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Abstract We propose a new approach to computing a parametric solution (the so-
called p-solution) to parametric interval linear systems. Solving such system is an
important part of many scientific and engineering problems involving uncertainties.
The parametric solution has many useful properties. It permits to compute an outer
solution, an inner estimate of the interval hull solution, and intervals containing the
lower and upper bounds of the interval hull solution. It can also be employed for
solving various constrained optimisation problems related to the parametric interval
linear system. The proposed approach improves both outer and inner bounds for the
parametric solution set. In this respect, the new approach is competitive to most of the
existing methods for solving parametric interval linear systems. Improved bounds on
the parametric solution set guarantees improved bounds for the solutions of related
optimisation problems.
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1 Introduction

Parametric linear equations are encountered in various fields of science such as engi-
neering, physics, computer science, technology, business, economics etc. However,
since uncertainty is inherent in the real world, the parameters of such systems are
often subject to uncertainty and assumed to vary within prescribed intervals. There-
fore, the problem of solving parametric interval linear systems (PILS) has gained
significant attention over past years.

Most of the existing methods for solving PILS are concerned with determining
an outer interval (OI) solution [20,36] to PILS. Jansson [13] was among the first
who considered interval systems with a special structure. Rump [34] proposed a fixed
point iteration, which was then investigated by Popova (e.g., [30]) and implemented
by Popova and Krämer [32]. Iterative methods for solving PILSwere also proposed by
Kolev [17,20] and El-Owny [8]. The so-called direct methods were given by Skalna
[36] and Kolev [22,24]. A monotonicity approach was investigated by Kolev [14],
Popova [31], Rohn [33], and Skalna [38]. Parametric versions of Bauer–Skeel and
Hansen–Bliek–Rohn methods were discussed by Hladík [11]. Degrauwe et al. [7]
developed amethod based on aNeumann series. Affine–Interval Gaussian Elimination
was investigated byAkhmerov [1]. The problem of computing the tightest OI solution,
i.e., the interval hull solution was considered, e.g., by Kolev [21,23,24], and Skalna
[39]. There are also few methods for computing an inner estimate of the hull (IEH)
solution (see, e.g. [24,34,37,41]).

A more general approach to the problem of solving PILS was developed by Kolev
[17,24]. He introduced a new type of solution, called a parametric solution or a p-
solution, which is of the following parametric form x(p) = Lp + a, where L is a real
matrix and a is an interval column vector. The p-solution has many useful properties
[24]. It permits to compute the OI solution, the IEH solution, and what follows the
intervals containing the lower and upper bounds of the hull solution. However, the
main advantage of the parametric solution x(p) is that it can be laid as a basis for
a new paradigm for solving the following optimisation problem [24]: find the global
minimum of a function g(x, p), subject to constraint A(p)x(p) = b(p), p ∈ p, where
g(x, p) is, in the general case, a nonlinear function.

In this paper a new approach to obtaining a p-solution is proposed. The new
approach combines an iterative method with revised affine forms [9,19,44]. The
obtained p-solution is represented by a revised affine form, and therefore can be
used in any other computation involving revised or standard affine forms. Moreover,
the obtained p-solution gives improved bounds of both outer solutions and inner esti-
mates of the hull solution, and hence improved bounds for the optimisation problems
related to the parametric interval linear systems. The performance of the proposed
approach is illustrated in Sect. 6 using several numerical examples.

The rest of the paper is organised as follows. The basic theory on revised affine forms
is presented in Sect. 2. Section 3 describes the problem of solving parametric interval
linear systemswith both affine-linear and nonlinear dependencies. Section 4 introduces
a method for obtaining the new form of the p-solution. The convergence results in
a more general fashion are stated in Sect. 5, and thorough numerical comparisons with
other methods are performed in Sect. 6. The paper ends with concluding remarks.
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Notation Throughout the paper italic fonts are used to denote real quantities, and bold
italic fonts are used to denote their interval counterparts. The set of all closed intervals
is denoted by IR, whereas IR

n and IR
n×n stand, respectively, for the set of all interval

vectors and the set of all intervalmatrices. Themid-point xc = (x+x)/2 and the radius
xΔ = (x − x)/2 of an interval x = [x, x] are applied to interval vectors and matrices
componentwise. The minimal absolute value (mignitude) and the maximal absolute
value (magnitude) of x are defined, respectively, as 〈x〉 = min{|x | | x ∈ x} and
|x| = max{|x | | x ∈ x}. Themignitude andmagnitude of a vector and themagnitude of
an interval matrix are computed componentwise, whereas the mignitude of an interval
matrix is called Ostrowski’s comparison matrix with entries 〈A〉i j = 〈Ai j 〉 for i = j
and 〈A〉i j = −|Ai j | for i �= j . The identity matrix of any size is denoted by I , and
for a non-empty bounded set S ⊂ R

n , its interval hull �S = ⋂{Y ∈ IR
n | S ⊆ Y}.

Finally, Dx denotes a diagonal matrix with entries x1, . . . , xn and sgn(x) the sign
vector of x ∈ R

n , that is, sgn(x)i = 1 if xi ≥ 0 and sgn(x)i = −1 otherwise.

2 Revised affine forms

Revised affine forms (RAF) [44] were inspired by the generalised intervals (GI) [9,19]
and Messine’s reduced affine forms (AF1) [25]. They eliminate the main deficiency
of the standard affine arithmetic (AA) [3–6], i.e., the gradual increase of noise sym-
bols, which limits the use of AA in practical applications. Revised affine arithmetic
(RAA), like standard affine arithmetic, produces guaranteed enclosures for computed
quantities, taking into account any uncertainties in the input data as well as all inter-
nal truncation and round-off errors, and also keeps track of first-order correlations
between quantities involved in a computation.

A revised affine form of length n is defined as a sum of a standard affine form
and a term that represents (accumulates) all errors introduced during a computation
(including rounding errors), i.e.

x̂ = x0 +
n∑

i=1
xiεi + xr [−1, 1]. (2.1)

Here, the central value x0 and the partial deviations xi are finite floating-point num-
bers, the noise symbols εi are unknown, but assumed to vary within the interval
e = [−1, 1], and xr � 0 is the radius of the accumulative error. The length n
equals to the number of initial uncertain parameters and remains unchanged during
the whole computation, unless new independent parameters are introduced.

Remark A revised affine form x̂ is an affine–interval function of the noise symbols, so
it can be written as x(e) = eTx + x, where e = (ε1, . . . , εn), and x = x0 + xr [−1, 1].

If an unknown ideal quantity x̃ is represented by the revised affine form x̂ , then there
exist εi ∈ [−1, 1] (i = 1, . . . , n) and εx ∈ [−1, 1], such that x̃ = x0 + ∑n

i=1 xiεi +
xrεx . Moreover, every revised affine form x̂ implies the range [x̂] = [x0 −rx , x0 +rx ]
which, assuming that each εi and εx vary independently within e, is the smallest
interval that contains all possible values of x̂ , and thus also an unknown ideal quantity x̃
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1112 I. Skalna, M. Hladík

represented by x̂ . The radius rx = ∑n
i=1 |xi | + xr is called the total deviation of x̂

[5]. Conversely, if an ideal quantity x̃ belongs to an interval x = [x, x], then x̃ can be
represented by the revised affine form x̂ = xc + xΔεk , where εk is a noise symbol not
occurring in any previous computations [4,5].

2.1 Revised affine arithmetic

In order to evaluate an expression with RAA, each elementary operation on real
numbers must be replaced by a corresponding operation on revised affine forms.
Affine-linear operations result straightforwardly in revised affine forms. Put e =
(ε1, . . . , εn) and take arbitrary α, β, γ ∈ R. Then, for two revised affine forms x̂
and ŷ, it holds

ẑ = α x̂ + β ŷ + γ = z0 + eTz + zr [−1, 1], (2.2)

where z0 = αx0 + βy0 + γ , zi = αxi + βyi , and zr = |α|xr + |β|yr .
The result of nonlinear operations must be approximated by a revised affine form

and the error of this approximation must be taken into account. There are n+1 degrees
of freedom in the choice of the affine approximation. However, to keep algorithms
simple and efficient, only approximations that are themselves linear combinations of
input forms are usually considered [4].

Approximations that minimise the maximum absolute error are the subject of
Chebyshev approximation theory [4]. The use of Chebyshev approximations is moti-
vated by the fact that they preserve as much information as possible about the relation
between x̂ , ŷ and the affine approximation ẑ of z = f (x̂, ŷ) [4].

Multiplication The revised affine form ẑ, which describes the product of the revised
affine forms x̂ = x0 + eTx + xr [−1, 1] and ŷ = y0 + eTy+ yr [−1, 1], is defined here
as follows:

ẑ = x0y0 + 0.5(Rmin + Rmax) + eT(y0x + x0y) + zr [−1, 1], (2.3a)

zr = |y0|xr + |x0|yr + 0.5(Rmax − Rmin), (2.3b)

where Rmin, Rmax are, respectively, minimum and maximum of the quadratic form
R(e) = (∑n

i=1 xiεi + xrεn+1
) · (∑n

i=1 yiεi + yrεn+2
)
on en+2. The number of mul-

tiplications in (2.3) is 2n + 5. According to [4], the extremal values Rmin and Rmax
can be found inO(n log n) time. However, as shown in [42], this can be done inO(n)

time. So, the asymptotic time complexity of the multiplication (2.3) isO(n), which is
optimal.

Alternatively, the following formula for multiplication of revised affine forms can
be considered (cf. [43]):

ẑ = x0y0 + xTy + eT(y0x + x0y) + zr [−1, 1], (2.4a)

zr = |y0|xr + |x0|yr + (‖x‖1 + xr ) · (‖y‖1 + yr ) − |x |T|y|. (2.4b)
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Division The division of revised affine forms x̂ , ŷ (0 /∈ [ŷ]) is defined here so that the
quotient x̂/x̂ is close to 1 [9,15], i.e.

x̂

ŷ
= x0

y0
+ p̂ · ŷ′, (2.5)

where p̂ = eT(x − (x0/y0)y) + xr [−1, 1], and ŷ′ is the Chebyshev minimum-error
approximation of the reciprocal (it will be discussed later) of ŷ. Thus, the revised
affine form, which describes the quotient of x̂ , ŷ (0 /∈ [ŷ]), is defined by

ẑ = x0/y0 + ẑ′, (2.6)

where ẑ′ is the affine approximation of the product p̂ · ŷ′ obtained using (2.3). The
asymptotic time complexity of division is O(n).

Nonlinear unary functions Let f be a nonlinear unary function, such that f ∈ C1 and
f ′′ has a constant sign on an interval [a, b] (this might look at first glance as a severe
limitation, but in fact many of the basic functions have the required properties). Then,
the Chebyshev minimum-error approximation of f (x̂) is given by [4]

f a(x̂) = α x̂ + β, (2.7)

where α = f (b)− f (a)
b−a , β = b1+b2

2 , b1 = f (a)b− f (b)a
b−a , b2 = f (x̃) − α x̃ , and x̃ solves

f ′(x̃) = α. The error of this approximation is δ = sgn( f ′′)(b1−b2)
2 . So, the best affine

form for z = f (x̂), as long as the equation f ′(x̃) = α can be solved, is defined as
follows:

ẑ = αx0 + β + αeTx + zr [−1, 1], (2.8a)

zr = |α|xr + δ. (2.8b)

The asymptotic time complexity of this approximation is O(n).

Reciprocal For the reciprocal function, the coefficients in (2.8) take values

α = −1/(ab),

β =
{

(a + b + 2
√
ab)/(2ab) a > 0,

(a + b − 2
√
ab)/(2ab) b < 0,

δ =
{

(a + b − 2
√
ab)/(2ab) a > 0,

−(a + b + 2
√
ab)/(2ab) b < 0,

and the point which solves f ′(x̃) = α is

x̃ =
{√

ab a > 0,
−√

ab b < 0.
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1114 I. Skalna, M. Hladík

3 Parametric interval linear systems

Aparametric interval linear system is defined as the following family of real parametric
linear systems

A(p)x = b(p), p ∈ p ∈ IR
K , (3.1)

where K is the number of system parameters, pk = [p
k
, pk] (k = 1, . . . , K )

determine the range for uncertain parameters pk , A(p) = [Ai j (p)] ∈ R
n×n , and

b(p) = (b1(p), . . . , bn(p))T. The parametric interval linear system (3.1) is often
written as

A(p)x = b(p), (3.2)

to underline its strong relationship with interval linear systems [27].
The entries Ai j , and bi , for i, j = 1, . . . , n, are in general some real valued (con-

tinuous) functions of p (usually expressed as closed-form expressions). Depending
on whether these functions are affine-linear or nonlinear, parametric interval linear
systems with affine-linear and nonlinear dependencies can be distinguished.

In the affine-linear case, matrix A(p) and vector b(p), p ∈ p, can be represented
as follows:

A(p) = A(0) +
K∑

k=1
A(k) pk, (3.3a)

b(p) = b(0) +
K∑

k=1
b(k) pk, (3.3b)

where A(k) ∈ R
n×n and b(k) ∈ R

n , for k = 0, . . . , K . Affine-linear dependencies are
by far not easy to handle, but to deal with nonlinear dependencies, some sophisticated
tools for bounding the range of a function on a box are required in addition. As will
be shown later, with revised affine forms, both types of dependencies can be treated
in a unified manner.

3.1 Solutions to parametric interval linear systems

A solution to a parametric interval linear system (3.2) can be defined in various ways.
However, usually the so-called united1 parametric solution set is considered. It is
defined as a set of solutions to all real systems from the family (3.1), i.e.

S(p) = {
x ∈ R

n | ∃p ∈ p : A(p)x = b(p)
}

(3.4)

The problem of computing S(p) is, in general case, an NP-hard problem. Therefore,
most of the methods for solving parametric interval linear systems produce various
types of interval solutions. The best interval solution is simply the hull of the parametric
solution set, xH = �S(p). But determining the hull of the solution set is also an NP-
hard problem, unless some specific conditions (e.g., monotonicity of the solution with

1 In what follows, the adjective “united” will be omitted as no other solutions are considered here.
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respect to the parameters) are fulfilled. Computationally cheaper methods usually
approximate the hull solution, producing the so-called outer interval (OI) solution,
i.e., an interval vector x∗ ∈ IR

n , such that S(p) ⊆ x∗. There are also few methods that
produce inner estimation of the hull (IEH) solution [24,30,34], i.e. an interval vector
ξ , such that ξ⊆ xH .

A more general approach to the problem of solving PILS was developed by Kolev
[24]. He introduced a new type of solution, called a parametric solution or a p-
solution, which is of the following parametric form x(p) = Lp+a, where L ∈ R

n×K

and a ∈ IR
n . The p-solution can be useful for solving various problems related to

parametric interval linear systems, as already mentioned in the introduction.

4 Main result

This section presents a new approach to obtaining a p-solution to parametric interval
linear systems with both affine-linear and nonlinear dependencies.

4.1 Affine transformation

Each parameter pk ∈ pk , for k = 1, . . . , K , can be represented by the revised affine
from p̂k = pck+ pΔ

k εk , where εk is a noise symbol that varies independently from other
noise symbols. Substituting the vector p̂ for p in A(p) and b(p) gives the following
system:

A( p̂)x = b( p̂), p̂ = ( p̂1, . . . , p̂K ). (4.1)

If there are only affine-linear dependencies in (4.1), then (4.1) can be written as

(

A(0) +
K∑

k=1
A(k)

(
pck + pΔ

k εk
)
)

x = b(0) +
K∑

k=1
b(k)

(
pck + pΔ

k εk
)
, εk ∈ e, (4.2)

or equivalently as
C(e)x = c(e), e ∈ eK , (4.3)

where, for each e ∈ eK ,

C(e) = C (0) +
K∑

k=1
C (k)εk, (4.4a)

c(e) = c(0) +
K∑

k=1
c(k)εk, (4.4b)

with

C (0) = A(0) +
K∑

k=1
A(k) pck, C (k) = A(k) pΔ

k , (4.5a)

c(0) = b(0) +
K∑

k=1
b(k) pck, c(k) = b(k) pΔ

k . (4.5b)
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1116 I. Skalna, M. Hladík

Proposition 4.1 Assuming exact computation, the solution set of the system (3.1)
equals to the solution set of the system (4.3).

In the case of nonlinear dependencies, after substituting p̂k for pk (k = 1, . . . , K )
in (3.1), the respective operations on revised affine forms must be performed. Then,
the following parametric interval linear system with affine-linear dependencies is
obtained:

C(e)x = c(e), (4.6)

where

C(e) = C (0) +
K∑

k=1
C (k)εk + Cr [−1, 1] =

K∑

k=1
C (k)εk + C, (4.7a)

c(e) = c(0) +
K∑

k=1
c(k)εk + cr [−1, 1] =

K∑

k=1
c(k)εk + c. (4.7b)

Obviously, the system (4.3) is a special case of (4.6), where Cr = 0 and cr = 0.

Proposition 4.2 Let the system (4.6) be an affine transformation of the system (3.1).
Then, the solution set of the system (3.1) is included in the solution set of the system
(4.6).

Proof The inclusion follows directly from the fundamental invariant of affine arith-
metic (FIAA), which can be straightforwardly extended to revised affine forms. The
FIAA states that at any stable instant in an AA computation (i.e., at any time when the
algorithm is not performing an AA operation), there is a single assignment of values
from the interval e to each of the noise symbols in use at the time that makes the
value of every affine form equal to the value of the corresponding quantity in the ideal
computation [4]. ��

The transformation from (3.1) to (4.6) causes some loss of information, i.e., an
enlargement of the solution set, but instead significantly simplifies computation, and
what is more important enables PILS with affine-linear and nonlinear dependencies to
be treated in a unified manner. In view of this, the theory presented in the remainder of
this paper concerns parametric interval linear systemswith affine-linear dependencies,
unless stated otherwise.

4.2 Preconditioning

Preconditioning, in the context of solving linear systems, refers to multiplying both
sides of a linear system with a nonsingular matrix R. The main reason for precondi-
tioning is to obtain another systemwithmore favourable properties. Preconditioning is
especially useful for iterative solvers, however it is performed by most of the methods
for solving parametric interval linear systems.
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Here, the system (4.6) is preconditioned with the inverse of the mid-point matrix,
R = (Cc)−1, which, from some point of view (cf. [12]), is an optimal preconditioner
[40]. Preconditioning transforms the system (4.6) into a new system

V(e)x = v(e), (4.8)

where V(e) = (Cc)−1C(e) and v(e) = (Cc)−1c(e). The solution set of the system
(4.8) is larger than the solution set of the system (4.6), however the system (4.8) usually
has better convergence properties.

Proposition 4.3 The solution set of the system (4.6) is included in the solution set of
the system (4.8).

4.3 Computing a parametric solution

Now, the p-solution is computed in the following way. First, a rigorous enclo-
sure x0 ∈ IR

n for the solution set of the system (4.8) is computed. The elements
x0i (i = 1, . . . , n) of x0 are then replaced by the revised affine forms: x̂0i =
(x0i )

c + (x0i )
Δ[−1, 1]. Finally, an iterative method is used to improve the initial enclo-

sure.
Here, the Interval–affine Gauss–Seidel iteration (IAGSI) is used to obtain the

p-solution. It combines the revised affine forms with the Gauss–Seidel (GS) itera-
tion (for the parametric version of GS see, e.g., [12,30]), which is one of the most
known stationary iterative methods for solving linear systems. However, we would
like to underline that the Gauss–Seidel iterative scheme can be replaced by any
other iterative scheme for solving linear systems, which might result in even better
bounds.

For the preconditioned system (4.8), the Interval–affineGauss–Seidel iteration takes
the form:

x0(e) = x̂0, xi+1(e) = L(e)−1
(
v(e) − U(e)xi (e)

)
, (4.9)

where L(e) = [
V jμ(e)

]
j�μ

, and U(e) = [
V jμ(e)

]
j>μ

. The element-based formula
can be obtained by taking the advantage of the lower triangular form of L(e). Thus,
for j = 1, . . . , n,

x0j (e) = x̂0j , (4.10a)

xi+1
j (e) = v j (e) − ∑

μ< j V jμ(e)xi+1
μ (e) − ∑

μ> j V jμ(e)xiμ(e)

V j j (e)
. (4.10b)

Clearly, for each i � 1, xi (e) is a vector of revised affine forms (revised affine vector),
the range of which is the interval vector xi = ([xi+1

1 (e)], . . . , [xi+1
n (e)]). The distance

between the interval vectors xi and xi+1, which will be used in the stopping criterion
of the IAGSI, is assessed here using the following formula [24]:

q(xi , xi+1) = max

{

max
j=1,...,n

∣
∣
∣xij − xi+1

j

∣
∣
∣ , max

j=1,...,n

∣
∣
∣xij − xi+1

j

∣
∣
∣

}

. (4.11)
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1118 I. Skalna, M. Hladík

Proposition 4.4 For any xi (e), i � 1, defined by (4.10) we have:

i. [xi (e)] is an outer interval solution to (3.1),
ii. the revised affine vector xi (e) determines a p-solution to the system (3.1).

Proof i. If x̃ is a solution to the system (4.8), then there exist V (e) ∈ V(e) and
v(e) ∈ v(e), such that

V (e)x̃ = v(e). (4.12)

Assuming that Vj j (e) �= 0, the Eq. (4.12) can be written as

x̃ j = 1

Vj j (e)

(

v j (e) − ∑

μ�= j
V jμ(e)x̃μ

)

∈ 1

V j j (e)

(

v j (e) − ∑

μ�= j
V jμ(e)x̂0μ

)

≡ x′
j (e). (4.13)

The interval vector [x′
j (e)] is a new outer interval enclosure for x̃ . Since, in the j-th

step, an enclosure for x̃ j and new enclosures for x̃1, . . . , x̃ j−1 are already available,
they can be used in the right-hand side of (4.13). This gives

x̃ j ∈ 1

V j j (e)

(

v j (e) − ∑

μ< j
V jμ(e)xμ(e) − ∑

μ> j
V jμ(e)x̂0μ

)

= x1j (e). (4.14)

This means that for each i � 1, the interval vector [xi (e)] is an outer interval enclosure
for the solution set of the system (4.8). On account of Propositions 4.2 and 4.3, [xi (e)]
is also an outer interval enclosure for the solution set of the system (3.1).
ii. Follows directly from the fact that the range of xi (e) yields an outer interval solution
to (3.1). ��

Each revised affine vector xi (e), i � 1, can be written as

xi (e) =
K∑

k=1
(xi )(k)εk + xi , (4.15)

where (xi )(k) ∈ R
n , xi ∈ IR

n , or, equivalently, as

xi (e) = Lie + xi , (4.16)

where Li ∈ R
n×K with vectors (xi )(k) as columns. Now, let

λij (e) = Li
j e, e ∈ eK , j = 1, . . . , n, (4.17)

where Li
j ∈ R

K is the j-th row of the matrix Li , and denote

λ
i,min
j = min

{
λij (e), e ∈ eK

}
= −

K∑

k=1

∣
∣
∣(xi )

(k)
j

∣
∣
∣ , j = 1, . . . , n, (4.18a)
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A new method for computing a p-solution to parametric… 1119

λ
i,max
j = max

{
λij (e), e ∈ eK

}
=

K∑

k=1

∣
∣
∣(xi )

(k)
j

∣
∣
∣ , j = 1, . . . , n. (4.18b)

Theorem 4.1 Let xi (e) = ∑K
k=1(x

i )(k)εk + xi , for i � 1, be the revised affine vector
defined by (4.10), and let λi,min

j , λi,max
j be given by (4.18). Then, ξ , such that

ξ j =
{ [λi,min

j + xij , λ
i,max
i + xij ], λ

i,min
j + xij � λ

i,max
j + xij ,

∅, otherwise,
(4.19)

is an inner estimation of the hull solution to the system (3.1) and the system (4.8).

Proof If x̃ is a solution to the system (3.1), then there exists p ∈ p, such that x̃ =
A(p)−1b(p). So, x̃ is a function of p, i.e., x̃ = x̃(p). Clearly, p can be written as
p = pce + pΔ, and hence, for j = 1, . . . , n, x̃ j is a function of e, i.e., x̃ j = f j (e).
From the construction of the iteration (4.10) it follows that, for i = 1, . . . , n,

f j (e) ∈ λij (e) + xij , (4.20)

and hence
λij (e) + xij � f j (e) � λij (e) + xij . (4.21)

Denote the interval hull of the solution set of the system (3.1) as

xH =
([

xmin
1 , xmax

1

]
, . . . ,

[
xmin
n , xmax

n

])
, (4.22)

where

xmin
j = min{x̃ j (p) | p ∈ p}, (4.23a)

xmax
j = max{x̃ j (p) | p ∈ p}. (4.23b)

On account of (4.20), the following inequalities hold true:

xmin
j = min

{
f j (e) | e ∈ eK

}
� λ

i,min
j + xij , (4.24a)

xmax
j = max

{
f j (e) | e ∈ eK

}
� λ

i,max
j + xij , (4.24b)

hence ξ ⊆ xH , which was to be proved. ��
Corollary 4.1 Let x∗ := [x∗(e)] and ξ be, respectively, an OI solution and IEH
solution to the problem (4.8). Then

xHi ∈
[
x∗
j , ξ j

]
, xHj ∈

[
x∗
j , ξ j

]
. (4.25)
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As can be seen, the p-solution obtained using the Interval–affine Gauss–Seidel
iteration permits determining an outer interval solution x∗, an inner estimation of the
hull solution ξ as well as intervals containing the endpoints of each component of the
hull solution xH related to the system (3.1).

4.4 Algorithm of the Interval–affine Gauss–Seidel iteration

The sketch of the algorithm which implements the interval–affine Gauss–Seidel itera-
tion (4.10) is presented in Algorithm 1. The stopping criterion of the iteration is based
on the formula (4.11). So, the iteration stops if the distance q

([xi (e)], [xi+1(e)]) < ε,
where ε is a tolerance parameter. Typically 10−6 < ε < 10−3, but this really depends
on the problem being solved and the cost of the iterations. The asymptotic time com-
plexity of the algorithm is O(n3K + n2mM), where n is the size of the problem, K
is the number of uncertain parameters (noise symbols), m is the cost of multiplication
of revised affine forms, and M is the number of iterations taken by the algorithm.

Algorithm 1 Interval–affine Gauss–Seidel iteration

Require: Parametric interval linear system A(p)x = b(p), p ∈ p ∈ IR
K

Ensure: Parametric solution x∗(e)

1: Substitute p̂k = pc + pΔεk for pk , k = 1, . . . , K and perform the respective operations on RAF

2: R ≈
(
C(0)

)−1
{numerically computed inverse of the mid-point matrix}

3: V(e) = RC(e)
4: v(e) = Rc(e)
5: Set x0(e) to an OI solution computed using some verified method {starting point}
6: repeat
7: for j = 1 to n do

8: xi+1
j (e) =

(
v j (e) − ∑

μ< j V jμ(e)xi+1
μ (e) − ∑

μ> j V jμ(e)xiμ(e)
)

/V j j (e)

9: end for
10: until

(
q

(
[xi (e)], [xi+1(e)]

)
< ε

)

11: x∗(e) = xi+1(e)
12: return x∗(e)

Compared with the parametric Gauss–Seidel iteration, the interval–affine version
is expected to perform better. This is indeed confirmed in Examples 6.2 and 6.3. How-
ever, there are some situations when affine division overestimates interval division, in
which case parametric Gauss-Seidel iteration might produce tighter enclosures. This
is illustrated in Example 6.1. Therefore, both methods are theoretically incomparable.
Practical numerical performance is studied in Sect. 6.

5 Convergence of iterative methods

In this section, we discuss convergence properties for iterativemethods that use revised
affine forms. We consider a general class of interval operators, including Krawczyk,
Gauss–Seidel or Jacobi iterations as particular examples. Denote by

W(e) =
K∑

k=1
W (k)ek + W,
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w(e) =
K∑

k=1
w(k)ek + w,

x(e) =
K∑

k=1
x (k)ek + x

a matrix and two vectors in revised affine forms, respectively. Consider the iterations

x(e) �→ w(e) + W(e)x(e), (5.1)

where the right-hand side is computed by revised affine arithmetic. Consider also the
standard multiplication of revised affine forms

W(e)x(e) :=
K∑

k=1

(
W (k)xc + Wcx (k)

)
ek + Wcxc + (|Wc|xΔ + WΔ|xc|) [−1, 1]

+
(

K∑

k=1
|W (k)| + WΔ

) (
K∑

k=1
|x (k)| + xΔ

)

[−1, 1].

Notice that the term

(
K∑

k=1
|W (k)| + WΔ

) (
K∑

k=1
|x (k)| + xΔ

)

[−1, 1]

is a simple enclosure for the residual value

r(e) =
(

K∑

k=1
W (k)ek + WΔ[−1, 1]

) (
K∑

k=1
x (k)ek + xΔ[−1, 1]

)

,

and it can be replaced by tighter enclosures. However, the theory derived below holds
for the simple enclosure as well as for any better one.

Denote

R :=
K∑

k=1

∣
∣W (k)

∣
∣ + WΔ.

Theorem 5.1 If ρ(R + |W|) < 1, then the iterations (5.1) converge to a unique fixed
point for each x(e).

Proof Denote

W̃x :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Wc W (1)

. . .
...

Wc V (K )

Wc

RDsgn(x (1)) . . . RDsgn(x (K )) W
ΔDsgn(xc) R + |Wc|

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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x̃ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

x (1)

...

x (K )

xc

xΔ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, w̃ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w(1)

...

w(K )

wc

wΔ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, W̃ :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

|Wc| |W (1)|
. . .

...

|Wc| |W (K )|
|Wc|

R . . . R WΔ R + |Wc|

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

The affine multiplication can be formulated as

V(e)x(e)=
K∑

k=1
(W (k)xc+Wcx (k))ek+Wcxc+ [−|Wc|, |Wc|xΔ + [−WΔ,WΔ]|xc|

+
K∑

k=1
[−R, R]x (k) + [−R, R]xΔ.

Thus, the iteration (5.1) can be reformulated as follows in terms of the coefficients of
the revised affine forms

x̃ �→ w̃ + W̃x x̃ ⊆ w̃ + [−W̃ , W̃ ]x̃ . (5.2)

Now, due to the assumption ρ(R + |W|) < 1 there is a Perron vector u > 0, such
that (R + |W|)Tu < 1. Since

⎛

⎜
⎜
⎜
⎜
⎜
⎝

|Wc| |W (1)|
. . .

...

|Wc| |W (K )|
|Wc|

R . . . R WΔ R + WΔ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎜
⎝

u

...

u

⎞

⎟
⎟
⎟
⎟
⎟
⎠

≤

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(R + |W|)Tu
...

(R + |W|)Tu

⎞

⎟
⎟
⎟
⎟
⎟
⎠

<

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u

...

u

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

the spectral radius of W̃ is strictly less than 1.
Now, consider two affine forms x(e) and y(e), which are equivalently represented

by their coefficient vectors x̃ and ỹ, respectively. For their images, it holds

∣
∣
∣w̃ + W̃x x̃ − w̃ − W̃y ỹ

∣
∣
∣ =

∣
∣
∣W̃x x̃ − W̃y ỹ

∣
∣
∣ .

Due to the property

RDsgn(x)x − RDsgn(y)y = R|x | − R|y| = R(|x | − |y|) ≤ R|x − y|

we have
∣
∣
∣W̃x x̃ − W̃y ỹ

∣
∣
∣ ≤ W̃ |x̃ − ỹ| .

Therefore, by [2], the iterations form the so called W̃ -contraction, and converge for
each initial setting. ��
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The above iterations involved Krawczyk type of iterative methods. Now, we extend
the results to cover also Jacobi and Gauss–Seidel-type iterations. Let

U(e) =
K∑

k=1
U (k)ek + U,

and consider the iterations

x(e) �→ U(e) (w(e) + W(e)x(e)) . (5.3)

For any matrix in the affine formW(e) denote

RW :=
K∑

k=1
|W (k)| + WΔ.

Theorem 5.2 The iterations (5.3) converge if

ρ(RU + |U|) < 1 and ρ(RW + |W|) < 1.

Proof It follows fromTheorem5.1 and its proof by applying it twice on the contracting
interval operations

x(e) �→ y(e) := w(e) + W(e)x(e), y(e) �→ x(e) := U(e)y(e).

��
Consider the alternative iterations to (5.3)

x(e) �→ U(e)w(e) + (U(e)W(e))x(e). (5.4)

and further denote G(e) := U(e)W(e). Now, it directly follows that:

Corollary 5.1 The iterations (5.4) converge if ρ(RG + |G|) < 1.

For the system (4.8), which reads V(e)x = v(e), the Krawczyk iteration has the
particular form of

x(e) �→ v(e) + (In − V(e))x(e).

We can generalise the properties of the Krawczyk iteration as follows.

Theorem 5.3 Let x(e) be such that

v(e) + (In − V(e))x(e) ⊆ int x(e) (5.5)

for each e ∈ en. Then:
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i. V(e) is regular for each e ∈ en,
ii. x(e) is an enclosure for the solution set of (4.8) for each e ∈ en.

Proof It directly follows from the properties of the Krawczyk iteration for standard
interval systems of equations applied to a fixed e ∈ en ; see [35]. ��

In order to employ this observation, we need to check for (5.5). The following lines
give a recipe how to do it efficiently.

Proposition 5.1 Let x(e), y(e) be given. Then x(e) ⊆ int y(e) for each e ∈ en if and
only if

x +
K∑

k=1

∣
∣x (k) − y(k)

∣
∣ < y,

x −
K∑

k=1

∣
∣x (k) − y(k)

∣
∣ > y.

Proof The maximum value of

x(e) − y(e) =
K∑

k=1

(
x (k) − y(k)

)
ek + x − y

is attained for x := x , y := y and ek := sgn(x (k) − y(k)). Its value must be negative,
from which the first condition follows. The second condition is proved analogously.

��

6 Numerical experiments

This section shows the potential of the new p-solution. All the computations were
carried out using author’s own C++ software on a PC computer with CPU 2.50 GHz
(Intel(R) Core(TM) i5-4200M), 16Gb of memory, under Microsoft Windows 10 Pro
system.

6.1 Solving parametric interval linear systems

Several methods for solving parametric interval linear systems are compared here,
mainly in terms of the quality of the computed interval bounds. Whenever the hull
solution xH is available, the quality of the bounds x is judged by computing the average
percentage by which x overestimates the hull. Thus, the overestimation measure is
defined as follows:

Oω(x, xH ) =
(

1 − 1
n

n∑

i=1

(xHi )Δ

xΔ
i

)

· 100%. (6.1)
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The average underestimation of the hull by an IEH solution is provided only when all
entries are non-empty. If the hull solution is not available, the results are compared
using the relative sum of radii (AM denotes the arithmetic mean):

AM(x)
AM(y)

=
∑n

i=1 x
Δ
i∑n

i=1 y
Δ
i

, (6.2)

where x denotes the bounds computed using one of the considered methods and y
denotes the IAGSI bounds. The best results are highlighted in tables with italics.

The following abbreviations are used to address the methods: PGSI for Parametric
Gauss-Seidel Iteration (cf. [12,30]), KI for Kolev’s iterative method [24], SVFPI for
self-verified Rump’s fixed point iteration [30] (which is probably the most recognised
method for solving PILS with affine linear dependencies), KDM for Kolev’s direct
method [16], SDM for Skalna’s direct method [36], NP for the Neumaier–Pownuk
method [28] (which is known as the best parametric method known so far [29]), PBSM
for the parametric Bauer–Skeel method [11], PHBRM for the parametric Hansen–
Rohn–Bliek method [11], IAGE for the Interval–affine Gaussian Elimination [1], and
DMSO for Degrauwe’s method of second order [7].

The comparison of some of the above mentioned methods can be found in the
literature. Kolev [16] proved that SDM and KDM yield the same OI solution. Hladík
[11] pointed out that PBS gives the same enclosures as SDM and that on average the
PBSM gives tighter enclosures that the PHBR method. However, on the occasion, we
want to present a comprehensive overview of the most known methods.

In all the presented examples, we use the SDM to obtain the initial box for the
IAGSI and PGSI, however any other method for solving parametric interval linear
systems can be used instead. Using a more efficient method (see, e.g., [16]) might
improve the efficiency of the IAGSI, but not the final result. The performed numerical
experiments showed that the quality of the solution provided by IAGSI and PGSI does
not depend on the initial enclosure. The stopping criterion parameter ε = 1.0e − 8.

Example 6.1 This example was originally presented in [28]:

(
p1

1
2 − p2

1 + p1 p2

)(
x1
x2

)

=
(
6
6

)

, p ∈
([ 1

2 ,
3
2

]

[ 1
2 ,

3
2

]

)

. (6.3)

In [29], there are given the results of the three methods: NP [28], PBSM, and SVFPI.
Table 1 reports these results together with the results of the IAGSI and the remaining
methods. The average overestimation of the hull, computed using the formula (6.1), is
included as well. The hull can be easily computed in this case based on the observation
that the extremal values of the solutions x1(p1, p2), x2(p1, p2) are attained at the
vertices of the box [0.5, 1.5] × [0.5, 1.5]. The combinatorial approach yields:

xH = ([3.15789, 12], [−24,−1.263157]).

Table 1 shows that the proposed here approach brings significant improvement of
the bounds with respect to other considered methods, except the PGSI, which turned
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out to be the best in this case (with the least number of iterations). The overestimation
of IAGSI bounds is almost two times less than the overestimation of the NP, PBSM,
SVFPI, PHBRM, KDM, SDM, and DGSO bounds, and almost one and a half times
less than the KI bounds. However, it is much worse than the PGSI, which stems
from that affine computation is only usually much accurate than interval computation.
Here, the affine division lacks accuracy and gives much worse result than the interval
division. Table 1 shows as well that despite the PHBR method is on average less
accurate than PBS (and thus also SDM and KDM), in this case the lower bound for
x1 and the upper bound for x2 produced by the HBR method are better than those
produced by the PBS method. The IAGE method turned out to be the worst out of
all the considered methods. Table 2 presents inner estimate of the hull solution. As
we can see, the IAGSI was the only one that was able to produce a significant result.
The computational times (Table 3) of all the considered methods are pretty much the
same.

Example 6.2 This example shows that in some cases, the IAGSI method with the
multiplication formula (2.4) yields really tight bounds for the parametric solution set.

⎛

⎝
3 p p
p 3 p
p p 3

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
1
1
1

⎞

⎠ , (6.4)

Table 1 Results for Example 6.1: the outer interval solution (x∗) obtained using the most known methods
for solving parametric interval linear systems and the IAGSI; average overestimation of the hull solution
by the OI solutions computed using the formula (6.1)

Method x∗
1 O(x∗

1, x
H
1 )(%) x∗

2 O(x∗
2, x

H
2 ) (%)

PBSM, SVFPI, KDM,
SDM, DGSO

[−3, 12] 41 [−24, 18] 46

PHBRM [−1.5, 19.5] 58 [−45, 15] 62

IAGE [−93.65, 177.36] 97 [−197.99, 45.44] 91

NP [−5.87, 14.87] 57 [−34.23, 28.23] 64

KI [−1.8651, 12] 36 [−24, 14.9912] 42

PGSI [1.0909, 12] 19 [−24, 0] 5

IAGSI [−0.20351, 12] 28 [−24, 6.4503] 25

Table 2 Results for example
6.1: the inner estimation of the
hull solution x

Method x1 x2

IAGSI [5.5909, 6.20553] −
KI − −
SVFPI − −
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Table 3 Results for Example
6.1: the number of iterations and
computational times (in seconds)

Method #Iter Time

PBSM − 0.001

KDM − 0.001

SDM − 0.001

PHBRM − 0.001

DGSO − 0.001

SVFPI 43 0.002

KI 76 0.001

PGSI 2 0.001

IAGSI 7 0.002

where p ∈ [0, 1 + δ]. The IAGSI result (OI and IEH solutions), the hull solution
and the overestimation for δ = 0 are presented in Table 4. In this case the hull

solution can be computed using the fact that, for each i , xi (p) = p2−6p+9
2p3−9p2+27

. It is

not hard to check that, for δ � 0, x ′
i ([0, 1 + δ]) � 0. So, xi,min = xi (1 + δ) and

xi,max = xi (0) = 0.333333.

Table 6 presents the comparison of the overestimation produced by the remaining
methods for δ = 0.0, 0.2, 0.6, 0.8. As can be seen, the IAGSI gave the best bounds.
The PGSI method didn’t improve the initial enclosures (see Table 5) in any of the
considered cases.

Table 7 presents the underestimation of the hull solution by IEH solution obtained
from the p-solution. We can see that the IAGSI significantly outperforms other meth-
ods. The computational times and number of iterations for iterative methods are given
in Table 8.

Table 4 Results for Example 6.2 (δ = 0) obtained using the IAGSI method: OI solution (x), IEH (y), the
hull solution (xH ) and the overestimation

x y xH Oω(x, xH )(%) Oω(xH , y)(%)

[0.199941508, 0.333338464] [0.200185226, 0.333094746] [0.2, 0.333333] 0.000 0.3

[0.199941508, 0.333338464] [0.200185226, 0.333094746] [0.2, 0.333333] 0.000 0.3

[0.199941508, 0.333338464] [0.200185226, 0.333094746] [0.2, 0.333333] 0.000 0.3

Table 5 Initial enclosures for Example 6.2 obtained using the SDM method

δ = 0.0 δ = 0.2 δ = 0.6 δ = 0.8

[0.153846, 0.346154] [0.11904, 0.35714] [0.02798, 0.4068] [−0.04902, 0.46569]
[0.153846, 0.346154] [0.11904, 0.35714] [0.02798, 0.4068] [−0.04902, 0.46569]
[0.153846, 0.346154] [0.11904, 0.35714] [0.02798, 0.4068] [−0.04902, 0.46569]
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Table 6 Results for Example 6.2: the average overestimation of the hull solution by the OI solution

Method δ = 0 (%) δ = 0.2 (%) δ = 0.6 (%) δ = 0.8 (%)

PHBRM 68.0 71.2 79.6 84.6

PBSM, SDM, KDM, SVFPI 30.7 37.8 54.6 64.7

IAGE 0.2 0.5 2.4 4.7

DGSO 39.2 48.8 68.4 77.9

KI 13.3 16.4 25.6 33.1

PGSI 30.7 37.8 54.6 64.7

IAGSI 0.0 0.1 0.8 1.9

Table 7 Results for Example 6.2: the average underestimation of the hull solution by the IEH solution

Method δ = 0 (%) δ = 0.2 (%) δ = 0.6 (%) δ = 0.8 (%)

IAGSI 0.3 0.7 2.7 5.2

SVFPI 56.7 77.0

KI 21.8 28.2 47.2 64.7

Table 8 Results for Example 6.2: the number of iterations and computational times (in seconds)

Method δ = 0 δ = 0.2 δ = 0.6 δ = 0.8

Time #Iter Time #Iter Time #Iter Time #Iter

PHBRM 0.001 − 0.001 − 0.001 − 0.001

PBSM 0.001 − 0.001 − 0.001 − 0.001

SDM 0.001 − 0.001 − 0.001 − 0.001

IAGE 0.001 − 0.001 − 0.001 − 0.001

KDM 0.001 − 0.001 − 0.001 − 0.001

DGSO 0.001 − 0.001 − 0.001 − 0.001

SVFPI 0.002 7 0.002 8 0.003 12 0.003 17

KI 0.001 9 0.001 12 0.002 19 0.002 27

PGSI 0.002 1 0.002 1 0.002 1 0.002 1

IAGSI 0.005 10 0.006 12 0.007 17 0.01 23

Example 6.3 One of the main advantages of the proposed approach is that it can
be used straightforwardly to solve PILS with nonlinear dependencies. Consider the
parametric interval linear system

(−(p1 + p2)/p4 p5
p2 p4 p3/p5

) (
x1
x2

)

=
(

p21 p2
p24 + p5

)
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For δ = 0.05, the entries of the transformed preconditioned matrix V and the
right-hand vector v are as follows (coefficients are given to the fifth decimal place):

V11 = −3.05136 − 0.18179ε1 − 0.14139ε2 + 0.42418ε4 + 0.061745U

V12 = 3.5 + 0.07ε5 + 4.44089e − 016U

V21 = 0.25 + 0.035ε2 + 0.035ε4 + 0.0049U

V22 = 2.03261 + 0.18179ε3 − 0.28279ε5 + 0.03769U

v1 = 0.50203 + 0.09ε1 + 0.07028ε2 + 0.01491U

v2 = 0.63113 + 0.175ε4 + 0.01767ε5 + 0.01119U

(6.5)

Table 9 presents the initial enclosures obtained using the SDM method. The
overestimation and underestimation for δ = 0.05, 0.1, 0.13 are given in Tables
10 and 11, respectively whereas the computational times and the number of
iterations are shown in Table 12. We provide the results of the KI and KDM
methods, however, we would like to underline that these methods cannot be used
straightforwardly, since they require some specific representation of the parametric
interval linear system. Whereas other methods can be used without any additional
effort.

Table 9 Initial enclosures for Example 6.3 obtained using the SDM method

δ = 0.05 δ = 0.1 δ = 0.13

[ − 0.2600389, 0.595909] [−1.077753, 1.394349] [−2.493651, 2.792468]
[0.0697597, 0.509929] [−0.30954, 0.883971] [−0.921001, 1.489605]

Table 10 Results for Example 6.3: the average overestimation of the hull solution by the OI solution

Method δ = 0.05 (%) δ = 0.1 (%) δ = 0.13 (%)

PHBRM 49 66 79

PBSM, SDM, SVFPI, KDM 36 59 75

IAGE 25 47 64

KI 31 55 71

DGSO 34 58 74

PGSI 26 50 70

IAGSI 23 43 60

Table 11 Results for Example
6.3: the average underestimation
of the hull solution by the IEH
solution

Method δ = 0 (%) δ = 0.1 (%) δ = 0.13 (%)

IAGSI 34 43 −
SVFPI 51 − −
KI 40 − −
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Table 12 Results for Example 6.3: the number of iterations and computational times (in seconds)

Method δ = 0.05 δ = 0.1 δ = 0.13

#Iter Time #Iter Time #Iter Time

PHBRM 0.001 0.001 0.001

PBSM 0.001 0.001 0.001

SDM 0.001 0.001 0.001

IAGE 0.001 0.001 0.001

KDM 0.001 0.001 0.001

DGSO 0.001 0.001 0.001

SVPI 8 0.001 15 0.001 25 0.001

KI 11 0.002 25 0.003 48 0.004

PGSI 2 0.001 2 0.001 2 0.001

IAGSI 6 0.004 10 0.004 15 0.005

Table 13 Results for Example 6.4: the average overestimation of the hull solution by the OI solution

Method δ = 0.05 (%) δ = 0.1 (%) δ = 0.12 (%) δ = 0.14 (%)

PHBRM 71 83 89 95

PBSM, SDM, SVFPI, KDM 35 65 77 89

IAGE 41 71 82 93

KI 25 54 68 84

DGSO 47 76 85 93

PGSI 32 61 74 88

IAGSI 24 50 62 77

Example 6.4 Consider the parametric interval linear system

⎛

⎜
⎜
⎜
⎝

1/p1 − 2
√
p1 p22 p31 −4

−p21 p2 + 4 1/(p21 + p22)
√
3 + p3 3p3 p4 − 1

3 (p1 − p3)p2
√
p2 p3 p1 p2 p5

p4 p5 − p1 (2p4 − p3)2 p22 p2 p3 p2 p3 p4 + p25

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

x1
x2
x3
x4

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

p1
p21 − p2 p3

−2p3
−2

⎞

⎟
⎟
⎠ ,

where p1 ∈ 1.2δ, p2 ∈ 0.8δ, p3 ∈ 0.51δ, p4 ∈ 2.51δ, p5 ∈ 1.01δ, δ = [1− δ, 1+ δ].
The results for δ = 0.05, 0.1, 0.12, 0.14 are presented in Tables 13, 14 and 15. For

the comparison purposes, we use an approximation of the hull solution obtained using
a global optimisation software.

Example 6.5 In this example we consider parametric interval linear systems with
affine-linear dependencies defined by:
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Table 14 Results for Example
6.4: the average underestimation
of the hull solution by the IEH
solution

δ = 0.05 (%) δ = 0.1 δ = 0.12 δ = 0.14

IAGSI 31 − − −
SVFPI 39 − − −
KI 18 − − −

Table 15 Results for Example 6.4: the number of iterations and computational times (in seconds)

Method δ = 0.05 δ = 0.1 δ = 0.12 δ = 0.14

#Iter time #Iter Time #Iter Time #Iter Time

PHBRM, PBSM, SDM − 0.003 − 0.003 − 0.003 − 0.003

IAGE, DGSO

SVFPI 7 0.004 14 0.004 21 0.005 41 0.006

KI 9 0.011 24 0.011 40 0.011 93 0.011

PGSI 2 0.006 2 0.006 2 0.006 2 0.006

IAGSI 7 0.012 12 0.016 17 0.021 33 0.037

A(k) = (k + 1) · L ,

b(k) = 1, (6.6)

where L ∈ R
n is the n-dimensional Lehmer matrix [26] (case A) or n-dimensional

Parter matrix [26] (case B). The Lehmer matrix is a symmetric positive definite matrix
such that Ai j = i/j for j � i . The Parter matrix is a Cauchy matrix and a Toeplitz
matrix with singular values near π such that Ai j = 1/(i − j + 0.5).

The parameters of the system are subjected to tolerances pk = [1 − δ, 1 + δ],
k = 1, . . . , K . We compare here three methods which turned out to be the best out of
all consideredmethods, i.e. the IAGSI, PGSI, andKI,with respect to the computational
times and tightness of resulting enclosures for various n, K and δ. We provide as well
the results for the SDM, since it is used to obtain the initial enclosure for IAGSI and
PGSI. The results are presented in Tables 16, 17, 18 and 19. As can be seen, the IAGSI
always yields better bounds, but it is the most time consuming. This is however not
surprising, because better bounds are usuallymost costly, unlesswe can take advantage
from some specific conditions. Moreover, affine arithmetic (used by IAGSI) is more
expensive than interval arithmetic (used by PGSI), which in turn is more expensive
than floating-point arithmetic (used by KI).

Example 6.6 In this example we consider the tridiagonal parametric interval linear
system ⎛

⎜
⎜
⎜
⎜
⎜
⎝

p2 p1
p1 p2 p1

p1 p2
. . .

. . . p1
p1 p2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

x1
x2
x3
. . .

xn

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

−p1 − p2
−p1 − p2
−p1 − p2

. . .

−p1 − p2

⎞

⎟
⎟
⎟
⎟
⎠

(6.7)
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Table 16 Results for Example
6.5 (case A): the relative sum of
radii (6.2)

n K δ IAGSI PGSI KI SDM

10 10 0.5 1 1.27 1.11 1.27

10 10 0.6 1 1.33 1.12 1.33

50 20 0.5 1 1.27 1.13 1.27

100 20 0.5 1 1.27 1.13 1.27

100 20 0.8 1 1.09 1.19 1.45

100 30 0.8 1 1.07 1.20 1.44

Table 17 Results for Example 6.5 (case A): CPU times (in s) and the number of iterations taken by iterative
methods (given in parentheses)

n K δ IAGSI PGSI KI SDM

10 10 0.5 0.02 (2) 0.02 (1) 0.01 (13) 0.01

10 10 0.6 0.02 (2) 0.02 (1) 0.01 (18) 0.01

50 20 0.5 20.62 (2) 21.78 (1) 1.19 (13) 12.91

100 20 0.5 160.79 (2) 181.74 (1) 3.89 (13) 106.80

100 20 0.8 168.86 (2) 196.67 (2) 9.76 (41) 112.70

100 30 0.8 212.90 (2) 271.86 (2) 20.67 (41) 153.99

Table 18 Results for Example
6.5 (case B): relative sum of
radii (6.2)

n K δ IAGSI PGSI KI SDM

10 10 0.5 1 1.27 1.11 1.27

10 10 0.6 1 1.33 1.12 1.33

50 20 0.5 1 1.27 1.13 1.27

100 20 0.5 1 1.27 1.13 1.27

100 20 0.8 1 1.09 1.19 1.45

100 30 0.8 1 1.07 1.20 1.44

Table 19 Results for Example 6.5 (case B): CPU times (in s) and the number of iterations taken by iterative
methods (given in parentheses)

n K δ IAGSI PGSI KI SDM

10 10 0.5 0.112 (2) 0.101 (1) 0.012 (14) 0.064

10 10 0.6 0.119 (2) 0.110 (1) 0.016 (19) 0.073

50 20 0.5 20.825 (2) 17.743 (1) 0.889 (12) 10.814

100 20 0.5 162.768 (2) 183.618 (1) 3.699 (12) 111.277

100 20 0.8 173.595 (2) 190.25 (2) 6.835 (39) 114.337

100 30 0.8 179.08 (2) 193.149 (2) 5.966 (38) 121.957
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Table 20 Results for Example
6.6: the relative sum of radii
(6.2)

n K IAGSI KI PGSI SDM

10 10 1 1.01 1.05 1.05

10 20 1 1.03 1.10 1.10

10 50 1 1.12 1.30 1.30

60 10 1 1.03 1.07 1.07

60 20 1 1.07 1.13 1.13

60 50 1 1.23 1.31 1.31

100 10 1 1.05 1.09 1.09

100 20 1 1.10 1.18 1.18

100 50 1 1.15 1.16 1.16

200 10 1 1.13 1.21 1.21

200 20 1 1.30 1.33 1.33

Table 21 Results for Example
6.6: CPU times (in s) and the
number of iterations

n K IAGSI KI PGSI SDM

10 10 0.05 (4) 0 (3) 0.04 (1) 0.02 (1)

10 20 0.07 (4) 0 (5) 0.05 (1) 0.02 (1)

10 50 0.08 (5) 0 (15) 0.06 (1) 0.02 (1)

60 10 4.51 (5) 0.06 (5) 5.18 (1) 1.09 (1)

60 20 5.24 (5) 0.07 (9) 6.69 (1) 0.96 (1)

60 50 7.17 (8) 0.16 (40) 7.31 (2) 0.59 (2)

100 10 20.09 (6) 0.3 (6) 50.43 (1) 4.12 (1)

100 20 27.03 (7) 0.52 (12) 62.06 (2) 3.95 (2)

100 50 34.62 (70) 1.71 (491) 73.73 (2) 2.64 (2)

200 10 163.23 (9) 1.95 (16) 25.97 (1) 24.58 (1)

200 20 186.84 (26) 3.85 (149) 26.5 (1) 25.98 (1)

where p1 ∈ [100 − δ, 100 + δ], p2 ∈ [1 − δ/100, 1 + δ/100]. We solve the system
for different dimensions and tolerances. Tables 20 and 21 present the obtained results.
As we can see, IAGSI yields the tightest enslosures, but KI is the winner with respect
to time complexity, which is not surprising for the reasons explained in the previous
example.

Example 6.7 (Parametric interval linear programming problem)Another advantage of
the proposed approach is that it can be used to solve various constrained optimisation
problems related to the linear interval parametric systems. In this example, we consider
the following parametric linear programming (PLP) problem [10,24]: given a linear
parametric objective function

l(x, p) =
n∑

i=1
xi (p) (6.8)
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Table 22 Results for Example 6.7: The overestimation of the hull solution l H to the PLP problem (6.8),
(6.9) by the outer interval solution l

Method l(ρ = 0.3) O
(
l, l H

)
(%) l(ρ = 0.6) O( l H ) (%)

IAGSI [−1.80170,−0.71739] 49 [−4.03384, 1.31046] 77

[18] [−1.84730,−0.63430] 54 [−5.85463, 3.35040] 87

and the constraint equation

⎛

⎝
p1 p2 + 1 −p3

p2 + 1 −3 p1
2 − p3 4p2 + 1 1

⎞

⎠

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎝
2p1
p3 − 1
−1

⎞

⎠ , (6.9)

find bounds l on

l∗(A(p), b(p),p) =
{

l =
n∑

i=1
xi | A(p)x = b(p), p ∈ p

}

. (6.10)

The involved parameter vectors (boxes) of variable width, which depends on
a parameter ρ, have the following form

p(ρ) = pc + ρ · pΔ[−1, 1], (6.11)

where pc = (0.5, 0.5, 0.5), pΔ = (0.5, 0.5, 0.5). Each parameter pi ∈ pi is replaced
by the respective revised affine form p̂i = pc+ pΔεi . Then, the Interval–affineGauss–
Seidel iteration is used to obtain the p-solution (4.16), and the outer interval enclosure
for l∗ is computed from the formula:

l =
3∑

j=1

∣
∣
∣
∣
∣

3∑

i=1

Li j

∣
∣
∣
∣
∣
[−1, 1] +

3∑

i=1

ai . (6.12)

The results for ρ = 0.3 and ρ = 0.6 are presented in Table 22. Additionally, the
result from [18],which is so far the best knownouter interval solution for the considered
PLP problem, is presented as well. It can be seen that the proposed approach yields
smaller bounds.

7 Conclusions

A new approach to computing the p-solution of the parametric interval linear system
was presented. The obtained p-solution can be useful in solving parametric interval
linear systems with both affine-linear and nonlinear dependencies. The p-solution
permits to compute outer interval solution, inner estimate of the hull solution and
thus also intervals containing the lower and upper bound of the hull solution. The

123



A new method for computing a p-solution to parametric… 1135

obtained results show that the proposed parametric iteration with revised affine forms
might bring significant improvement of both inner and outer bounds of the parametric
solution set. Moreover, the proposed approach can also be useful in solving various
constrained optimisation problems related to the parametric interval linear system and
other problems involving affine forms. There is also a possibility to further improve the
results by combining different iterative schemes with different formulae for arithmetic
operations on affine forms.
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