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1 Introduction

Hamiltonian systems perturbed by additive Gaussian noises are used to describe the
traditional Hamiltonian systems driven by random forces, which may give rise to
essential differences in dynamical evolutions (see e.g. [3,5,10]). In this paper, we
consider a class of stochastic Hamiltonian systems of the form

dP = f (P, Q)dt +
m∑

r=1

σr (t)dWr (t), P(t0) = p,

dQ = g(P, Q)dt +
m∑

r=1

γr (t)dWr (t), Q(t0) = q,

f = −∂H

∂q
, g = ∂H

∂p
,

(1.1)

where P, Q, f, g, σr , γr are n-dimensional column-vectors, Wr are independent
standard Wiener processes on a probability space (�,F ,P), r = 1, . . . ,m, and H is
a Hamiltonian.

The Hamiltonians are assumed to be in C K
b for certain K ∈ N, the function space

consists of K -times continuous differentiable functions with bounded derivatives up
to order K . As in the deterministic case, the solution

ϕt (p0, q0) = (P(t, p0, q0), Q(t, p0, q0))

of (1.1) preserves the symplectic structure (see e.g. [10], Theorem 4.1). That is, for
y0 = (p0, q0),

(
∂ϕt

∂y0

)T

J

(
∂ϕt

∂y0

)
= J, where J =

(
0 I

−I 0

)
.

To numerically solve the stochastic Hamiltonian system (1.1), much research is
looking at the stochastic symplectic integrators (see, [3,6,8,9,11–13] and references
therein). This interest is motivated by the fact that symplectic integrators, in compari-
sonwith usual numerical schemes, allow us to simulate Hamiltonian systems on a long
time interval with high accuracy. However, the backward error analysis for showing
the good long time behaviors of stochastic symplectic integrators for stochastic Hamil-
tonian systems does not exist in the literature and it is a challenging open problem.
It is known that all of stochastic symplectic methods should be implicit for general
stochastic Hamiltonian systems and thus more computation complexity will arise.
Only for special stochastic Hamiltonian systems such as separable systems, explicit
stochastic symplectic methods can be constructed (see [10]).

In this paper,we construct explicit stochastic pseudo-symplecticmethods for system
(1.1) that can preserve the symplectic properties in relatively long time frames with
certain accuracy. For the deterministic Hamiltonian systems, Aubry and Chartier [2]
have proposed the concept of pseudo-symplectic methods (see also [7]). A one-step
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numerical method y1 = �h(y0) of order M ,�h = ϕh +O(hM+1), is called a pseudo-
symplectic method of order (M, N ) with N > M , if it satisfies

(
∂�h

∂y0

)T

J

(
∂�h

∂y0

)
− J = O(hN+1).

This ideamotivates the following definition of a stochastic pseudo-symplecticmethod,
whose strong convergence rate should be consistent with the convergence of stochastic
integral in the sense of L2(�)-norm. From the viewpoint of structure preservation,
stochastic symplectic methods and stochastic pseudo-symplectic methods generally
have good performance, although it is also worthy to mention that there are exceptions
such as the Lie-Trotter splitting methods for the simulation of the invariant measure
for stochastic Langevin equation in [1].

Definition 1.1 If a numerical method y1 = �h(y0) of mean-square order M for the
stochastic Hamiltonian system (1.1) satisfies

∥∥∥∥∥

(
∂�h

∂y0

)T

J

(
∂�h

∂y0

)
− J

∥∥∥∥∥
L2(�)

:=
⎛

⎝E

∥∥∥∥∥

(
∂�h

∂y0

)T

J

(
∂�h

∂y0

)
− J

∥∥∥∥∥

2
⎞

⎠

1
2

= O
(
hN+1

)
,

with N > M , then this method is called a pseudo-symplectic method of mean-square
order (M, N ), and N is called the pseudo-symplectic order. Here ‖ · ‖ denotes the
Frobenius norm and E denotes the expectation.

The rest of this paper is organized as follows. We construct a series of pseudo-
symplectic methods for (1.1) with additive noise in Sect. 2, and give the pseudo-
symplectic orders. In Sect. 3,wegive numerical experiments for the pseudo-symplectic
mid-point method. Compared with the Euler method and the symplectic method, we
find that the pseudo-symplectic methods can be used in long-time computations to
nearly preserve the symplectic structure. Finally, in Sect. 4, a summary of our work is
presented.

2 Pseudo-symplectic methods for stochastic Hamiltonian systems

In this section, we construct two explicit methods and a series of explicit Runge–Kutta
methods for (1.1).

2.1 Stochastic pseudo-symplectic mid-point method and stochastic
pseudo-symplectic trapezoidal method

Suppose that 0 = t0 < t1 · · · < tn = T is a partition of [0, T ] with tk = kh,
k = 0, . . . , n − 1, and h = T

n . Denote δkWr := Wr (tk + h) − Wr (tk), r = 1, . . . ,m,
k = 0, . . . , n − 1, and define
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p̃ = p + f (p, q)h +
m∑

r=1

σr (tk)δkWr ,

q̃ = p + g(p, q)h +
m∑

r=1

γr (tk)δkWr .

(2.1)

For α ∈ [0, 1], define
P = p + αh f (p, q) + (1 − α)h f ( p̃, q̃) +

m∑

r=1

σr (tk)δkWr ,

Q = q + αhg(p, q) + (1 − α)hg( p̃, q̃) +
m∑

r=1

γr (tk)δkWr ,

(2.2)

and

P̂ = p + h f (α p̃ + (1 − α)p, (1 − α)q̃ + αq) +
m∑

r=1

σr (tk)δkWr ,

Q̂ = q + hg (α p̃ + (1 − α)p, (1 − α)q̃ + αq) +
m∑

r=1

γr (tk)δkWr .

(2.3)

Comparing the above two explicit methods (2.1)+ (2.2) and (2.1)+ (2.3) with Euler
method and then applying Milstein’s mean-square comparison theorem (see e.g. [10],
theorem 1.2.5), we obtain the convergence of the two explicit methods with mean-
square order 1. They are both shown to be pseudo-symplectic in the following theorem.

Theorem 2.1 Assume that H ∈ C 2
b , then there exists a positive constant C1 =

C1(H, α) such that the methods (2.1)+ (2.2) and (2.1)+ (2.3) for the system (1.1)
satisfy ∥∥∥∥∥∥

(
∂(P, Q)

∂(p, q)

)T

J

(
∂(P, Q)

∂(p, q)

)
− J

∥∥∥∥∥∥
L2(�)

= C1h
2 + O(h3). (2.4)

Moreover, if H ∈ C 4
b , then there exists a positive constant C2 = C2(H) such that∥∥∥∥∥∥

(
∂(P, Q)

∂(p, q)

)T

J

(
∂(P, Q)

∂(p, q)

)
− J

∥∥∥∥∥∥
L2(�)

= |2α − 1|C2h
2 + O(h3). (2.5)

Proof We only prove the results for the method (2.1)+ (2.2). Similar arguments can
be applied to the method (2.1)+ (2.3). Rewrite (2.1)+ (2.2) as

F̃ := p̃ − p − f (p, q)h −
m∑

r=1

σr (tk)δkWr = 0,

G̃ := q̃ − p − g(p, q)h −
m∑

r=1

γr (tk)δkWr = 0,

123



Explicit pseudo-symplectic methods for stochastic… 167

and

F := P − p − αh f (p, q) − (1 − α)h f ( p̃, q̃) −
m∑

r=1

σr (tk)δkWr ,

G := Q − q − αhg(p, q) − (1 − α)hg( p̃, q̃) −
m∑

r=1

γr (tk)δkWr .

Assume that H is twice differentiable. From the above equations we have

∂(F,G)

∂(P, Q)
· ∂(P, Q)

∂(p, q)
+ ∂(F,G)

∂( p̃, q̃)
· ∂( p̃, q̃)

∂(p, q)
+ ∂(F,G)

∂(p, q)
= 0.

Simple calculations yield

∂(F,G)

∂(P, Q)
=

(
I 0
0 I

)
,

∂(F,G)

∂( p̃, q̃)
=

(
(1 − α)H̃pqh (1 − α)H̃qqh

−(1 − α)H̃pph −(1 − α)H̃pqh

)
,

∂( p̃, q̃)

∂(p, q)
=

(
I − Hpqh −Hqqh
Hpph I + Hpqh

)
,

∂(F,G)

∂(p, q)
=

(−I + αHpqh αHqqh
−αHpph −I − αHpqh

)
,

where H̃pp, H̃pq and H̃qq denote the second derivatives of H with respect to p̃ and q̃ .
Then

∂(P, Q)

∂(p, q)
= −∂(F,G)

∂( p̃, q̃)
· ∂( p̃, q̃)

∂(p, q)
− ∂(F,G)

∂(p, q)
=:

(

11 
12

21 
22

)
.

with


11 = I − [αHpq + (1 − α)H̃pq ]h + (1 − α)(H̃pq Hpq − H̃qq Hpp)h
2,


12 = −[αHqq + (1 − α)H̃qq ]h + (1 − α)(H̃pq Hqq − H̃qq Hpq)h
2,


21 = [αHpp + (1 − α)H̃pp]h − (1 − α)(H̃ppHpq − H̃pq Hpp)h
2,


22 = I + [αHpq + (1 − α)H̃pq ]h − (1 − α)(H̃ppHqq − H̃pq Hpq)h
2.

Thus

(
∂(P, Q)

∂(p, q)

)T

J

(
∂(P, Q)

∂(p, q)

)
=

(

T

11
21 − 
T
21
11 
T

11
22 − 
T
21
12


T
12
21 − 
T

22
11 
T
12
22 − 
T

22
12

)
.
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168 X. Niu et al.

In what follows we only estimate 
T
11
21 − 
T

21
11, while an analogous idea can
be applied to estimate the terms 
T

11
22 −
T
21
12, 
T

12
21 −
T
22
11 and 
T

12
22 −

T

22
12.
Direct calculations yield that

∥∥∥
T
11
21 − 
T

21
11

∥∥∥
L2(�)

=
∥∥∥α2(HppHpq − Hpq Hpp) + (1 − α)2(H̃pp H̃pq − H̃pq H̃pp)

− (1 − α)2(Hpp H̃pq − Hpq H̃pp)

− (1 − α)2(H̃ppHpq − H̃pq Hpp)

∥∥∥
L2(�)

h2 + O(h3).

Thus (2.4) holds for certain C1.
Now we assume that H ∈ C 4

b . Expanding H̃pp and H̃pq at (p, q), we have

H̃pp = Hpp + Hppp ⊗ ( p̃ − p) + Hppq ⊗ (q̃ − q) + C3h,

H̃pq = Hpq + Hppq ⊗ ( p̃ − p) + Hpqq ⊗ (q̃ − q) + C4h.

Since p̃ − p and q̃ − q are both O(h
1
2 ), the coefficient of h2 in the estimation of


T
11
21 − 
T

21
11 is |2α − 1| (E‖HppHpq − Hpq Hpp‖2
) 1
2 + O(h). So there exists

a positive constant C̃ = C̃(H) such that

∥∥∥
T
11
21 − 
T

21
11

∥∥∥
L2(�)

= |2α − 1|C̃h2 + O
(
h3

)
.

This yields (2.5) and we complete the proof.

The expansion (2.4) implies that, for (1.1), the method (2.1)+ (2.2) and (2.1)+ (2.3)
are of order (1, 2) if and only if α = 1

2 . We call them the stochastic pseudo-symplectic
mid-point method and stochastic pseudo-symplectic trapezoidal method, respectively.
Moreover, the proof of Theorem 2.1 implies that the coefficients of h3 in the estimation
of 
T

11
21 − 
T
21
11 could not vanish, even if α = 1

2 . This shows that the method
(2.1)+ (2.2) and (2.1)+ (2.3) for (1.1) could not be pseudo-symplectic with pseudo-
symplectic order more than 2 for any α ∈ [0, 1].

2.2 Explicit Runge–Kutta methods

Among the numerical methods for stochastic Hamiltonian systems, Runge–Kutta
methods belongs to an important class of methods. However, they may bring more
complexity to the calculations because they can be implicit. We try to construct a class
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of explicit Runge–Kutta methods in this subsection. Set

P1 = p + ϕ1, Q1 = q + ψ1,

Pi = p + h
i−1∑

j=1

αi j f (P j ,Q j ) + ϕi , Qi = q + h
i−1∑

j=1

αi j g(P j ,Q j ) + ψi ,

P = p + h
s∑

i=1

βi f (Pi ,Qi ) + η, Q = q + h
s∑

i=1

βi g(Pi ,Qi ) + ζ,

(2.6)

with i = 2, . . . , s, where ϕi , ψi , η, ζ, i = 1, . . . , s, are functions that are indepen-
dent of p and q and parameters αi j , βi , i = 2, . . . , s, j = 1, . . . , i − 1, need to be
fixed.

We first construct a 2-stage explicit Runge–Kutta method

P1 = p + ϕ1, Q1 = q + ψ1,

P2 = p + hα21 f (P1,Q1) + ϕ2, Q2 = q + hα21g(P1,Q1) + ψ2,

P = p + hβ1 f (P1,Q1) + hβ2 f (P2,Q2) + η,

Q = q + hβ1g(P1,Q1) + hβ2g(P2,Q2) + ζ.

(2.7)

Let

ϕ1 =
m∑

r=1

σr (λ1 Jr0 + μ1δkWr ), ψ1 =
m∑

r=1

γr (λ1 Jr0 + μ1δkWr ),

ϕ2 =
m∑

r=1

σr (λ2 Jr0 + μ2δkWr ), ψ2 =
m∑

r=1

γr (λ2 Jr0 + μ2δkWr ),

η =
m∑

r=1

σrδkWr +
m∑

r=1

σ
′
r I0r , ζ =

m∑

r=1

γrδkWr +
m∑

r=1

γ
′
r I0r ,

(2.8)

where

δkWr := h
1
2 ξrk, (Jr0)k := h

1
2

(
ξrk

2
+ ηrk√

12

)
, (I0r )k := h

3
2

(
ξrk

2
− ηrk√

12

)
(2.9)

with ξrk andηrk , r = 1, 2, . . . ,m, k = 0, 1, . . . , n−1, being a sequenceof independent
N (0, 1)-distributed random variables and where the parameters satisfy

β1 + β2 = 1, α21β2 = 1

2
,

3∑

i=1

αiλi = 1,
3∑

i=1

αiμi = 0,

3∑

i=1

αi (λi Jr0 + μiδkWr )(λi Jl0 + μiδkWl) = h

2
δrl . (2.10)

123



170 X. Niu et al.

It turns out that the method (2.7)–(2.9), satisfying (2.10), is mean-square convergent
of order 3

2 (see e.g. [10]). We don’t consider any higher order scheme here due to
the fact that schemes with mean-square order higher than 3

2 need to simulate the
multiple Wiener intergral (see e.g. [13]). The following theorem shows that (2.7) is
pseudo-symplectic of pseudo-symplectic order 2, with appropriate assumptions on the
Hamiltonian H .

Theorem 2.2 Assume that H ∈ C 4
b and the parameters in the 2-stage explicit Runge–

Kutta method (2.7)–(2.9) satisfy the condition (2.10), then this method is pseudo-
symplectic of order ( 32 , 2) provided β1 = 1

2 , β2 = 1
2 and α21 = 1.

Proof Rewrite (2.7) as

F1 := P1 − p − ϕ1 = 0, G1 := Q1 − q − ψ1 = 0,

F2 := P2 − p − hα21 f (P1,Q1) − ϕ2 = 0,

G2 := Q2 − q − hα21g(P1,Q1) − ψ2 = 0,

F := P − p − hβ1 f (P1,Q1) − hβ2 f (P2,Q2) − η = 0,

G := Q − q − hβ1g(P1,Q1) − hβ2g(P2,Q2) − ζ = 0.

The above formulations immediately yield

∂(F,G)

∂(P, Q)
· ∂(P, Q)

∂(p, q)
+ ∂(F,G)

∂(P2,Q2)
· ∂(P2,Q2)

∂(p, q)

+ ∂(F,G)

∂(P1,Q1)
· ∂(P1,Q1)

∂(p, q)
+ ∂(F,G)

∂(p, q)
= 0,

∂(F2,G2)

∂(P2,Q2)
· ∂(P2,Q2)

∂(p, q)
+ ∂(F2,G2)

∂(P1,Q1)
· ∂(P1,Q1)

∂(p, q)
+ ∂(F2,G2)

∂(p, q)
= 0,

∂(F1,G1)

∂(P1,Q1)
· ∂(P1,Q1)

∂(p, q)
+ ∂(F1,G1)

∂(p, q)
= 0.

Successively, we can get

∂(P1,Q1)

∂(p, q)
=

(
I 0
0 I

)
,

∂(P2,Q2)

∂(p, q)
=

(
I − α21H

(1)
pq h −α21H

(1)
qq h

α21H
(1)
pp h I + α21H

(1)
pq h

)
,

and

∂(P, Q)

∂(p, q)
= − ∂(F,G)

∂(P2,Q2)
· ∂(P2,Q2)

∂(p, q)
− ∂(F,G)

∂(P1,Q1)
· ∂(P1,Q1)

∂(p, q)
− ∂(F,G)

∂(p, q)

=:
(

�11 �12
�21 �22

)
,

with

�11 = I − (β1H
(1)
pq + β2H

(2)
pq )h + α21β2(H

(2)
pq H (1)

pq − H (2)
qq H (1)

pp )h2,
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�12 = −(β1H
(1)
qq + β2H

(2)
qq )h + α21β2(H

(2)
pq H (1)

qq − H (2)
qq H (1)

pq )h2,

�21 = (β1H
(1)
pp + β2H

(2)
pp )h − α21β2(H

(2)
pp H

(1)
pq − H (2)

pq H (1)
pp )h2,

�22 = I + (β1H
(1)
pq + β2H

(2)
pq )h − α21β2(H

(2)
pp H

(1)
qq − H (2)

pq H (1)
pq )h2.

We have

(
∂(P, Q)

∂(p, q)

)T

J

(
∂(P, Q)

∂(p, q)

)
=

(
�T

11�21 − �T
21�11 �T

11�22 − �T
21�12

�T
12�21 − �T

22�11 �T
12�22 − �T

22�12

)
,

(2.11)

Next we only focus on the estimate for �T
11�21 − �T

21�11. An analogous idea can
be applied to estimate the other elements of the above matrix.

Direct calculations yield that

(
E

∥∥∥�T
11�21 − �T

21�11

∥∥∥
2
) 1

2

=
(
E

∥∥∥ − β2
1 (H

(1)
pq H

(1)
pp − H (1)

pp H
(1)
pq ) − β2

2 (H
(2)
pq H (2)

pp − H (2)
pp H

(2)
pq )

+ (α21β2 − β2β1)((H
(2)
pq H (1)

pp − H (2)
pp H

(1)
pq ) + (H (1)

pq H
(2)
pp − H (1)

pp H
(1)
pq ))

∥∥∥
2) 1

2
h2

+ O(h
5
2 ).

Therefore, (2.4) holds for some C1. Due to

H (2)
pq = H (1)

pq + H (1)
ppq ⊗ (P2 − P1) + H (1)

pqq ⊗ (Q2 − Q1) + O(h),

H (2)
pq = H (1)

pq + H (1)
ppq ⊗ (P2 − P1) + H (1)

pqq ⊗ (Q2 − Q1) + O(h),

and the relationship of p, q, P1, Q1, P2, Q2, we obtain

∥∥∥�T
11�21 − �T

21�11

∥∥∥
L2(�)

=
∣∣∣(β1 + β2)

2 − 2α21β2

∣∣∣ ·
∥∥∥H (1)

pq H
(1)
pp − H (1)

pp H
(1)
pq

∥∥∥
L2
h2

+
∣∣∣α21β2 − β1β2 − β2

2

∣∣∣ ·
∥∥∥M − M

T
∥∥∥
L2
h

5
2 + O

(
h3

)
,

for some matrixM which is generally not symmetric. The above analysis implies that
the 2-stage explicit RK method (2.7) is pseudo-symplectic of order ( 32 , 2) under the
condition (2.10), which yields β2 = 1

2 , β1 = 1
2 and α21 = 1.

For general s-stage explicit Runge–Kutta method (2.6) with

ϕi =
m∑

r=1

σr (λi Jr0 + μiδkWr ), ψi =
m∑

r=1

γr (λi Jr0 + μiδkWr ), i = 2, . . . , s,

(2.12)

123



172 X. Niu et al.

it is convergent of mean-square order 3
2 when the parameters satisfy (see e.g. [10])

s∑

i=1

βi = 1,
s∑

i=1

i−1∑

j=1

βiαi j = 1

2
, (2.13)

s∑

i=1

βiλi = 1,
s∑

i=1

βiμi = 0,

s∑

i=1

βi (λi Jr0 + μiδkWr )(λi Jl0 + μiδkWl) = h

2
δrl .

The following theorem shows that (2.6) satisfying (2.13) is pseudo-symplectic of
pseudo-symplectic order 2. The proof is similar to that of Theorem 2.2 and thus we
omit it.

Theorem 2.3 If the parameters in the s-stage explicit Runge–Kutta method (2.6)
satisfy (2.13), then it is pseudo-symplectic of order ( 32 , 2) provided

k−1∑

j=1

βkαk j +
s∑

j≥k+1

β jα jk − βk

(
s∑

i=1

βi

)
= 0, k = 2, . . . , s. (2.14)

Notice that for s = 2, combining (2.13) and (2.14), this method is of order ( 32 , 2)
if and only if β1 = 1

2 , β2 = 1
2 and α21 = 1, as shown in Theorem 2.2. For s > 2, this

method could be of order ( 32 , 2) with many admissible parameters. One can construct
higher order explicit pseudo-symplectic methods based on the explicit Runge–Kutta
method (2.6) through appropriate choice of the parameters.

3 Numerical experiments

In this section, we give numerical experiments to simulate stochastic Hamiltonian
system (1.1). We take both linear and nonlinear oscillators as well as a stochastic
nonlinear Schrödinger equation as examples.

3.1 Stochastic harmonic oscillator

We first consider a linear harmonic oscillator with additive noise (see e.g. [10]):

dP = Qdt, P(0) = p0,

dQ = −Pdt + γ dW (t), Q(0) = q0,
(3.1)

with Hamiltonians H0(p, q) = 1
2 (p

2 + q2) and H1(p, q) = −γ p, which represents
kinetic energy and thermal energy, respectively, caused by the stochastic perturbation.
The exact solution of this system is
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(
P(tk+1)

Q(tk+1)

)
=

(
cos h sin h

− sin h cos h

)(
P(tk)
Q(tk)

)
+ γ

( ∫ tk+1
tk

sin(tk+1 − t)dW (t)∫ tk+1
tk

cos(tk+1 − t)dW (t)

)
,

(3.2)

with h := tk+1 − tk , k = 0, 1, . . . , N − 1. We simulate the linear harmonic oscillator
(3.1) by the pseudo-symplectic mid-point method, i.e., the method (2.1)+ (2.2),

P̃k =Pk + hQk,

Q̃k =Qk − hPk + γ δkW,

Pk+1 =Pk + h

2
(Qk + Q̃k),

Qk+1 =Qk − h

2
(Pk + P̃k) + γ δkW,

(3.3)

compared with the (forward) Euler method and the symplectic mid-point method. For
simplicity, we take p0 = q0 = 0 and γ = 1 in the simulations.

Since the period of free oscillations of (3.1) is 2π , the left part and the right parts
of Fig. 1, corresponding to the time interval [0, 128] and [0, 1280], approximately
contain 20 oscillations and 200 oscillations of (3.1). From these graphs, it is clear that
the Euler method is unsuitable for the simulation of the Hamiltonian system (3.1) on
a long time interval, since the amplitude of oscillations simulated by Euler method is
about 50000 times greater than the exact amplitude after 200 oscillations. In contrast,
the pseudo-symplectic method as well as symplectic method does much better than
Euler method in reproducing oscillations of the system (3.1). Although the pseudo-
symplectic method is not so accurate as the symplectic method, the norm of its error
still keeps within 5% of the norm of the exact solution after 200 oscillations.

Figure 2 represents the evolution of domains in the phase plane of system (3.1).
The initial domain is the unit circle with center at the origin. We plot images of this
circle, which are obtained by the exact solution (3.2) and the three methods. The exact
graphs are unit circles shifted from the origin due to the effect of noise. The images
for Euler method are also circles but the radius increased, while for the symplectic
and pseudo-symplectic methods, the images become ellipse. In spite of the fact that
pseudo-symplectic method and Euler method are both explicit and have the same
mean-square order of accuracy, pseudo-symplectic method is much better than Euler
method and does more or less as well as symplectic method.

3.2 Nonlinear stochastic oscillator

Next, we consider the following double well problem (see e.g. [3]):

dP = (Q − Q3)dt + σdW (t), P(0) = p0,

dQ = Pdt, Q(0) = q0.
(3.4)
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Fig. 1 Two sample trajectories of the solution obtained by the exact formula (3.2) (solid line) and pseudo-
symplectic mid-point method, Euler method and symplectic mid-point method with h = 0.02

It is obvious that H0(p, q) := 1
2 (p

2 − q2) + 1
4q

4 and H1(p, q) := −σq are the
Hamiltonians for this system. Since the system (3.4) is nonlinear, we can’t explicitly
express its solution. We test the pseudo-symplectic mid-point method

P̃k+1 = Pk + h(Qk − Q3
k) + σδkW,

Q̃k+1 = Qk + hPk,

Pk+1 = Pk + h

2
(Qk − Q3

k + Q̃k+1 − Q̃3
k+1) + σδkW,

123



Explicit pseudo-symplectic methods for stochastic… 175

−6 −4 −2 0 2 4 6 8 10 12 14
−2

−1

0

1

2

3

4

5

6

7

8

X
1

X
2

exact
symplectic

Euler
pseudo

t=0

t=43.4

t=29.6

t=14.8

Fig. 2 The evolution of domains in the phase plane of system (3.1) obtained by the exact solution (3.2) and
pseudo-symplectic mid-point method, symplectic mid-point method, and Euler methods with h = 0.05

Qk+1 = Qk + h

2
(Pk + P̃k+1), (3.5)

compared with symplectic mid-point method which is a fully implicit method, and
both forward and backward Euler methods. We take p0 = q0 = √

2 and σ = 0.05 in
the simulations.

Figure 3 illustrates the numerical behavior of pseudo-symplecticmid-pointmethod,
symplecticmid-point method, and backward Eulermethods applied to (3.4) in the time
interval [0, 140]. These graphs indicate that the pseudo-symplectic method, compared
with the symplectic method, does much better than backward Euler method in repro-
ducing oscillations of the system (3.4).

3.3 Stochastic nonlinear Schrödinger equation

In this part, we consider the following focusing stochastic nonlinear Schrödinger
equation with an additive noise:

idu = −�udt − |u|2udt + dW (t), in (0, T ] × O; u(0) = u0 (3.6)

under homogenous Dirichlet boundary condition. Here T ∈ (0,∞), O = (0, 1)
and W = {W (t) : t ∈ [0, T ]} is a real-valued �-Wiener process on a stochastic
basis (�,F ,Ft ,P) (see e.g. [4]), i.e., there exists an real-valued, orthonormal basis
{ek}∞k=1 of L2(O) and a sequence of mutually independent, real-valued Brownian
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Fig. 3 Two sample trajectorys of the solution of (3.4) obtained by pseudo-symplectic mid-point method,
backward Euler method and symplectic mid-point method with h = 0.02

motions {βk}∞k=1 such that

W (t) =
∞∑

k=1

�
1
2 ekβk(t), t ∈ [0, T ].

This equation models the propagation of nonlinear dispersive waves in non-
homogeneous or random media (see e.g. [4]).
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Fig. 4 The evolution of pseudo-symplectic mid-point method and symplectic mid-point method with
δx = 2−3 and δt = 2−12

It is shown in [4] that the charge of this equation has the following evolution:

‖u(t)‖2L2(O) = ‖u0‖2L2(O) − 2
∞∑

k=1

	
[∫ t

0

∫

O
ū(s)�

1
2 ekdxdβ(s)

]

+ t
∞∑

k=1

‖� 1
2 ek‖2L2(O).

Here we will show that our numerical scheme recovers the charge evolution. To make
it clear, we first truncate the noise with the first M = 23 terms and spatially discretize
Eq. (3.6) by centered difference method with uniform step size δx = 1

M , we obtain
the M-dimensional stochastic Hamiltonian system

dPδx (t) = −�δx Qδxdt − |Qδx |2Qδxdt − 

[(

M∑

i=1

�
1
2 ekdβi (t)

)

δx

]
,

dQδx (t) = �δx Pδxdt + |Pδx |2Pδxdt + 	
[(

M∑

i=1

�
1
2 ekdβi (t)

)

δx

]
,

(3.7)

where Pδx and Qδx are the real part and imaginary part of the numerical solution uδx ,
respectively, and�δx denotes the centered difference discretization of�. Here we take

�
1
2 ek = 1

1+k2.6
ek with ek(x) = √

2 sin(kπx), 1 ≤ k ≤ M , x ∈ O . Then we apply
the proposed pseudo-symplectic scheme (2.3) with α = 1/2 to numerically solve Eq.
(3.7) with time step size δt = 2−12. Figure 4 presents the evolution of charge for our
numerical methods compared with symplectic methods.

4 Conclusions

In the present paper, a class of explicit pseudo-symplectic methods applicable to
stochastic Hamiltonian systems with an additive multidimensional Wiener process is
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introduced. Compared to other methods, the main advantage of the proposed class of
pseudo-symplectic methods is the significant reduction of the computational costs as
well as the preservation of the symplectic structure of the systems over a relatively
long time with certain accuracy. These theoretical results are verified by linear and
nonlinear oscillators as well as spatially discrete stochastic nonlinear Schrödinger
equation. For future research, the construction of explicit pseudo-symplectic schemes
with higher pseudo-symplectic order for general stochastic Hamiltonian system with
multiplicative noises may be of particular interest.
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