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Abstract The discretization of the computational domain plays a central role in the
finite element method. In the standard discretization the domain is triangulated with
a mesh and its boundary is approximated by a polygon. The boundary approximation
induces a geometry-related error which influences the accuracy of the solution. To
control this geometry-related error, iso-parametric finite elements and iso-geometric
analysis allow for high order approximation of smooth boundary features. We present
an alternative approach which combines parametric finite elements with smooth bijec-
tivemappings leaving the choice of approximation spaces free. Our approach allows to
represent arbitrarily complex geometries on coarse meshes with curved edges, regard-
less of the domain boundary complexity. The main idea is to use a bijective mapping
for automatically warping the volume of a simple parameterization domain to the
complex computational domain, thus creating a curved mesh of the latter. Numerical
examples provide evidence that ourmethod has lower approximation error for domains
with complex shapes than the standard finite element method, because we are able to
solve the problem directly on the exact domain without having to approximate it.
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1 Introduction

Simulating physical phenomena often requires to dealwith complex geometric objects,
generated, for instance, by computer aided design (CAD) software or captured from
real life objects or organisms (e.g., 3D scans, MRI, etc.). When focusing on the finite
element method (FEM), such highly complex geometries need to be represented in
a sufficiently accurate way. This is the case because the accuracy of the geometric
representation influences the approximation error of the discrete solution of a partial
differential equation. In this paper we present a novel discretization combining FEM
with bijective mappings. This combination allows solving the model problem on the
exact geometry with the freedom of choosing the discretization independently.

The influence of the accuracy of the geometric representation on the approximation
error has been studied for curved boundaries for iso-parametric discretizations [11,38,
39] and for contact problems [24]. More recent research focuses on numerical studies
for elliptic and Maxwell problems [43], and for different approximation spaces [4,5].
In contrast, our approach always reproduces the exact geometry, hence has zero geo-
metric error. Moreover, it can be applied to the numerical simulation of different
physical phenomena.

During a simulation the approximation space might not be descriptive enough to
represent the solution. This problem is usually solved by means of adaptive refine-
ment strategies, such as h-refinement [6,8] and p-refinement [33]. When using such
strategies, a higher resolution at the boundary should be accompanied by a better
approximation of the original surface [13]. However, due to the traditional one-way
connection between geometric information and simulation environment, adaptive
refinement is rarely accompanied by decrease of the geometric error, that is a bet-
ter approximation of the underlying geometry. In other words, the mesh is generated
within a modelling software and used in simulation environment without considering
the original surface, preventing a better surface approximation.

Iso-geometric analysis (IGA) [20] allows to overcome this limitation by working
directly with the geometric description provided by CAD software, such as non-
uniform rational B-splines (NURBS). However, IGA is subject to several challenges
such as the treatment of non-watertight surfaces, local refinement and topological flex-
ibility [29]. Moreover, IGA approximations, similarly to many mesh-free methods,
lead to complications in the imposition of essential boundary conditions, which can
be either imposed in a weak sense [3], or least-square satisfied in the strong sense [20].

Additionally, when dealing with three-dimensional shapes, CAD models usually
describe only the boundary. Creating a NURBS volume parameterization is a complex
task, for which many different approaches exits. For instance, some of them require
particular shapes [1], need special geometric information [31], or do not reproduce
the surface exactly [28].
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Source mesh t = 0 t = 5 t = 10 t = 15 t = 20

Fig. 1 Transient non-linear elasticity simulation of a gear for a warped quadrilateral mesh with
compressible-neo-Hookean material. The elastic gear is subject to vertical body forces (gravity) and has a
fixed tooth on the top boundary. The colour represents the von Mises stress for the solution at the different
time-steps t (color figure online)

Analternative to IGA is theNURBS-enhancedfinite elementmethod (NEFEM) [40]
that allows exploiting CADgeometries for the exact description of the boundary. How-
ever, this method requires creating a parameterization mesh, and a special handling of
the boundary, which according to [40] is still an open problem.

Another challenge regards geometric multigrid methods, which are based on a hier-
archy of nested spaces for achieving optimal convergence [10,18]. Such requirement
can be satisfied by generating the hierarchy by refining a coarsemesh representation of
the shape.However, such refinement usually does not improve improve the shape accu-
racy. An alternative approach [12] is to employ a parameterization such as transfinite
interpolation [34,35] and to build nested hierarchies in the parameterization domain.
However, transfinite interpolation requires a surface parametrization, a specific
parametrization domain, and it is not guaranteed to be bijective for general polytopes.

Here, we present a novel discretization which enables exploiting exact geometric
descriptions (e.g., splines or surface meshes) together with strategies employed in
standard finite element simulations (Sect. 2). This discretization has the advantage of
decoupling the geometry and the approximation space, thus allowing for sub/iso/super-
parametric elements. Although the presentation is based on the Poisson problem, our
discretization can be naturally employed to solve more complex problems, such as
transient non-linear elasticity shown in Fig. 1.

The problem of dealing with exact geometries has been deeply studied for CAD
geometries by the IGA community. Unfortunately, a similar study for surface meshes
is missing. For this reason, we focus on the exact representation provided by surface
meshes, and present the construction of a bijective volume parameterization from arbi-
trarily shaped domains to arbitrarily shaped meshes (Sect. 3). Finally, we empirically
illustrate that our new discretization can be used to remove geometric error while
being comparable to the classical finite element method in terms of conditioning of
the stiffness matrix and convergence of the solution (Sect. 4).

2 Parametric finite elements with bijective mappings

In this section we introduce the notation and derive the weak formulation for the
Poisson problem including the change ofmetric needed by ourmethod. Let us consider
the standard Poisson problem

− Δu = f, u|∂Ω = g, (1)
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Fig. 2 Overview of parametric finite elements with bijective mappings, with colour-coded solution of the
Poisson problem (1) on a warped domain Ω , with zero boundary conditions and constant right-hand side
(color figure online)

whereΩ ∈ R
d is the computational domain, ∂Ω is the boundary ofΩ , and g describes

the boundary values. In contrast to the classical construction where Ω is defined by
means of a mesh, here

Ω = b(Ω0) ⊆ Θ

is given as the image of a sufficiently smooth bijective mapping

b : Θ0 → Θ,

where Ω0 ⊆ Θ0 is the source domain, Θ0 ⊂ R
d is the parameterization domain, and

Θ ⊂ R
d is the parameterization image. Note thatΩ andΘ are different mathematical

objects: Ω is a domain, whereas Θ is a polytope. Figure 2 shows an overview of our
construction and the solution of the Poisson problem (1).

Let u ∈ V = H1
0 (Ω) be the Sobolev space of weakly differentiable functions

vanishing on the boundary, f ∈ L2(Ω), and g ∈ H1/2(∂Ω). Using integration by
parts, we rewrite (1) in its weak form, which is: find u ∈ V such that

∫
Ω

∇u · ∇v =
∫

Ω

f v ∀v ∈ V .
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Fig. 3 The standard linear and quadratic shape functions Ni on the element of the source mesh and the
corresponding warped element

Using b, we express the previous integral with respect to the source domain Ω0.
Considering that u(x) = u(b(x0)) and v(x) = v(b(x0)) where x ∈ Ω and x0 =
b−1(x) ∈ Ω0, and applying change of variables in the integrals, we rewrite the weak
form: find u ∈ V such that

∫
Ω0

J−T
b ∇u · J−T

b ∇v det (Jb) =
∫

Ω0

f v det (Jb) ∀v ∈ V, (2)

where Jb is the Jacobian matrix of the mapping b.
In order to solve this problem, we represent the computational domainΩ by means

of a warped meshT = b(T0), whereT0 = {E0 ⊆ Ω0| ⋃ Ē0 = Ω̄0} is a conforming
mesh (i.e., the intersection of two different elements is either empty, a common node,
edge, or side), which describes the source domain Ω0. By Ω̄ we denote the closure
of Ω . Note that, as described in (2), the bijective mapping warps the entire volume,
creating warped elements E = b(E0). Let the finite element space associated toT be
Vh = Vh(T ), where h stands for the discretization parameter, and let {N1, . . . , Nm}
be a basis of Vh , wherem is the number of basis functions. Figure 3 depicts an example
of such basis functions for a warped element.We approximate the function u bymeans
of uh ∈ Vh , by expressing uh in terms of its basis, obtaining uh = ∑m

i=1 ui Ni , where
ui are real coefficients. By choosing the test space as Vh , we discretize (2) as

m∑
i=0

ui

∫
Ω

J−T
b ∇Ni · J−T

b ∇N j det (Jb)=
m∑
i=0

fi

∫
Ω

Ni N j det (Jb) ∀ j =1, . . . ,m,
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Fig. 4 Overview of the geometric transformations from the reference element Ê to the source element
E0 ∈ T0 and to the warped element E ∈ T

which can be represented in the classical matrix form

Lu = M f , (3)

with u = [u1, . . . , um]T and f = [ f1, . . . , fm]T
To assemble the stiffness matrix L and the mass matrix M we perform numerical

quadrature. Because of the non-linearity of Jb we need to choose a quadrature scheme
of possibly higher order (Sect. 3.3) evenwhen the basis functions of the approximation
space Vh are low order polynomials.

As usual, we introduce the reference element Ê and the transformationG : Ê → E0
from the reference element to the corresponding element E0 in the source domain.
We perform the quadrature in Ê , using quadrature points x̂k ∈ Ê, xk = G(x̂k) with
the respective quadrature weights αk ∈ R, k = 1, . . . , K . Figure 4 shows all the
geometric transformations from the reference element Ê to the warped element E .
We denote by N̂i the basis functions on the reference element and by JG the Jacobian
of G. This allows assembling the local matrices for the element E

LE
i, j =

K∑
k=1

βk J−T (xk) ∇ N̂i (x̂k) · J−T (xk)∇ N̂ j (x̂k),

ME
i, j =

K∑
k=1

βk N̂i (x̂k) N̂ j (x̂k),

(4)

where J (xk) = Jb(xk)JG(x̂k) and βk = αk det (J (xk))|Ê |, with |Ê | the vol-
ume of Ê . These local contributions are then gathered to compute the matrices
L and M.

Note that the weak formulation and the assembly procedures are very similar to
classical finite elements. In fact, the only difference is the usage of the geometric terms
depending on the bijective mapping b, such as Jb which contributes to J = Jb JG .
As in standard FEM, the choice of the basis of Vh is independent from the geometric
description, leading to super/sub/iso-parametric approximations. In our method the
geometric description is given by the mapping b, which is usually non-linear, so that
our discretization falls into the category of super-parametric elements.

If we assume that b(T 0) describes the exact geometry, then the geometric error
is zero. However, the error in the solution is also connected to the choice of the
approximation space and the shape of the elements. This error is influenced by the
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Fig. 5 Example of parametric finite elements using a B-spline as the parameterization b. The colour
describes the solution of the Poisson problem (1) (color figure online)

Jacobian Jb of the bijective mapping. We estimate it by means of the condition
number

κ = sup
x0∈Ω0

‖Jb(x0)‖ ‖J−1
b (b(x0))‖ (5)

as in standard parametric finite elements estimates [7,9].

3 Shape and volume parameterization

The quality of a numerical solution of a partial differential equation is influenced by the
accuracy of the geometric description and by the choice of the approximation space.
In other words, a parameterization which describes the geometry exactly does not
introduce any error related to the shape. The choice of this parameterization depends
on the input geometry and includes every smooth bijective mapping, such as bijective
spline mappings [15] (see Fig. 5), composite mean value mappings [37], or harmonic
mappings [36].

Since for CADgeometries the problemhas beenwidely studied by the IGA commu-
nity, we focus our study on volume parameterization between arbitrary surfacemeshes.
The first challenge is the construction of a simpler surfaceΘ0, a coarse source domain
Ω0, and a paramaterization image Θ , such that Ω = b(Ω0) (Sect. 3.1). The other
challenges are the construction of the volume parameterization b (Sect. 3.2), an accu-
rate quadrature procedure (Sect. 3.3), and the efficient evaluation of the forms within
a simulation work-flow (Sect. 3.4).

3.1 Constructing the parameterization domain

In order to solve themodel problemwith the exact input geometry, the shape ofΘ must
coincide with Ω , which describes the exact shape. As carried out in detail in Sect. 2,
our approach still requires a parameterization domain Θ0 and a source domain Ω0.
Hence, we first need to construct Θ0 with the same mesh connectivity as Θ while
ensuring that Θ0 describes a simpler shape. Note that in order to reproduce Ω by
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Fig. 6 Given an input surface Θ we simplify it to obtain Θ0, which coincides with Ω0. We mesh Ω0
obtaining T0 and solve the problem with respect to T , which has the same boundary as Θ

Fig. 7 Three-dimensional example of the work-flow of our approach, from the input surface to the solution
of the problem in to the warped mesh T

means of b the shapes of Ω0 and Θ0 must also coincide, even if two meshes have a
different number of faces and vertices.

The approximation space for the finite element solution for the model problem
can now be chosen independently from the shape, since Ω0 and Θ0 are arbitrary
(e.g., the octagon in Fig. 6 or the tetrahedron in Fig. 7). This allows meshing Ω0
with arbitrary mesh size to obtain T0. Hence, by applying b to T0, we control the
resolution of T = b(T0) independently from the shape of Θ without influencing the
shape accuracy.

As illustrated in Fig. 6, in the 2D case,Ω0 is constructed by removing vertices from
Θ . In order to obtain Θ0 we reintroduce the removed vertices on the edges of Ω0,
without modifying the shape described by Ω0. Finally, we mesh Ω0 to obtain T0 and
solve the problem in T = b(T0).

The 3D case requires to coarsen Θ in order to obtain Ω0 while constructing a
surface parameterization to build Θ0 [14,25,27]. In our implementation we use the
multi-resolution adaptive parameterization of surfaces (MAPS) algorithm [27], which
produces a geometrically non-conforming parameterization (i.e., Θ0 is not nested
inside Ω0). To overcome this limitation, we extend the MAPS algorithm by snapping
the vertices of Θ0 to the edges of Ω0, and by applying few element splits to Θ0 and
Θ when that is not feasible. We remark that the only operation performed on Θ is
splitting, which does not change its shape.

Summing up, we start with a high resolution mesh representing the exact geometry
Θ . Then, from Θ we compute a coarse surface Ω0 which we mesh to obtain T0.
Finally, we use the parameterization obtained with MAPS to construct a surface Θ0
with the same connectivity as Θ and the same shape as Ω0. An example of a result of
this procedure is shown in Fig. 7.
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Fig. 8 Overview a composite barycentric mapping for τ = [0, 0.5, 1]

3.2 Composite mean value mappings

To the best of our knowledge only the composite mean value mappings [37] allow
creating smooth-bijective mappings between polytopes, such as polygons or polyg-
onal meshes. Convenient properties of such mappings are that they can be evaluated
pointwise, are provided in closed form, and are C∞ in the interior of the domain.
These mappings are based on the mean value mapping

b̃(x) =
n∑
j=1

λ j (x)q j ,

where q j are the vertices of Θ and the functions λ j : Θ0 → R, j = 1, . . . , n are a set
of mean value coordinates [16,22] with respect to Θ0. That is,

λ j = w j∑n
k=1 wk

with w j = tan(α j−1/2) + tan(α j/2)

r j
,

where α j is the angle between the edges [x, q0j+1] and [x, q0j ] and r j = ‖x − q0j‖,
with q0j the vertices of Θ0.

Unfortunately, the mapping b̃ is not guaranteed to be bijective for all pair of poly-
topes [21]. To overcome this limitation we follow [37] and “split” the mapping from
source to target polytope into a finite number of steps, where each step perturbs the
vertices only slightly. To this end, suppose that ζ i : [0, 1] → R

2, i = 1, . . . , n are a
set of continuous vertex paths between each vertex q0i = ζ i (0) and its corresponding
vertex qi = ζ i (0).

Let τs = (t0, t1, . . . , ts)with tk = k/s for k = 0, . . . , s be a uniform partitioning of
[0, 1] and b̃k be the barycentric mapping from Θtk to Θtk+1 , based on the barycentric
coordinates λ

tk
i : Θtk → R. Then we define the composite barycentric mapping from

Θ0 to Θ as

b = b̃s−1 ◦ b̃s−2 ◦ · · · ◦ b̃0,

123



1194 P. Zulian et al.
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Quadrature error Solution error

Fig. 9 Quadrature error and error in the solution uh ∈ V (T ) for different levels of quadrature refinements.
The level of refinement is higher (white) where the distortion of b is large (in proximity of the boundary),
while no refinement is necessary in the interior (dark red color) (color figure online)

which is bijective for sufficiently large s according to [37]. Figure 8 shows an example
of how a composite barycentric mapping is constructed for s = 2.

3.3 Quadrature

As previously mentioned, the non-linearity of the bijective mapping b may introduce
high error when low order numerical quadrature is employed. We implement an adap-
tive Simpson scheme [32] for accurately computing the stiffnessmatrix and right-hand
side vector. For each element E , we compute the element mass matrix ME by means
of a Gaussian quadrature formula. We subdivide E , and we use the same quadrature
formula on each sub-element to re-compute ME more accurately.We compute the dif-
ference of these two results and continue to subdivide until a given numerical tolerance
is reached.

Figure 9 shows the convergence behaviour of the adaptive quadrature strategy with
respect to the number of maximum refinements for reaching a quadrature tolerance
of 10−8. The same figure shows how this error propagates to the solution for a low
resolution mesh. It is interesting to note that the scheme automatically adapts to b,
creating more levels where the mapping is less linear.

3.4 Pre-computation of the composite mean value mapping

The evaluation of composite mean value mapping described in Sect. 3.2 is compu-
tationally intensive. For this reason we need to avoid computing the mapping and
its Jacobian multiple times. Similar to the classical assembly procedure of the sys-
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Fig. 10 Running times for computing the composite mean value mapping and its Jacobian. The computa-
tional time depends on three parameters: the number of intermediate steps s, the vertices n of Θ , and the
evaluation points. For each of the three experiments we vary only one of the parameters, whose base values
are s = 10, n = 62, and 1800 evaluation points

tem matrices, we start by deciding the order of quadrature. The order of quadrature
depends on the problem we want to solve, the choice of the approximation space, and,
especially for our approach, the bijective mapping b.

Instead of directly assembling the system matrices in (3), we divide the assembly
procedure into two stages. The first stage consists of generating and storing all the
quadrature data associated with the geometry necessary for the assembly, such as the
global quadrature points b(G(x̂)) and the Jacobian matrices Jb(x̂).

The second stage consists of the standard assembly procedure of the element
matrices (4), now using the precomputed quadrature quantities. This strategy allows
assembling thematrices like for standard finite elementswithout the need of evaluating
b and Jb for each new operator.

For the standard finite element assembly procedure storing the quadrature data is
usually not necessary,making our two stage approach lessmemory-efficient. However,
the caching allows both a parallel evaluation of b and the possibility of reusing the
quadrature data for different operators (e.g., Laplacian and mass matrix) and multiple
time-steps (e.g., in case of transient simulations in non-linear elasticity). For instance,
in Fig. 1 the quantities related to b are computed only at the first time-step and reused
in the following ones.

Despite the pre-computation, the evaluation of b remains expensive. Fortunately,
mean value coordinates are straightforward to parallelize on shared memory proces-
sors. In fact, every point-wise evaluation of b and Jb can be computed in a completely
independent way. Figure 10 shows the parallel-running times using OpenCL [23] with
respect to different input sizes, computed on a laptop computer with Intel Core i7
2.3GHz processor and 16GB RAM, we refer to [41] for a comprehensive explanation
of how to compute the gradient of mean value coordinates.

4 Numerical experiments

We restrict our study to super-parametric discretizations (i.e., discretizations where the
geometric mapping is more descriptive than the basis functions) based on composite
mean valuemappings (Sect. 3.2) with linear, quadratic, and cubic Lagrangian elements
(P1, P2, and P3). For our experiments the analytical solution is unknown, hence we
estimate it by computing a reference solution u ∈ V (T f ) on a very fine mesh T f . To
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10−4

10−6
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P2

P3

L2

P1 2.8
P2 4.4
P3 4.6

m= 21 m= 92752

Fig. 11 Top left visualization of e(uh) against the mesh size h, where the straight dashed lines show the
quadratic, cubic, and quartic trends. Top right L2-convergence rates for the different discretizations. Bottom
solution of the Poisson problem, where u is the Franke function, for different number of nodes m. We use
s = 10 uniform steps in b. The experiment has the mesh set-up shown in Fig. 13

evaluate the quality of our discretization and the standard discretization, we compute
different solutions uh ∈ Vh(T ) for several mesh sizes h.

4.1 Convergence

The solution is expected to converge quadratically in L2(Ω) to the exact one with
respect to the mesh size h for classical FEM with linear elements for H2-regular
problems. Hence, we study the convergence related to our approach by measuring the
approximation error as

e(uh) = ‖P(uh) − u‖L2(T f )
,

where P : Vh(T ) → V (T f ) is the L2-projection operator [26,42] (the assembly of P
is performed in the parameterization domain). Similar to standard FEM, our method
shows a quadratic, cubic, and quartic convergence behaviour for the Poisson problem,
as illustrated in the plot in Fig. 11. Despite the fact that the computation is always
performed on the exact geometry, the approximation error is not zero because of the
piecewise polynomial approximation of the solution, which is visible for a mesh with
small m and decreases for larger m.

4.2 Comparison

We compare our method with the standard finite element discretization for a simple
2D problem (Fig. 13), an extreme 2D problem (Fig. 14), and for a realistic 3D shape
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Fig. 12 Mesh refinement without shape recovery. Even at fine resolution (last image) we do not recover
the original shape (blue polygon) (color figure online)
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Fig. 13 Source meshes T0 with boundary Θ0 (first row), warped meshes T used by our method (second
row) with s = 10 uniform steps, and convergence plots against different numbers of degrees of freedom m
(last row)
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Fig. 14 Source meshes T0 with boundary Θ0 (first row), warped meshes T used by our method (second
row) with s = 50 uniform steps, and convergence plots against different numbers of degrees of freedom m
(last row)

(Fig. 15). Since for the standard finite element discretization, the boundary ofT differs
from Ω , we measure

r(uh) =
∣∣∣∣∣
‖uh‖L2(T )

‖u‖L2(T f )

− 1

∣∣∣∣∣

to estimate the approximation error [30], where ‖u‖L2(T f )
is computed on a dense

mesh with P1 elements.
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Fig. 15 Convergence plots against different numbers of degrees of freedomm for a 3D experiment. We use
s = 10 uniform steps in the composite mapping integrated with a standard Gaussian quadrature formula

In classical finite element simulations the original shape is usually not recovered
when performing mesh refinement as shown in Fig. 12. For this reason, r(uh) does not
converge to zero for the standard solution, while our approach converges (top plots in
Figs. 13, 14, 15).

In order to better understand this behaviour, we measure the actual geometric devi-
ation with

s(T ) =
∣∣∣∣∣
‖1‖L2(T )

‖1‖L2(Ω)

− 1

∣∣∣∣∣

which corresponds to the volume of the mesh (note that ‖1‖L2(T ) is equivalent to the
square root of the sum of the entries of the mass-matrix). We compute the volume
by means of numerical quadrature, which might introduce errors (Sect. 3.3), since
our discretization consists of warped elements. For the standard discretization, when
refining the mesh without recovering the shape, the volume trivially stays constant.
Hence, in order to have a fair comparison, we increase the shape accuracy while
refining the mesh to ensure that the shape of the domain also converges to the exact
one. The behaviour of s(T ) shows that our discretization has almost zero geometrical
error independently of h, while the standard discretization has higher geometrical error
(middle plots in Figs. 13, 14, 15).

In order to investigate how the approximation error is influenced by the geometri-
cal error, we measure r(uh) for our method and classical finite elements with shape
recovery. Our discretization always has a smaller approximation error compared to the
standard discretization (right plots in Figs. 13, 14, 15). This is due to the fact that our
approach allows solving the problem in the exact geometry, even at low resolutions.
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Fig. 16 Condition number of the discrete Laplace operator κ(L) against the mesh size h for the examples
in Fig. 13 (left) and Fig. 14 (right)

P2 P3 P4

Fig. 17 Polynomial boundary descriptions (mesh) compared to the exact boundary (blue polygon) (color
figure online)

4.3 Conditioning

For solution methods such as iterative solvers, the condition number κ of the stiffness
matrix plays an important role for the convergence rate [2]. In order to understand
how our discretization affects the condition number, we compute κ for the discrete
Laplace operator L with respect to different mesh sizes h for both our discretization
and the standard one. Because of the influence of the bijective mapping b, as shown
in (5), our discretization has a slightly larger condition number. Figure 16 shows that
κ(L) behaves similarly for both discretizations which suggests that iterative solvers
perform nearly as well for our discretization as for the standard one.

5 Conclusions

The idea of combining the finite element method with bijective mappings allows rep-
resenting complex geometries on coarse meshes and enables specifying interpolation
conditions as in the classical finite element method. For instance, our method can be
used with Lagrange elements, splines, NURBS, or mixed FEM independently from
the complexity of the input geometry. We introduce this novel discretization focusing
on the particular case of composite mean value mappings which automatically creates
a volume parameterization given only the boundary description.
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Fig. 18 Handling the interface (grey stars) between the Neumann boundary (blue solid lines) and the the
Dirichlet boundary (orange dashed lines) from Θ to T0 (color figure online)

An alternative is the use of iso-parametric finite elements, where the geometric
mapping is of the same order as the basis functions. Therefore, the domain mesh
is composed by piecewise polynomial elements, allowing a higher order description
of the boundary shape. This approach describes smooth shapes well, but produces a
sub-optimal approximation of non-smooth surfaces, which is the main focus of our
discretization. Figure 17 shows how high-order polynomials fail in describing the
boundary of a simple gear. Moreover, such approximations do not have any simple
construction strategies that guarantee bijectivity (i.e., avoids negative volumes).

Through numerical experimentswe show that our discretization has a lower approx-
imation error compared to standard approaches, due to the higher geometric accuracy,
without significant changes on the conditioning of the discrete operators. The method
becomes computationally more expensive when employing the composite mean value
mapping, however much of the related data can be precomputed and reused for dif-
ferent operators, as explained in Sect. 3.4. Moreover from the assembly point of view,
our method only requires to change to quadrature procedure (4) by including the terms
containing b.

Although we focus our study on the case of discrete geometry and composite
mean value mappings, our construction might be suitable for any other choice of
bijective mapping b, and it would be interesting to further investigate this flexibility.
For instance, within the composite mapping, we can employ other types of smooth
barycentric coordinates for which we can compute the Jacobian, such as maximum
entropy coordinates [17,19].

The integration of our approach with efficient and modern solution techniques,
such as multigrid methods, is possible. In fact, the flexibility provided by arbitrarily
choosing the mesh for describing Ω0, allows to naturally generate nested geometric
multigrid hierarchies with exact geometry. Moreover, the construction of the interpo-
lation and restriction operators is trivially performed using standard mesh refinement
of the source mesh T0, since the mapping b is the same for all levels.

Our discretization with composite mean value mapping enables treating boundary
conditions with arbitrary precision even for the non-homogeneous case. For instance,
let us consider the example problem inFig. 18,whereDirichlet boundary conditions are
specified on ∂ΩD ⊆ ∂Ω (orange dashed lines) and Neumann conditions on ∂ΩN =
∂Ω\∂ΩD (blue solid lines). Let the interface (grey stars) between ∂ΩD and ∂ΩN be
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� and its corresponding interface in Θ0 be �0 (i.e., � = b(�0)). When generating
the mesh T0 we preserve �0 which is then mapped to its image � in T . Since �

is preserved, the boundary conditions which are specified on ∂ΩD and ∂ΩN can be
equivalently handled on Ω0.

In our presentation we always define the mapping b as a global parameterization
from Θ0 to Θ , though, in order to have a faster computation of the quadrature data,
strategies for localizing the mapping can be applied. For instance, the mapping can
be used to exclusively compute the quadrature data associated with the elements near
the boundary, while for the elements in the interior the mapping can be applied to
the nodal positions only, generating a piecewise polynomial approximation, similarly
to [40].
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