are given recursively by [8,45]

ak = a2ak−1 −∑k−1
j=2(−1) jζ( j)ak− j

k − 1
, (2.5)

with ζ(.) being the Riemann zeta function. Approximations to a2, . . . , a41 with 31
digits of accuracy are provided in [45,Table 5]; see also [1, p. 256 (6.1.34)] and [8].New
integral formulae, as well as asymptotic values for ak , have been recently proposed
in [16]. By observing Fig. 1, which displays the graph of the reciprocal gamma as a
real function with a real variable, large errors are expected when approximating Δ(x)
by the series (2.4) for negative values of x with large magnitude. So a reasonable
strategy is to combine (2.4) with the Gauss formula (1.2). By choosing a suitable
m, the magnitude of the argument x is reduced and a truncation of (2.4) is used to
approximate Δ(x) with x having small magnitude. Note that, as shown in Fig. 1, the
values of Δ(x) are moderate for x small.

Another function related to gamma is the incomplete gamma function

γ (z, r) :=
∫ r

0
e−t t z−1dt, Re(z) > 0, r > 0,
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Table 1 Coefficients ck (α)

(k = 0, 1, . . . , 10) in the
Lanczos formula (2.6) for
α = 9, approximated with 22
digits of accuracy

k ck (9)

0 1.000000000000000174663

1 5716.400188274341379136

2 − 14815.30426768413909044

3 14291.49277657478554025

4 − 6348.160217641458813289

5 1301.608286058321874105

6 − 108.1767053514369634679

7 2.605696505611755827729

8 − 0.7423452510201416151527 × 10−2

9 0.5384136432509564062961 × 10−7

10 − 0.4023533141268236372067 × 10−8

which arises in many applications, namely, in Statistics [17–19,38,44].

2.2 Lanczos approximation

In the remarkable paper [30], Lanczos has derived the following formula for the gamma
function:

Γ (z) = √
2π(z + α − 1/2)z−1/2 e−(z+α−1/2)

[
c0(α) +

m∑
k=1

ck(α)

z − 1 + k
+ εα,m(z)

]
,

(2.6)

where Re(z) > 0, α > 0, m is a positive integer, ck(α) are certain coefficients and
εα,m(z) is the truncation error. The values α and m have been appropriately chosen
in order to control either the error εα,m or the number of terms in the partial fraction
expansion.

The values of the coefficients ck(α) for some parameters α are listed in [30, p. 94].
For instance, the choice α = 5 and m = 6 guarantees a truncation error of at most
2 × 10−10 for all z in the right-half plane. A more complete list of values of the
coefficients ck is given in [35, App. C] together with empirical estimates for the
truncation error. For computations in IEEE double precision arithmetic, Pugh [35]
recommends using α = 10.900511 and m = 10. However, in the implementation of
the Lanczos method provided in [20], Godfrey uses α = 9 and m = 10. It is stated
that such values of α and m guarantee a relative error smaller than 10 × 10−13 for a
large set of positive real numbers. A new method for computing the coefficients ck is
also suggested, because the one used by Lanczos is rather complicated and sensitive
to rounding errors. Table 1 displays the values of the coefficients ck(9), with 22 digits
of accuracy, obtained in [20].

Frequently, to avoid overflow in (2.6), it is more practical to use the following
logarithmic version and then exponentiate:
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log [Γ (z)] = 1

2
log(2π) + (z − 1/2) log(z + α − 1/2) − (z + α − 1/2)

+ log

[
c0(α) +

m∑
k=1

ck(α)

z − 1 + k
+ εα,m(z)

]
. (2.7)

2.3 Spouge approximation

An improvement of the work of Lanczos was given in 1994 by Spouge [40]. There,
the following formula

Γ (z) = √
2π(z − 1 + a)z−1/2e−(z−1+a)

[
d0(a) +

m∑
k=1

dk(a)

z − 1 + k
+ εa(z)

]
, (2.8)

which is valid for Re(z − 1 + a) ≥ 0, is proposed. The parameter a is a positive real
number, m = �a� − 1 (�.� denotes the ceiling of a number), εa is the truncation error,
d0 = 1, and dk(a) is given, for 1 ≤ k ≤ m, by

dk(a) = 1√
2π

(−1)k−1

(k − 1)! (−k + a)k−0.5e−k+a .

Let Ga(z) denote the approximation to gamma function obtained from Spouge for-
mula, that is,

Ga(z) := √
2π(z − 1 + a)z−1/2e−(z−1+a)

[
d0(a) +

m∑
k=1

dk(a)

z − 1 + k

]
,

and let ea(z) be the relative error of the approximation Γ (z) ≈ Ga(z), i. e.,

ea(z) = Γ (z) − Ga(z)

Γ (z)
. (2.9)

Spouge’s formula has the simple relative error representation

|ea(z)| =
∣∣∣∣ εa(z)

Γ (z)(z − 1 + a)−(z−1/2)ez−1+a(
√
2π)−1

∣∣∣∣ ,

where εa(z) is the term appearing in (2.8). Hence,

|ea(z)| ≤
√
a

(2π)a+1/2

1

Re(z − 1 + a)
, (2.10)

provided that a ≥ 3.
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2.4 Stirling approximation

The classical Stirling’s formula (see [1, p. 257 (6.1.40)] and [39]) is one of the most
popular methods for approximating Γ (z), when |z| is sufficiently large and | arg(z)| <

π . This formula becomes effective for either large or small values of |z| if combined
with the functional relationship (2.2). The result is the following variant of Stirling’s
formula:

log

⎡
⎣Γ (z)

s∏
k=1

(z − 1 + k)

⎤
⎦ =

(
z + s − 1

2

)
log(z − 1 + s) − (z − 1 + s) + 1

2
log(2π)

+
m∑

k=1

B2k
2k(2k − 1) (z − 1 + s)2k−1

+ Rm,s(z), (2.11)

where s is a positive integer, and, for z such that θ = arg(z − 1 + s) ∈] − π, π [,

|Rm,s(z)| ≤
(

1

cos(θ/2)

)2m+2 ∣∣∣∣ B2m+2

(2m + 2)(2m + 1)(z − 1 + s)2m+1

∣∣∣∣ (2.12)

(see [15, Sec. 6.3]), with B2k being the Bernoulli numbers.
If we fix a complex number z, we can estimate the values of m and s that minimize

the bound (2.12); see [35]. The problem becomes more difficult if we want to find
optimal values of m and s minimizing the bound for all complex numbers lying on a
large region (for instance, the right-hand side of the complex plane). In the following,
we describe a naive approach to estimating those values. It is new and works well in
the experiments. We will use it later in the numerical experiments of Sect. 5.

Let us fix m = 12 to make Stirling approximation comparable with the Spouge
method and let us assume that θ = arg(z − 1+ s) ∈] − π/2, π/2[. Since cos(θ/2) ≤√
2/2, the expression on the right-hand side of (2.12) is bounded by

213B26

26 × 25|z − 1 + s|25 . (2.13)

Forcing (2.13) to be smaller than or equal to a certain tolerance η, gives

|z − 1 + s| ≥
(

213B26

26 × 25η

)1/25

. (2.14)

For instance, if η is the unit roundoff u = 2−53 ofMATLAB, (2.14) gives |z−1+s| ≥
8.3. Denote the right-hand side of (2.14) by f (η). A little calculation shows that we
can take s = 0 whenever Im(z) ≥ f (η) or 1 − Re(z) + √[ f (η)]2 − Im(z)2 ≤ 0.
Otherwise,

s =
⌈
1 − Re(z) +

√
[ f (η)]2 − Im(z)2

⌉

is the smallest integer s such that (2.14) holds.
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3 Matrix gamma function

We start this section by revisiting or stating some properties of the matrix gamma
function, namely the ones that are relevant for the subsequent material. More theo-
retical background can be found in [12,28,29]. Then, we propose new bounds for the
matrix gamma function and its perturbations and discuss their sharpness.

3.1 Basic properties

Lemma 3.1 Let A ∈ C
n×n have no eigenvalues on Z−

0 . Then the following properties
hold:

(i) Γ (I ) = I , and Γ (A + I ) = AΓ (A);
(ii) Γ (A) is nonsingular;
(iii) If A is block diagonal, A = diag(A1, . . . , Am), then Γ (A) is a block diagonal

matrix with the same block structure, that is,Γ (A) = diag(Γ (A1), . . . , Γ (Am));
(iv) Γ (A∗) = Γ (A)∗;
(v) If there is a nonsingular complex matrix S and a complex matrix B such that

A = SBS−1, then Γ (A) = S Γ (B) S−1;
(vi) Assuming in addition that A does not have any integer eigenvalue, one has the

matrix reflection formula

Γ (A)Γ (I − A) = π [sin(π A)]−1 . (3.1)

Proof All the statements follow easily from the theory of matrix functions. For further
information on the matrix sine function arising in (3.1), see [24, Ch. 12]. ��

The next example shows that closed expressions for the matrix gamma function
can be very complicated, even for diagonalizable matrices of order 2.

Example 3.1 Consider the diagonalizable matrix A = [
a b
c d

]
, which has eigenvalues

λ1 = (a+d)−�
2 and λ2 = (a+d)+�

2 , where � = √
(a − d)2 + 4bc is assumed to be

non zero. The eigenvalues and eigenvectors of A are

D = diag(λ1, λ2) =
(

(a+d)−�
2 0
0 (a+d)+�

2

)
, X =

(− (a−d)+�
2c

(a−d)+�
2c

1 1

)
.

Hence, Γ (A) can be evaluated by the spectral decomposition Γ (A) = XΓ (D)X−1

as following:

Γ (A) =
(− (a−d)+�

2c
(a−d)+�

2c
1 1

)(
Γ (λ1) 0

0 Γ (λ2)

)(− (a−d)+�
2c

(a−d)+�
2c

1 1

)−1

= 1

2�

(
Γ (λ1)(d − a + �) + Γ (λ2)(a − d + �) −2b(Γ (λ1) − Γ (λ2))

−2c(Γ (λ1) − Γ (λ2)) Γ (λ1)(a − d + �) + Γ (λ2)(d − a + �)

)
.
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3.2 Norm bounds

Before proceeding with investigations on bounding the norm of the matrix gamma
function, we shall recall that the incomplete gamma function with matrix arguments
can be defined by [36]

γ (A, r) :=
∫ r

0
e−t t A−I dt,

and its complement by

Γ (A, r) :=
∫ ∞

r
e−t t A−I dt,

where it is assumed that A ∈ C
n×n satisfies Re(λ) > 0, for all λ ∈ σ(A), and r

is a positive real number. Additionally, we remind the definition and notation to the
spectral abscissa of A:

α(A) := max{Re(λ) : λ ∈ σ(A)}. (3.2)

Theorem 3.1 Given A ∈ C
n×n satisfying Re(λ) > 0, for all λ ∈ σ(A), let A =

U (D + N )U∗ be its Schur decomposition, with U, D and N being, respectively,
unitary, diagonal and strictly upper triangular matrices. If r ≥ 1, then the complement
of gamma function allows the following bound, with respect to the 2-norm:

‖Γ (A, r)‖2 ≤
n−1∑
k=0

‖N‖k2
k! Γ (α(A) + k, r) , (3.3)

where α(A) is the spectral abscissa of A.

Proof We start by recalling the following bound to the matrix exponential [24, Thm.
10.12]:

∥∥∥eAt
∥∥∥
2

≤ eα(A)t
n−1∑
k=0

‖Nt‖k2
k! . (3.4)

From (3.4), and attending that | log(t)| ≤ t , for all t ≥ 1, it easily follows that

∥∥∥t A−I
∥∥∥ ≤ eα(A−I ) log(t)

n−1∑
k=0

| log(t)|k‖N‖k2
k! ≤ tα(A)−1

n−1∑
k=0

tk‖N‖k2
k! .

Hence, for r ≥ 1,
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‖Γ (A, r)‖2 =
∥∥∥∥
∫ ∞

r
e−t t A−I dt

∥∥∥∥
2

≤
∫ ∞

r
e−t

∥∥∥t A−I
∥∥∥
2
dt

≤
∫ ∞

r
e−t tα(A)−1

n−1∑
k=0

tk‖N‖k2
k! dt

=
n−1∑
k=0

‖N‖k2
k!

∫ ∞

r
e−t tα(A)−1tk dt =

n−1∑
k=0

‖N‖k2
k! Γ (α(A) + k, r) .

��
The previous theorem gives a scalar upper bound for the error arising in the approx-

imation of the matrix gamma function by the matrix incomplete gamma function.
Indeed, since Γ (A) = γ (A, r) + Γ (A, r), for any r > 0, the error of the approx-
imation Γ (A) ≈ γ (A, r), with r ≥ 1, is bounded by (3.3). At this stage, we may
ask why such an expensive upper bound involving the Schur decomposition of A (its
computation requires about 25n3 flops) should be used instead of a cheaper one. In
fact, as explained in [43], there are many cheaper bounds to the matrix exponential
than (3.4), but they are not sharp in general. Other reason is that our algorithms, which
will be proposed later, are based on the Schur decomposition and so bounds based on
Schur decompositions can be computed at a negligible cost.

The next result provides an upper bound to the norm of the matrix gamma function.

Corollary 3.1 Assume that the assumptions of Theorem 3.1 are valid and denote
β(A) := min{Re(λ) : λ ∈ σ(A)}. Then:
(i) If N = 0,

‖Γ (A)‖2 ≤ γ (β(A), 1) + Γ (α(A), 1) ; (3.5)

(ii) If N �= 0 and β(A) > n − 1,

‖Γ (A)‖2 ≤
n−1∑
k=0

‖N‖k2
k!

[
γ (β(A) − k, 1) + Γ (α(A) + k, 1)

]
. (3.6)

Proof Accounting that Γ (A) = γ (A, 1) + Γ (A, 1) [here we consider r = 1 because
of the bound (3.7)], by Theorem 3.1, one just needs to show that

‖γ (A, 1)‖2 ≤
n−1∑
k=0

‖N‖k2
k! γ (β(A) − k, 1) .

This result follows if we use the inequality

| log(t)| ≤ t−1, (3.7)

where 0 < t ≤ 1, and the same strategy of the proof of Theorem 3.1. Notice that (3.7)
does not hold for t = 0. However, this is not a problem because limt→0+ e−t t A−I = 0.

��
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The bound (3.5) provided in the previous corollary corresponds to the case when A
is a normal matrix, that is, A = UDU∗ , with U unitary and D = diag(λ1, . . . , λn)
diagonal. With respect to the 2-norm, we know that

‖Γ (A)‖2 = ‖Γ (D)‖2 = max
k

|Γ (λk)| = max
k

|γ (λk, 1) + Γ (λk, 1)|. (3.8)

Let λk0 be the eigenvalue of A where the maximum value in (3.8) is attained. If
γ (λk0 , 1) or Γ (λk0 , 1) have small magnitude, we shall expect sharp values provided
by (3.5). This happens, for instance, with Hilbert matrices of several sizes, where that
bound gives very good results. If A is a scalar matrix, that is, A = α I , with α ∈ C,
then (3.5) gives the exact value to ‖Γ (A)‖2.

The sharpness of bound (3.6) in the non-normal case is more difficult to discuss.
Sharp and non sharp results may be obtained, which apparently depend on the non
normality of A.

We end this section with a perturbation bound to the matrix gamma function. Now
the norm can be an arbitrary subordinate matrix norm.

Theorem 3.2 Let A, E ∈ C
n×n and assume that the eigenvalues of A and A+ E have

positive real parts. Then, for a given subordinate matrix norm,

‖Γ (A + E) − Γ (A)‖ ≤ ‖E‖ [γ (−μ + 1, 1) + Γ (μ + 1, 1)
]
,

where μ := max{‖A + E − I‖, ‖A − I‖}.
Proof From [10, Thm. 5.1], a simple calculation shows that the following inequality
holds for any subordinate matrix norm:

∥∥∥t A+E−I − t A−I
∥∥∥ ≤ ‖E‖ e| log(t)| μ, (3.9)

with μ := max{‖A + E − I‖, ‖A − I‖}. Hence
∥∥∥t A+E−I − t A−I

∥∥∥ ≤
{ ‖E‖ tμ, if t ≥ 1

‖E‖ t−μ, if 0 < t < 1
. (3.10)

Since

Γ (A+E)−Γ (A)=
∫ 1

0
e−t

(
t A+E−I − t A−I

)
dt +

∫ ∞

1
e−t

(
t A+E−I − t A−I

)
dt,

the result follows by taking norms and attending to (3.10). ��

4 Strategies for approximating thematrix gamma function

This section is dedicated to the numerical computation of the matrix gamma function.
We start by extending the well-known scalar methods of Lanczos, Spouge and Stirling
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to matrices. A method based on the reciprocal gamma function used in combination
with the Gauss multiplication formula is also addressed.

4.1 Lanczos method

Before stating the Lanczos formula for matrices, we shall recall the concept of matrix–
matrix exponentiation [6,10].

If A is an n × n square complex matrix with no eigenvalues on the closed negative
real axisR−

0 and B is an arbitrary square complex matrix of order n, the matrix–matrix
exponentiation AB is defined as AB := elog(A)B, where eX stands for the exponential
of the matrix X and log(A) denotes the principal logarithm of A. For background
on matrix exponentials and matrix logarithms see [24,26] and the references therein.
Regarding the computation of matrix exponential and logarithm in the recent versions
of MATLAB, the function expm corresponds the algorithm provided in [2] and logm
computes the matrix logarithm using an algorithm investigated in [3,4].

Assuming that A is an n × n matrix with all of its eigenvalues having positive real
parts and α > 0, the matrix version of Lanczos formula (2.6) can be written as

Γ (A) = √
2π (A + (α − 0.5)I )A−0.5 I e−(A+(α−0.5)I )

×
[
c0(α)I +

m∑
k=1

ck(α) (A + (k − 1)I )−1 + εα,m(A)

]
, (4.1)

where ck(α) are theLanczos coefficients,which dependon the parameterα. Discarding
the error term εα,m(A) in the right-hand side of (4.1), yields the approximation

Γ (A) ≈ √
2π (A + (α − 0.5)I )A−0.5 I e−(A+(α−0.5)I )

×
[
c0(α)I +

m∑
k=1

ck(α) (A + (k − 1)I )−1

]
. (4.2)

Attending to our discussion in Sect. 2.2, in Algorithm 4.1 below we will consider
the values m = 10 and α = 9 suggested in [20], whose coefficients are given in
Table 1. To avoid overflow, Algorithm 4.1 uses the following logarithmic version of
Lanczos formula, which holds for matrices with spectrum on the right-hand side of
the complex plane:

log[Γ (A)] ≈ 0.5 log(2π)I + (A − 0.5I ) log(A + 8.5 I ) − (A + 8.5 I )

+ log

[
10∑
k=1

ck(9) (A + (k − 1)I )−1

]
(4.3)

Algorithm 4.1 This algorithm approximates Γ (A) by the Lanczos formula (4.2),
where A ∈ C

n×n is a matrix with spectrum satisfying one and only one of the follow-
ing conditions: (i) σ(A) is contained in the open right-half plane; or (ii) σ(A) does
not contain negative integers and lies on the open left-half plane.
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1. if Re(trace(A)) ≥ 0
2. Compute Γ (A) by (4.3);
3. else
4. S = sin(π A);
5. Compute G = Γ (I − A) by (4.3);
6. Γ (A) ≈ π(SG)−1;
7. end

In the more general case of A simultaneously having eigenvalues with positive
and negative real parts, the Lanczos formula needs to be combined with a strategy
separating the eigenvalues lying on the left-half plane with the ones in the right-half
plane. This will be carried out in Sect. 4.5 by means of the so called Schur–Parlett
method.

4.2 Spougemethod

Let A ∈ C
n×n be a matrix whose eigenvalues all have positive real parts and a > 0.

The matrix version of Spouge formula (2.8) is:

Γ (A) = √
2π (A + (a − 1)I )A−0.5 I e−(A+(a−1)I )

×
[
d0(a)I +

m∑
k=1

dk(a) (A + (k − 1)I )−1 + εa(A)

]
, (4.4)

where dk(a) are the Spouge coefficients, which varywith a, andm = �a�−1. Ignoring
the error term εa(A) in the right-hand side of (4.4), we have

Γ (A) ≈ √
2π (A + (a − 1)I )A−0.5 I e−(A+(a−1)I )

×
[
d0(a)I +

m∑
k=1

dk(a) (A + (k − 1)I )−1

]
. (4.5)

Let us denote the relative truncation error of the approximation (4.5) by

Ea(A) := ‖Γ (A) − Ga(A)‖
‖Γ (A)‖ , (4.6)

where Ga(A) denotes the right-hand side of (4.5); see also Sect. 2.3. Let κp(X) :=
‖X‖p‖X−1‖p denotes the condition number of the matrix X with respect to a p-norm,
with p = 1, 2,∞. The next lemma gives a bound for the relative error Ea(A) with
respect to p-norms for the case when A is diagonalizable.

Lemma 4.1 Let A ∈ C
n×n be a diagonalizable matrix (A = PDP−1, with P non-

singular and D := diag(λ1, . . . , λn)) having all eigenvalues with positive real parts,
that is, β(A) = min{Re(λ) : λ ∈ σ(A)} satisfies β(A) > 0. For a ≥ 3 and Ea(A)

given as in (4.6),
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Ea(A) ≤ κp(P)

√
a

(2π)a+1/2 (β(A) − 1 + a)
. (4.7)

Proof For any z in the open right-half plane, we know, from Sect. 2.3, that

Γ (z) − Ga(z) = ea(z)Γ (z). (4.8)

where ea(z) is defined by (2.9). Since A has all eigenvalues with positive real parts
and the functions involved in (4.8) are analytic on the right half-plane, the identity
Γ (A) − Ga(A) = ea(A)Γ (A) is valid. Now, because A is diagonalizable, Γ (A) −
Ga(A) = P ea(D) P−1Γ (A). Hence, for p-norms, we have

‖Γ (A) − Ga(A)‖p ≤ κp(P)‖ea(D)‖p‖Γ (A)‖p ≤ κp(P) max
i=1,...,n

|ea(λi )|‖Γ (A)‖p,

and, consequently,

‖Γ (A) − Ga(A)‖p

‖Γ (A)‖p
≤ κp(P) max

i=1,...,n
|ea(λi )|.

Therefore, the inequality (4.7) follows from the Spouge scalar error bound (2.10). ��
We have investigated the sharpness of bound (4.7) with some experiments involv-

ing diagonalizable matrices with eigenvalues lying on the right-half plane. The most
relevant conclusion is that the sharpness depends mainly on the condition number of
the matrix P . For normal matrices, for which P has norm one with respect to the
2-norm, the results are very satisfactory. In contrast, if κp(P) is large, the results may
be poor. An example is the matrix A=expm(C), where C is the Chebyshev spectral
differentiation matrix of order 5 (see “chebspec” in MATLAB’s gallery), for which P
has a condition number of about 1012.

For a general matrix A (diagonalizable or not), assume that the function Ea(z) =
Γ (z) − Ga(z) (absolute error) is analytic on a closed convex set � containing the
spectrum of A. A direct application of [24, Thm. 4.28] (check also [21, Thm. 9.2.2]),
yields the bound (with respect to Frobenius norm)

‖Ea(A)‖F ≤ max
i≤k≤n−1

ωk

k! ‖(I − |N |)−1‖F , (4.9)

whereU∗AU = T = diag(λ1, . . . , λn) + N is the Schur decomposition of A, with T
upper triangular, N strictly upper triangular, andωk = supz∈� |E (k)

a (z)|.Onedrawback
of bound (4.9) is the need of the derivatives of Ea(z) up to order n − 1.

Providing that A is diagonalizable (A = SDS−1), with S not having a large con-
dition number, the choice a = 12.5 (and hence m = 12) seems to be suitable for
working in IEEE double precision environments. This has been confirmed by many
numerical experiments (not reported here) we have carried out. a = 12.5 is also the
value considered in [35] for scalars. The corresponding Spouge coefficients are given
in Table 2.
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Table 2 Coefficients dk (a)

(k = 0, 1, . . . , 12) in the Spouge
formula (4.4) for a = 12.5,
approximated with 22 digits of
accuracy

k dk (12.5)

0 1

1 133550.5029424774402287

2 − 492930.9352993603097275

3 741287.4736976117128506

4 − 585097.3776039966614917

5 260425.2703303852758836

6 − 65413.35339611420204164

7 8801.459635084211186040

8 − 564.8050241289801078892

9 13.803798339181415855137

10 − 0.8078176169895076585981 × 10−1

11 0.3479741445742458983261 × 10−4

12 − 0.5689271227504240383584 × 10−11

To avoid overflow, Algorithm 4.2 uses the logarithmic version of Spouge formula,
which is valid for matrices with eigenvalues which have positive real parts:

log[Γ (A)] ≈ 0.5 log(2π) + (A − 0.5 I ) log(A + 11.5I ) − (A + 11.5I )

+ log

[
d0(12.5)I +

12∑
k=1

dk(12.5) (A + (k − 1)I )−1

]
. (4.10)

Algorithm 4.2 This algorithm approximatesΓ (A) by the Spouge formula (4.4), where
a = 12.5,m = 12 and A ∈ C

n×n is a nonsingular matrix whose spectrum satisfies one
and only one of the following conditions: (i) σ(A) is contained in the closed right-half
plane; or (ii) σ(A) does not contain negative integers and lies on the open left-half
plane.

1. if Re(trace(A)) ≥ 0
2. Compute Γ (A) by (4.10);
3. else
4. S = sin(π A);
5. Compute G = Γ (I − A) by (4.10);
6. Γ (A) ≈ π(SG)−1;
7. end

4.3 Stirlingmethod

Let A ∈ C
n×n have all eigenvalues with positive real parts. The extension of the

logarithmic version of the Stirling formula (2.11) to matrices reads as:
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log

⎡
⎣Γ (A)

s∏
k=1

(A + (k − 1)I )

⎤
⎦ = (A + (s − 0.5)I ) log(A + (s − 1)I )

− (A + (s − 1)I ) + 0.5 log(2π)

+
m∑

k=1

B2k
2k(2k − 1) (A + (s − 1)I )2k−1

+ Rm,s(A).

(4.11)

Discarding the error term in (4.11) and denoting

Sm,s(A) := (A + (s − 0.5)I ) log(A + (s − 1)I ) − (A + (s − 1)I ) + 0.5 log(2π)

+
m∑

k=1

B2k

2k(2k − 1) (A + (s − 1)I )2k−1 ,

we have the approximation

Γ (A) ≈
(

s∏
k=1

(A + (k − 1)I )

)−1

eSm,s (A). (4.12)

A similar error analysis to the one did in Sect. 4.2 could be carried out for the Stirling
method, but it is omitted.We just focus on stating the algorithm for the Stirlingmethod
that will be used in the experiments. An extension of the technique to find s proposed
in Sect. 2.4 to matrices will be incorporated.

Algorithm 4.3 This algorithm evaluatesΓ (A) using the Stirling formula (4.11), where
m = 12, η = 2−53 in (2.14), and A ∈ C

n×n is a nonsingular matrix with spectrum
satisfying one and only one of the following conditions: (i) σ(A) is contained in the
closed right-half plane; or (ii) σ(A) does not contain negative integers and lies on the
open left-half plane.

1. if Re(trace(A)) ≥ 0
2. z = trace(A)/n;

3. if Im(z) ≥ 8.3 or 1 − Re
(
z +√

8.32 − Im(z)2)
)

≤ 0

4. s = 0
5. else
6. s = �1 − Re(z) +√

8.32 − Im(z)2�
7. end
8. Compute Γ (A) by (4.12);
9. else

10. S = sin(π A);
11. Compute G = Γ (I − A) by (4.12);
12. Γ (A) ≈ π(SG)−1;
13. end

123



360 J. R. Cardoso, A. Sadeghi

4.4 Reciprocal gamma function

For any matrix A ∈ C
n×n , the reciprocal matrix gamma function allows the following

Taylor expansion around the origin:

Δ(A) = (Γ (A))−1 =
∞∑
k=0

ak A
k, (4.13)

where ak can be evaluated through the recursive formula (2.5). According to our
discussion in Sect. 2.1, truncating (4.13) to approximate Δ(A) is recommended only
when the spectral radius of A, ρ(A), is small. If A has a large spectral radius, then it
is advisable to combine (4.13) with Gauss formula (1.2).

For matrices having small norm (‖A‖ ≤ 1), the next result proposes a bound for
the truncation error of (4.13) in terms of a scalar convergent series.

Lemma 4.2 If A ∈ C
n×n with ‖A‖ ≤ 1 and ak are the coefficients in (4.13), then

∥∥∥∥∥Δ(A) −
m∑

k=1

ak Ak

∥∥∥∥∥ � 4

π2

∞∑
k=m+1

√
k!

(m + 1)!(k − m − 1)! . (4.14)

Proof Using the truncation error bound of [32], we have

∥∥∥∥∥Δ(A) −
m∑

k=1

ak Ak

∥∥∥∥∥ ≤ 1

(m + 1)! max
s∈[0,1]

∥∥∥Am+1Δ(m+1)(s A)

∥∥∥ .

Since the m-th derivative of Δ(z) is given by

Δ(m)(z) =
∞∑

k=m+1

k(k − 1) . . . (k − m + 1)akz
k−m,

we can write

Δ(m+1)(s A) =
∞∑

k=m+1

k(k − 1) . . . (k − m + 1)aks
k−m−1Ak−m−1,

yielding

Am+1Δ(m+1)(s A) =
∞∑

k=m+1

k(k − 1) . . . (k − m + 1)aks
k−m−1Ak .

Taking norms and accounting that s ≤ 1 and ‖A‖ ≤ 1,

∥∥∥Am+1Δ(m+1)(s A)

∥∥∥ ≤
∞∑

k=m+1

k(k − 1) . . . (k − m + 1)|ak |.
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Using |ak | � 4/(π2√Γ (n + 1)) (see [8]), the relationship (4.14) follows. ��
For convenience, let us change the index k in the series in the right-hand side of

(4.14) to k = p + m. Then the series can be rewritten as

4

π2

∞∑
p=1

√
(p + m)!

(m + 1)!(p − 1)! . (4.15)

By the d’Alembert ratio test, we can easily show that (4.15) is convergent. Indeed,
denoting

bp :=
√

(p + m)!
(m + 1)!(p − 1)! ,

one has lim p→∞ bp+1/bp = 0. The exact value of (4.15) is unknown and so we will
work with estimates. We have approximated the sum of the series (4.15) in MATLAB,
using variable precision arithmetic with 250 digits, by taking p = 2000. Assuming
that ‖A‖ ≤ 1 and using the right-hand side of (4.14), we see that, for m = 33,

Δ(A) ≈
33∑
k=1

ak Ak,

with a truncation error of about 1.1294×10−17. This means that 33 terms of the recip-
rocal gamma function series is a reasonable choice if the calculations are performed
in IEEE double precision arithmetic environments.

For the more general case when ‖A‖ > 1, our strategy is to combine (4.13) with
the Gauss multiplication formula

Δ(A) = (2π)
r−1
2 r I/2−A

r−1∏
k=0

Δ

(
A + k I

r

)
, (4.16)

where r is a positive integer.
Given a positive real number μ, we aim to find a positive integer r for which

ρ

(
A + (r − 1)I

r

)
≤ μ,

or, equivalently,
ρ (A + (r − 1)I ) ≤ rμ. (4.17)

This guarantees that the arguments of the reciprocal gamma function arising in the
right-hand side of (4.16) are matrices with eigenvalues lying on the circle with centre
at the origin and radius μ. Hence, if μ is small enough, taking an r satisfying (4.17)
and a suitable number of terms m in (4.13) will give an approximation to Δ(A) with
good accuracy. More details are given in the following.

Since ρ(A + B) ≤ ρ(A) + ρ(B), for two given commuting matrices [27, p. 117],
we know that
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ρ (A + (r − 1)I ) ≤ ρ(A) + (r − 1).

Finding the smallest r such that

ρ(A) + (r − 1) ≤ rμ, (4.18)

yields an r satisfying (4.17). Hence, providing that ρ(A) > 1 and μ > 1, one can
take

r =
⌈

ρ(A) − 1

μ − 1

⌉
.

What is difficult in this approach is finding optimal values for μ and r in order to
minimize the number operations involved, while guaranteeing a small error. Based on
several tests we have carried out (not reported here), a reasonable choice for working
in IEEE double precision arithmetic seems to be μ = 3 andm = 50 [number of terms
taken in (4.13)].

Now we summarize the computation of the gamma function by means of its recip-
rocal in the following algorithm.

Algorithm 4.4 This algorithm approximates Γ (A), where A ∈ C
n×n is a non-singular

matrix with no negative integers eigenvalues, by the reciprocal gamma function
series combined with the Gauss multiplication formula. Assume that the coefficients
a1, . . . , a50 in (4.13) are available.

1. μ = 3;
2. if ρ(A) ≤ μ

3. Δ̃ = ∑50
k=1 ak A

k ;

4. Γ (A) ≈ (Δ̃)−1;

5. else

6. Compute r =
⌈

ρ(A)−1
μ−1

⌉
;

7. Δ̃ = ∑50
k=0 ak

( A
r

)k
;

8. for p = 1 : r − 1

9. Compute Δ̃ = Δ̃
∑50

k=0 ak
(
A+pI
r

)k
;

10. end

11. Δ̃ = (2π)
r−1
2 r0.5 I−A Δ̃;

12. Γ (A) ≈ (Δ̃)−1;

13. end

Many techniques for evaluating the matrix polynomials in steps 3 and 9 of the
previous algorithm are available [24, Sect. 4.2]. One of the most popular is the Horner
method, which is accessible in MATLAB through the function polyvalm. However,
in our implementations of the algorithms, whose results will be presented in Sect. 5,
we will evaluate the matrix polynomials by means of the less expensive Paterson–
Stockmeyer method [21,24,34]. A MATLAB code is available in [25].
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4.5 Schur–Parlett approach

We start by revisiting the Schur decomposition and the block-Parlett recurrence. This
block recurrence is an extension of the original Parlett method proposed in [33]. For
additional information, we refer the reader to [13] and [24, Ch. 9].

Given A ∈ C
n×n , the Schur decomposition states that there exists a unitary matrix

U and an upper triangular matrix T such that A = UTU∗, with T displaying the
eigenvalues of A in the diagonal. Hence, assuming that A is nonsingular with no
negative integers eigenvalues, Γ (A) = U Γ (T )U∗, meaning that the evaluation of
Γ (A)may be reduced to the computation of the gamma function of a triangularmatrix.
Let

T =

⎡
⎢⎢⎢⎣

T11 T12 . . . T1p
0 T22 . . . T2p
...

. . .
. . .

...

0 . . . 0 Tpp

⎤
⎥⎥⎥⎦ ∈ C

n×n, σ (T ) ∩ Z
−
0 = ∅, (4.19)

be written as a (p × p)-block-upper triangular, with the blocks Tii (i = 1, . . . , p)
being square with no common eigenvalues, that is,

σ(Tii ) ∩ σ(Tj j ) = ∅, i, j = 1, . . . , p, i �= j . (4.20)

Let us denote

G := Γ (T ) =

⎡
⎢⎢⎢⎣

G11 G12 . . . G1p
0 G22 . . . G2p
...

. . .
. . .

...

0 . . . 0 Gpp

⎤
⎥⎥⎥⎦ , (4.21)

where Gi j has the same size as Ti j (i, j = . . . , p). Recall that the diagonal blocks of
G are given by Gii = Γ (Tii ). Since GT = TG, it can be shown that

Gi j Tj j − TiiGi j = Ti jG j j − Gii Ti j +
j−1∑

k=i+1

(TikGkj − GikTk j ) i < j . (4.22)

To find the blocks of G, we start by computing the blocks on diagonal Gii = Γ (Tii ).
This can be done by Algorithms 4.1, 4.2 or 4.4. In terms of computational cost, there
is the advantage of Tii being triangular matrices.

Once the blocksGii have been computed, we can successively use (4.22) to approx-
imate the remaining blocks of G. Note that for each i < j , the identity (4.22) is a
Sylvester equation of the form

XM − N X = P, (4.23)

where M , N and P are known square matrices and X has to be determined. Equation
(4.23) has a unique solution if and only if σ(M)∩σ(N ) = ∅. Hence, the block-Parlett
method requires the solution of several Sylvester equations with a unique solution.
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Recall that σ(Tii ) ∩ σ(Tj j ) = ∅, i �= j, is assumed to be valid. To avoid the ill
conditioningof theSylvester equations arising in theParlett recurrence, the eigenvalues
of the blocks Tii and Tj j , i �= j, need to be well separated in the following sense:
there exists δ > 0 (e.g., δ = 0.1), such that

min {|λ − μ| : λ,μ ∈ σ(Tii ), λ �= μ} > δ (4.24)

and, for every eigenvalue λ of a block Tii with dimension bigger than 1, there exists
μ ∈ σ(Tii ) such that |λ − μ| ≤ δ.

An algorithm for computing a Schur decomposition with “well separated” blocks
was proposed in [13]. It is available in [25].

Now, if Γ (Tii ) is computed by one of the Algorithms 4.1, 4.2, 4.3 and 4.4, a
framework combining those algorithms with the Schur–Parlett technique can be given
as follows.

Algorithm 4.5 This algorithm approximates Γ (A), where A ∈ C
n×n is a non-singular

matrix with no negative integers eigenvalues, by Schur–Parlett method combined with
the Algorithms 4.1, 4.2, 4.3 or 4.4.

1. Compute aSchur decomposition A = UTU∗ (U is unitary andT upper triangular),
where the blocks Tii in the diagonal of T are well separated in the sense defined
above; The value δ = 0.1 in (4.24) is considered;

2. Approximate Gii = Γ (Tii ) by one of the algorithms: Algorithms 4.1, 4.2, 4.3
or 4.4;

3. Solve the Sylvester equations (4.22), in order to compute all the blocks Gi j , with
i < j ;

4. Γ (A) ≈ UGU∗, where G = [
Gi j
]
.

4.6 Computational cost

Now we discuss the cost of the Schur–Parlett algorithm when combined with the
methods ofLanczos, Spouge, Stirling and reciprocal gamma.Aswill be seen below, the
computation of gamma function is expensive, if compared with other matrix functions
like the matrix exponential or the matrix logarithm.

Let us consider the following abbreviations:

par-lanczos : Algorithm 4.5 combined with Algorithm 4.1;
par-spouge : Algorithm 4.5 together with Algorithm 4.2;
par-stirling : Algorithm 4.5 together with Algorithm 4.3;
par-reciprocal : Algorithm 4.5 with Algorithm 4.4.

The cost associated with the Schur–Parlett algorithm without matrix gamma com-
putations (denoted below byCsp) strongly depends on the eigenvalue distribution of A;
it is discussed in [13] (see also, [24, Sec. 9.4]). Let us denote by Cmmt , Cinvt , Cmrhst ,
Cexpmt , Clogmt , Csinmt , respectively, the cost of one matrix multiplication between
upper triangular matrices (n3/3), the cost of one inversion of a triangular matrices
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(n3/3), the cost of solving a multiple right-hand linear system involving two upper
triangular matrices (n3/3), the cost of computing a matrix exponential of a triangular
matrix (see [2,4] and [24, Sec. 10.3]), the cost of computing a matrix logarithm of a
triangular matrix (see [3] and [24, Sec. 11.5]), and the cost of one sine of a triangular
matrix using funm of [13]. Note that those costs pertain to the blocks arising in the
diagonal of the triangular matrix of Schur decomposition, which have in general a
much smaller size than A. Assuming that the series coefficients are available, we have
the following estimations:

par-lanczos : Csp + Cmmt + 10Cinvt + Cexpmt + 2Clogmt ;
par-spouge : Csp + Cmmt + 12Cinvt + Cexpmt + 2Clogmt ;
par-stirling : Csp + φ(s)Cmmt + Cinvt + Cmrhst + Cexpmt + Clogmt ;
par-reciprocal : Csp + 14r Cmmt + Cinvt + Cexpmt .

Note that for matrices whose eigenvalues all have negative real parts, the amount
Csinmt should be added.

We now explain the meaning of φ(s) appearing in par-stirling. The product∏s
k=1(A + (k − 1)I ) involved in (4.12) can be represented by a polynomial in A by

means of the so-called unsigned Stirling numbers of the first kind [22, p. 257]:

s∏
k=1

(A + (k − 1)I ) =
s∑

k=0

[
s
k

]
xk .

The number of matrix multiplications involved in the evaluation of that polynomial
by the Paterson–Stockmeyer method [24, Sec. 4.2] corresponds to φ(s).

The coefficient 14 in par-reciprocal is the number of matrix multiplications
needed for evaluating the polynomials of degree 50 of Algorithm 4.4 by Paterson–
Stockmeyer method.

Lanczos and Spouge methods have a similar cost, with Spouge method involving
two more matrix inversions. Stirling method involves a few more matrix multiplica-
tions, depending on s. The most expensive method is par-reciprocal. However,
it seems to be very promising because it is rich in matrix–matrix products, which
turns it suitable for parallel architectures (note that due to the Schur–Parlett approach,
such products are among matrices with small size if compared with the size of A) and
it can be adapted to high precision computations by increasing the number of terms
in the series or by reducing the parameter μ. It can also be implemented without the
Schur–Parlett approach, because it works formatrices having simultaneously eigenval-
ues with positive and negative real parts. Recall that, without using the Schur–Parlett
method, Lanczos, Spouge and Stirling approximations cannot be used for matrices
having simultaneously eigenvalues with positive and negative real parts.

5 Numerical experiments

The four algorithms par-lanczos, par-spouge, par-stirling and par-
reciprocal have been implemented inMATLABR2018a, which has unit roundoff
u = 2−53.
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In the first experiment, we have tested the algorithms with a set of 20 matrices, with
real and non real entries and sizes ranging from n = 5 to n = 15. Some matrices are
randomized, but almost all of them were taken from MATLAB’s gallery. The list of
matrices is (MATLAB style is used):

1. 3*randn(11)+2*1i*rand(11) 2. 5*randn(10)
3. expm(2*randn(7)+1i*rand(7)) 4. 4*randn(14)+2*1i*rand(14)
5. gallery(’moler’,11,-1) 6. gallery(’lehmer’,11)
7. expm(gallery(’dramadah’,10)) 8. hilb(5)
9. expm(gallery(’cauchy’,10)) 10. gallery(’condex’,10)
11. gallery(’minij’,8) 12. gallery(’frank’,6)
13. gallery(’gcdmat’,11) 14. gallery(’riemann’,11)
15. gallery(’ris’,13) 16. gallery(’chebspec’,10,1)
17. gallery(’invhess’,15) 18. gallery(’smoke’,12)
19. gallery(’prolate’,11,0.3) 20. gallery(’pei’,15,-7)

+2ˆ (-20)*eye(15).

Some care has been taken in the choice of those matrices in order to avoid overflow
and to guarantee that gamma function is defined. We recall that Γ is not defined if
A has any eigenvalue in Z

−
0 . It is worth pointing out that Γ grows very fast in the

positive real axis.
Figure 2 displays the relative error of algorithms for the above mentioned 20 test

matrices, compared with the relative condition number ofΓ at A, times the unit round-
off: condΓ (A)u. To compute those relative errors, we have considered as “exact”
matrix gamma function the result obtained by our own implementation of the Lanczos
method in MATLAB, using variable precision arithmetic with 250 digits. To compute
the relative condition number condΓ (A), we have implemented Algorithm 3.17 in
[24], where the Fréchet derivative of LΓ (A, E) at A in the direction of E was given

by the (1, 2)-block of the matrix gamma function evaluated at

[
A E
0 A

]
. Recall that

(see [24, (3.16)])

Γ

([
A E
0 A

])
=
[

Γ (A) LΓ (A, E)

0 Γ (A)

]
,

provided that Γ is defined at A.
In Fig. 2, by comparison of the relative errors with the solid line correspond-

ing to condΓ (A)u, we observe that algorithms par-lanczos, par-stirling,
and par-reciprocal have a similar performance, evidencing a better stability
than par-spouge. The twentieth matrix has been chosen to illustrate the situation
when A has some eigenvalues close to Z

−
0 . The algorithms par-reciprocal and

par-stirling can be viewed as complementary. While par-reciprocal is
more suitable for matrices whose eigenvalues all have small magnitude, par-stir
ling works better for matrices with eigenvalues having large magnitude.

In the second experiment (see Fig. 3), we consider the symmetric positive definite
matrix gallery(’moler’,12,a) for ten values of a: a = 0.1, 0.2, . . . , 1. As
a grows slowly in the positive real axis, the spectral radius grows very fast. It ranges
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Fig. 2 Relative errors of the four proposed methods for 20 matrices together with the relative condition
number of Γ (A) times the unit roundoff of MATLAB
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Fig. 3 Left: relative errors of the four proposed methods for the matrices obtained from
gallery(’moler’,12,a), by varying a from 0.1 to 1. Right: relative errors of the four methods
for the matrices obtained from gallery(’kahan’,n) with size n increasing as n = 15, 17, . . . , 33

from ρ(A) = 2.5519 for a = 0.1 to ρ(A) = 63.4091 for a = 1. We have found
the results for smaller values of a to be fair when compared with the largest ones,
where the gamma function attains very large values. Apparently, this is due to the
eigenvalues being highly clustered for the lowers values of a. For instance, if a = 0.1,
and assuming that a value of block separation of δ = 0.1 has been used in Algorithm
4.5, the triangular matrix of the Schur decomposition of A has just three blocks:
two blocks 1 × 1 and one block of order 10. In many experiments we have carried
out involving Algorithms 4.1, 4.2, 4.3 and 4.4 (not reported here), we have observed
that the performance of those algorithms, when running without the Schur–Parlett
approach, deteriorates as the size of the matrices increased.
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The third experiment (Fig. 3) illustrates the behaviour of the algorithms for the
following ten matrices gallery(’kahan’,n) with size n increasing as n =
15, 17, . . . , 33. The results are very satisfactory. Now the eigenvalues are close, but
“well-separated” with δ = 0.1 in (4.24), and the spectral radius is ρ(A) = 1. Not so
good results are expected if increasing the size of A corresponds a significant growth
in the magnitude of the eigenvalues.

6 Conclusions

In this work we have provided a thorough investigation on the numerical computation
of Γ (A). Four methods have been analysed: the Lanczos method, Spouge method,
Stirling method and a method based on a Taylor expansion of the reciprocal gamma
function combined with the Gauss multiplication formula. All of them have been
implemented together with the Schur–Parllet method and tested with several matrices.
The deviation of the relative error from condΓ (A)u is bigger in Spougemethod, which
led us to conclude that Lanczos, Stirling and reciprocal gamma approximations are
preferable. New bounds for the norm of the matrix gamma function and its perturba-
tions, and for the truncation errors arising in the approximation methods have been
proposed as well.

Likewise the scalar case, the computation of matrix gamma function is a very
challenging issue. We believe our contributions are a starting point for the effective
computation of this important matrix function and could motivate researchers to con-
tinue extending computational methods for other related matrix functions, such as the
incomplete gamma and the random gamma function [9] to the matrix scenario.
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