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Abstract In this paper, explicit peer methods are studied in which some of the stage
values are copies of stage values from previous steps. This allows to reduce the number
of function calls per step and can be interpreted as being a generalization of the
first-same-as-last principle known from Runge—Kutta methods. The variable step size
implementation is more complex as the nodes depend on the history of previous
step size changes. Optimally zero stable explicit peer methods up to order p = 8
are constructed using constraint numerical optimization. In addition the constructed
methods are superconvergent of order s + 1 for constant step sizes. The new methods
show their efficiency in comparison with the MATLAB codes ode23, ode45 and
odel13 in numerical experiments.
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1 Introduction

Explicit peer methods for the solution of non-stiff initial value problems

Y= f@,y), ylto)=yo, f:lto,te]xR" — R" (1.1)

have been introduced in [11]. In numerical tests [13] they have been shown to be
very efficient and reliable methods. These methods have been applied successfully
also in global error control [8]. Methods of higher order for constant step sizes have
been constructed in [3]. Explicit peer methods with s stages compute in each step s
numerical solutions which are all of the same order, i.e. the stage order is equal to
consistency order. Like in Runge—Kutta methods, usually s function calls are neces-
sary for the computation of the s stage values. One possibility to reduce the number
of function calls are methods with the FSAL-property (first same as last) [10]. Here
the first stage value of the new step is equal to the last of the preceding step. This
reduces the number of function calls to s — 1. For constant step sizes the number
of function evaluations can be reduced further, cf. [7], where the strong stability
preservation (SSP properties) of explicit peer methods was studied. In these meth-
ods the FSAL-property is generalized by copying more than one stage value from
the last step. This reduces the number of function calls by the number of copied
stages.

For variable step sizes this principle of copying old stages by retaining the order
of the method requires variable nodes in the peer method. A first attempt to construct
corresponding methods was reported in [12]. Methods up to order six were derived
under additional conditions related to the SSP property. In this paper we will focus
on optimally zero stable methods, which gave excellent results in [11] and [13] (with
constant nodes and s function calls per step). Here, we derive explicit peer methods
with s stages of order p = s which require only s, < s evaluations of the right-hand
side in each step. The outline of the paper is as follows:

In Sect. 2 we recall the definition of explicit peer methods and generalize the copying
of stage values from the preceding step to save function calls to the case of variable
step sizes. We derive order conditions and prove that under some natural conditions
numerical approximations can be computed for all step size sequences.

In Sect. 3 we construct specific optimally zero stable methods up to order p = 8§
by numerically optimizing stability and accuracy properties. The optimization is done
with respect to stability and superconvergence. Numerical tests in MATLAB on standard
non-stiff problems and comparison with ode23, ode45 and ode113 of the methods
obtained are given in Sect. 4. These tests clearly demonstrate the capability of the new
methods. Finally, we draw some conclusions.

2 Explicit peer methods with variable nodes

Explicit peer methods for problem (1.1) as introduced in [11] read
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N N
Yini = Zbijymfl,j + hp Zaijf(tmfl,j, Yin-1,j)
i—1 i—1

i—1
Fhm Y rij [ Y ) i =1, (2.1)
j=1

Here b;j, a;j, ¢; and rij, i, j = 1,...,s are the parameters of the method, where
the nodes ¢; are assumed to be pairwise distinct with ¢ = 1. At each step s stage
values Yy, i, i = 1,...,s are computed approximating the exact solution y(t, ;)
where f,, ; = t;, + cih;,. The coefficients of the method (2.1) depend, in general, on
the step size ratio o, = hy, / h;y—1. Defining matrices B, = (bij)f,j:p Am = (a;)),
Ry = (rij) and vectors Yy, = (Yy,1)i_, € R™ and Fy, = (f (tm,i» Yim,i))i_, leads to
the compact form

Ym = (Bm & I)Ym—l "l‘hm(Am ®I)Fm—1 +hm(Rm ® I)Fmv

where R, is strictly lower triangular. Like multistep methods peer methods also need
s starting values Yo ;.

Except [12] so far peer methods have been considered with constant nodes c;, i.e.
the nodes are independent of o;,. We now drop this restriction of constant step sizes in
order to save function calls also for variable step sizes. We consider nodes depending
on the time step, denoted by c,, ; and with t,,; = t,, 4+ cp ih;,. We also assume
¢m,s = 1 for all m.

Conditions for the order of consistency of explicit peer methods can be derived by
considering the residuals A, ; obtained when the exact solution is put into the method

s s
Api = Y(tmi) = Y bijym—1) = hm Y _aijy (tm—1.j)
j=1 =1
i1
_hmzrijy/(tm,j), i=1,...,s.

j=1
Definition 1 The peer method (2.1) is consistent of order p if
Ami=00E™, i=1,....s. O

In contrast to explicit Runge—Kutta methods, all stage values Y, ; of peer methods
are approximations of order p to the solution y(t, + ¢m.ihm), i.€., the stage order is
equal to the order. This makes these methods advantageous for instance for problems
which are semi-discretized by the method of lines, when space and time step sizes are
reduced simultaneously, cf. [7].

By making a Taylor expansion of the exact solution and putting these expansions
into the residuals A,, ; we obtain
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m

s p l
C 1,j—1
Mi = (1= 0 ) v+ 3 e zb,, ety = 1)
j=1 =1
C 1,
"Z aij—— U’, erzjm, (l)(tm)+ﬁ(h”+l)

m

(2.2)
With Definition 1, the following theorem is valid for variable nodes.
Theorem 1 A peer method (2.1) is consistent of order p iff
ABi() = cl, ijb, Nombs =) —125: gyt 2 er,
J ol J o1 i€
i=1, ,8, 1=0,...,p [}
(2.3)
The condition (2.3) for [ = 0 is referred to as preconsistency. It takes the form
B,1 =1. 2.4

Definition 2 A peer method (2.1) is zero stable if there is a constant K > 0, so that
for all m, k > 0 holds
| Bn+k - Bu+1Bull < K. O (2.5)

For a zero stable peer method of consistency order p convergence of order p follows
by standard arguments, e.g. [11].

The peer methods considered in [11,13] require s function calls per step. In the
following, by special choices for the coefficients of the method, we will save function
calls as done for constant step sizes in [7].

Definition 3 A peer method (2.1) is said to have n; shifted stages and s, = s — ny
effective stages if

T T T T .

e Ap=¢e Ry=100,...,0), ¢ By=¢, i=1,...,n, (2.6)

and )

o1 iy —
emi= LT Dy, 2.7)
Om

with co; =coiy1 — 1 fori =1,..., ns. O (2.8)
From property (2.6) it follows immediately Yy, ; = Yiu—1.i41,1 = 1, ..., ns. With
constant nodes for the effective stages, i.e. ¢n,; = cu—1; =c¢i, I =ng+1,...,5,

the number of function evaluations per step is reduced to s,.

Because of the structure property (2.6) there are no free parameters of the coeffi-
cients of the peer method for the shifted stages. But one easily proves that the order
conditions are satisfied for the shifted values.
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Lemma 1 Let a peer method (2.1) satisfy (2.6) and (2.7). Then condition (2.3) holds

for all shifted stagesi = 1,...,nsandforalll =0,1,.... O
The consistency order of the method can be ensured by the choice of the last s, rows
of A,,. Because of t,,,; = tyy—1,i+1 and fpi = fiu—1,i41 fori = 1,...,ny we can
choose

rij=0 for i=ns+1,...,s, j=1,...,n;. 2.9)

We use the notation

D =diag(l,....s), C=diag(cm1,1,---.¢), Sp=diag(Lom,....o0 "),

>Ym

& A A o
C = diag (cnﬁ_l, R CS) , V= ((cm_u - 1) )i it R, = (rij);,j=ns+1 € RS,
s—1
LS R Cns+1
Vo = : :
l Cs ‘e C‘Yil

N

and denote the (s,, s)-matrices consisting of the last s, rows of B, and A,, by Em and

A\m. Then the conditions (2.3) for/ = 1, ..., s for the order of consistency p = s lead
to
—~ ~— ~ o~ 1 ~
A, = (cvozr1 _ Rmvo) SuVi = —B, (C—DHViDT'V7. (210
Om
We thus have

Theorem 2 Let a preconsistent peer method (2.1) have coefficient matrices B, and
Ry, satisfying (2.6) and nodes satisfying (2.7), (2.8). Then with a matrix A,, having
ng zero rows and the last s, rows computed by (2.10) the peer method has order of
consistency p = s. O

If the matrix V; is nonsingular Theorem 2 and Lemma 1 show that the construction
of peer methods with s stages of order p = s is possible. By the special structure of
the method the number of function calls in each step is reduced to s, for all step size
sequences. For constant, pairwise distinct nodes, V; is always regular but, for variable
nodes, this must be checked. The following theorem gives a sufficient condition for
the regularity of V; so that the coefficient matrix A,, is uniquely defined for all step
size ratios.

Theorem 3 Let the peer method (2.1) with s stages and ng shifted stages be given.
Letcs = landletci, i = ng + 1,...,s be pairwise distinct and constant for all m
and satisfy

O<ci<l fori=ng+1,...,5s—1. (2.11)

Assume that the node conditions (2.7), (2.8) hold. Then the nodes c,, ; are pairwise
distinct.
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Proof We prove by induction over m that the shifted nodes are nonpositive and pair-
wise distinct. By assumption (2.11) using (2.7), (2.8) it follows immediately that

C1,1,C1,2, -5 Cln, <0,

and that they are pairwise distinct, the statement holds for m = 1. Suppose the result
is true until m — 1, i.e.

Cmn—1,1>Cm—=12s+++>Cm—1,n; <0 (2.12)
and the shifted nodes are pairwise distinct. Then from (2.7) it follows

Cm—t,i+1— 1 , cm—1,j+1 — 1

Cmi = #* =cmj, Lj=1,...,n5 i #]j
Om Om
andc,,; <0fori =1,..., n,. Because the constant nodes ¢, 41, . . . , ¢y are assumed
to be positive the statement follows. O

Remark 1 Equation (2.3) for order p is equivalent to the condition that
N s i—1
P(ci) =) bijP(c; =1+ Y aijP'(c;— D)+ Y rijP'(c)) (2.13)
j=1 j=1 j=1
holds for all polynomials P(¢) of degree p. Choosing integrals of Lagrange basis
polynomials, Py(t) = fot Li(s)ds, k = 1,...,s, where Li(t) = [[)=;.(t — ¢ +

1#k
1)(cx — ¢;)~!, yields an explicit representation for the coefficients a;x, namely

Ci s cj—1 il
aik=/ Lk(t)dt—Zb,'j/ Li(tydt =Y rijLi(c)).
0 : 0
j=1

Jj=1
Equation (2.13) can also conveniently be written in the form
exp(cz) = Bexp((c — 1)z) + Azexp((c — 1)z) + Rzexp(cz) + O@ZPth

with the exponentials evaluated componentwise. O

3 Construction of special methods
In numerical tests [13] especially explicit peer methods with the stronger property of

optimal zero stability and with constant matrices B,, = B and R,, = R have given
excellent results.
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Definition 4 A peer method (2.1) is optimal zero stable if the eigenvalues of B satisfy
am=1, Mm=---=x=0. O 3.1

Optimal zero stability ensures a strong damping of the parasitic numerical solution
components.

In this section we describe the construction of optimally zero stable peer methods
of order p = s with the special structure defined by Definition 3. Furthermore we
require superconvergence of order p = s + 1 for constant step sizes. For given s and
ng we use the following strategy:

— B is constant and has the form
B =e¢; e;r + a strictly upper triangular matrix.

Together with preconsistency (B1 = 1) and (2.6) for the first ng rows this leaves
(se — 1)(se — 2)/2 parameters in B. This structure also ensures optimal zero
stability.

— R is also constant. With (2.6) and (2.9) we have %sg(se — 1) parameters in R.

— With ¢; = 1 and the node condition (2.7) foro = 1 forcy, ..., c,, wehaves, — 1
parameters Cpy 41, ..., Cs—1-
The free parameters in B, R and ¢, 41, ..., cs—1 were determined with the interior

point algorithm of fmincon from the optimization toolbox in MATLAB. In the opti-
mization process we have considered o = 1, i.e. A, is computed by (2.6) and (2.10)
for o = 1, and used the left boundary of the stability interval on the real axis r as
objective function. The constraints in the optimization are

— pairwise distinct nodes 0 < ¢, 41, ..., cs—1 < 1 (cf. Theorem 3).
— Superconvergence for constant step sizes ([13]), we require

leJ] AB(s + 1) < l.e—14.

The coefficients were computed with £mincon using random starting values. Among
the obtained methods we have chosen methods which are also stable in a sufficiently
large complex neighbourhood of the real stability interval [r, 0]. Furthermore our aim
was to find methods with large ng to save function evaluations. It turned out that
for s > 4 methods with s, = 3 gave the best combination of function saving and
good stability. The following methods with s = 4, ..., 8 stages were obtained in our
numerical search, they also were used in the numerical tests in Sect. 4. The notation
is Peersng and ¢; = cp;, i = 1,...,s. The first ny rows of B and A,, are given by
(2.6) and to keep the notation simple these coefficients and also all zero elements of
R are dropped in the following tables. The values a;; are for o = 1.

Peerd42:

c; = —1.2506166641048679¢+0, ¢, = —2.5061666410486805¢—1, c3 = 7.4938333589513195¢—1,

ey =1,
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338 M. Klinge et al.
b3 =0, b3 =0, b33 =0,

b3y =1, by =0, by =0,

b3 =0, byy =1,

az] = —8.3852205661619550e—2, a3, = 4.7023748037385904e—1,

azs = 3.0769251344133370e+4-0,

as =0,

a3 = —2.0556441428413755¢—1, ass = 5.9625576109056910e—1,

r43 = 6.0524684375030446e—1.

Peer52:

c; = —1.6091071321472121e+0,
cq4 = 8.6029290219029928¢—1,
b3 =0,

¢y = —6.0910713214721202¢—1,

cs =1,

b3g = —1.0716828213751848e+0, b3s = 2.0716828213751848¢+-0,

by =0,
bys =1,
bs3 =0,

a3 = 4.0460586882847260¢—3,

az4 = —1.6000685351392956¢+0, a3s

by =0,
byz3 =0,
bs; =0,
bsy =0,

az = —3.3685111541382817e—2,
= 1.5748223421950516e+-0,

ag = —1.1556738922829413e—1, as3 = 5.8194621964343829¢—1,

ass = —3.1836847568352833¢e—1, as;

=0,

as3 = —1.1556327241376971e—3, as4 =0,

r43 = 1.2787980572396476¢+0,

Peer63:

c] = —2.7113656282572975e+0,
c4 = 2.8863437174270272e—1,

by =0,
byy =0,
bs1 =0,
bsy =0,
b1 =0,
bey =0,

rs3 = 5.2187517006749595¢—1,

¢y = —1.7113656282572973e+0,
= 8.3393784992991780e—1,

(&

by =0,
bays = —7.2477175786450421e—1,
bsy =0,
bss =0,
by =0,
bes =0,

ay; = —9.9249507075915844¢—4, asyp = 7.6231270255802397¢—3,

ass = 1.4439665382797814e—1,

ass = —7.1980921831681322¢—1,

as; = —1.2417018977360694¢—2, as> = 8.8043280331078153e¢—2,

as4 = 8.2837822333591282¢—1,
ag; =0,

aes = 7.8659907343147494¢—3,
rsa = 2.0656255446672991¢+-0,

@ Springer

ass = —1.5087639100187586e¢—1,
aer = 5.7839908746804850e—5,
ags =0,

rea = 5.6927845706923363¢—1,

a3z = —2.7139270732304444¢-+0,
a = 4.0618094432639390e—3,

c3 = 3.9089286785278798e—1,

b3z =0,
by =0,
byy =0,
bsy =0,
bss =1,

a3z = 2.9605641690329110e—1,
aq1 = 1.6384569422736917e—2,
—5.8290007920370102e—1,
—5.6548921578214308e—6,
ass = 1.3604288736797567¢—1,
rs4 = 3.4324323018082742¢—1.

asq

asz

c3 = —7.1136562825729728e—1,
cg = 1.0000000000000000e+0,

b4z =0,
bae = 1.7247717578645043¢4-0,
bs3 =0,
bse =1,
bez =0,
b =1,

as3 = —3.0279681878398107e—2,
ase = 7.6733882973406242¢—1,
as3 = —2.9705750371647266e—1,
ase = —1.6877582847086632¢+0,
as3 = —7.4331684062123760e—4,
ass = 1.5636526514721569¢—2,
res = 4.0790450261360461e—1.
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Peer74:

c] = —3.6519351809218350e+0, c¢2 = —2.6519351809218350e+-0, c¢3 = —1.6519351809218350e+-0,
c4 = —6.5193518092183496e—1, c¢5 = 3.4806481907816500e—1,  c¢ = 8.5086769994895040e—1,

c7=1,

bs1 =0, bsy =0, bs3 =0,

bsa =0, bss =0, bse = —8.9980509300026712¢—1,
bs7 = 1.8998050930002671e+0, be; =0, bey =0,

bez =0, bes =0, bes =0,

bes = 0, ber =1, b7 =0,

by =0, b7z =0, b4 =0,

b5 =0, b6 =0, by =1,

as; = 9.0797867334590360e—4, asy = —7.4686408596133409¢—3, as3 = 2.9016058675807456e—2,
as4 = —7.8847075325106597e—2, ass = 3.1501310577545610e—1, as¢ = —1.3383823080535655¢4-0,
as7 = 1.2936356970750627¢+0, ag = 8.0649794423602872¢—3, ag = —6.3420199009800143¢—2,
ae3 = 2.2845595284169654e—1, ags = —5.3219220021375435¢—1, ags = 1.2886455957119547¢4-0,
ae6 = —1.0950085242570413e+-0, ag7 = —6.2536880700012276e—1, a7 =0,

a7y = —1.2507953214758054e—5, a3 = 1.4424119367407312e—4, a7 = —9.1981956038793538¢—4,
a7s = 6.0982185518058101e—3, a6 =0, a77 = 8.1624099328631419¢—2,
res = 1.6416909024336575¢4-0, r75 = 5.4515433331424124e—1, r76 = 3.6791143512523589¢—1.

Peer85:
c1 = —4.7037242003836210e+0, c¢p = —3.7037242003836210e+0, c¢3 = —2.7037242003836210¢+-0,
cqy = —1.7037242003836213e¢+0, c¢5 = —7.0372420038362127¢—1, cc = 2.9627579961637868¢—1,
c7 = 8.4180812964397134e—1, cg =1,
be1 =0, bey =0, bz =0,
bes =0, bes =0, bes = 0,
be7 = —7.7336897953041894e—1, bgg = 1.7733689795304191e+0, b7; =0,
b7 =0, b73 =0, b4 =0,
b5 =0, b6 =0, b77 =0,
big =1, bg1 =0, bgy =0,
bgz =0, bgs =0, bgs =0,
bge = 0, bg7 =0, bgg =1,

agl = —4.1364963783929731e—4, agr = 3.6816843419717610e—3, ae3 = —1.5048400706135390e—2,
aes = 3.8552085780206066¢—2, ags = —7.6670661029123954¢—2, ags = 2.2050682170012148e—1,
ag7 = —8.9495128389484080e—1, agg = 8.9827851771476841e—1, a71 = —6.7503205680530254¢—3,
azy = 5.8270871805598978¢e—2, a7z = —2.2746165555013850e—1, a74 = 5.3945639220061681e—1,
azs = —9.1719022268636929¢—1, a7 = 1.5887106439240346¢4-0, a7 = —6.1351497295449864¢—1,

azg = —1.8219360334286161e+0, ag; = 0, agy = 1.0119427301407205¢—5,
agz = —1.1688760591528037e—4, ags = 6.7646250419701667¢—4, ags = —2.9094506215396848¢—3,
age = 1.5622172228349201e—2, ag; =0, agg = —3.9461827723833876¢—3,

r76 = 2.2422234269013970e+4-0,  rge = 5.9843999684418958¢—1, rg7 = 3.9222376999579356e—1.
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Table 1 Method properties

Method s ng Se P r
Peerd2 4 2 2 4 —0.3796
Peer52 5 2 3 5 —1.2257
Peer63 6 3 3 6 —1.4110
Peer74 7 4 3 7 —1.1623
Peer85 8 5 3 8 —1.2161
ode23 3 0 3 3 —2.5127
oded5 6 0 6 5 —3.3066
T T T T T T
3l e | pPeeri?
o ey peer52 sssmmmanas
‘\.\“‘\ ", peer63
7L ‘\.~"'\ % i peer74
.y‘\‘« : peer85
f“ L ode45
1+ .5. et et adams6 s
.‘---.'H"."“"':"'"""'
g : R
=) :‘ “'~-=.'.|n.,..’r:,.“"m‘
Ll .,.,,/.“’ i
.,"':,“l. ‘ ’..
L L L L L L
-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

Re(z)

Fig.1 Stability regions of explicit peer methods, Dormand and Prince method and 6-step Adams—Moulton
method

Table 1 summarizes the properties of the peer methods which we implemented in
MATLAB and used in the numerical tests in Sect. 4. For completeness we also added the
corresponding values for the Runge—Kutta methods used in the tests, i.e. ode23, the
method of Bogacki—Shampine [1], and ode45, the method of Dormand and Prince [5].

Figure 1 shows the stability regions of the peer methods. For comparison we also
included the stability domains of ode45 and of the 6-step Adams—Moulton method
of order 7.

4 Numerical tests

We have implemented the methods from Sect. 3 in MATLAB. They are of consistency
order p = s and for constant step sizes they are convergent of order s + 1. The starting
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lg(err)

peerd2 —e—

peer52 ----@----
peer63 --A-—-
-16 peer74 g |
peer85 ----- o
0.01 ol

step size h

Fig. 2 Order test for the orbit problem

values were computed with ode45, for step size control we estimated the (p + 1)-st
derivative. We exploit the special structure (2.6) and (2.7) so that only s, function
evaluations per step are computed.

First, we want to illustrate the superconvergence of the constructed peer methods
for constant step sizes. We consider the orbit problem [2,4] (denoted by KEPL)

yi=JX)3
Y2 =4
’ V1
B=- 2 2\3
(of +3)°
o Y2
PPN
O +3)?
with initial values from the exact solution y(r) = (cost,sinf, —sint, cosz)' for

t € [0, 1]. Figure 2 shows the considered step sizes / and the logarithm of the obtained
error

|Ym,x.i - yref,i|
err = max ——————
=L, no 1+ ’)’ref,i‘
at the endpoint t, = 1, where Y, s is the numerical solution and y.r the exact

solution. For better illustration we added lines with slopes corresponding to orders
p =5,6,7,8,9. For the constructed peer methods with s = 4, ..., 8 the expected
orders of superconvergence p = s + 1 for constant step sizes can clearly be observed.

In the tests with step size control we compare our methods with ode23, ode45
and odel113 from the MATLAB ODE-suite [9]. ode23 is of order 3 with an embedded
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peelr42 —
peer52 ----@l----
peer63 - -A-—-
[ C——
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Fig. 4 Results for BRUS

method of order 2, ode45 is of order 5 with 6 function evaluations and odel113 is
based on the Adams methods of orders from 1 to 13.
As test problems we used the following standard test examples for nonstiff initial

1—e¢
reference solution is described in [4]. The other test problems are taken from [6] with
same parameters and denoted by the same names as in [6]: AREN, BRUS, LRNZ
and PLEI. Reference solutions were computed with ode45 and high accuracy. We
have solved these problems with rtol = atol for atol = 1074, i=1,...,12. In

T
value problems: KEPL with yg = (1 —¢,0,0, ﬂ) ,& =0.9and r, = 20. The
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Fig. 6 Results for KEPL

the Figures 3, 4, 5, 6, and 7 we present the number of function evaluations and the
logarithm of the obtained errors at the endpoint.

The results show that the new methods due to their higher order are clearly superior
to ode23 and that the higher order methods are also more efficient than ode45. One
also observes that the 7- and 8-stage methods in general are more accurate and need
less function calls than the Adams method ode 113, especially for medium tolerances.

The step size control in the peer methods works well. As predicted, the shift strategy
worked also for variable step sizes for all occurring values of o,,. For the Brusselator
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Fig. 7 Results for PLEI

problem for crude tolerances the drawback of the small stability regions of peer42
can be observed.

5 Conclusions

We have presented a special class of explicit peer methods with shifted stages. This
allows to save function evaluations by retaining order p = s. With a special search
strategy using fmincon we constructed various optimally zero stable methods. The
proposed methods work also with variable step sizes allowing an usual step size
control. The numerical results are promising, the number of function evaluations is
substantially reduced. The methods are superior to ode23 and ode45 and at least
competitive to ode113. The achieved accuracy is for most problems in much better
accordance with the prescribed tolerance than for ode113. The application of the
prescribed technique to implicit peer methods will be the topic of future research.
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