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Abstract It is well known that the Gauss–Kronrod quadrature formula does not
always exist with real and distinct nodes and positive weights. In 1996, in an attempt to
find an alternative to the Gauss–Kronrod formula for estimating the error of the Gauss
quadrature formula, Laurie constructed the anti-Gaussian quadrature formula, which
always has real and distinct nodes and positive weights. First, we give a description
and prove the most important properties of the anti-Gaussian formula, by applying
a different approach than that of Laurie. Then, we consider a measure such that the
respective (monic) orthogonal polynomials, above a specific index, satisfy a three-
term recurrence relation with constant coefficients. We show that for a measure of this
kind the nodes of the anti-Gaussian formula are the zeros of the respective Stieltjes
polynomial, while the resulting averaged Gaussian quadrature formula is precisely the
corresponding Gauss–Kronrod formula, having elevated degree of exactness. More-
over, we show, by a new method, that a symmetric Gauss–Lobatto quadrature formula
is a modified anti-Gaussian formula, and we specialize our results to the measures
with constant recurrence coefficients.
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1 Introduction

Let dσ be a (nonnegative) measure on the interval [a, b], and consider the Gauss
quadrature formula associated with it,

∫ b

a
f (t)dσ(t) =

n∑
ν=1

λν f (τν) + RG
n ( f ), (1.1)

where τν = τ
(n)
ν are the zeros of the nth degree (monic) orthogonal polynomial

πn(·) = πn(·; dσ). It is well known that the weights λν = λ
(n)
ν are all positive, and

formula (1.1) has precise degree of exactness dG
n = 2n − 1, i.e., RG

n ( f ) = 0 for all
f ∈ P2n−1, where P2n−1 denotes the set of polynomials of degree at most 2n − 1
(cf. [7, Sect. 1.2]).

An important issue regarding the Gauss formula is the study of its error
term, which has been extensively investigated for more than a century (cf. [7,
Sect. 4]). A simple error estimator, used in practice, is the following: Set I ( f ) =∫ b

a f (t)dσ(t), QG
n ( f ) = ∑n

ν=1 λν f (τν), and consider a quadrature formula with
m > n points, having quadrature sum Qm( f ) and degree of exactness greater than
2n − 1. Then, we write

∣∣∣RG
n ( f )

∣∣∣ �
∣∣∣QG

n ( f ) − Qm( f )

∣∣∣ , (1.2)

i.e., Qm( f ) plays the role of the “true” value of I ( f ). The simplest choice for Qm( f )

is QG
n+1( f ), where with n + 1 new evaluations of the function (at the n + 1 new

Gauss nodes) the degree of exactness is raised from 2n − 1 to 2n + 1, a rather minor
improvement, while the process could also be unreliable (cf. [4, p. 199]).

Kronrod, motivated from his desire to estimate economically, yet accurately, the
error of the Gauss formula, extended formula (1.1), obtaining the so-called Gauss–
Kronrod quadrature formula,

∫ b

a
f (t)dσ(t) =

n∑
ν=1

σν f (τν) +
n+1∑
μ=1

σ ∗
μ f (τ ∗

μ) + RK
n ( f ), (1.3)

where τν are the Gauss nodes, while the new nodes τ ∗
μ = τ

∗(n)
μ and all weights

σν = σ
(n)
ν , σ ∗

μ = σ
∗(n)
μ are chosen such that formula (1.3) has maximum degree

of exactness (at least) d K
n = 3n + 1. It turns out that the nodes τ ∗

μ are zeros of a
(monic) polynomial π∗

n+1(·) = π∗
n+1(·; dσ), of degree n + 1, discovered much earlier

by Stieltjes through his work on continued fractions and the moment problem, which
is characterized by the orthogonality condition
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Anti-Gaussian quadrature formulae based on Stieltjes abscissae 181

∫ b

a
π∗

n+1(t)t
kπn(t)dσ(t) = 0, k = 0, 1, . . . , n,

i.e., π∗
n+1 is orthogonal to all polynomials of lower degree relative to the variable-sign

measure dσ ∗(t) = πn(t)dσ(t) on [a, b] (cf. [16]).
Now, if we set QK

n ( f ) = ∑n
ν=1 σν f (τν) + ∑n+1

μ=1 σ ∗
μ f (τ ∗

μ), then the benefit of

using QK
n ( f ) in place of Qm( f ) in (1.2), i.e.,

∣∣∣RG
n ( f )

∣∣∣ �
∣∣∣QG

n ( f ) − QK
n ( f )

∣∣∣ , (1.4)

is obvious; with n + 1 new evaluations of the function (at the nodes τ ∗
μ) the degree of

exactness is raised from 2n − 1 to 3n + 1, a substantial improvement.
However, it is well known that Gauss–Kronrod formulae fail to exist, with real and

distinct nodes in the interval of integration and positive weights, for several of the
classical measures; notable examples are the Hermite and the Laguerre measures, but
the list also includes the Gegenbauer and the Jacobi measures for certain values of the
involved parameters (cf. [16, Sect. 2.1 and the references cited therein]).

An alternative to the Gauss–Kronrod formula for estimating the error of the Gauss
formula, developed by Laurie (cf. [13]), is the so-called anti-Gaussian quadrature
formula, ∫ b

a
f (t)dσ(t) =

n+1∑
μ=1

wμ f (tμ) + R AG
n+1( f ), (1.5)

which is an interpolatory formula designed to have an error precisely opposite to the
error of the Gauss formula, that is, if Q AG

n+1( f ) = ∑n+1
μ=1 wμ f (tμ), then

I (p) − Q AG
n+1(p) = −

[
I (p) − QG

n (p)
]

for all p ∈ P2n+1. (1.6)

The anti-Gaussian formula enjoys nice and desirable properties: The nodes tμ interlace
with the Gauss nodes τν and, with the possible exception of the first and the last one,
the tμ are contained in [a, b]; furthermore, the weightswμ are all positive. In addition,
the anti-Gaussian formula can easily be constructed.

In effect then one can use the (2n + 1)-point quadrature formula obtained by the
quadrature sum

Q AvG
2n+1( f ) = 1

2

[
QG

n ( f ) + Q AG
n+1( f )

]
(1.7)

in place of QK
n ( f ) in (1.4), in which case

∣∣∣RG
n ( f )

∣∣∣ �
∣∣QG

n ( f ) − Q AG
n+1( f )

∣∣
2

.

This new quadrature formula, based on Q AvG
2n+1( f ), is known as the averaged Gaussian

quadrature formula (cf. [13]).
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182 S. E. Notaris

A few years after Laurie, Calvetti and Reichel (cf. [2]) defined the modified anti-
Gaussian quadrature formula, the same way as Laurie did, except that instead of (1.6)
formula (1.5) satisfies

I (p) − QMAG
n+1 (p) = −γ

[
I (p) − QG

n (p)
]

for all p ∈ P2n+1, γ > 0, (1.8)

where QMAG
n+1 ( f ) is the quadrature sum of this formula. Obviously, when γ = 1, the

modified anti-Gaussian formula is precisely Laurie’s anti-Gaussian formula. Now, it
turns out that a Gauss–Lobatto quadrature formula relative to a (nonnegative) sym-
metric measure on the real line is actually a modified anti-Gaussian formula (cf. [2]).

In a slightly different form,modified anti-Gaussian formulaewere definedbyEhrich
in [6] (essentially, he uses 1+γ insteadofγ , inwhich caseγ > −1). Ehrich’s definition
was used by Spalević in order to define the so-called generalized averaged Gaussian
quadrature formulae, which are constructed in such a way that the degree of exactness
is maximized (cf. [17–19]).

Now, it is quite remarkable that for a certain class of measures, examined by
Gautschi and the author in [11], such that the respective (monic) orthogonal poly-
nomials, above a specific index, satisfy a three-term recurrence relation with constant
coefficients, the nodes of the anti-Gaussian formula turn out to be the zeros of the
respective Stieltjes polynomial; in this case, the resulting averaged Gaussian formula
is precisely the corresponding Gauss–Kronrod formula, having elevated degree of
exactness, while the two formulae give the same error estimate for the Gauss formula.
This is shown in Sect. 3; that same result has very recently been obtained, in a different
way, by Spalević (cf. [19]). Further, we generalize things, by considering a class of
measures such that the respective (monic) orthogonal and (monic) Stieltjes polynomi-
als, of degree n + 1, are connected by a functional relation. For this class, a subclass
of which are the measures in [11], we prove analogous results. Before all this, in the
following section, we give a description and prove the most important properties of the
anti-Gaussian formulae. Moreover, in Sect. 4, we first show that symmetric Gauss–
Lobatto formulae are modified anti-Gaussian formulae, and then we specialize our
results to the measures in [11]. The results in Sects. 2 and 4 are derived by a method
which is new and appears in the literature for the first time. The paper concludes in
Sect. 5 with some numerical examples illustrating our results of Sect. 3.

2 Anti-Gaussian quadrature formulae

The results presented inTheorem2.1belowhaveoriginally beenobtained, in a different
way, by Laurie in [13].

First of all, the monic orthogonal polynomials relative to the measure dσ satisfy
the three-term recurrence relation

πn+1(t) = (t − αn)πn(t) − βnπn−1(t), n = 0, 1, 2, . . . ,

π0(t) = 1, π−1(t) = 0, (2.1)

where αn ∈ R and βn > 0.
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Anti-Gaussian quadrature formulae based on Stieltjes abscissae 183

Theorem 2.1 Consider the anti-Gaussian formula (1.5) for the measure dσ on the
interval [a, b]. Then the following holds:

(a) The nodes tμ, μ = 1, 2, . . . , n + 1, are the zeros of the (n + 1)st degree (monic)
polynomial π AG

n+1(·) = π AG
n+1(·; dσ) given by

π AG
n+1(t) = πn+1(t) − βnπn−1(t). (2.2)

Furthermore, the nodes tμ are all real and interlace with the nodes τν of the
Gauss formula, that is,

tn+1 < τn < tn < · · · < t2 < τ1 < t1. (2.3)

The inner nodes tμ, μ = 2, 3, . . . , n, are all in the interval [a, b]. The end nodes
t1 and tn+1 are in [a, b] if and only if

πn+1(b)

πn−1(b)
≥ βn and

πn+1(a)

πn−1(a)
≥ βn, (2.4)

respectively.
(b) The weights wμ, μ = 1, 2, . . . , n + 1, are given by the formula

wμ = 2‖πn‖2
πn(tμ)π AG ′

n+1 (tμ)
, μ = 1, 2, . . . , n + 1, (2.5)

where ‖ · ‖ denotes the L2 norm.

Furthermore, the weights are all positive.
(c) Formula (1.5) has precise degree of exactness d AG

n+1 = 2n − 1.

Proof (a) To prove that formula (1.5) with nodes the zeros of π AG
n+1 in (2.2) is an anti-

Gaussian formula, it suffices to show that (1.6) is satisfied. First of all, formula
(1.5) is interpolatory, and, by orthogonality, we have

∫ b

a
π AG

n+1(t)p(t)dσ(t) =
∫ b

a
[πn+1(t) − βnπn−1(t)]p(t)dσ(t) = 0

for all p ∈ Pn−2,

hence, formula (1.5) has degree of exactness (at least) 2n − 1 (cf. [7, Sect. 1.3]).
As a result of this and the fact that the Gauss formula (1.1) has also degree of
exactness 2n − 1, we get

I (p) − Q AG
n+1(p) = −

[
I (p) − QG

n (p)
]

= 0 for all p ∈ P2n−1. (2.6)
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184 S. E. Notaris

Consequently, to prove (1.6), it remains, by linearity, to show that

I (t2n) − Q AG
n+1(t

2n) = −
[

I (t2n) − QG
n (t2n)

]
(2.7)

and
I (t2n+1) − Q AG

n+1(t
2n+1) = −

[
I (t2n+1) − QG

n (t2n+1)
]
. (2.8)

As the πm are monic polynomials, it is easy to see that

t2n = [πn+1(t) − βnπn−1(t)]πn−1(t) + p1(t), p1 ∈ P2n−1, (2.9)

and
t2n = π2

n (t) + p2(t), p2 ∈ P2n−1. (2.10)

Now, the left-hand side in (2.7), by inserting (2.9), and using orthogonality, that
πn+1 − βnπn−1 is the nodal polynomial in formula (1.5), (2.6) and that

βn = ‖πn‖2
‖πn−1‖2 (2.11)

(cf. [7, Equation (5.3)]), gives

I (t2n) − Q AG
n+1(t

2n) = I ((πn+1−βnπn−1)πn−1)−Q AG
n+1((πn+1−βnπn−1)πn−1)

+I (p1) − Q AG
n+1(p1)

= −βn

∫ b

a
π2

n−1(t)dσ(t) = −βn‖πn−1‖2 = −‖πn‖2.
(2.12)

Also, the right-hand side in (2.7), by inserting (2.10), and proceeding in a like
manner, yields

I (t2n) − QG
n (t2n) = ‖πn‖2, (2.13)

which, together with (2.12), proves (2.7). On the other hand, applying repeatedly
the three-term recurrence relation (2.1), we get

πm(t) = tm − (α0 + α1 + · · · + αm−1)t
m−1 + · · · .

The latter, allows us to write

t2n+1 = [πn+1(t) − βnπn−1(t)]πn(t) + [2(α0 + α1 + · · · + αn−1) + αn]t2n

+p3(t), p3 ∈ P2n−1,

and
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Anti-Gaussian quadrature formulae based on Stieltjes abscissae 185

t2n+1 = πn(t)πn+1(t) + [2(α0 + α1 + · · · + αn−1) + αn]t2n + p4(t),

p4 ∈ P2n−1.

Now, as in the proof of (2.7), using orthogonality, (2.12)–(2.13) and (2.6), we find

I (t2n+1) − Q AG
n+1(t

2n+1) = −[2(α0 + α1 + · · · + αn−1) + αn]‖πn‖2,

I (t2n+1) − QG
n (t2n+1) = [2(α0 + α1 + · · · + αn−1) + αn]‖πn‖2,

which, combined together, prove (2.8).
To prove the properties of the nodes tμ, we first note that, setting t = τν in

(2.2), we get
π AG

n+1(τν) = πn+1(τν) − βnπn−1(τν). (2.14)

Also, as τν is a zero of πn , we have, from (2.1),

πn+1(τν) = −βnπn−1(τν),

which, inserted into (2.14), yields

π AG
n+1(τν) = 2πn+1(τν). (2.15)

The latter, in view of the separation property for the zeros of πn and πn+1 (cf. [20,
Theorem 3.3.2]), implies

sign π AG
n+1(τν) = sign πn+1(τν) = (−1)ν, ν = 1, 2, . . . , n. (2.16)

In addition, it is clear that

lim
t→∞ π AG

n+1(t) = ∞,

lim
t→−∞ π AG

n+1(t) = (−1)n+1∞.
(2.17)

From (2.16) and (2.17), there follows that all tμ are real and satisfy (2.3); in fact,
the inner nodes tμ, μ = 2, 3, . . . , n, are all in the interval [a, b]. Furthermore, in
view of (2.16), the end nodes t1 and tn+1 are in [a, b] if and only if

π AG
n+1(b) ≥ 0 and (−1)n+1π AG

n+1(a) ≥ 0,

which, on account of (2.2), is equivalent to (2.4).

(b) Setting f (t) = π AG
n+1(t)
t−tμ

πn(t), μ = 1, 2, . . . , n + 1, in formula (1.5), we get

∫ b

a

π AG
n+1(t)

t − tμ
πn(t)dσ(t) = wμπ AG ′

n+1 (tμ)πn(tμ) + R AG
n+1

(
π AG

n+1(t)

t − tμ
πn(t)

)
.

(2.18)
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186 S. E. Notaris

As
π AG

n+1(t)
t−tμ

is a monic polynomial of degree n, we have, by orthogonality,

∫ b

a

π AG
n+1(t)

t − tμ
πn(t)dσ(t) =

∫ b

a
π2

n (t)dσ(t) = ‖πn‖2. (2.19)

Also, by virtue of (1.6), which can be equivalently written as

R AG
n+1(p) = −RG

n (p) for all p ∈ P2n+1,

the fact that πn is the nodal polynomial in formula (1.1), and (2.19), we find

R AG
n+1

(
π AG

n+1(t)

t − tμ
πn(t)

)
= −RG

n

(
π AG

n+1(t)

t − tμ
πn(t)

)

= −
∫ b

a

π AG
n+1(t)

t − tμ
πn(t)dσ(t) = −‖πn‖2. (2.20)

Now, inserting (2.19) and (2.20) into (2.18) and solving for wμ, we obtain (2.5).
Furthermore, on account of the interlacing property (2.3), we have

sign πn(tμ) = sign π AG ′
n+1 (tμ) = (−1)μ−1, μ = 1, 2, . . . , n + 1,

which shows that the denominator on the right-hand side of (2.5) is positive and
so are the weights.

(c) As alreadymentioned in (a), formula (1.5) has degree of exactness (at least) 2n−1
and, in viewof (2.20), the degree of exactness is precisely 2n−1 (cf. [7, Sect. 1.3]).


�

3 Anti-Gaussian quadrature formulae with Stieltjes abscissae

We assume that the monic orthogonal polynomials relative to the measure dσ satisfy
a three-term recurrence relation of the following kind,

πn+1(t) = (t − αn)πn(t) − βnπn−1(t), n = 0, 1, 2, . . . ,

αn = α, βn = β for all n ≥ 
, (3.1)

where αn ∈ R, βn > 0, l ∈ N, and π0(t) = 1, π−1(t) = 0. Thus, the coefficients
αn and βn are constant equal, respectively, to some α ∈ R and β > 0 for all n ≥ 
.
Any such measure dσ is known to be supported on a finite interval, say [a, b] (cf. [14,
Theorem 10]), and we indicate this, together with property (3.1), by writing dσ ∈
M

(α,β)

 [a, b].
Among the many orthogonal polynomials satisfying a recurrence relation of this

kind are the four Chebyshev-type polynomials, and their modifications discussed in
Allaway’s thesis [1, Chapter 4], as well as the four Bernstein–Szegö-type polynomials.
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Anti-Gaussian quadrature formulae based on Stieltjes abscissae 187

We first recall some results from [11].

Theorem 3.1 ([11, Theorem 2.3]) Consider a measure dσ ∈ M
(α,β)

 [a, b]. Then the

corresponding Stieltjes polynomials are given by

π∗
n+1(t) = πn+1(t) − βπn−1(t) for all n ≥ 2
 − 1. (3.2)

Proposition 3.1 ([11, Proposition 2.4]) Consider a measure dσ ∈ M
(α,β)

 [a, b] and

let τν be the zeros of the corresponding orthogonal polynomial πn. Then

πn+1(τν) = 1

2
π∗

n+1(τν), ν = 1, 2, . . . , n, (3.3)

for all n ≥ 2
 − 1.

If dσ ∈ M
(α,β)

 [a, b], then trivially αn → α, βn → β as n → ∞, and it follows

(cf. [3, p. 121]) that
[
α − 2

√
β, α + 2

√
β

]
(3.4)

is the “limiting spectral interval” of dσ . Although it may well be that dσ has support
points outside the interval (3.4) (cf. [3, Exercise 4.6, p. 128]), for inclusion results we
will assume the following property.

Property A. The measure dσ ∈ M
(α,β)

 [a, b] is such that

a = α − 2
√

β, b = α + 2
√

β.

Theorem 3.2 ([11, Theorem 3.2]) Consider a measure dσ ∈ M
(α,β)

 [a, b]. Then the

following holds:

(a) The Gauss–Kronrod formula (1.3) has the interlacing property for all n ≥ 2
−1,
that is,

τ ∗
n+1 < τn < τ ∗

n < · · · < τ ∗
2 < τ1 < τ ∗

1 . (3.5)

(b) If dσ has Property A, then all τ ∗
μ are in [a, b] for all n ≥ 2
 − 1.

(c) All weights σν, σ ∗
μ in formula (1.3) are positive for each n ≥ 2
−1; in particular,

σν = 1

2
λν, ν = 1, 2, . . . , n, (3.6)

where λν, ν = 1, 2, . . . , n, are the weights in the Gauss formula (1.1).
(d) Formula (1.3) has degree of exactness (at least) 4n − 2
 + 2 if n ≥ 2
 − 1.

Remark 3.1 PropertyA allows to prove that πn+1(b)
πn−1(b)

≥ β and πn+1(a)
πn−1(a)

≥ β (cf. the proof
of Theorem 3.2(b) in [11]), which are equivalent to τ ∗

1 ∈ [a, b] and τ ∗
n+1 ∈ [a, b],

respectively. Analogous conditions are required in the anti-Gaussian formula (1.5)
(cf. Equation (2.4)) for t1 ∈ [a, b] and tn+1 ∈ [a, b].

We can now present our results.
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188 S. E. Notaris

Theorem 3.3 Consider a measure dσ ∈ M
(α,β)

 [a, b] and let n ≥ 2
 − 1. Then the

following holds:

(a) The anti-Gaussian formula (1.5) is given by

tμ = τ ∗
μ, wμ = 2σ ∗

μ, μ = 1, 2, . . . , n + 1, (3.7)

where τ ∗
μ are the Kronrod nodes, i.e., the zeros of the Stieltjes polynomial π∗

n+1,
and σ ∗

μ are the corresponding weights in the Gauss–Kronrod formula (1.3).
(b) The averaged Gaussian formula obtained by the quadrature sum (1.7) is precisely

the Gauss–Kronrod formula (1.3), having degree of exactness (at least)4n−2
+2.
Furthermore, the two formulae give the same error estimate for RG

n ( f ), that is,

∣∣∣QG
n ( f ) − Q AvG

2n+1( f )

∣∣∣ =
∣∣QG

n ( f ) − Q AG
n+1( f )

∣∣
2

=
∣∣∣QG

n ( f ) − QK
n ( f )

∣∣∣ .

Proof (a) From (2.2) and (3.2), in view of (3.1), we have

π AG
n+1(t) = πn+1(t) − βnπn−1(t) = πn+1(t) − βπn−1(t) = π∗

n+1(t),

hence, the nodes tμ of the anti-Gaussian formula (1.5) are the zeros τ ∗
μ of the

Stieltjes polynomial π∗
n+1. Moreover, as the weights σ ∗

μ of the Gauss–Kronrod
formula (1.3) are given by

σ ∗
μ = ‖πn‖2

πn(τ ∗
μ)π∗′

n+1(τ
∗
μ)

, μ = 1, 2, . . . , n + 1

(cf. [16, Equation (2.4)]), (2.5) implies, in view of what has already been proved,
that wμ = 2σ ∗

μ, μ = 1, 2, . . . , n + 1.
(b) From (1.7), (1.1), (1.5) and (1.3), in view of (3.6), (3.7) and Theorem 3.2(d), we

have

Q AvG
2n+1( f ) = 1

2

[
QG

n ( f ) + Q AG
n+1( f )

]
=

n∑
ν=1

1

2
λν f (τν) +

n+1∑
μ=1

1

2
wμ f (tμ)

=
n∑

ν=1

σν f (τν) +
n+1∑
μ=1

σ ∗
μ f (τ ∗

μ) = QK
n ( f ),

which proves our assertion. 
�
Remark 3.2 On [18, Equation (11)], Spalević demonstrated that, for the averaged
Gaussian formula to have degree of exactness (at least) 3n + 1, i.e., that of a typical
Gauss–Kronrod formula, it is required that

lim
n→∞ αn = A and lim

n→∞ βn = B, (3.8)
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Anti-Gaussian quadrature formulae based on Stieltjes abscissae 189

where A ∈ R and B ≥ 0; in this case, the averaged Gaussian formula is a good
alternative to theGauss–Kronrod formula for estimating the error of theGauss formula,
and because of that Spalević called it optimal averaged Gaussian formula.

Now, in Theorem 3.3, dσ ∈ M
(α,β)

 [a, b], hence, (3.8) is trivially satisfied, with

A = α and B = β, and as n ≥ 2
 − 1, the degree of exactness 4n − 2
 + 2 ≥ 3n + 1;
thus, the averaged Gaussian formula obtained in this case is an optimal one.

Remark 3.3 An interpolatory formula for ameasuredσ on the interval [a, b], having as
nodes the zeros of the respective Stieltjes polynomial, had been originally considered
by Monegato for the Legendre measure (cf. [15, Sect. II.1]). For measures dσ ∈
M

(α,β)

 [a, b] and n ≥ 2
 − 1, this formula has been studied in [11, Sect. 4]; it was

shown that the weights are given by (3.7), and the formula has degree of exactness
2n − 1, although no connection has been made with the anti-Gaussian formula.

As already mentioned in the introduction, the results of Theorem 3.3 have very
recently been obtained, in a different way, by Spalević (cf. [19, Theorem 3.1]). Subse-
quently, in [5], Djukić, Reichel, Spalević and Tomanović considered Bernstein–Szegö
measures of any one of the four kinds with a quadratic divisor polynomial, which
all belong to the class M (0,1/4)


 [−1, 1], with 
 depending on the particular measure;
they applied Theorem 3.1 in [19] and investigated when the thus obtained averaged
Gaussian formulae have all nodes in the interval of integration.

What has been said so far, in particular, Proposition 3.1 inspired the following
generalization of Theorem 3.3.

Theorem 3.4 Consider a (nonnegative) measure dσ on the interval [a, b], and assume
that the respective (monic) orthogonal polynomial πn+1(·) = πn+1(·; dσ) and (monic)
Stieltjes polynomial π∗

n+1(·) = π∗
n+1(·; dσ), both of degree n + 1, satisfy, for some

γ > 0,

πn+1(τν) = 1

1 + γ
π∗

n+1(τν), ν = 1, 2, . . . , n, (3.9)

where τν are the zeros of the corresponding nth degree (monic) orthogonal polynomial
πn(·) = πn(·; dσ). Then the following holds:

(a) The Gauss–Kronrod formula (1.3) has the interlacing property (3.5), in which
case the τ ∗

μ are all real and, with the possible exception of the first and the last
one, are contained in the interval [a, b]. Furthermore, all weights σν, σ ∗

μ are
positive.

(b) The modified anti-Gaussian formula (1.5) given by the quadrature sum

QMAG
n+1 ( f ) =

n+1∑
μ=1

(1 + γ )σ ∗
μ f (τ ∗

μ), (3.10)

satisfies

I (p) − QMAG
n+1 (p) = −γ

[
I (p) − QG

n (p)
]

for all p ∈ P3n+1. (3.11)
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(c) The generalized averaged Gaussian formula obtained by the quadrature sum

QGAvG
2n+1 ( f ) = 1

1 + γ

[
γ QG

n ( f ) + QMAG
n+1 ( f )

]
, (3.12)

is precisely the Gauss–Kronrod formula (1.3), having degree of exactness (at
least) 3n + 1. Furthermore, the two formulae give the same error estimate for
RG

n ( f ), that is,

∣∣∣QG
n ( f ) − QGAvG

2n+1 ( f )

∣∣∣ = 1

1 + γ

∣∣∣QG
n ( f ) − QMAG

n+1 ( f )

∣∣∣ =
∣∣∣QG

n ( f ) − QK
n ( f )

∣∣∣ .

Proof (a) The proof of the interlacing property follows precisely the steps of the proof
of that same property in Theorem 2.1(a), if (2.15) is replaced by

π∗
n+1(τν) = (1 + γ )πn+1(τν), ν = 1, 2, . . . , n, γ > 0 (3.13)

(cf. (3.9)), i.e., if we repeat the proof in Theorem 2.1(a) with π∗
n+1 in place of

π AG
n+1.
Moreover, it is known that

σν = λν + ‖πn‖2
π ′

n(τν)π
∗
n+1(τν)

, ν = 1, 2, . . . , n (3.14)

(cf. [16, Equation (2.4)]), with

λν = − ‖πn‖2
π ′

n(τν)πn+1(τν)
, ν = 1, 2, . . . , n (3.15)

(cf. [20, Equation (3.4.7)]), where λν are the weights in the corresponding Gauss
formula (1.1). Now, inserting (3.13) into (3.14), yields, on account of (3.15),

σν = λν − 1

1 + γ
λν = γ

1 + γ
λν, ν = 1, 2, . . . , n. (3.16)

The latter, as γ > 0 and the λν are also all positive, proves the positivity of the
σν , while the positivity of the σ ∗

μ is equivalent to the interlacing property (cf. [16,
Sect. 2]).

(b) Starting from (1.3),

∫ b

a
p(t)dσ(t) =

n∑
ν=1

σν p(τν) +
n+1∑
μ=1

σ ∗
μ p(τ ∗

μ) for all p ∈ P3n+1,
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and inserting (3.16), we get

∫ b

a
p(t)dσ(t) =

n∑
ν=1

γ

1 + γ
λν p(τν) +

n+1∑
μ=1

σ ∗
μ p(τ ∗

μ) for all p ∈ P3n+1,

which, by a simple computation, can be written as

∫ b

a
p(t)dσ(t) −

n+1∑
μ=1

(1 + γ )σ ∗
μ p(τ ∗

μ) = −γ

[∫ b

a
p(t)dσ(t) −

n∑
ν=1

λν p(τν)

]

for all p ∈ P3n+1,

which is precisely (3.11).
(c) Starting from (3.12), and using (1.1), (3.10) and (1.3), we have, by means of

(3.16),

QGAvG
2n+1 ( f ) =

n∑
ν=1

γ

1 + γ
λν f (τν) + 1

1 + γ

n+1∑
μ=1

(1 + γ )σ ∗
μ f (τ ∗

μ)

=
n∑

ν=1

σν f (τν) +
n+1∑
μ=1

σ ∗
μ f (τ ∗

μ) = QK
n ( f ),

which proves our assertion. 
�

Remark 3.4 For γ = 1, (3.9) is precisely (3.3), which is satisfied by a measure dσ

belonging to the classM (α,β)

 [a, b]. Hence,M (α,β)


 [a, b] is a subclass of the class of
measures considered in Theorem 3.4. The identification of this last class requires a
thorough investigation.

4 Symmetric Gauss–Lobatto quadrature formulae

Let the (nonnegative) measure dσ be symmetric with respect to the origin on the inter-
val [−a, a]. Then, the respective monic orthogonal polynomials πm(·) = πm(·; dσ)

satisfy a three-term recurrence relation (2.1) with αn = 0, n = 0, 1, 2, . . ., and the
Gauss formula (1.1) has the form

∫ a

−a
f (t)dσ(t) =

n∑
ν=1

λν f (τν) + RG
n ( f ), (4.1)

where the nodes τν are symmetric with respect to the origin and the weights λν corre-
sponding to symmetric nodes are equal.

123



192 S. E. Notaris

We consider the (n + 1)-point Gauss–Lobatto quadrature formula for the measure
dσ on the interval [−a, a],

∫ a

−a
f (t)dσ(t) = wL

1 f (a) +
n∑

ν=2

wL
ν f (τ L

ν ) + wL
n+1 f (−a) + RL

n+1( f ), (4.2)

where τ L
ν = τ

L(n)
ν are the zeros of the (n −1)st degree (monic) orthogonal polynomial

π L
n−1(·) = π L

n−1(·; dσ L) relative to the measure dσ L(t) = (a2− t2)dσ(t) on [−a, a].
The weights wL

ν = w
L(n)
ν are all positive, and formula (4.2) has precise degree of

exactness d L
n+1 = 2n − 1 (cf. [7, Sect. 2.1.1]).

First of all, from Christoffel’s Theorem (cf. [20, Sect. 2.5 (2)]), one can derive a
formula for the polynomial π L

n−1 in terms of the πm’s,

(t2 − a2)π L
n−1(t) = πn+1(t) − πn+1(a)

πn−1(a)
πn−1(t). (4.3)

Moreover, one can have a formula for the error term of each one of formulae (4.1)
and (4.2) in terms of a higher-order derivative of f . As both of these formulae have
degree of exactness 2n − 1, if we assume that f ∈ C2n[−a, a], first,

RG
n ( f ) = f (2n)(ξG)

(2n)!
∫ a

−a
π2

n (t)dσ(t) = ‖πn‖2
(2n)! f (2n)(ξG), −a < ξG < a (4.4)

(cf. [7, Equation (1.18)]). Similarly, for the error term of formula (4.2), we have

RL
n+1( f ) = f (2n)(ξ L)

(2n)!
∫ a

−a
(t2 − a2)

[
π L

n−1(t)
]2

dσ(t), −a < ξ L < a,

where, inserting (4.3) and using orthogonality, we get

RL
n+1( f ) = − f (2n)(ξ L)

(2n)!
πn+1(a)

πn−1(a)

∫ a

−a
πn−1(t)π

L
n−1(t)dσ(t)

= − f (2n)(ξ L)

(2n)!
πn+1(a)

πn−1(a)

∫ a

−a
π2

n−1(t)dσ(t)

= − f (2n)(ξ L)

(2n)!
πn+1(a)

πn−1(a)
‖πn−1‖2,

hence, in view of (2.11),

RL
n+1( f ) = − πn+1(a)

βnπn−1(a)

‖πn‖2
(2n)! f (2n)(ξ L), −a < ξ L < a. (4.5)

We can now show that the Gauss–Lobatto formula (4.2) is a modified anti-Gaussian
formula. This has originally been proved, in a different way, by Calvetti and Reichel
in [2]. We then specialize this result to the measures of the previous section.

123



Anti-Gaussian quadrature formulae based on Stieltjes abscissae 193

Theorem 4.1 The Gauss–Lobatto formula (4.2) for the symmetric measure dσ on the
interval [−a, a] is a modified anti-Gaussian formula of type (1.5), satisfying (1.8)with

γ = πn+1(a)

βnπn−1(a)
. (4.6)

Proof The proof goes along the lines of the proof of the first part of Theorem 2.1(a).
Setting QL

n+1( f ) = wL
1 f (a)+∑n

ν=2 wL
ν f (τ L

ν )+wL
n+1 f (−a), it suffices, by linearity,

to show that

I (t i ) − QL
n+1(t

i ) = −γ
[

I (t i ) − QG
n (t i )

]
, i = 0, 1, . . . , 2n + 1,

or, equivalently,

RL
n+1(t

i ) = −γ RG
n (t i ), i = 0, 1, . . . , 2n + 1, (4.7)

with γ given by (4.6). First of all, as both formulae (4.1) and (4.2) have degree of
exactness 2n − 1, we have

RG
n (t i ) = RL

n+1(t
i ) = 0, i = 0, 1, . . . , 2n − 1,

hence, (4.7) is satisfied for i = 0, 1, . . . , 2n − 1. Furthermore, both formulae (4.1)
and (4.2) are symmetric, thus, they integrate exactly all odd monomials; in particular,

RG
n (t2n+1) = RL

n+1(t
2n+1) = 0,

showing the validity of (4.7) for i = 2n + 1. Therefore, it only remains to verify (4.7)
for i = 2n. Setting f (t) = t2n in (4.4) and (4.5), we get

RG
n (t2n) = ‖πn‖2

and

RL
n+1(t

2n) = − πn+1(a)

βnπn−1(a)
‖πn‖2,

respectively, proving (4.7) for i = 2n, and concluding our proof. 
�
If we now start with a symmetric measure dσ ∈ M

(α,β)

 [a, b], satisfying Property

A, then, necessarily, α = 0 and [a, b] = [−2
√

β, 2
√

β]. We have the following

Corollary 4.1 Consider a symmetric measure dσ ∈ M
(0,β)

 [−2

√
β, 2

√
β] and n ≥


. Then the Gauss–Lobatto formula (4.2) is a modified anti-Gaussian formula of type
(1.5), satisfying (1.8) with

γ = πn+1(2
√

β)

βπn−1(2
√

β)
.
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Proof We apply Theorem 4.1 with βn = β for all n ≥ 
 and a = 2
√

β. 
�
Remark 4.1 Clearly, the γ in (4.6) is a positive constant. Moreover, for a symmetric
measure dσ ∈ M

(0,β)

 [−2

√
β, 2

√
β], the result of Theorem 4.1 holds for values of

n < 
, but with βn not necessarily equal to β.

5 Numerical examples

Example 5.1 We approximate the integral

∫ 1

−1

eωt2
√
1 − t2

1 + 8t2
dt, (5.1)

using the Gauss formula (1.1) for the Bernstein–Szegö measure dσ(t) = (1−t2)1/2

1+8t2
dt,

−1 ≤ t ≤ 1, which is symmetric and belongs to the class M (0,1/4)
2 [−1, 1]. We want

to estimate the error by means of either the Gauss–Kronrod formula (1.3) or the anti-
Gaussian formula (1.5) or the averaged Gaussian formula obtained by the quadrature
sum (1.7), all for the measure dσ .

Gauss–Kronrod formulae for Bernstein–Szegö measures have been studied in [10,
12]. In particular, for the measure dσ and all n ≥ 1, it was shown that the Gauss–
Kronrod formula (1.3) has the interlacing property (3.5), all nodes are contained in
[−1, 1], all weights are positive and the formula has degree of exactness 4n − 1 for
n ≥ 2 and 5 for n = 1 (cf. [10, Theorem 5.2] and [12]).

Based on this and Theorem 3.3, the anti-Gaussian formula (1.5) for the Bernstein–
Szegö measure dσ and n ≥ 1 has all nodes in [−1, 1] and all weights positive, while
the corresponding averaged Gaussian formula obtained by the quadrature sum (1.7)
is precisely the Gauss–Kronrod formula for dσ .

Furthermore, we have the following estimates

∣∣∣RG
n ( f )

∣∣∣ �
∣∣∣QG

n ( f ) − QK
n ( f )

∣∣∣ =
∣∣∣QG

n ( f ) − Q AvG
2n+1( f )

∣∣∣ =
∣∣QG

n ( f ) − Q AG
n+1( f )

∣∣
2

,

(5.2)
and ∣∣∣RG

n ( f )

∣∣∣ �
∣∣∣QG

n ( f ) − Q AG
n+1( f )

∣∣∣ . (5.3)

In Tables 1 and 2, we give the numerical results of estimates (5.2) and (5.3), respec-
tively, together each timewith themodulus of the actual error. (Numbers in parentheses
indicate decimal exponents.) All computations were performed on a SUNUltra 5 com-
puter in quad precision (machine precision 1.93 ·10−34). The true value of the integral
was computed bymeans of Gaussian quadrature for the Bernstein–Szegö measure dσ ,
using software from [8,9].

As the Gauss–Kronrod formula (1.3) and the averaged Gaussian formula obtained
by the quadrature sum (1.7) are identical, they give the same (cf. (5.2)) extremely
accurate estimate for the error of the Gauss formula (1.1); in fact, for ω = 0.25
or 0.5 and n ≥ 10 and ω = 1.0, 2.0 or 4.0 and n ≥ 15, estimate (5.2) is almost
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Table 1 Estimate (5.2) and corresponding actual error in approximating the integral (5.1) using the Gauss
formula (1.1)

ω n Estimate (5.2) Error

0.25 5 0.34293879340445752667(−8) 0.34293879340998812119(−8)

0.5 5 0.12071257186969120661(−6) 0.12071257193337309965(−6)

1.0 5 0.46884850418394618087(−5) 0.46884851244292840060(−5)

10 0.15976103307723944006(−12) 0.15976103307723944018(−12)

2.0 5 0.22385466978816500828(−3) 0.22385480636040099772(−3)

10 0.25588826185324556767(−9) 0.25588826185324577168(−9)

4.0 5 0.16801749617265879605(−1) 0.16802124385775649115(−1)

10 0.66155361907837291451(−6) 0.66155361907895200196(−6)

Table 2 Estimate (5.3) and corresponding actual error in approximating the integral (5.1) using the Gauss
formula (1.1)

ω n Estimate (5.3) Error

0.25 5 0.68587758680891505335(−8) 0.34293879340998812119(−8)

0.5 5 0.24142514373938241321(−6) 0.12071257193337309965(−6)

1.0 5 0.93769700836789236173(−5) 0.46884851244292840060(−5)

10 0.31952206615447888013(−12) 0.15976103307723944018(−12)

2.0 5 0.44770933957633001655(−3) 0.22385480636040099772(−3)

10 0.51177652370649113534(−9) 0.25588826185324577168(−9)

4.0 5 0.33603499234531759210(−1) 0.16802124385775649115(−1)

10 0.13231072381567458290(−5) 0.66155361907895200196(−6)

identical to the modulus of the actual error. Estimate (5.3), obtained by means of the
anti-Gaussian formula (1.5), is not as accurate, as one expects on account of the lower
degree of exactness of the formula; however, the estimate provides, in almost all cases,
the correct order of magnitude of the actual error.

Example 5.2 We approximate the integral

∫ 2

−2

cos 2t

a2 + t2
dσ(t), (5.4)

using the Gauss formula (1.1) for the measure dσ on the interval [−2, 2], which is
such that the corresponding orthogonal polynomials satisfy the three-term recurrence
relation

πn+1(t) = tπn(t) − βnπn−1(t), n = 0, 1, 2, . . . ,

π0(t) = 1, π−1(t) = 0,
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with

β0 = 2π, β1 = 2, βn = 1, n ≥ 2.

Obviously, dσ is symmetric and belongs to the class M (0,1)
2 [−2, 2]. We want to

estimate the error of the Gauss formula (1.1) by means of either the Gauss–Kronrod
formula (1.3) or the anti-Gaussian formula (1.5) or the averaged Gaussian formula
obtained by the quadrature sum (1.7), all for the measure dσ .

From Theorem 3.2, the Gauss–Kronrod formula (1.3) for the measure dσ and all
n ≥ 3 has the interlacing property (3.5), all nodes are contained in [−2, 2], all weights
are positive and the formula has degree of exactness (at least) 4n − 2.

Also, from Theorem 3.3, in view of the above, the anti-Gaussian formula (1.5) for
the measure dσ and n ≥ 3 has all nodes in [−2, 2] and all weights positive, while
the corresponding averaged Gaussian formula obtained by the quadrature sum (1.7)
is precisely the Gauss–Kronrod formula for dσ .

As in the previous example, the numerical results of estimates (5.2) and (5.3),
together with the modulus of the actual error, are tabulated in Tables 3 and 4, respec-
tively. The true value of the integral was again computed by means of Gaussian
quadrature for the measure dσ , using software from [8,9].

It should be noted that, as in the previous example, the Gauss–Kronrod formula
(1.3) and the averaged Gaussian formula obtained by the quadrature sum (1.7) are
identical, and therefore they give the same (cf. (5.2)) very accurate estimate for the
error of the Gauss formula (1.1); see, e.g., in Table 3, the cases a = 1.0 or 2.0 and
n = 20, while, for a = 4.0 and n = 15 or 20, estimate (5.2) is almost identical to the
modulus of the actual error. Estimate (5.3), obtained by means of the anti-Gaussian

Table 3 Estimate (5.2) and corresponding actual error in approximating the integral (5.4) using the Gauss
formula (1.1)

a n Estimate (5.2) Error

0.5 5 0.15950252604625732883(1) 0.17293193666037607515(1)

10 0.13334890750170194607(0) 0.13240370886221642898(0)

15 0.11226247409308208931(−1) 0.11232946796027654841(−1)

20 0.94515115316491529235(−3) 0.94510366684431348902(−3)

1.0 5 0.17183249892423693967(0) 0.17323028963303109824(0)

10 0.13976983112059154117(−2) 0.13976059136176722502(−2)

15 0.11364152054685362994(−4) 0.11364158162809131302(−4)

20 0.92397587839372000735(−7) 0.92397587435582498851(−7)

2.0 5 0.89285471186899925240(−2) 0.89298880754113225641(−2)

10 0.13409566916884800128(−5) 0.13409566620469198678(−5)

15 0.19936912912780380925(−9) 0.19936912912845902956(−9)

20 0.29641560144932457723(−13) 0.29641560144932443240(−13)

4.0 5 0.43856789247808432022(−3) 0.43856819491682257127(−3)

10 0.30243873825096542187(−9) 0.30243873825087803545(−9)
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Table 4 Estimate (5.3) and corresponding actual error in approximating the integral (5.4) using the Gauss
formula (1.1)

a n Estimate (5.3) Error

0.5 5 0.31900505209251465766(1) 0.17293193666037607515(1)

10 0.26669781500340389215(0) 0.13240370886221642898(0)

15 0.22452494818616417862(−1) 0.11232946796027654841(−1)

20 0.18903023063298305847(−2) 0.94510366684431348902(−3)

1.0 5 0.34366499784847387933(0) 0.17323028963303109824(0)

10 0.27953966224118308235(−2) 0.13976059136176722502(−2)

15 0.22728304109370725988(−4) 0.11364158162809131302(−4)

20 0.18479517567874400147(−6) 0.92397587435582498851(−7)

2.0 5 0.17857094237379985048(−1) 0.89298880754113225641(−2)

10 0.26819133833769600255(−5) 0.13409566620469198678(−5)

15 0.39873825825560761849(−9) 0.19936912912845902956(−9)

20 0.59283120289864915446(−13) 0.29641560144932443240(−13)

4.0 5 0.87713578495616864044(−3) 0.43856819491682257127(−3)

10 0.60487747650193084374(−9) 0.30243873825087803545(−9)

formula (1.5), is not as accurate, although, in most cases, it provides the correct order
of magnitude of the actual error.
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