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Abstract We study linear dissipative Hamiltonian (DH) systems with real constant
coefficients that arise in energy based modeling of dynamical systems. We analyze
when such a system is on the boundary of the region of asymptotic stability, i.e.,
when it has purely imaginary eigenvalues, or how much the dissipation term has to be
perturbed to be on this boundary. For unstructured systems the explicit construction of
the real distance to instability (real stability radius) has been a challenging problem.
We analyze this real distance under different structured perturbations to the dissipation
term that preserve the DH structure and we derive explicit formulas for this distance in
terms of low rank perturbations. We also show (via numerical examples) that under real
structured perturbations to the dissipation the asymptotical stability of a DH system
is much more robust than for unstructured perturbations.
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1 Introduction

We study linear time-invariant systems with real coefficients. When a physical system
is energy preserving, then a mathematical model should reflect this property and this
is characterized by the property of the system being Hamiltonian. If energy dissipates
from the system then it becomes a dissipative Hamiltonian (DH) system, which in the
linear time-invariant case can be expressed as

%= (J—R)Ox, (1.1)

where the function x — x” Qx, with 0 = QT e R™" positive definite, describes
the energy of the system, J = —J7 € R™" is the structure matrix that describes the
energy flux among energy storage elements, and R € R™" with R = R’ positive
semidefinite is the dissipation matrix that describes energy dissipation in the system.

Dissipative Hamiltonian systems are special cases of port-Hamiltonian systems,
which recently have received a lot attention in energy based modeling, see, e.g., [3,8,
19,21,22,26-30]. An important property of DH systems is that they are stable, which in
the time-invariant case can be characterized by the property that all eigenvalues of A =
(J — R) Q are contained in the closed left half complex plane and all eigenvalues on the
imaginary axis are semisimple, see, e.g., [20] for a simple proof which immediately
carries over to the real case discussed here.

For general unstructured systems X = Ax, if A has purely imaginary eigenvalues,
then arbitrarily small perturbations (arising e.g., from linearization errors, discretiza-
tion errors, or data uncertainties) may move eigenvalues into the right half plane and
thus make the system unstable. So stability of the system can only be guaranteed
when the system has a reasonable distance to instability, see [2,5,11,12,14,31], and
the discussion below.

When the coefficients of the system are real and it is clear that the perturbations
are real as well, then the complex distance to instability is not the right measure,
since typically the distance to instability under real perturbations is larger than the
complex distance. A formula for the real distance under general perturbations was
derived in the ground-breaking paper [23]. The computation of this real distance to
instability (or real stability radius) is an important topic in many applications, see e.g.,
[10,17,18,24,25,32].

In this paper, we study the distance to instability under real (structure preserving)
perturbations for DH systems and we restrict ourselves to the case that only the dis-
sipation matrix R is perturbed, because this is the part of the model that is usually
most uncertain, due to the fact that modeling damping or friction is extremely difficult,
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Stability radii for real linear Hamiltonian systems with... 813

see [10] and Example 1.1 below. Furthermore, the analysis of the perturbations in the
matrices Q, J is not completely clear at this stage.

Since DH systems are stable, it is clear that perturbations that preserve the DH
structure also preserve the stability. However, DH systems may not be asymptotically
stable, since they may have purely imaginary eigenvalues, which happens e.g., when
the dissipation matrix R vanishes. So in the case of DH systems, we discuss when
the system is robustly asymptotically stable, i.e., small real and structure-preserving
perturbations Ag to the coefficient matrix R keep the system asymptotically stable,
and we determine the smallest perturbations that move the system to the boundary of
the set of asymptotically stable systems. Motivated from an application in the area of
disk brake squeal, we consider restricted structure-preserving perturbations of the form
Ar = BABT, where B € R™" is a so-called restriction matrix of full column rank.
This restriction allows the consideration of perturbations that only affect selected parts
of the matrix R. (We mention that perturbations of the form BABT should be called
structured perturbations by the convention following [13], but we prefer the term
restricted here, because of the danger of confusion with the term structure-preserving
for perturbations that preserve the DH structure.)

Example 1.1 Consider as motivating example the finite element analysis of disk brake
squeal [10], which leads to large scale differential equations of the form

Mg+ D+ G)g+ (K+N)gq=Ff,

where M = MT > 0 is the mass matrix, D = DT > 0 models material and friction
induced damping, G = —G' models gyroscopic effects, K = KT > 0 models the
stiffness, and NN is a nonsymmetric matrix modeling circulatory effects. Here ¢ denotes
the derivative with respect to time. An appropriate first order formulation is associated
with the linear system z = (J — R) Oz, where

1 1 —1
s=[¢ K+3NT g [P SN] o [M 0]
—(K+3N%) 0 INT 0 0 K

This system is in general not a DH system, since for N # 0 the matrix R is indefinite.
But since brake squeal is associated with the eigenvalues in the right half plane, it is
an important question for which perturbations the system stays stable. This instability
can be associated with a restricted indefinite perturbation

D 0 0 In
. 2
R+AR._|:O O}Jr[%NT o }

to the matrix that contains only the damping. Note that AR is subject to further
restrictions, since only a small part of the finite elements is associated with the brake
pad and thus the matrix N has only a small number of non-zeros associated with
these finite elements and only these occur in the perturbation. If this perturbation is
smaller than the smallest perturbation which makes the system have purely imaginary
eigenvalues then the system will stay stable. This example motivates our problem. A
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814 C. Mehl et al.

much harder problem which we do not address is a different restriction of the from
BANC +C TAK,BT which would be more appropriate for this example.

Consider a real linear time-invariant dissipative Hamiltonian (DH) system of the
form (1.1). For perturbations in the dissipation matrix we define the following real
distances to instability.

Definition 1.1 Consider a real DH system of the form (1.1) and let B € R™" and
C € R?" be given restrictions matrices. Then for p € {2, F} we define the following

stability radii.

(1) The stability radius rr ,(R; B, C) of system (1.1) with respect to real general
perturbations to R under the restriction (B, C) is defined by

re.p(R: B, C):=inf {||A||,, ) AeR™, A((J - R)Q — (BAC)Q)ﬂiR;éVJ} .

(2) The stability radius rgdp(R; B) of system (1.1) with respect to real structure-
preserving semidefinite perturbations from the set

Su(R, B) = {A eR™| AT =A<0 and (R+ BAB”) > 0}
under the restriction (B, BT) is defined by
it (R: B)

- inf{||A||p ) A€ Sy(R, B), A ((J — RO - (BABT)Q> NiR # w}.

(3) The stability radius r]R (R; B) of system (1.1) with respect to structure-
preserving indefinite perturbatlons from the set

Si(R, B) = {A eR™"| AT = A and (R+ BAB”) > o}
under the restriction (B, BT) is defined by

R, p(R B)

- inf{||A||p ’ A€ Si(R, B), A ((J — RO - (BABT)Q> NiR # @}.

To derive the real structured stability radii, we will follow the strategy in [20] for the
complex case and reformulate the problem of computing rfé" (R; B) or rﬁf (R; B) in
terms of real structured mapping problems. The following lemma of [20] (expressed
here for real matrices) gives a characterization when a DH system of the form (1.1)
has eigenvalues on the imaginary axis.
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Lemma 1.1 ([20, Lemma 3.1]) Let J, R, Q € R™" be such that JT = —J, RT = R
positive semidefinite and QT = Q positive definite. Then (J — R)Q has an eigen-
value on the imaginary axis if and only if RQx = 0 for some eigenvector x of J Q.
Furthermore, all purely imaginary eigenvalues of (J — R) Q are semisimple.

The new mapping theorems for real DH systems will be derived in Sect. 2. Based
on these mapping theorems the stability radii for real DH systems under perturbations
in the dissipation matrix are studied in Sect. 3 and the results are illustrated with
numerical examples in Sect. 4.

In the following || - || denotes the spectral norm of a vector or a matrix while || - ||
denotes the Frobenius norm of a matrix. By A (A) we denote the spectrum of a matrix
A € R™" where R™" is the set of real n x r matrices, with the special case R" = R™ L
For A = AT € R™" we use the notation A > 0 and A < 0if A is positive or negative
semidefinite, respectively, and A > 0 if A is positive definite. The Moore-Penrose of
a matrix R™” is denoted by AT, see e.g., [9].

2 Mapping theorems

As in the complex case that was treated in [20], the main tool in the computation
of stability radii for real DH systems will be minimal norm solutions to structured
mapping problems. To construct such mappings in the case of real matrices, and to
deal with pairs of complex conjugate eigenvalues and their eigenvectors, we will need
general mapping theorems for maps that map several real vectors x1, . . ., x,, to vectors
Y1s -, Ym- We will first study the complex case and then use these results to construct
corresponding mappings in the real case.

For given X € C™P,Y € C*P,Z € C"*, and W e C™*, the general mapping
problem, see [16], asks under which conditions on X, Y, Z, and W the set

S = [AG(C"'”’|AX=Y, AHZ=W}

is nonempty, and if it is, then to construct the minimal spectral or Frobenius norm
elements from S. To solve this mapping problem, we will need the following well-
known result.

Lemma 2.1 ([4]) Let A, B, C be given complex matrices of appropriate dimensions.
Then for any positive number | satisfying

o1

there exists a complex matrix D of appropriate dimensions such that

15 5]

)

(4 cll).

= M. 2.1
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Furthermore, any matrix D satisfying (2.1) is of the form
D=—KA"L +u( —KK™'27(1 — LL")'/?,

where KH = (u21 — A" A)~V2BH I = (W21 — AAHY=V2C, and Z is an arbitrary
contraction, i.e., ||Z] < 1.

Using Lemma 2.1 we obtain the following solution to the general mapping problem.
Theorem 2.1 Let X € C"P, Y e C"P, Z € C"k and W € C™k. Then the set
Si={aec |Ax=v, A"z =w}.

is nonempty if and only if XHW = YHZ, YXT'X =Y, and WZTZ = W. If this is
the case, then

S= {YX*+(WZT)H —wzhxxtyu - zzHRrRU - xxh ‘ Re (C"*m} .
2.2)

Furthermore, we have the following minimal-norm solutions to the mapping problem
AX=Yand A"Z =W:

(1) The matrix
G=vx +wzh" —wzhHhxxt

is the unique matrix from S of minimal Frobenius norm

161 = IV XT3+ IWZTI, — trace(WZD)(WZDHXXT) = in 1A -
S
(2) The minimal spectral norm of elements from S is given by

= max 1Y XTI, W2z 1} = inf Al 2.3)
AeS

Moreover, assume that rank(X) = r| and rank(Z) = ro. If X = UXVH and
Z=USVH are singular value decompositions of X and Z, respectively, where
U = [Uy, Us] with Uy € C™" and U = [Uy, Us] with Uy € C"", then the
infimum in (2.3) is attained by the matrix

F=yx"+wzh" —wzHh"xx"+ 1 - zz"O,cuf (1 — xx7),
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where
~ 1 1
C=-KWUHlYXHUDL +n( —KKH2P(U - L7L)?,
N £ N o~ 3. H
K = [(le —UuHwxHHzz (v xHuy Oy U1)] ,
~ HA\"2 [~ H
L= (,ﬁI —UHwxHrxh U1> (UF(WZT) Uz),
and P is an arbitrary contraction.
Proof Suppose that S is nonempty. Then there exists A € C™™ such that AX =Y
and A” Z = W. This implies that X W = Y Z. Using the properties of the Moore-
Penrose pseudoinverse, we have that YXTX = AXXTX=AX =Y and WZTZ =
AHz7iZ=A"Z =W.

Conversely, suppose that XA W = Y#Z YX'X =Y,and WZ'Z = W. Then S
is nonempty, since for any C € C™™ we have

A=vxT+wzh" —wzh"xx+u - zzhcu - xxh e s.
In particular, this proves the inclusion “2” in (2.2). To prove the other direction “C”,
let X = UXVH and Z = UXVH be singular value decompositions of X and Z,

respectively, partitioned as in 2), with ¥'; € R™"! and | e R being the leading
principle submatrices of X' and X, respectively. Let A € S and set

. H | A1 A
A=U"AU = [Azl Ax | 2.4

where Aj; € C'2, Ajp € C"™772 Ay € C*7072 and Ay € C"71mM~"2 Then

|Allp = ||All and || A]| = || A]l. Multiplying UAU# X = AX = Y by U¥ from the
left, we obtain

A A | [ 2V _TAn An [ ¥ — lle v — lleY
Az Ay 0 A1 Ay || UY us ulty |
which implies that

An=U00yvis[" and Ay = Uy s (2.5)

Analogously, multiplying UAHUH Z = AHZ = W from the left by U, we obtain
that

Al AL 0 AR AR U Uit uflw
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818 C. Mehl et al.

This implies that
A= (fl_l)Hf/\]HWHUl and A = (EFI)HV\IHWHUQ. (2.6)
Equating the two expressions for Ay from (2.5) and (2.6), we obtain
oftyvisl =EHviwiy,

which shows that X W = Y Z_ Furthermore, we get

G| Otyviztt ECYIVEWR Oy | _ | Ofyxiu OF wzh o, |
ufiyvizy! Axp Uy'YXTU Az
. 2.7)
Thus, using XU U1 = X7, ZTU, U = Z7, and U U}! = X X7, we obtain
A=UAav" =0,0yxtu,ul! + 0,0 yxtu,ult
~ o~ H ~
+ U, 0wz Ul + U,AUH
=0,0fvx'u,ulf + 1 - 0,0 yxtuuft
+ 00 wzh" (1 - viulh) + AUl
=vxt+wzh" —wzh"xx" + (1 = 2ZH0rAnUH (1 - XXT).
(2.8)

(1) In view of (2.7) and using that XU, = 0 and U} (z")# = 0, we obtain that

~ 2
~2 Uflyx'u ~ H, 2
||A||"‘F=||A||F:H[@HYXTU@H 1T WZH sl + 1Al
F

~ 2 ~ 2 -~
=\ UYXTU N HIOWZHYHU e — 10T WZHR U 1541 A%
2 2 + H
= |YXT||% + |WZT|| — trace ((WZT)(WZ') XXT) + A% ll%.

Thus, by setting Az, = 0 in (2.8), we obtain a unique element of S which minimizes
the Frobenius norm giving

inf Al = \/||YX1'||i + W Z|3 — trace ((WZT)(WZ'I')”XXT).
€
(2) By definition of u, we have

= max [y XY, 1wz}

_ o [ [T YX 0L
- uflyxiu,

’

[0fyxiu, 0wz v, ] H} .
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Then it follows that for any A € S, we have |A|| = ||A|| > w with A as in (2.4).
By Theorem 2.1 there exists matrices A € S with ||A|| < w, i.e., infaes Al = u.
Furthermore, by Theorem 2.1 this infimum is attained with a matrix A as in (2.8),
where

~ 1 1
Ay =—K (UIH(YXT)HUI) L+up—KKH2pa-L"L)?,
H -1 "
K = [(;ﬂ] —Uf(rx" ZZT(YXT)UI) Z(UZHYXTUl)} ,
~ Ha\"2 [~ . H
L= (,;,21 —UHxHrxh U]) (UIH(WZT) Uz),
and P is an arbitrary contraction. Hence the assertion follows by setting C = Aj,. O

The special case p = k = 1 of Theorem 2.1 was originally obtained in [15,
Theorem 2]. The next result characterizes the Hermitian positive semidefinite matrices
that map a given X € C*" to a given ¥ € C*", and we include the solutions that
are minimal with respect to the spectral or Frobenius norm. This generalizes [20,
Theorem 2.3] which only covers the case m = 1.

Theorem 2.2 Let X, Y € C™™ be such that rank(Y) = m. Define
S::{HE(C"'"|HH=H20, HX:Y}.

Then there exists H = H > 0 such that HX =Y ifand only if XY = Y" X and
X"y > 0. If this holds, then

H=vutx)y 'y# (2.9
is well-defined and Hermitian positive-semidefinite, and
S= {ﬁ + (In - XX"‘) KM K <1n — XX')) K e (C"*”} . (2.10)

Furthermore, we have the following minimal norm solutions to the mapping problem
HX=Y:

(1) The matrix H from (2.9) is the unique matrix from S with minimal Frobenius norm
min{ [H|lp | H e S} = 1YX"y) vH|p.
(2) The minimal spectral norm of elements from S is given by
min { |H|| | H € S} = [Y(X"y)”'vH

and the minimum is attained for the matrix H from (2.9).
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820 C. Mehl et al.

Proof IfH € S,then XY = XU HX = (HX) X =YHXand XY = X¥HX >
0, since H H — g >0.IfX HpX were singular, then there would exist a vector
v € C™\{0} such that v/ X HXv = 0 and, hence, Yv = HXv = 0 (as H > 0) in
contradiction to the assumption that Y is of full rank. Thus, X Hy 5 0.

Conversely, let XY = Y# X > 0 (which implies that also (X Y)~! > 0). Then

H in (2.9) is well-defined. Clearly #X = ¥ and H = Y (¥" X)"'YH > 0, which
implies that H € S. Let

H=H+U-XXHYK"Kku -xx" eC
be as in (2.10) for some K € C"". Then clearly H” = H, HX = Y and also H > 0,
as it is the sum of two positive semidefinite matrices. This proves the inclusion “2”
in (2.10). For the converse inclusion, let H € S. Since H > 0, we have that H = A A
for some A € C™"". Therefore, HX = Y implies that (AH A)X =Y, and setting
7Z = AX, we have AX = Z and A"Z = Y. Since rank(Y) = m, we necessarily

also have that rank(Z) = m and rank(X) = m. Therefore, by Theorem 2.1, A can be
written as

A=zX"+ozH" —wyzhixx"+u -zzHhcua - xxh 2.11)
for some C € C™". Note that
¥zHhxxT=zHiyHxx" = zHhizizx" = zzHWzx" = zx7,
(2.12)
since (ZZ"L)H =ZZ and YHX = ZH Z. By inserting (2.12) in (2.11), we obtain
that
=zH? + 1 -zzhHcua - xx",

and thus,

H=A"A=qwzhozH? +u-xxHctua-zzyzH"
+¥zha-zzheca —xxh
+(I - xxHcla-zzha -zzheua - xx"
=xzhaozH® + 1 -xxHcua-zzha-zzHhcua - xx"),
(2.13)

where the last equality follows since
vzha-zzh=viz'-ztzzh=viz' - zhH =o0.
Setting K = (I — ZZ7Z™)C in (2.13) and using
ZT(zHH = (ZHZ)—le((ZHZ)—le) =iz = wlx)!
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proves the inclusion “C” in (2.10).
(DIfH € S, then X7Y = Y# X > 0 and we obtain

H=yY"x)"'v? + 1 - xxHk"kua - xxh, (2.14)

for some K € C™". By using the formula ||BBY +DDH||2F = ||BBH||2F +
2| DB + DD for B =Y (YH#X)~1/2and D = K(I — XX"), we obtain

_ 2 _1.2
IHIF = 1Y@ X))~ 'Y ) + 20K (1 = XXy (" X) 72|,
1 = xxHKAKUT - XX

Hence, setting K = 0, we obtain H= Y (Y X)~1YH as the unique minimal Frobe-
nius norm solution.

(2)Let H € S be of the form (2.14) for some K € C™". Since Y (Y X)~1YH > 0
and (1 — XXHKHK(U — XX") > 0, we have

Y@= ty?) < ywyay"x)~'vy" + (1 - xxHKPKUI - xX|.

This implies that

Y x)~'y® < inf |YOXEX) 'Y+ —xXKHKUI-XX")| = inf |H]|.
KeCnn HeS
(2.15)

One possible choice for obtaining equality in (2.15) is K = 0 which gives H =
YYEX)"'YH e Sand |H| = |[YXYHEX)"YH | = mig IH]. o
He

Although the complex versions of the mapping theorems seem to be of independent
interest, we will only apply them in this paper to obtain corresponding results for the
case of real perturbations. Here, “real” refers to the mappings, but not to the vectors
that are mapped, because we need to apply the mapping theorems to eigenvectors
which may be complex even if the matrix under consideration is real.

Remark2.1 If X € C"™P.Y € C"P,Z € C* W e C™* are such that
rank([X X]) = 2p and rank([Z Z1) = 2k (or, equivalently, rank ([Re X Im X]) =2p
and rank([Re Z Im Z]) = 2k), then minimal norm solutions to the mapping problem
AX =Y and A”Z = W with A € R™" can easily be obtained from Theorem 2.1.
This follows from the observation that with AX = Y and A" Z = W we also have
AX =Y and A”Z = W and thus

A[Re X ImX]=[ReY ImY] and AH[ReZ Im Z] = [Re W Im W].

We can then apply Theorem 2.1 to the real matrices X = [ReX ImX], Y =
[ReY ImY],Z = [ReZ Im Z], and W = [Re W Im W]. Indeed, whenever there
exists a complex matrix A € C*™ satisfying AX = ) and A" Z = W, then there
also exists a real one, because it is easily checked that the minimal norm solutions in
Theorem 2.1 are real. (Here, we assume that for the case of the spectral norm the real
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822 C. Mehl et al.

singular value decompositions of X and Z are taken, and the contraction P is also
chosen to be real.)

A similar observation holds for solution of the real version of the Hermitian positive
semidefinite mapping problem in Theorem 2.2.

Since the real version of Theorem 2.1 (and similarly of Theorem 2.2) is straight-
forward in view of Remark 2.1, we refrain from an explicit statement. The situation,
however, changes considerably if the assumptions rank([Re X Im X]) = 2p and
rank([Re Z Im Z]) = 2k as in Remark 2.1 are dropped. In this case, it seems that a
full characterization of real solutions to the mapping problems is highly challenging
and very complicated. Therefore, we only consider the generalization of Theorem 2.2
to real mappings for the special case m = 1 which is in fact the case needed for the
computation of the stability radii. We obtain the following two results.

Theorem 2.3 Let x, y € C" be such that rank([y y]) = 2. Then the set
S = {H ‘HER”’”, HT = H >0, Hx=y}

is nonempty if and only if x®y > |xT y| (which includes the condition x"y € R). In
this case let

X :=[Rex Imx] and Y :=[Rey Imy].

Then the matrix
~ -1
H:==v (YHX) yH (2.16)

is well defined and real symmetric positive semidefinite, and
S= {ﬁ+(1—XXT)K(1—XXT)‘ K e R, KT:KzO}. (2.17)

(1) The minimal Frobenius norm of an element in S is given by

min {|H|y | H € S} = HY (YTX>71 yT

F

and this minimal norm is uniquely attained by the matrix Hin (2.16).
(2) The minimal spectral norm of an element in S is given by

min {||H|| | H € S} = HY (YTX>71 yT

and the matrix H in (2.18) is a matrix that attains this minimum.

Proof Let H € S, i.e, H' = H > 0and Hx = y. Since H is real, we also have
HX = Y. Thus, by Theorem 2.2, X and Y satisfy X#Y = yY#X and Y7 X > 0.
The first condition is equivalent to (Rex)” Imy = (Rey)” Imx which in turn is
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Stability radii for real linear Hamiltonian systems with... 823

equivalent to x”y € R and the second condition is easily seen to be equivalent to
xfy > |xTy|. Conversely, if xy = y#x and xy > |xTy|, then YT X > 0 and
hence

~ 1
H=v (YTX) yT

is positive semidefinite. Moreover, we obviously have HX =Y and thus Hx = y.
This implies that H € S.

The inclusion “2” in (2.17) is straightforward. For the other inclusion let H € S,
ie, Hf = H > 0and Hx = v, and thus HX = Y. Then, by Theorem 2.2, there
exist L € C" such that

H=H+U-xxHrL"rLa - xx"
—H+U-xx" (Re(LH) Re(L) + Im(L)# Im(L)) (I —xx™,
where for the last identity we made use of the fact that H is real. Thus, by setting
K = (Re(L")Re(L) + Im(L")Im(L)), we get the inclusion “C” in (2.17). The

norm minimality in (1) and (2) follows immediately from Theorem 2.2, because any
real map H € S also satisfies HX =Y. O

Theorem 2.3 does not consider the case that y and y are linearly dependent. In that
case, we obtain the following result.

Theorem 2.4 Let x,y € C", y # 0 be such that rank[y y] = 1. Then the set
S={H|HeR", H' =H >0, Hx =y}
is nonempty if and only if x™y > 0. In that case
H:=22— (2.18)
is well-defined and real symmetric positive semidefinite. Furthermore, we have:
(1) The minimal Frobenius norm of an element in S is given by

lyl?

min {[|H|| g | H € S} = Ty

and this minimal norm is uniquely attained by the matrix H in (2.18).
(2) The minimal spectral norm of an element in S is given by

Iyl?

min {||H| | H € §} = Ty

and the matrix H in (2.18) is a matrix that attains this minimum.
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Proof If H € S, i.e., H' = H >0and Hx = v, then by Theorem 2.2 (for the case
m = 1) we have that xy > 0. Conversely, assume that x and y satisfy x7y > 0.
Since y and y are linearly dependent, there exists a unimodular « € C such that oy
is real. But then also yy = (ay)(ay)? is real and hence the matrix H in (2.18) is
well defined and real. By Theorem 2.2, it is the unique element from S with minimal
Frobenius norm and also an element from S of minimal spectral norm. O

Remark 2.2 Note that results similar to Theorems 2.3 and 2.4 can also be obtained
for real negative semidefinite maps. Indeed, for x, y € C” such that rank[y y] =
2, there exist a real negative semidefinite matrix H € R™" such that Hx =
y if and only if xfy = yH”x and —x¥y > |xTy|. Furthermore, it fol-
lows immediately from Theorem 2.3 by replacing y with —y and H with —H
that a minimal solution in spectral and Frobenius norm is given by H =
[Rey Imy] ([Rey Im y]?[Re x Im x])_1 [Rey Imy]”. An analogous argument
holds for Theorem 2.4. Therefore, we will refer to Theorems 2.3 and 2.4 also in
the case that we are seeking solutions for the negative semidefinite mapping problem.

The minimal norm solutions for the real symmetric mapping problem with respect
to both the spectral norm and Frobenius norm are well known, see [1, Theorem 2.2.3].
We do not restate this result in its full generality, but in terms of the following two
theorems that are formulated in such a way that they allow a direct application in the
remainder of this paper.

Theorem 2.5 Let x, y € C*"\{0} be such that rank([x x]) = 2. Then
S:={HeR""|H" = H, Hx =y}
is nonempty if and only if x*y = yH x. Furthermore, define

X :=[Rex Imx], Y:=[ReyImy], H:=Yx +xxHT —xxHTyx"
(2.19)

(1) The minimal Frobenius norm of an element in S is given by

mig |Hlp=H|r= \/2||YXT||%; — trace (YXT(YXT)T X XT)
He

and the minimum is uniquely attained by H in (2.19).
(2) To characterize the minimal spectral norm, consider the singular value decom-
position X = UXVT and let U = [U; Us] where Uy € R™2. Then

min |H|| = Y X,
HeS

and the minimum is attained by
H=H-,-xxHkvulvyxtu k", — xx7), (2.20)

where K =YX U1 (u?L — Ul YXTYXTUN)TY2 and = Y X7

@ Springer



Stability radii for real linear Hamiltonian systems with... 825

Proof Observe that for HT = H e R™” the identity Hx = y is equivalent to
HX =Y. Thus, the result follows immediately from [1, Theorem 2.2.3] applied to
the mapping problem HX =Y. O

Theorem 2.6 Let x, y € C*"\{0} be such that rank([x x]) = 1. Then
S:={HeR"| H' = H Hx =y}

is nonempty if and only if xy = yH x. Furthermore, we have:

(1) The minimal Frobenius norm of an element in S is given by

_ iyl
p=
llxl

min || H ||
HeS

and the minimum is uniquely attained by the real matrix

yxf oyt (e y)xxt

Il llx)l? Bl

(If x and y are linearly dependent, then H= )yci,x )

(2) The minimal spectral norm of an element in S is given by

Iyl
n[|H| =

mi =,
HeS x|

and the minimum is attained by the real matrix

~ _ Iyl ||ynn 1L vy ox 1%
H:m[nyu W] o oy [WW]

y

if x and y are linearly independent and for H:= otherwise.

Proof By [1, Theorem 2.2.3] (see also [20, Theorem 2.1] and [16]) the matrices H and
H are the minimal Frobenius resp. spectral norm solutions to the complex Hermitian
mapping problem Hx = y. Thus, it only remains to show that H and H are real. Since
x and x are linearly dependent, there exists a unimodular @ € C such that avx is real.
But then also ay = H (ax) and thus xx*/ (ax)(ozx)H and yx = (ay)(ax)? are
real which implies the realness of H. Analogously, H can be shown to be real. O

Obviously, the minimal Frobenius or spectral norm solutions from Theorem 2.6
have either rank one or two. The following lemma characterizes the rank of the minimal
Frobenius or spectral norm solutions from Theorem 2.5 as well as the number of their
negative and their positive eigenvalues, respectively.
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Lemma 2.2 Let x, y € C™\{0} be such that x*y = yH x and rank ([x x]) = 2. IfH
and H are deﬁned as in (2.19) and (2.20), respectively, then rank(H ), rank(H ) <4
and both H and H have at most two negative eigenvalues and at most two positive
eigenvalues.

Proof Recall from Theorem 2.5 that X = [Rex Im x], Y = [Re y Im y] and consider
the singular value decomposition

~

X:UEVT=U[§}VT
with U = [U; Up] € R*", Uy e R*2, 5 € R22 and V € R2%2. If we set
. Y T
Y=U [YJ vT,
where Y] € R%Z and Y, € R" 22 then

H=vx"+xxhHT - (XXT)TYXT

-1 —1yT s—1yvH 1
=U|:Y1§ O}UT+U[ ez YZ}UT—U[Ylﬁ O}UT

LY 1o 0 0 0
T 1vT
_vu B EY] s oY2 }UT. 2.21)

Thus, H is of rank at most four, and also H has an — 2-dimensional neutral subspace,
i.e., a subspace V C R” satisfying z/ HZ = 0 for all z,Z € V. This means that the
restriction of H to its range still has a neutral subspace of dimension at least

~ 2 if rank(H) =
max{0, rank(H) — 2} =3 1 if rank(@) =3,
0 if rank(H) < 2.

Thus, it follows by applying [7, Theorem 2.3.4] that H has at most two negative and
at most two positive eigenvalues. On the other hand, we have

H=H-,-xxHkvulyxtu, k", — xx%), (2.22)

where K = YXTUW, W := (>, — Ul'YXTYXTU;)""/? and u := | Y XT|. Then
we obtain

iE-1o Y, &1
_ vyt _ 12 T - 1
K=YX U1W_U[Y22_10]U U W U[YZZ_I}W.
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Also,

H=(, - XXHKUTyx'u, kT (1, — XxXT)

0 r, [NZ7107 7 Tro $S-1yT 17T
:U[YZE_I]WUIU[bflO vtuyw’ [o -yl U
_To 0 -
=v [0 Yzi—lwyli—lef—lsz]U ' (2.23)

Inserting (2.21) and (2.23) into (2.22), we get

s—1yT s—1yT

>y e S uT
Ly Ry twn - twr eyt

Z LT T
=v [L —LWZTWTLT] v

ﬁ:ﬁ—HzU[

where Z := g’lYlT and L := Y» X~ This implies that

A T
UTHUz[Z L ]

L —LwzTwTLT

and Z are real symmetric. Let U € R"~27-2 pe invertible such that
T o~
0L = 1 00...01 _ L
lipln0...0 0
is in row echelon form, where L= |:l“ ha i| Then
22

LOoTl[z LT L O] [Zno
ouU||L—-LwzwTLT||oUT|" | 0 O]
where

Z LT 44
“n = [Z —ZWZWTZT} e R

This implies that rank(ﬁ ) = rank(Z11) < 4. Furthermore, by Sylvester’s law of
inertia, Hand Z 11 have the same number of negative eigenvalues. Thus, the assertion
follows if we show that Z 11 has at most two negative eigenvalues. For this, first suppose
that L is singular, i.e., /2o = 0, which would imply thatrank(Z1) < 3. Ifrank(Z;1) <
3, then clearly Z1; can have at most two negative eigenvalues and at most two positive
eigenvalues. If rank(Z1;) = 3, then we have that Z;; is indefinite. Indeed, if Z is
indefinite then so is Zy;. If Z is positive (negative) semidefinite then —LWZWTLT
is negative (positive) semidefinite. In this case Z1; has two real symmetric matrices
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of opposite definiteness as block matrices on the diagonal. This shows that Z;; is
indefinite and thus can have at most two negative eigenvalues and at most two positive
eigenvalues.

If L is invertible, then

L 0 Z L7 L 0 [z wT
Oow LY | L —-LwzwTLT [lo L Tw T |~ |w! —Z

is a real symmetric Hamiltonian matrix. Therefore, by using the Hamiltonian spectral
symmetry with respect to the imaginary axis, it follows that Z1; has two positive and
two negative eigenvalues. O

In the next section we will discuss real stability radii under restricted perturbations,
where the restrictions will be expressed with the help of a restriction matrix B € R™".
To deal with those, we will need the following lemmas.

Lemma 2.3 ([20]) Let B € R™" with rank(B) = r, let y € C"\{0}, and let 7 €
C"\{0}. Then, for all A € R"" we have BAy = z if and only if Ay = B'z and
BBz =z

Lemma 2.4 Let B € R™" withrank(B) = r, let y € C"\{0} and z € C"\{0}.

(1) If rank([z Z]) = 1, then there exists a positive semidefinite A = AT e R""
satisfying BAy = z if and only if BB 'z = z and y" BTz > 0.

(2) If rank([z Z]) = 2. then there exists a positive semidefinite A = AT e R""
satisfying BAy = z if and only if BBz = z and y" BTz > |yT BTz|.

Proof Let A € R"", then by Lemma 2.3 we have that BAy = z if and only if
BB'z=z and Ay =B’z (2.24)

If rank([z z]) = 1, then by Theorem 2.4 the identity (2.24) is equivalent to BBT7 =7
and yHBTz > 0. If rank([z z]) = 2 then (2.24) is equivalent to

BBY[zZ]=1[zZ] and Alyy]=[B'z B'z], (2.25)

because A is real. Note that rank([BTz BTZ]) = 2, because otherwise there would
exist « € C2\{0} such that [B'z BTZ]Ja = 0. But this implies that [z Z]a =
[BBTz BBZ]la = 0 in contradiction to the fact that rank([z z]) = 2. Thus, by
Theorem 2.3, there exists 0 < A € R”" satisfying (2.25) if and only if BBz = z and
yi BTz > |yT BTz|. O

The following is a version of Lemma 2.4 without semidefiniteness.

Lemma 2.5 Let B € R™" with rank(B) = r, let y € C"\{0} and z € C"\{0}.
Then there exist a real symmetric matrix A € R"" satisfying BAy = z if and only if
BBz =zand y" BTz e R.
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Proof The proof is analogous to that of Lemma 2.4, using Theorems 2.5 and 2.6
instead of Theorems 2.3 and 2.4. O

In this section we have presented several mapping theorems, in particular for the
real case. These will be used in the next section to determine formulas for the real
stability radii of DH systems.

3 Real stability radii for DH systems

Consider a real linear time-invariant dissipative Hamiltonian (DH) system x = (J —
R)QOx asin (1.1),1.e., with J, R, Q € R™" being such that JT=—J,RT=R>0
and Q7 = Q > 0. Then the formula for the stability radius rr2(R; B, C) from
Definition 1.1 for given restriction matrices B € R™" and C € R™Y is a direct
consequence of the following well-known result.

Theorem 3.1 ([23]) For a given M € CP-™, define
(M) = (inf {|A]l | A € R™P, det(I,, — AM) =0})"".

Then

. ReM —yImM
M) = f )
He(M) yel?o,uaz (|:y_11mM Re M :|>

where 02(A) is the second largest singular value of a matrix A. Furthermore, an
optimal A that attains the value of ur (M) can be chosen of rank at most two.

Applying this theorem to DH systems we obtain the following corollary.
Corollary 3.1 Consider an asymptotically stable DH system of the form (1.1) and let

B € R™" and C € R?" be given restriction matrices. Then

Re M(w) —y ImM(w) D)‘l B

re2(R; B, C) = inf ( inf o2 <|:V_IImM(a)) Re M (w)

weR \ye(0,1]

and
rr2(R; B, C) < rr.r(R: B, C) < v2rr2(R; B, C), (3.2)

where M(w) := CQ((J — R)Q — iwl,) ' B.
Proof By definition, we have
rra(R; B, C) =inf {|A] | 4 € R, A((J = B)Q — (BAC)Q) NiR # ]

=inf {|Al | A € R"?, w € R, det(iwl, — (J — R)Q + BACQ) =0}
— inf {||A|| ‘ A eR™, weR, det (I,—BACQ((J—R)Q—iwl,)"") = o} ,
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where the last equality follows, since (J — R)Q is asymptotically stable so that the
inverse of (J — R)Q — iwl, exists for all w € R. Thus we have
rr2(R; B, C)
— inf [||A|| ) AeRM, @eR, det(l, — ACQ((J — R)Q —iwl,) ' B) = 0}

= (nz(or@)

where M (w) := CQ((J R)Q —iwly)™ 3 Therefore (3.1) follows from Theo-
rem 3.1, and if A is of rank at most two such that ||A|| = rr2(R; B, C), then (3.2)
follows by using the definition of rg r(R; B, C) and by the fact that

| Al = r.2(R: B.C) < rr.r(R: B,C) < || Allp < v/rank(A) || Al|,
2rr2(R; B, C).

O
To derive the stability radii under structure preserving perturbations, we will reformu-

late the problem of computing the radii in terms of real structured mapping problems

and apply the results from Sect. 2. In Sect. 3.1 we first consider the radius rﬂ‘gdp (R; B)
that is shown to correspond to minimal rank structure-preserving perturbations of

minimal norm. Then the radius rR’ (R; B) corresponding minimal norm structure-
preserving perturbations is considered in Sect. 3.2.

3.1 The stability radius rﬂfdp(R; B)
To derive formulas for the stability radius under real structure-preserving restricted
and semidefinite perturbations we need the following two lemmas.

Lemma 3.1 Let HT = H € R™" be positive semidefinite. Then x" Hx > |xTHx|
for all x € C", and equality holds if and only if Hx and HX are linearly dependent.

Proof Let S € R™" be a symmetric positive semidefinite square root of H, i.e.,
§% = H. Then, using the Cauchy-Schwarz inequality we obtain that

|x" Hx| = |(Sx, Sx)| < IS%| - |ISx]| = ViH Hx - VxH Hx = x"

because X Hx = xH Hx = x" Hx as H is real. In particular equality holds if and
only if Sx and Sx are linearly dependent which is easily seen to be equivalent to the
linear dependence of Hx and Hx. O

Lemma 3.2 Let R, W € R™" be such that RT = R > 0and WI = W > 0. If
x € C" is such that rank ([x X]) = 2 and x"WT RWx > |xT WT RWx|, set

~1
Ap = —RW[Rex Imx] ([Rex Imx]7 WRW[Re x Imx]) [Rex Imx]? WR.
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Then R + Ap is symmetric positive semidefinite.

Proof Since R and W are real symmetricand x? WT RWx > |xT WT RWx/|, it follows
that the matrix [Re x Im x]” W RW[Re x Im x] is real symmetric and positive definite
and, therefore, A is well defined and wehave A = A£ < 0.Weprovethat R+Ag >
0 by showing that all its eigenvalues are nonnegative. Since W is nonsingular, we have
that Wx # 0. Also Ag is a real matrix of rank two satisfying AgW[Rex Imx] =
—RWI[Re x Im x]. This implies that

(R+ Agr)W[Rex Imx] =0. 3.3)

Since rank[Re x Im x] = rank[x xX] = 2 and since W is nonsingular, we have that
W Re x and W Im x are linearly independent eigenvectors of R + Ag corresponding
to the eigenvalue zero.

Let A1, ..., A, be the eigenvalues of R and let 71, ..., n, be the eigenvalues of
R + Ap, where both lists are arranged in nondecreasing order, i.e.,

0<A<---=<X; and n=-:-=Mnn.
Since Ap is of rank two, by the Cauchy interlacing theorem [6],
M < kg2 and ng < Agqo fork=1,...,n—2. (3.4)

This implies that 0 < n3 < --- < n,, and thus the assertion follows once we show that
n1 = 0and ny = 0.If R is positive definite, then A1, ..., A, satisfy0 < A; < --- < A,
and, therefore, 0 < n3 < --- < n,. Therefore we must have n; = 0 and 7, = 0
by (3.3).

If R is positive semidefinite but singular, then let k be the dimension of the kernel
of R. We then have k < n, because R # 0. Letting ¢ be the dimension of kernel of
R + Ap , then using (3.4) we have that

k—2<e0<k+2,

and we have 1 = 0 and 1, = 0 if we show that £ = k + 2. Since W is nonsingu-
lar, the kernels of R and RW have the same dimension k. Let x1, ..., x; be linearly
independent eigenvectors of RW associated with the eigenvalue zero, i.e., we have
RWx; =0foralli =1,...,k. Then AgWx; = 0foralli = 1,...,k, and hence
(R+AR)Wx; = O0foralli =1, ..., k. Thelinear independence of x1, . . ., x; together

with the nonsingularity of W implies that Wxy, ..., Wx; are linearly independent.
By (3.3) we have (R + Ag)WRex = 0 and (R + Ag)WImx = 0. Moreover,
the vectors W Rex, WImux, Wxy, ..., Wx; are linearly independent. Indeed, let
o, B, a1, ..., ar € R be such that

aWRex+BWImx +o1Wx; +--- +oxWxi =0.

Then we have R(aW Rex + fWImx) = 0as RWx; = O foralli = 1,...,k.
This implies that « = 0 and B = 0, because RW Rex and RW Im x are linearly
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independent. The linear independence of Wx1, ..., Wxy then implies that ¢; = 0 for
alli =1,...,k,and hence W Rex, WImux, Wxy, ..., Wx; are linearly independent
eigenvectors of R + Ag corresponding to the eigenvalue zero. Thus, the dimension of
the kernel of R + A is at least k + 2 and hence we must have n; = 0and 5, = 0.0

Using these lemmas, we obtain a formula for the structured real stability radius of
DH systems.

Theorem 3.2 Consider an asymptotically stable DH system of the form (1.1). Let
B € R™" with rank(B) = r, and let p € {2, F}. Furthermore, for j € {1, 2} let
£2; denote the set of all eigenvectors x of J Q such that (I, — BBHROx = 0 and

rank ([ RQx RQx|) = j, and let 2 := 2, U 2,. Then r]gdp(R; B) is finite if and
only if 2 is nonempty. If this is the case, then

(BTROx)(BTROx)H
xHQROx

Sy . .
r R; B) = min{ inf
R,p( ) {XE.Q]

. inf ||[Y(YHEx)"lyH ,
n oo,

where X = BT Q[Rex Imx]and Y = BTRQ[Re x Im x].
Proof By definition, we have
et (R: B) = inf{||A||p ‘ A € Sy(R, B), A ((J —R)O - (BABT)Q> NiR £ @} ,

where S;(R, B) = {A e R | AT =A <0 and (R+ BABT) > 0}. By using
Lemma 1.1, we obtain that

rat (R: B)
= inf { ||A||p‘ A e S4(R, B), (R+ BABT)Qx = 0 for some eigenvector x of JQ]

=inf {141,

A€ S4(R, B), BABTQx = —R Qx for some eigenvector x of JQ}

= inf{||A||,, ‘ A€ 8y(R,B), AB” 9x = —B"RQx for some x € .Q} (3.5)

since by Lemma 2.3 we have BABT Qx = —RQx if and only if ABT Qx =
—BTRQOx and BBTRQOx = RQx, and thus x € £2. From (3.5) and S;(R, B) C
{A e R | AT = A < 0}, we obtain that
St (R: B) > inf{||A|| )A
R,p ’ — p
=AT e R, A <0, ABT Qx = —B"RQx for some x € .Q} =: 0.
(3.6)

The infimum on the right hand side of (3.6) is finite if and only if £2 is nonempty. The

same will also hold for rI‘R?"p (R; B) if we show equality in (3.6). To this end we will
use the abbreviations
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szzinf|||A||,, |A=AT e R, A<0, ABT Ox = —BTROx for some x ¢ Qj]

for j € {1, 2}, i.e., we have ¢ = min{o1, 02}, and we consider two cases.

Case (1): 0 = o1. If x € £21, then BBTROx = RQx, and RQx and RQOx
are linearly dependent. But then also B" R Qx and BT R Qx are linearly dependent and
hence, by Lemma 2.4 there exists A € R"" suchthat A < 0and ABT Ox = —BTRQx
(and thus (—A) > 0 and (—A)BT Qx = BTRQx) if and only x QRQx > 0. This
condition is satisfied for all x € £2;. Indeed, since R is positive semidefinite, we
find that x QRQx > 0, and x QRQx = 0 would imply RQx = 0 and thus
(J — R)Qx = J Qx which means that x is an eigenvector of (J — R)Qx associated
with an eigenvalue on the imaginary axis in contradiction to the assumption that
(J — R)Q only has eigenvalues in the open left half plane.

Using minimal norm mappings from Theorem 2.4 we thus have

3 (R: B) = o1
= inf{||A||p |A=AT eR™, A<0, ABTQx = —B'RQx, x € 91}

. {H (B'ROx)(BTRQOx)! } . H(B*‘RQx)(B*RQx)*’ }
= inf 7 - = inf 7 .

xeRy x7TOBBTRQOx xeRy xTQOROx
3.7

As the expression in (3.7) is invariant under scaling of x, it is sufficient to take the
infimum over all x € £21 of norm one. Then a compactness argument shows that the
infimum is actually attained for some X € §2; and by [20, Theorem 4.2], the matrix

~  (BTROX)(BTROX)H
A= .~ =
XHQROQOX

is the unlque (resp. a) complex matrix of m1n1ma1 Frobenius (resp. spectral) norm
satisfying AT = A <0and ABT Qx =—-B'R Qx. Also, by Theorem 2.4 the matrix
A is real and by [20, Lemma 4.1] we have R + BABT > (. Thus Ae Si(R, B). But
this means that rﬁ"’p(R; B) =01 =o0.

Case (2): 0 = 02.1fx € £25,then BB'RQx = RQx,andRe RQx andIm R Qx are
linearly independent. But then, also Re B'RQx and Im BT R Qx are linearly indepen-
dent, because otherwise, also Re RQx = Re BB RQx andIm RQx = Im BBTRQ*
would be linearly dependent. Thus, by Lemma 2.4 there exists A € R"™" such that
A < 0and ABTQx = —BYRQx if and only if x QRQx > |xT QRQx|. By
Lemma 3.1 this condition is satisfied for all x € §2;,, because R and thus QRQ is

positive semidefinite.
Using minimal norm mappings from Theorem 2.3 we then obtain
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S,
et (R; B)

> 0 =inf{||A||p |A=aAT R, A<0, ABTOx = —B'ROx, x ¢ 92}

_inf{ HY(YHX)_IYHHP‘ X =BTQ[Rex Imx], ¥ = B'RO[Rex Imx], x € 92}

= Y@ x-vr (3.8)

for some x € £2,, where X =BT QO [Rex Imx]and Y = BTRQ [Re % Im X]. Indeed,
the matrix ¥ (Y # X)~!Y# is invariant under scaling of x, so that it is sufficient to take
the infimum over all x € £2; having norm one. A compactness argument shows that
the infimum is actually a minimum and attained for some X € £2,. Then setting

Ag = -Y(YIX)~1vH,

we have equality in (3.8) if we show that R4+BAg B is positive semidefinite, because
this would imply that A R € S4(R, B). But this follows from Lemma 3.2 by noting
that BB'TRQ [Re% Im%] = RQ[Rex Im*]. Indeed, by the definition of £25, the
vectors Re RQX and Im RQx are linearly independent, and

R+ BAgBT =R - BY(Y"X) 'Y"BT
=R — BBTRQ[Rex Imx]([Rex Imx]HQRQ[Rex Imx])_1
x[Rex Imx1? QrR(B"T BT
=R — RQ[Rex Imx]([Rex Imx]” QRQ[Re x Imx])_l[Rex Imx]7 OR.

is positive semidefinite by Lemma 3.2. This proves that rfgflp(R; B)=02=0. O

Remark 3.1 In the case that R > 0 and J are invertible, the set £2; from Theorem 3.2
is empty and hence §2 = £2,, because if R > 0 and if x is an eigenvector of J Q with
rank ([ RQx RQx]) = 1 then, x is necessarily an eigenvector associated with the
eigenvalue zero of J Q. Indeed, if RQx and RQx are linearly dependent, then x and
x are linearly independent, because RQ is nonsingular as R > 0 and Q > 0. This
is only possible if x is associated with a real eigenvalue, and since the eigenvalues of
J Q are on the imaginary axis, this eigenvalue must be zero.

Remark 3.2 We mention that in the case that R and J are invertible, rI‘R?dp(R ; B) is
also the minimal norm of a structure-preserving perturbation of rank at most two that
moves an eigenvalue of (J — R) Q to the imaginary axis. To be more precise, if

S>(R, B) = {A eR|AT = A, rank A <2, and (R+ BAB”) > 0}
and
& (R: B) := inf {||A||,, ‘ A € S (R, B), A ((J—R)Q—(BABT)Q) NiR # @} :
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then we have rﬁ?p(R; B) = rg"p(R; B). Indeed, assume that A € S»(R, B) is such
that (J — R)Q — (BABT)Q has an eigenvalue on the imaginary axis. By Lemma 1.1
we then have (R + BABT)Qx = 0 for some eigenvector x of J Q. Since R and J are
invertible, it follows from Remark 3.1 that RQx and RQx are linearly independent.
Since A has rank at most two, it follows that the kernel of A has dimension at least

n — 2. Thus, let ws, ..., w, be linearly independent vectors from the kernel of A.
Then BTQx, BTQ)E, w3, ..., Wy, is abasis of C". Indeed, let «y, . .., o, € Cbe such
that

a1 BT Qx + an BT Qx + 3wz + -+ + ayw, = 0. (3.9)

Then multiplication with B A yields
0=0aBABT Ox + s BABT Q% = a1 ROx + a2 ROX

and we obtain o1 = oy = 0, because RQx and R Qx are linearly independent. But
then (3.9) and the linear independence of w3, ..., w, imply a3 = -+ = «, = 0.
Thus, setting T := [BTQx, BTQ)E, w3, ..., w,] we obtain that T is invertible and
THAT = diag(D, 0), where

D— x#QBABT Ox xTQBABT Qx _ [xHQRQx xTQRQx]
xTOBABT Ox xHQBABT Qx xTQROx x"QROx |’

Since by Lemma 3.1 we have x” QRQx > |xT QR Qx|, it follows that D is positive
definite which implies A € S;(R; B) and hence rlg?p(R; B) > rfR?f’p(R; B). The
inequality “<” is trivial as minimal norm elements from Sz (R; B) have rank at most

two.

In this subsection we have characterized the real structured restricted stability radius
under positive semidefinite perturbations to the dissipation matrix R. In the next sub-
section we extend these results to indefinite perturbations that keep R semidefinite.

3.2 The stability radius rﬂ‘g i p(R; B)

If the perturbation matrices Ar are allowed to be indefinite then the perturbation
analysis is more complicated. We start with the following lemma.

Lemma 3.3 Ler0 < R = RT, Ag = Ag € R™" be such that Ag has at most two
negative eigenvalues. If dim (Ker(R 4+ Ag)) =2, then R+ Ag > 0.

Proof Let A1, ..., A, be the eigenvalues of Ar. As Ag has at most two negative
eigenvalues we may assume that A3, A4, ..., A, > 0 and we have the spectral decom-
position

n
AR = Z)\iuiulH
i=1
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with unit norm vectors uy, ..., u, € R". Since

n
R=R ~|—Z)Ll~u,-uf1 > 0.
i=3

and Aqug ulH +A2u2u§ is of rank two, we can apply the Cauchy interlacing theorem and
obtainthat R+ Ar = R + )Llulufi + Agugué{ has at least n — 2 positive eigenvalues.
But then using the fact that dim(Ker(R + Agr)) =2 we get R + Ag > 0. O

Using this lemma, we obtain the following results on the stability radius rg" » (R; B).

Theorem 3.3 Consider an asymptotically stable DH system of the form (1.1). Let
B € R™" with rank(B) = r and let p € {2, F}. Furthermore, for j € {1,2} let
$2; denote the set of all eigenvectors x of JQ such that BB'RQOx = RQx and
rank ([ BT Qx BT Qx]) = j, and let 2 = 2, U £2,.

(1) If R > 0, then rI‘R?fp(R; B) is finite if and only if $2 is nonempty. In that case we

have ;
, BTR )
P (R: By = min | inf WE RN eyt (3.10)
’ XE82 ||BTQ)C|| XES2H
and
S;
g r(R; B)
B'R -
— min| inf 1B ROOI JIPXT2 — trace (YXF(r X xx)
xe21 ||BHEQx| ~ xe
3.11)

where X = [Re BT Qx Im BT Qx] and Y = [Re B'RQx Im BTRQx] for
X € .Qz.
(2) If R > 0 is singular and ifrﬁ?p(R; B) is finite, then §2 is nonempty and we have

: B'R _
rS(R: B) > min | inf NBROON ¢ v x| (3.12)
’ xe21 ||BT Qx| ~ xe
and
Si
. (R B)
B'R .
> min{ inf w inf \/||YXT||%—trace(YXT(YXT)HXXT) ,
xXE€2] ||BTQX|| XESH

(3.13)

where X = [ReBTQOx ImBTQOx] and Y = [ReB%RQx ImBTRQx] for
X € §2.
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Proof By definition
(R By=inf {141, | A€ Si(R. B). A ((/ ~ RIO—(BABT)Q) niR#d].

where Sj(R, B) := {A = AT e R"" |(R+ BAB") > 0}. Using Lemma 1.1 and
Lemma 2.3 and following the lines of the proof of Theorem 3.2, we get

er(R B) =inf {||All,|A € S;(R, B), AB" 0x = —B"RQx for some

eigenvector x of J Q satisfying BB'ROx =R Qx}.
Since all elements of S; (R, B) are real symmetric, we obtain that

rﬂ?p(R; B) > inf [”A”p | A=nAT ¢ R, ABTsz—BTRQx for somexe.Q]

=: Q(p). (3.14)

The infimum in the right hand side of (3.14) is finite if £2 is nonempty, as by Lemma 2.5
for x € §2 there exist A = AT € R”" such that ABT Qx = —B"RQx if and only if

x#QBBTRQx € R. This cond1t10n is satisfied because of the fact that BBTRQx =
RQx and R is real symmetric. If R, p(R B) is finite, then §2 is nonempty because
otherwise the right hand side of (3. 14) would be infinite. To continue, we will use the
abbreviations

o 1nf{||A||p|A AT e R, ABT Qx = —B' RQxforsomexe.Q}

for j € {1,2},ie., 0? = mm{g(p), Q;p)} and we consider two cases.

Case (1): 0P = o). If x € 2, then BB'RQx = RQx and B Qx and BT O
are linearly dependent. Then using mappings of minimal spectral resp. Frobenius
norms (and again using compactness arguments), we obtain from Theorem 2.6 that

S (R: B)=o\" = inf {||A||p |A=AT R, ABTQx = —B'RQx, x € 91}

. {IIB Ranp} _ IBTROXI,
X ||BTQx||,, ||BTQ5€\||[7

for some X := x € £21. This proves assertion (2) and “>" in (3.10) and (3.11) in the

case Q(”) = Q(p)
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Case (2): 0P = Qgp). If x € £25, then BB'RQx = RQx and BT Qx and BT Ox
are linearly independent. Using mappings of minimal spectral resp. Frobenius norms
(and once more using compactness arguments), we obtain from Theorem 2.5 that

rSy(R; B) = 0 = inf {||A|| | A=AT eR™, AB"Qx = —B'RQx, x € 522}
= inf{||YXT|| X =[Re BT 0x InBT Qx],Y = [Re B'RQxIm B'RQx], x € .(22}
=YX,

for some ¥ € 25, where X = [Re BT0% Im BT Q%] and Y = [Re BTRQ%
Im BT RQx], and

(S p (s B))2 > (Q&F’)z
— inf [||A||%, |A= A" eR"™, AB"Qx = —-B'RQx, x € 92]
= inf {2||YXT||i — trace (YXT(YX*)HXXT) ‘ X = [Re BT 0x Im BT Ox],
=[Re B"'ROx ImB'RQx], x € .Qz]

= 27X — trace (?%*()73('*)”35)?*)

for some x € £2,, where X = [Re BT 0% Im BT Q%] and Yy = [Re BTROX
Im BTRQZ*]. This proves assertion (2) and “ > in (3.10) and (3.11) in the case
Q(p) _ Q(p)

In both cases (1) and (2), it remains to show that equality holds in (3.10) and (3.11)
when R > 0. This would also prove that in the case R > 0 the non-emptiness of 2
implies the finiteness of rng(R; B).

Thus, assume that R > 0 and let A= AT e R"" and A = AT € R"" be such that
they satisfy

ABTQx = —B'RO% and ABT Qi = —B'ROZ7, (3.15)

and such that they are mappings of minimal spectral or Frobenius norm, respectively,
as in Theorem 2.5 or Theorem 2.6, respectively. The proof is complete if we show
that (R + BABT) > 0 and (R + BABT) > 0, because this would imply that A and
A belong to the set S; (R, B). In the case o7 = Q(p ) this follows exactly as in the
proof of [20, Theorem 4.5] which is the corresponding result to Theorem 3.3 in the
complex case. (In fact, in this case A and A coincide with the corresponding complex
mappings of minimal norm.)

In the case 0P = Q(p ), we obtain from Lemma 2.2, that the matrices A and A
are of rank at most four with at most two negative eigenvalues. This implies that also
the matrices BAB” and BABT individually have at most two negative eigenvalues.
Indeed, let By € R™"~" be such that [B B;] € R™”" is invertible then we can write

A0

T
BAB =[B Bi] |: 00

}[B B1"
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and by Sylvester’s law of inertia also BABT has at most two negative eigenvalues. A
similar argument proves the assertion for BABT .
Furthermore, using (3.15), we obtain

(R+ BABT)Qx = ROx — BB'ROx = RO — RQx =0
and
(R+ BABT)Qi = RQ% — BB'RQX = RQx — RQi =0,

since ¥, X € 2,ie., BB'ROX = RQX and BB'RQX = RQX. Also rank[X X] = 2
and rank[x X] = 2, respectively, imply that

dim (Ker(R n BZBT)> —2 and dim (Ker(R n BZBT)) —2.

Thus, Lemma 3.3 implies that (R + BABT) > 0 and (R + BABT) > 0. m]

Remark 3.3 1t follows from the proof of Theorem 3.3 that in the case R > 0, the
1nequa11t1es in (3.12) and (3.13) are actually equalities if the minimal norm mappings A
and A from (3.15) satisfy (R+BABT) > O0and (R—I—BABT) > 0, respectively. Thus,
when a method for the computation of the stability radius is implemented following
the ideas in the proof of Theorem 3.3, then one has to explicitly compute the mappings
A and A from (3.15) and hence it is easy to check if the conditions (R + BZBT) >0
and/or (R + BA BT) > 0 are satisfied. In our numerical experiments this was always
the case, so that we conjecture that equality in (3.12) and (3.13) holds in general.

4 Numerical experiments

In this section, we present some numerical experiments to illustrate that the real struc-
tured stability radii are indeed larger than the real unstructured ones. To compute the
distances, in all cases we used the function fminsearch in MATLAB Version No.
7.8.0 (R2009a) to solve the associated optimization problems.

We computed the real stability radii rg 2(R; B, BT), rI‘R?fz(R; B) and rﬁg:’z(R; B)
with respect to real restricted perturbations to R, as obtained in Theorems 3.1-3.3
(taking into account Remark 3.3), respectively, and compared them to the correspond-
ing complex distances rc 2(R; B, BT), rgfz(R; B) and ré‘g(R; B) as obtained in [20,
Theorem 3.3], [20, Theorem 4.5] and [20, Theorem 4.2], respectively.

We chose random matrices J, R, Q, B € R™" for different values of n < 14 with
JT = —J,RT = R > 0 and B of full rank, such that (J — R)Q is asymptotically
stable and all restricted stability radii were finite. The results in Table 1 illustrate that
the stability radius rg 2(R, B, BT) obtained under general restricted perturbations is
significantly smaller than the real stability radii obtained under structure-preserving
restricted perturbations, and it also illustrates that the real stability radii may be sig-
nificantly larger than the corresponding complex stability radii.
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Table 1 Comparison between complex and real stability radii

Sizen rea(R; B, BT rpa(RiB,BT) rOL(RiB)  ryy(RiB)  roL(RiB)  rod(R: B)

4 0.1649 0.1649 4.8237 8.2820 15.7348 17.2941
6 0.2390 0.2932 6.0391 15.0695 32.1021 38.1951
8 0.0665 0.1211 3.7859 5.1034 18.5757 24.0881
9 0.1648 0.1950 8.7892 25.3983 118.6212 227.5047
11 0.1135 0.1146 1.4003 1.6289 4.0695 4.5260
13 0.1013 0.1315 4.8191 5.6550 21.6680 43.9863
14 0.0410 0.1071 1.3693 1.7953 4.9894 6.1504

Example 4.1 As a second example consider the lumped parameter, mass-spring-
damper dynamical system, see, e.g., [32] with two point masses m and m,, which
are connected by a spring-damper pair with constants k> and c;, respectively. Mass
m is linked to the ground by another spring-damper pair with constants k; and cy,
respectively. The system has two degrees of freedom. These are the displacements
u1(t) and u;(t) of the two masses measured from their static equilibrium positions.
Known dynamic forces f1(¢) and f>(¢) act on the masses. The equations of motion
can be written in the matrix form as

Mii + Dit + Ku = f,

where

mp 0 c1+c—c2 ki +ky —ko f
M = . D= ) K = s = 5
|: 0 mz} |: - :| |: —ky k2 f f2
where the real symmetric matrices M, D and K denote the mass, damping and stiffness
matrices, respectively, and f, u, u and ii are the force, displacement, velocity, and
acceleration vectors, respectively. With the values m; =2, my =1, ¢; = 0.1, ¢3 =

0.3, k1 = 6, and k, = 3 we have M, D, K > 0 and an appropriate first order
formulation has the linear DH pencil Al — (J — R)Q,

0 —K DO mMol!
J:[K 0] R:[oo}’ Q:[o K} : @1

The eigenvalues of (J — R) Q are —0.2168 +2.4361i and —0.03324-1.2262i and thus
the system is asymptotically stable. Setting B = CT = [el e ] € R*, we perturb only
the damping matrix D and the corresponding real stability radii are given as follows.

Si S
rr2(R, B, BT) re (R, B) e (R, B)

0.0796 0.1612 0.3250
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Table 2 Various stability radii ] T S; Sy
for mass-spring-damper system Size n rR2(R; B, B") r]R,z(R; B) r]R,z(R; B)
of increasing size

0.2827 0.3213 0.3642

0.1755 0.2417 0.3299
8 0.1220 0.1995 0.3221
10 0.1013 0.3221 0.9009
12 0.0772 0.2817 0.9308
14 0.0618 0.2577 0.9938
16 0.0524 0.2560 1.1537

As long as the norm of perturbation in damping matrix D is less than the stability
radius the system remains asymptotically stable. We also see that the stability radii

rI‘R?fz(R, B) and rﬁ’dz(R, B) that preserve the semidefiniteness of R are significantly
larger than rg 2 (R, B, BT).

In Table 2, we list the values of various stability radii for mass-spring-damper
systems [32] of increasing size. The corresponding masses, damping constants and
spring constants were chosen from the top of the vectors

m = [0.6857 1.7812 0.3785 0.2350 2.6719 0.7919 1.0132 1.3703]7,
¢ = [0.6231 1.3050 2.3721 1.5574 1.0474 1.8343 0.3242 1.7115]7

and
k =[0.2637 1.5203 0.8644 0.2485 0.7850 0.4135 2.3963 0.1022]7,

respectively, i.e., the four dimensional (n = 4) DH pencil as in (4.1) is corresponding
to the first two entries of mass vector m, damping vector ¢ and spring vector k, similarly
n = 6 is corresponding to the first three entries from the vectors m, ¢ and k, and so on.
The restriction matrices B = CT = [e; e3 --- ey RS R are such that only the
damping matrix D in R is perturbed. In addition to the conclusions of Example 4.1,
we found that as expected, the stability radius with respect to general perturbations
decreases as the system dimension increases, while this is much less pronounced for
the stability radii with respect to structure preserving perturbations.

5 Conclusions

We have presented formulas for the stability radii under real restricted structure-
preserving perturbations to the dissipation term R in dissipative Hamiltonian systems.
The results and the numerical examples show that the system is much more robustly
asymptotically stable under structure-preserving perturbations than when the structure
is ignored. Open problems include the computation of the real stability radii when the
energy functional Q or the structure matrix J, or all three matrices R, Q, and J are
perturbed.
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