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Abstract We study linear dissipative Hamiltonian (DH) systems with real constant
coefficients that arise in energy based modeling of dynamical systems. We analyze
when such a system is on the boundary of the region of asymptotic stability, i.e.,
when it has purely imaginary eigenvalues, or how much the dissipation term has to be
perturbed to be on this boundary. For unstructured systems the explicit construction of
the real distance to instability (real stability radius) has been a challenging problem.
We analyze this real distance under different structured perturbations to the dissipation
term that preserve the DH structure and we derive explicit formulas for this distance in
terms of low rank perturbations.We also show (via numerical examples) that under real
structured perturbations to the dissipation the asymptotical stability of a DH system
is much more robust than for unstructured perturbations.
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1 Introduction

We study linear time-invariant systems with real coefficients. When a physical system
is energy preserving, then a mathematical model should reflect this property and this
is characterized by the property of the system being Hamiltonian. If energy dissipates
from the system then it becomes a dissipative Hamiltonian (DH) system, which in the
linear time-invariant case can be expressed as

ẋ = (J − R) Qx, (1.1)

where the function x �→ xT Qx , with Q = QT ∈ R
n,n positive definite, describes

the energy of the system, J = −J T ∈ R
n,n is the structure matrix that describes the

energy flux among energy storage elements, and R ∈ R
n,n with R = RT positive

semidefinite is the dissipation matrix that describes energy dissipation in the system.
Dissipative Hamiltonian systems are special cases of port-Hamiltonian systems,

which recently have received a lot attention in energy based modeling, see, e.g., [3,8,
19,21,22,26–30].An important property ofDHsystems is that they are stable,which in
the time-invariant case can be characterized by the property that all eigenvalues of A =
(J−R)Q are contained in the closed left half complex plane and all eigenvalues on the
imaginary axis are semisimple, see, e.g., [20] for a simple proof which immediately
carries over to the real case discussed here.

For general unstructured systems ẋ = Ax , if A has purely imaginary eigenvalues,
then arbitrarily small perturbations (arising e.g., from linearization errors, discretiza-
tion errors, or data uncertainties) may move eigenvalues into the right half plane and
thus make the system unstable. So stability of the system can only be guaranteed
when the system has a reasonable distance to instability, see [2,5,11,12,14,31], and
the discussion below.

When the coefficients of the system are real and it is clear that the perturbations
are real as well, then the complex distance to instability is not the right measure,
since typically the distance to instability under real perturbations is larger than the
complex distance. A formula for the real distance under general perturbations was
derived in the ground-breaking paper [23]. The computation of this real distance to
instability (or real stability radius) is an important topic in many applications, see e.g.,
[10,17,18,24,25,32].

In this paper, we study the distance to instability under real (structure preserving)
perturbations for DH systems and we restrict ourselves to the case that only the dis-
sipation matrix R is perturbed, because this is the part of the model that is usually
most uncertain, due to the fact that modeling damping or friction is extremely difficult,
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Stability radii for real linear Hamiltonian systems with… 813

see [10] and Example 1.1 below. Furthermore, the analysis of the perturbations in the
matrices Q, J is not completely clear at this stage.

Since DH systems are stable, it is clear that perturbations that preserve the DH
structure also preserve the stability. However, DH systems may not be asymptotically
stable, since they may have purely imaginary eigenvalues, which happens e.g., when
the dissipation matrix R vanishes. So in the case of DH systems, we discuss when
the system is robustly asymptotically stable, i.e., small real and structure-preserving
perturbations ΔR to the coefficient matrix R keep the system asymptotically stable,
and we determine the smallest perturbations that move the system to the boundary of
the set of asymptotically stable systems. Motivated from an application in the area of
disk brake squeal, we consider restricted structure-preserving perturbations of the form
ΔR = BΔBT , where B ∈ R

n,r is a so-called restriction matrix of full column rank.
This restriction allows the consideration of perturbations that only affect selected parts
of the matrix R. (We mention that perturbations of the form BΔBT should be called
structured perturbations by the convention following [13], but we prefer the term
restricted here, because of the danger of confusion with the term structure-preserving
for perturbations that preserve the DH structure.)

Example 1.1 Consider as motivating example the finite element analysis of disk brake
squeal [10], which leads to large scale differential equations of the form

Mq̈ + (D + G)q̇ + (K + N )q = f,

where M = MT > 0 is the mass matrix, D = DT ≥ 0 models material and friction
induced damping, G = −GT models gyroscopic effects, K = KT > 0 models the
stiffness, and N is a nonsymmetricmatrixmodeling circulatory effects. Here q̇ denotes
the derivative with respect to time. An appropriate first order formulation is associated
with the linear system ż = (J − R)Qz, where

J :=
[
G K + 1

2N−(K + 1
2N

H ) 0

]
, R :=

[
D 1

2N
1
2N

T 0

]
, Q :=

[
M 0
0 K

]−1

.

This system is in general not a DH system, since for N �= 0 the matrix R is indefinite.
But since brake squeal is associated with the eigenvalues in the right half plane, it is
an important question for which perturbations the system stays stable. This instability
can be associated with a restricted indefinite perturbation

R + ΔR :=
[
D 0
0 0

]
+
[
0 1

2N
1
2N

T 0

]

to the matrix that contains only the damping. Note that ΔR is subject to further
restrictions, since only a small part of the finite elements is associated with the brake
pad and thus the matrix N has only a small number of non-zeros associated with
these finite elements and only these occur in the perturbation. If this perturbation is
smaller than the smallest perturbation which makes the system have purely imaginary
eigenvalues then the system will stay stable. This example motivates our problem. A
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much harder problem which we do not address is a different restriction of the from
BΔNC + CTΔT

N BT which would be more appropriate for this example.

Consider a real linear time-invariant dissipative Hamiltonian (DH) system of the
form (1.1). For perturbations in the dissipation matrix we define the following real
distances to instability.

Definition 1.1 Consider a real DH system of the form (1.1) and let B ∈ R
n,r and

C ∈ R
q,n be given restrictions matrices. Then for p ∈ {2, F} we define the following

stability radii.

(1) The stability radius rR,p(R; B,C) of system (1.1) with respect to real general
perturbations to R under the restriction (B,C) is defined by

rR,p(R; B,C) := inf
{
‖Δ‖p

∣∣∣Δ∈R
r,q , �

(
(J − R)Q − (BΔC)Q

)∩iR �=∅
}

.

(2) The stability radius rSd
R,p(R; B) of system (1.1) with respect to real structure-

preserving semidefinite perturbations from the set

Sd(R, B) :=
{
Δ ∈ R

r,r
∣∣ΔT = Δ ≤ 0 and (R + BΔBT ) ≥ 0

}

under the restriction (B, BT ) is defined by

rSd
R,p(R; B)

:= inf
{
‖Δ‖p

∣∣∣ Δ ∈ Sd(R, B), �
(
(J − R)Q − (BΔBT )Q

)
∩ iR �= ∅

}
.

(3) The stability radius rSi
R,p(R; B) of system (1.1) with respect to structure-

preserving indefinite perturbations from the set

Si (R, B) :=
{
Δ ∈ R

r,r
∣∣ΔT = Δ and (R + BΔBT ) ≥ 0

}

under the restriction (B, BT ) is defined by

rSi
R,p(R; B)

:= inf
{
‖Δ‖p

∣∣∣ Δ ∈ Si (R, B), �
(
(J − R)Q − (BΔBT )Q

)
∩ iR �= ∅

}
.

To derive the real structured stability radii, wewill follow the strategy in [20] for the
complex case and reformulate the problem of computing rSd

R,p(R; B) or rSi
R,p(R; B) in

terms of real structured mapping problems. The following lemma of [20] (expressed
here for real matrices) gives a characterization when a DH system of the form (1.1)
has eigenvalues on the imaginary axis.
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Lemma 1.1 ([20, Lemma 3.1]) Let J, R, Q ∈ R
n,n be such that J T = −J, RT = R

positive semidefinite and QT = Q positive definite. Then (J − R)Q has an eigen-
value on the imaginary axis if and only if RQx = 0 for some eigenvector x of J Q.
Furthermore, all purely imaginary eigenvalues of (J − R)Q are semisimple.

The new mapping theorems for real DH systems will be derived in Sect. 2. Based
on these mapping theorems the stability radii for real DH systems under perturbations
in the dissipation matrix are studied in Sect. 3 and the results are illustrated with
numerical examples in Sect. 4.

In the following ‖ · ‖ denotes the spectral norm of a vector or a matrix while ‖ · ‖F
denotes the Frobenius norm of a matrix. By �(A) we denote the spectrum of a matrix
A ∈ R

n,n , whereRn,r is the set of real n×r matrices, with the special caseRn = R
n,1.

For A = AT ∈ R
n,n , we use the notation A ≥ 0 and A ≤ 0 if A is positive or negative

semidefinite, respectively, and A > 0 if A is positive definite. The Moore-Penrose of
a matrix Rn,r is denoted by A†, see e.g., [9].

2 Mapping theorems

As in the complex case that was treated in [20], the main tool in the computation
of stability radii for real DH systems will be minimal norm solutions to structured
mapping problems. To construct such mappings in the case of real matrices, and to
deal with pairs of complex conjugate eigenvalues and their eigenvectors, we will need
general mapping theorems formaps that map several real vectors x1, . . . , xm to vectors
y1, . . . , ym . We will first study the complex case and then use these results to construct
corresponding mappings in the real case.

For given X ∈ C
m,p,Y ∈ C

n,p, Z ∈ C
n,k , and W ∈ C

m,k , the general mapping
problem, see [16], asks under which conditions on X,Y, Z , and W the set

S :=
{
A ∈ C

n,m | AX = Y, AH Z = W
}

is nonempty, and if it is, then to construct the minimal spectral or Frobenius norm
elements from S. To solve this mapping problem, we will need the following well-
known result.

Lemma 2.1 ([4]) Let A, B,C be given complex matrices of appropriate dimensions.
Then for any positive number μ satisfying

μ ≥ max

(∥∥∥∥
[
A
B

]∥∥∥∥ ,
∥∥[ A C

]∥∥) ,

there exists a complex matrix D of appropriate dimensions such that

∥∥∥∥
[
A C
B D

]∥∥∥∥ ≤ μ. (2.1)
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Furthermore, any matrix D satisfying (2.1) is of the form

D = −K AH L + μ(I − KK H )1/2Z(I − LLH )1/2,

where K H = (μ2 I − AH A)−1/2BH , L = (μ2 I − AAH )−1/2C, and Z is an arbitrary
contraction, i.e., ‖Z‖ ≤ 1.

UsingLemma 2.1we obtain the following solution to the generalmapping problem.

Theorem 2.1 Let X ∈ C
m,p,Y ∈ C

n,p, Z ∈ C
n,k , and W ∈ C

m,k . Then the set

S :=
{
A ∈ C

n,m
∣∣∣ AX = Y, AH Z = W

}
,

is nonempty if and only if X HW = Y H Z , Y X†X = Y , and W Z†Z = W. If this is
the case, then

S=
{
Y X†+(WZ†)

H − (WZ†)
H
XX†+(I − Z Z†)R(I − XX†)

∣∣∣ R ∈ C
n,m
}

.

(2.2)

Furthermore, we have the following minimal-norm solutions to the mapping problem
AX = Y and AH Z = W:

(1) The matrix

G := Y X† + (WZ†)
H − (WZ†)

H
XX†

is the unique matrix from S of minimal Frobenius norm

‖G‖F =
√

‖Y X†‖2F + ‖WZ†‖2F − trace((WZ†)(WZ†)H XX†) = inf
A∈S

‖A‖F .

(2) The minimal spectral norm of elements from S is given by

μ := max
{
‖Y X†‖, ‖WZ†‖

}
= inf

A∈S
‖A‖. (2.3)

Moreover, assume that rank(X) = r1 and rank(Z) = r2. If X = UΣV H and
Z = ÛΣ̂ V̂ H are singular value decompositions of X and Z, respectively, where
U = [U1, U2] with U1 ∈ C

m,r1 and Û = [Û1, Û2] with Û1 ∈ C
n,r2 , then the

infimum in (2.3) is attained by the matrix

F := Y X† + (WZ†)
H − (WZ†)

H
XX† + (I − Z Z†)Û2CU

H
2 (I − XX†),

123



Stability radii for real linear Hamiltonian systems with… 817

where

C = −K (UH
1 (Y X†)Û1)L + μ(I − KK H )

1
2 P(I − LH L)

1
2 ,

K =
[
(μ2 I −UH

1 (Y X†)H Z Z†(Y X†)U1)
− 1

2 (Û H
2 Y X†U1)

]H
,

L =
(
μ2 I − Û H

1 (Y X†)(Y X†)
H
Û1

)− 1
2
(
Û H
1 (WZ†)

H
U2

)
,

and P is an arbitrary contraction.

Proof Suppose that S is nonempty. Then there exists A ∈ C
n,m such that AX = Y

and AH Z = W . This implies that XHW = Y H Z . Using the properties of the Moore-
Penrose pseudoinverse, we have that Y X†X = AXX†X = AX = Y and WZ†Z =
AH Z Z†Z = AH Z = W .

Conversely, suppose that XHW = Y H Z ,Y X†X = Y , and WZ†Z = W . Then S
is nonempty, since for any C ∈ C

n,m we have

A = Y X† + (WZ†)
H − (WZ†)

H
XX† + (I − Z Z†)C(I − XX†) ∈ S.

In particular, this proves the inclusion “⊇” in (2.2). To prove the other direction “⊆”,
let X = UΣV H and Z = ÛΣ̂ V̂ H be singular value decompositions of X and Z ,
respectively, partitioned as in 2), with Σ1 ∈ R

r1,r1 and Σ̂1 ∈ R
r2,r2 being the leading

principle submatrices of Σ and Σ̂ , respectively. Let A ∈ S and set

Â := Û H AU =
[
A11 A12
A21 A22

]
, (2.4)

where A11 ∈ C
r1,r2 , A12 ∈ C

r1,m−r2 , A21 ∈ C
n−r1,r2 and A22 ∈ C

n−r1,m−r2 . Then
‖A‖F = ‖ Â‖F and ‖A‖ = ‖ Â‖. Multiplying Û ÂU H X = AX = Y by Û H from the
left, we obtain

[
A11 A12
A21 A22

] [
Σ1V H

1
0

]
=
[
A11 A12
A21 A22

] [
UH
1

UH
2

]
X =

[
Û H
1

Û H
2

]
Y =

[
Û H
1 Y

Û H
2 Y

]
,

which implies that

A11 = Û H
1 YV1Σ

−1
1 and A21 = Û H

2 YV1Σ
−1
1 . (2.5)

Analogously, multiplying U ÂHÛ H Z = AH Z = W from the left by UH , we obtain
that

[
AH
11 AH

21

AH
12 AH

22

][
Σ̂1V̂ H

1

0

]
=
[
AH
11 AH

21

AH
12 AH

22

][
Û H
1

Û H
2

]
Z =

[
UH
1

UH
2

]
W =

[
UH
1 W

UH
2 W

]
.
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818 C. Mehl et al.

This implies that

A11 = (Σ̂−1
1 )

H
V̂ H
1 WHU1 and A12 = (Σ̂−1

1 )
H
V̂ H
1 WHU2. (2.6)

Equating the two expressions for A11 from (2.5) and (2.6), we obtain

Û H
1 YV1Σ

†
1 = (Σ̂

†
1 )

H
V̂ H
1 WHU1

which shows that XHW = Y H Z . Furthermore, we get

Â =
[
Û H
1 YV1Σ

−1
1 (Σ̂−1

1 )
H
V̂ H
1 WHU2

Û H
2 YV1Σ

−1
1 A22

]
=
[
Û H
1 Y X†U1 Û H

1 (WZ†)
H
U2

Û H
2 Y X†U1 A22

]
.

(2.7)
Thus, using X†U1UH

1 = X†, Z†Û1Û H
1 = Z†, and U1UH

1 = XX†, we obtain

A = Û ÂU H = Û1Û
H
1 Y X†U1U

H
1 + Û2Û

H
2 Y X†U1U

H
1

+ Û1Û
H
1 (WZ†)

H
U2U

H
2 + Û2A22U

H
2

= Û1Û
H
1 Y X†U1U

H
1 + (I − Û1Û

H
1 )Y X†U1U

H
1

+ Û1Û
H
1 (WZ†)

H
(I −U1U

H
1 ) + Û2A22U

H
2

= Y X† + (WZ†)
H − (WZ†)

H
XX† + (I − Z Z†)Û2A22U

H
2 (I − XX†).

(2.8)

(1) In view of (2.7) and using that X†U2 = 0 and Û H
2 (Z†)H = 0, we obtain that

‖A‖2F = ‖ Â‖2F =
∥∥∥∥
[
Û H
1 Y X†U1

Û H
2 Y X†U1

] ∥∥∥∥
2

F

+ ‖Û H
1 (WZ†)

H
U2‖

2

F + ‖A22‖2F

= ‖Û HY X†U‖2F+‖Û (WZ†)HU‖2F − ‖Û H
1 (WZ†)HU1‖2F+‖A22‖2F

= ‖Y X†‖2F + ‖WZ†‖2F − trace
(
(WZ†)(WZ†)

H
XX†

)
+ ‖A22‖2F .

Thus, by setting A22 = 0 in (2.8), we obtain a unique element of S which minimizes
the Frobenius norm giving

inf
A∈S

‖A‖F =
√

‖Y X†‖2F + ‖WZ†‖2F − trace
(
(WZ†)(WZ†)

H XX†
)
.

(2) By definition of μ, we have

μ = max
{
‖Y X†‖, ‖WZ†‖

}

= max

{∥∥∥∥
[
Û H
1 Y X†U1

Û H
2 Y X†U1

] ∥∥∥∥ ,

∥∥∥ [ Û H
1 Y X†U1 Û H

1 (WZ†)
H
U2

] ∥∥∥
}

.
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Then it follows that for any A ∈ S, we have ‖A‖ = ‖ Â‖ ≥ μ with Â as in (2.4).
By Theorem 2.1 there exists matrices A ∈ S with ‖A‖ ≤ μ, i.e., inf A∈S ‖A‖ = μ.
Furthermore, by Theorem 2.1 this infimum is attained with a matrix A as in (2.8),
where

A22 = −K
(
UH
1 (Y X†)HÛ1

)
L + μ(I − KK H )

1
2 P(I − LH L)

1
2 ,

K =
[(

μ2 I −UH
1 (Y X†)

H
Z Z†(Y X†)U1

)− 1
2
(Û H

2 Y X†U1)

]H
,

L =
(
μ2 I − Û H

1 (Y X†)(Y X†)
H
Û1

)− 1
2
(
Û H
1 (WZ†)

H
U2

)
,

and P is an arbitrary contraction. Hence the assertion follows by setting C = A22. �
The special case p = k = 1 of Theorem 2.1 was originally obtained in [15,

Theorem 2]. The next result characterizes the Hermitian positive semidefinite matrices
that map a given X ∈ C

n,m to a given Y ∈ C
n,m , and we include the solutions that

are minimal with respect to the spectral or Frobenius norm. This generalizes [20,
Theorem 2.3] which only covers the case m = 1.

Theorem 2.2 Let X, Y ∈ C
n,m be such that rank(Y ) = m. Define

S :=
{
H ∈ C

n,n
∣∣ HH = H ≥ 0, HX = Y

}
.

Then there exists H = HH ≥ 0 such that H X = Y if and only if X HY = Y H X and
XHY > 0. If this holds, then

H̃ := Y (Y H X)
−1

Y H (2.9)

is well-defined and Hermitian positive-semidefinite, and

S =
{
H̃ +

(
In − XX†

)
K H K

(
In − XX†

)∣∣∣ K ∈ C
n,n
}

. (2.10)

Furthermore, we have the following minimal norm solutions to the mapping problem
HX = Y :

(1) The matrix H̃ from (2.9) is the unique matrix fromS with minimal Frobenius norm

min
{ ‖H‖F

∣∣ H ∈ S} = ‖Y (XHY )
−1

Y H‖F .

(2) The minimal spectral norm of elements from S is given by

min
{ ‖H‖ ∣∣ H ∈ S} = ‖Y (XHY )

−1
Y H‖

and the minimum is attained for the matrix H̃ from (2.9).
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Proof If H ∈ S, then XHY = XH HX = (HX)H X = Y H X and XHY = XH HX ≥
0, since HH = H ≥ 0. If XH HX were singular, then there would exist a vector
v ∈ C

m\{0} such that vH XH HXv = 0 and, hence, Yv = HXv = 0 (as H ≥ 0) in
contradiction to the assumption that Y is of full rank. Thus, XHY > 0.

Conversely, let XHY = Y H X > 0 (which implies that also (XHY )−1 > 0). Then

H̃ in (2.9) is well-defined. Clearly H̃ X = Y and H̃ = Y (Y H X)
−1

Y H ≥ 0, which
implies that H̃ ∈ S. Let

H = H̃ + (I − XX†)K H K (I − XX†) ∈ C
n,n

be as in (2.10) for some K ∈ C
n,n . Then clearly HH = H, HX = Y and also H ≥ 0,

as it is the sum of two positive semidefinite matrices. This proves the inclusion “⊇”
in (2.10). For the converse inclusion, let H ∈ S. Since H ≥ 0, we have that H = AH A
for some A ∈ C

n,n . Therefore, HX = Y implies that (AH A)X = Y , and setting
Z = AX , we have AX = Z and AH Z = Y . Since rank(Y ) = m, we necessarily
also have that rank(Z) = m and rank(X) = m. Therefore, by Theorem 2.1, A can be
written as

A = Z X† + (Y Z†)H − (Y Z†)H XX† + (I − Z Z†)C(I − XX†) (2.11)

for some C ∈ C
n,n . Note that

(Y Z†)H XX† = (Z†)HY H XX† = (Z†)H ZH Z X† = (Z Z†)H Z X† = Z X†,

(2.12)
since (Z Z†)H = Z Z† and Y H X = ZH Z . By inserting (2.12) in (2.11), we obtain
that

A = (Y Z†)H + (I − Z Z†)C(I − XX†),

and thus,

H = AH A = (Y Z†)(Y Z†)H + (I − XX†)CH (I − Z Z†)(Y Z†)H

+(Y Z†)(I − Z Z†)C(I − XX†)

+(I − XX†)CH (I − Z Z†)(I − Z Z†)C(I − XX†)

= (Y Z†)(Y Z†)H + (I − XX†)CH (I − Z Z†)(I − Z Z†)C(I − XX†),

(2.13)

where the last equality follows since

(Y Z†)(I − Z Z†) = Y (Z† − Z†Z Z†) = Y (Z† − Z†) = 0.

Setting K = (I − Z Z†)C in (2.13) and using

Z†(Z†)H = (ZH Z)−1ZH ((ZH Z)−1ZH )H = (ZH Z)−1 = (Y H X)−1
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proves the inclusion “⊆” in (2.10).
(1) If H ∈ S, then XHY = Y H X > 0 and we obtain

H = Y (Y H X)−1Y H + (I − XX†)K H K (I − XX†), (2.14)

for some K ∈ C
n,n . By using the formula ‖BBH + DDH‖2F = ‖BBH‖2F +

2‖DB‖2F + ‖DH D‖2F for B = Y (Y H X)−1/2 and D = K (I − XX†), we obtain

‖H‖2F = ‖Y (Y H X)−1Y H‖2F + 2‖K (I − XX†)Y (Y H X)−
1
2 ‖2F

+‖(I − XX†)K H K (I − XX†)‖2F .

Hence, setting K = 0, we obtain H̃ = Y (Y H X)−1Y H as the unique minimal Frobe-
nius norm solution.

(2) Let H ∈ S be of the form (2.14) for some K ∈ C
n,n . Since Y (Y H X)−1Y H ≥ 0

and (I − XX†)K H K (I − XX†) ≥ 0, we have

‖Y (Y H X)−1Y H‖ ≤ ‖Y (Y H X)−1Y H + (I − XX†)K H K (I − XX†)‖.

This implies that

‖Y (Y H X)−1Y H‖≤ inf
K∈Cn,n

‖Y (Y H X)−1Y H+(I−XX†)K H K (I−XX†)‖= inf
H∈S ‖H‖.

(2.15)
One possible choice for obtaining equality in (2.15) is K = 0 which gives H̃ =
Y (Y H X)−1Y H ∈ S and ‖H̃‖ = ‖Y (Y H X)−1Y H‖ = min

H∈S
‖H‖. �

Although the complex versions of the mapping theorems seem to be of independent
interest, we will only apply them in this paper to obtain corresponding results for the
case of real perturbations. Here, “real” refers to the mappings, but not to the vectors
that are mapped, because we need to apply the mapping theorems to eigenvectors
which may be complex even if the matrix under consideration is real.

Remark 2.1 If X ∈ C
m,p,Y ∈ C

n,p, Z ∈ C
n,k,W ∈ C

m,k are such that
rank([X X̄ ]) = 2p and rank([Z Z̄ ]) = 2k (or, equivalently, rank([Re X Im X ]) = 2p
and rank([Re Z Im Z ]) = 2k), then minimal norm solutions to the mapping problem
AX = Y and AH Z = W with A ∈ R

n,m can easily be obtained from Theorem 2.1.
This follows from the observation that with AX = Y and AH Z = W we also have
AX = Y and AH Z = W and thus

A[Re X Im X ] = [Re Y Im Y ] and AH [Re Z Im Z ] = [ReW ImW ].

We can then apply Theorem 2.1 to the real matrices X = [Re X Im X ],Y =
[Re Y Im Y ],Z = [Re Z Im Z ], and W = [ReW ImW ]. Indeed, whenever there
exists a complex matrix A ∈ C

n,m satisfying AX = Y and AHZ = W , then there
also exists a real one, because it is easily checked that the minimal norm solutions in
Theorem 2.1 are real. (Here, we assume that for the case of the spectral norm the real
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singular value decompositions of X and Z are taken, and the contraction P is also
chosen to be real.)

A similar observation holds for solution of the real version of the Hermitian positive
semidefinite mapping problem in Theorem 2.2.

Since the real version of Theorem 2.1 (and similarly of Theorem 2.2) is straight-
forward in view of Remark 2.1, we refrain from an explicit statement. The situation,
however, changes considerably if the assumptions rank([Re X Im X ]) = 2p and
rank([Re Z Im Z ]) = 2k as in Remark 2.1 are dropped. In this case, it seems that a
full characterization of real solutions to the mapping problems is highly challenging
and very complicated. Therefore, we only consider the generalization of Theorem 2.2
to real mappings for the special case m = 1 which is in fact the case needed for the
computation of the stability radii. We obtain the following two results.

Theorem 2.3 Let x, y ∈ C
n be such that rank([y ȳ]) = 2. Then the set

S :=
{
H
∣∣∣H ∈ R

n,n, HT = H ≥ 0, Hx = y
}

is nonempty if and only if x H y > |xT y| (which includes the condition xH y ∈ R). In
this case let

X := [Re x Im x] and Y := [Re y Im y].

Then the matrix

H̃ := Y
(
Y H X

)−1
Y H (2.16)

is well defined and real symmetric positive semidefinite, and

S =
{
H̃ + (I − XX†)K (I − XX†)

∣∣∣ K ∈ R
n,n, KT = K ≥ 0

}
. (2.17)

(1) The minimal Frobenius norm of an element in S is given by

min
{‖H‖F

∣∣ H ∈ S} =
∥∥∥∥Y

(
Y T X

)−1
Y T
∥∥∥∥
F

and this minimal norm is uniquely attained by the matrix H̃ in (2.16).
(2) The minimal spectral norm of an element in S is given by

min
{‖H‖ ∣∣ H ∈ S} =

∥∥∥∥Y
(
Y T X

)−1
Y T
∥∥∥∥

and the matrix H̃ in (2.18) is a matrix that attains this minimum.

Proof Let H ∈ S, i.e., HT = H ≥ 0 and Hx = y. Since H is real, we also have
HX = Y . Thus, by Theorem 2.2, X and Y satisfy XHY = Y H X and Y H X > 0.
The first condition is equivalent to (Re x)T Im y = (Re y)T Im x which in turn is
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equivalent to xH y ∈ R and the second condition is easily seen to be equivalent to
xH y > |xT y|. Conversely, if xH y = yH x and xH y > |xT y|, then Y T X > 0 and
hence

H̃ := Y
(
Y T X

)−1
Y T

is positive semidefinite. Moreover, we obviously have H̃ X = Y and thus H̃ x = y.
This implies that H̃ ∈ S.

The inclusion “⊇” in (2.17) is straightforward. For the other inclusion let H ∈ S,
i.e., HT = H ≥ 0 and Hx = y, and thus HX = Y . Then, by Theorem 2.2, there
exist L ∈ C

n,n such that

H = H̃ + (I − XX†)LH L(I − XX†)

= H̃ + (I − XX†)
(
Re(LH )Re(L) + Im(L)H Im(L)

)
(I − XX†),

where for the last identity we made use of the fact that H is real. Thus, by setting
K = (Re(LH )Re(L) + Im(LH ) Im(L)), we get the inclusion “⊆” in (2.17). The
norm minimality in (1) and (2) follows immediately from Theorem 2.2, because any
real map H ∈ S also satisfies HX = Y . �

Theorem 2.3 does not consider the case that y and ȳ are linearly dependent. In that
case, we obtain the following result.

Theorem 2.4 Let x, y ∈ C
n, y �= 0 be such that rank[y ȳ] = 1. Then the set

S = {
H
∣∣ H ∈ R

n,n, HT = H ≥ 0, Hx = y
}

is nonempty if and only if x H y > 0. In that case

H̃ := yyH

xH y
(2.18)

is well-defined and real symmetric positive semidefinite. Furthermore, we have:

(1) The minimal Frobenius norm of an element in S is given by

min
{‖H‖F

∣∣ H ∈ S} = ‖y‖2
xH y

and this minimal norm is uniquely attained by the matrix H̃ in (2.18).
(2) The minimal spectral norm of an element in S is given by

min
{‖H‖ ∣∣ H ∈ S} = ‖y‖2

xH y

and the matrix H̃ in (2.18) is a matrix that attains this minimum.

123



824 C. Mehl et al.

Proof If H ∈ S, i.e., HT = H ≥ 0 and Hx = y, then by Theorem 2.2 (for the case
m = 1) we have that xH y > 0. Conversely, assume that x and y satisfy xH y > 0.
Since y and ȳ are linearly dependent, there exists a unimodular α ∈ C such that αy
is real. But then also yyH = (αy)(αy)H is real and hence the matrix H̃ in (2.18) is
well defined and real. By Theorem 2.2, it is the unique element from S with minimal
Frobenius norm and also an element from S of minimal spectral norm. �
Remark 2.2 Note that results similar to Theorems 2.3 and 2.4 can also be obtained
for real negative semidefinite maps. Indeed, for x, y ∈ C

n such that rank[y ȳ] =
2, there exist a real negative semidefinite matrix H ∈ R

n,n such that Hx =
y if and only if xH y = yH x and −xH y > |xT y|. Furthermore, it fol-
lows immediately from Theorem 2.3 by replacing y with −y and H with −H
that a minimal solution in spectral and Frobenius norm is given by H̃ =
[Re y Im y] ([Re y Im y]H [Re x Im x])−1 [Re y Im y]H . An analogous argument
holds for Theorem 2.4. Therefore, we will refer to Theorems 2.3 and 2.4 also in
the case that we are seeking solutions for the negative semidefinite mapping problem.

The minimal norm solutions for the real symmetric mapping problem with respect
to both the spectral norm and Frobenius norm are well known, see [1, Theorem 2.2.3].
We do not restate this result in its full generality, but in terms of the following two
theorems that are formulated in such a way that they allow a direct application in the
remainder of this paper.

Theorem 2.5 Let x, y ∈ C
n\{0} be such that rank([x x̄]) = 2. Then

S := {H ∈ R
n,n| HT = H, Hx = y}

is nonempty if and only if x H y = yH x. Furthermore, define

X := [Re x Im x], Y := [Re y Im y], H̃ := Y X† + (Y X†)T − (XX†)T Y X†.

(2.19)

(1) The minimal Frobenius norm of an element in S is given by

min
H∈S

‖H‖F = ‖H̃‖F =
√
2‖Y X†‖2F − trace

(
Y X†(Y X†)T X X†

)

and the minimum is uniquely attained by H̃ in (2.19).
(2) To characterize the minimal spectral norm, consider the singular value decom-

position X = UΣV T and let U = [U1 U2] where U1 ∈ R
n,2. Then

min
H∈S

‖H‖ = ‖Y X†‖,

and the minimum is attained by

Ĥ = H̃ − (In − XX†)KUT
1 Y X†U1K

T (In − XX†), (2.20)

where K = Y X†U1(μ
2 I2 −UT

1 Y X†Y X†U1)
−1/2 and μ := ‖Y X†‖.
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Proof Observe that for HT = H ∈ R
n,n the identity Hx = y is equivalent to

HX = Y . Thus, the result follows immediately from [1, Theorem 2.2.3] applied to
the mapping problem HX = Y . �
Theorem 2.6 Let x, y ∈ C

n\{0} be such that rank([x x̄]) = 1. Then

S := {H ∈ R
n,n| HT = H, Hx = y}

is nonempty if and only if x H y = yH x. Furthermore, we have:

(1) The minimal Frobenius norm of an element in S is given by

min
H∈S

‖H‖F = ‖y‖
‖x‖

and the minimum is uniquely attained by the real matrix

H̃ := yxH

‖x‖2 + xyH

‖x‖2 − (xH y)xxH

‖x‖4 .

(If x and y are linearly dependent, then H̃ = yxH

xH x
.)

(2) The minimal spectral norm of an element in S is given by

min
H∈S

‖H‖ = ‖y‖
‖x‖ ,

and the minimum is attained by the real matrix

Ĥ := ‖y‖
‖x‖

[
y

‖y‖
x

‖x‖
] [ yH x

‖x‖ ‖y‖ 1

1 xH y
‖x‖ ‖y‖

]−1 [
y

‖y‖
x

‖x‖
]H

if x and y are linearly independent and for Ĥ := yxH

xH x
otherwise.

Proof By [1, Theorem 2.2.3] (see also [20, Theorem 2.1] and [16]) the matrices H̃ and
Ĥ are the minimal Frobenius resp. spectral norm solutions to the complex Hermitian
mapping problem Hx = y. Thus, it only remains to show that H̃ and Ĥ are real. Since
x and x̄ are linearly dependent, there exists a unimodular α ∈ C such that αx is real.
But then also αy = H(αx) and thus xxH = (αx)(αx)H and yxH = (αy)(αx)H are
real which implies the realness of H̃ . Analogously, Ĥ can be shown to be real. �

Obviously, the minimal Frobenius or spectral norm solutions from Theorem 2.6
have either rank one or two. The following lemma characterizes the rank of theminimal
Frobenius or spectral norm solutions from Theorem 2.5 as well as the number of their
negative and their positive eigenvalues, respectively.

123



826 C. Mehl et al.

Lemma 2.2 Let x, y ∈ C
n\{0} be such that x H y = yH x and rank([x x̄]) = 2. If H̃

and Ĥ are defined as in (2.19) and (2.20), respectively, then rank(H̃), rank(Ĥ) ≤ 4
and both H̃ and Ĥ have at most two negative eigenvalues and at most two positive
eigenvalues.

Proof Recall from Theorem 2.5 that X = [Re x Im x],Y = [Re y Im y] and consider
the singular value decomposition

X = UΣV T = U

[
Σ̃

0

]
V T

with U = [U1 U2] ∈ R
n,n,U1 ∈ R

n,2, Σ̃ ∈ R
2,2, and V ∈ R

2,2. If we set

Y = U

[
Y1
Y2

]
V T ,

where Y1 ∈ R
2,2 and Y2 ∈ R

n−2,2, then

H̃ = Y X† + (Y X†)T − (XX†)T Y X†

= U

[
Y1Σ̃−1 0
Y2Σ̃−1 0

]
UT +U

[
Σ̃−1Y T

1 Σ̃−1Y H
2

0 0

]
UT −U

[
Y1Σ̃−1 0

0 0

]
UT

= U

[
Σ̃−1Y T

1 Σ̃−1Y T
2

Y2Σ̃−1 0

]
UT . (2.21)

Thus, H̃ is of rank at most four, and also H̃ has a n−2-dimensional neutral subspace,
i.e., a subspace V ⊆ R

n satisfying zT H̃ z̃ = 0 for all z, z̃ ∈ V . This means that the
restriction of H̃ to its range still has a neutral subspace of dimension at least

max{0, rank(H̃) − 2} =
⎧⎨
⎩
2 if rank(H̃) = 4,
1 if rank(H̃) = 3,
0 if rank(H̃) ≤ 2.

Thus, it follows by applying [7, Theorem 2.3.4] that H̃ has at most two negative and
at most two positive eigenvalues. On the other hand, we have

Ĥ = H̃ − (In − XX†)KUT
1 Y X†U1K

T (In − XX†), (2.22)

where K = Y X†U1W,W := (μ2 I2 − UT
1 Y X†Y X†U1)

−1/2 and μ := ‖Y X†‖. Then
we obtain

K = Y X†U1W = U

[
Y1Σ̃−1 0
Y2Σ̃−1 0

]
UTU1W = U

[
Y1Σ̃−1

Y2Σ̃−1

]
W.

123



Stability radii for real linear Hamiltonian systems with… 827

Also,

H := (In − XX†)KUT
1 Y X†U1K

T (In − XX†)

= U

[
0

Y2Σ̃−1

]
WUT

1 U

[
Y1Σ̃−1 0
Y2Σ̃−1 0

]
UTU1W

T [0 Σ̃−1Y T
2

]
UT

= U

[
0 0
0 Y2Σ̃−1WY1Σ̃−1WT Σ̃−1Y T

2

]
UT . (2.23)

Inserting (2.21) and (2.23) into (2.22), we get

Ĥ = H̃ − H = U

[
Σ̃−1Y T

1 Σ̃−1Y T
2

Y2Σ̃−1 −Y2Σ̃−1WY1Σ̃−1WT Σ̃−1Y T
2

]
UT

= U

[
Z LT

L −LW ZTWT LT

]
UT ,

where Z := Σ̃−1Y T
1 and L := Y2Σ̃−1. This implies that

UT ĤU =
[
Z LT

L −LW ZTWT LT

]

and Z are real symmetric. Let Û ∈ R
n−2,n−2 be invertible such that

Û L =
[
l11 0 0 . . . 0
l12 l22 0 . . . 0

]T
=
[
L̂
0

]

is in row echelon form, where L̂ =
[
l11 l12
0 l22

]
. Then

[
I2 0
0 Û

] [
Z LT

L −LW ZWT LT

] [
I2 0
0 Û T

]
=
[
Z11 0
0 0

]
,

where

Z11 =
[
Z L̂T

L̂ −L̂W ZWT L̂T

]
∈ R

4,4.

This implies that rank(Ĥ) = rank(Z11) ≤ 4. Furthermore, by Sylvester’s law of
inertia, Ĥ and Z11 have the same number of negative eigenvalues. Thus, the assertion
follows if we show that Z11 has atmost two negative eigenvalues. For this, first suppose
that L̂ is singular, i.e., l22 = 0, which would imply that rank(Z11) ≤ 3. If rank(Z11) <

3, then clearly Z11 can have at most two negative eigenvalues and at most two positive
eigenvalues. If rank(Z11) = 3, then we have that Z11 is indefinite. Indeed, if Z is
indefinite then so is Z11. If Z is positive (negative) semidefinite then −L̂W ZWT L̂T

is negative (positive) semidefinite. In this case Z11 has two real symmetric matrices
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of opposite definiteness as block matrices on the diagonal. This shows that Z11 is
indefinite and thus can have at most two negative eigenvalues and at most two positive
eigenvalues.

If L̂ is invertible, then

[
I2 0
0 W−1 L̂−1

] [
Z L̂T

L̂ −L̂W ZWT L̂T

] [
I2 0
0 L̂−T W−T

]
=
[

Z W−T

W−1 −Z

]

is a real symmetric Hamiltonian matrix. Therefore, by using the Hamiltonian spectral
symmetry with respect to the imaginary axis, it follows that Z11 has two positive and
two negative eigenvalues. �

In the next section we will discuss real stability radii under restricted perturbations,
where the restrictions will be expressed with the help of a restriction matrix B ∈ R

n,r .
To deal with those, we will need the following lemmas.

Lemma 2.3 ([20]) Let B ∈ R
n,r with rank(B) = r , let y ∈ C

r\{0}, and let z ∈
C
n\{0}. Then, for all A ∈ R

r,r we have BAy = z if and only if Ay = B†z and
BB†z = z.

Lemma 2.4 Let B ∈ R
n,r with rank(B) = r , let y ∈ C

r\{0} and z ∈ C
n\{0}.

(1) If rank([z z̄]) = 1, then there exists a positive semidefinite A = AT ∈ R
r,r

satisfying BAy = z if and only if BB†z = z and yH B†z > 0.
(2) If rank([z z̄]) = 2. then there exists a positive semidefinite A = AT ∈ R

r,r

satisfying BAy = z if and only if BB†z = z and yH B†z > |yT B†z|.
Proof Let A ∈ R

r,r , then by Lemma 2.3 we have that BAy = z if and only if

BB†z = z and Ay = B†z. (2.24)

If rank([z z̄]) = 1, then by Theorem 2.4 the identity (2.24) is equivalent to BB†z = z
and yH B†z > 0. If rank([z z̄]) = 2 then (2.24) is equivalent to

BB†[z z̄] = [z z̄] and A[y ȳ] = [B†z B† z̄], (2.25)

because A is real. Note that rank([B†z B† z̄]) = 2, because otherwise there would
exist α ∈ C

2\{0} such that [B†z B† z̄]α = 0. But this implies that [z z̄]α =
[BB†z BB† z̄]α = 0 in contradiction to the fact that rank([z z̄]) = 2. Thus, by
Theorem 2.3, there exists 0 ≤ A ∈ R

r,r satisfying (2.25) if and only if BB†z = z and
yH B†z > |yT B†z|. �

The following is a version of Lemma 2.4 without semidefiniteness.

Lemma 2.5 Let B ∈ R
n,r with rank(B) = r , let y ∈ C

r\{0} and z ∈ C
n\{0}.

Then there exist a real symmetric matrix A ∈ R
r,r satisfying BAy = z if and only if

BB†z = z and yH B†z ∈ R.
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Proof The proof is analogous to that of Lemma 2.4, using Theorems 2.5 and 2.6
instead of Theorems 2.3 and 2.4. �

In this section we have presented several mapping theorems, in particular for the
real case. These will be used in the next section to determine formulas for the real
stability radii of DH systems.

3 Real stability radii for DH systems

Consider a real linear time-invariant dissipative Hamiltonian (DH) system ẋ = (J −
R)Qx as in (1.1), i.e., with J, R, Q ∈ R

n,n being such that J T = −J, RT = R ≥ 0
and QT = Q > 0. Then the formula for the stability radius rR,2(R; B,C) from
Definition 1.1 for given restriction matrices B ∈ R

n,r and C ∈ R
n,q is a direct

consequence of the following well-known result.

Theorem 3.1 ([23]) For a given M ∈ C
p,m, define

μR(M) := (
inf
{‖Δ‖ ∣∣ Δ ∈ R

m,p, det(Im − ΔM) = 0
})−1

.

Then

μR(M) = inf
γ∈(0,1] σ2

([
ReM −γ Im M

γ −1 Im M ReM

])
,

where σ2(A) is the second largest singular value of a matrix A. Furthermore, an
optimal Δ that attains the value of μR(M) can be chosen of rank at most two.

Applying this theorem to DH systems we obtain the following corollary.

Corollary 3.1 Consider an asymptotically stable DH system of the form (1.1) and let
B ∈ R

n,r and C ∈ R
q,n be given restriction matrices. Then

rR,2(R; B,C) = inf
ω∈R

(
inf

γ∈(0,1] σ2
([

ReM(ω) −γ Im M(ω)

γ −1 Im M(ω) ReM(ω)

]))−1

(3.1)

and
rR,2(R; B,C) ≤ rR,F (R; B,C) ≤ √

2 rR,2(R; B,C), (3.2)

where M(ω) := CQ
(
(J − R)Q − iωIn

)−1
B.

Proof By definition, we have

rR,2(R; B,C) = inf
{
‖Δ‖

∣∣∣Δ ∈ R
r,q , �

(
(J − R)Q − (BΔC)Q

) ∩ iR �= ∅
}

= inf
{‖Δ‖ ∣∣ Δ ∈ R

r,q , ω ∈ R, det
(
iωIn − (J − R)Q + BΔCQ

) = 0
}

= inf
{
‖Δ‖

∣∣∣ Δ ∈ R
r,q , ω∈R, det

(
In−BΔCQ((J−R)Q−iωIn)

−1) = 0
}

,
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where the last equality follows, since (J − R)Q is asymptotically stable so that the
inverse of (J − R)Q − iωIn exists for all ω ∈ R. Thus we have

rR,2(R; B,C)

= inf
{
‖Δ‖

∣∣∣ Δ ∈ R
r,q , ω ∈ R, det

(
In − ΔCQ((J − R)Q − iωIn)

−1B
) = 0

}

= inf
ω∈R

(
μR

(
M(ω)

))−1
,

where M(ω) := CQ((J − R)Q − iωIn)−1B. Therefore, (3.1) follows from Theo-
rem 3.1, and if Δ̂ is of rank at most two such that ‖Δ̂‖ = rR,2(R; B,C), then (3.2)
follows by using the definition of rR,F (R; B,C) and by the fact that

‖Δ̂‖ = rR,2(R; B,C) ≤ rR,F (R; B,C) ≤ ‖Δ̂‖F ≤ √
rank(Δ) ‖Δ̂‖2

= √
2 rR,2(R; B,C).

�
To derive the stability radii under structure preserving perturbations, we will reformu-
late the problem of computing the radii in terms of real structured mapping problems
and apply the results from Sect. 2. In Sect. 3.1 we first consider the radius rSd

R,p(R; B)

that is shown to correspond to minimal rank structure-preserving perturbations of
minimal norm. Then the radius rSi

R,p(R; B) corresponding minimal norm structure-
preserving perturbations is considered in Sect. 3.2.

3.1 The stability radius rSd
R, p(R; B)

To derive formulas for the stability radius under real structure-preserving restricted
and semidefinite perturbations we need the following two lemmas.

Lemma 3.1 Let HT = H ∈ R
n,n be positive semidefinite. Then xH Hx ≥ ∣∣xT Hx

∣∣
for all x ∈ C

n, and equality holds if and only if Hx and H x̄ are linearly dependent.

Proof Let S ∈ R
n,n be a symmetric positive semidefinite square root of H , i.e.,

S2 = H . Then, using the Cauchy-Schwarz inequality we obtain that

∣∣xT Hx
∣∣ = ∣∣〈Sx̄, Sx〉∣∣ ≤ ‖Sx̄‖ · ‖Sx‖ =

√
x̄ H H x̄ ·

√
xH Hx = xH Hx,

because x̄ H H x̄ = xH Hx = xH Hx as H is real. In particular equality holds if and
only if Sx and Sx̄ are linearly dependent which is easily seen to be equivalent to the
linear dependence of Hx and Hx̄ . �
Lemma 3.2 Let R,W ∈ R

n,n be such that RT = R ≥ 0 and WT = W > 0. If
x ∈ C

n is such that rank([x x̄]) = 2 and xHWT RWx > |xT WT RWx |, set

ΔR := −RW [Re x Im x]
(
[Re x Im x]HW RW [Re x Im x]

)−1 [Re x Im x]HW R.
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Then R + ΔR is symmetric positive semidefinite.

Proof Since R andW are real symmetric and xHWT RWx > |xT WT RWx |, it follows
that the matrix [Re x Im x]HW RW [Re x Im x] is real symmetric and positive definite
and, therefore,ΔR iswell defined andwehaveΔR = ΔT

R ≤ 0.Weprove that R+ΔR ≥
0 by showing that all its eigenvalues are nonnegative. SinceW is nonsingular, we have
that Wx �= 0. Also ΔR is a real matrix of rank two satisfying ΔRW [Re x Im x] =
−RW [Re x Im x]. This implies that

(R + ΔR)W [Re x Im x] = 0. (3.3)

Since rank[Re x Im x] = rank[x x̄] = 2 and since W is nonsingular, we have that
W Re x and W Im x are linearly independent eigenvectors of R + ΔR corresponding
to the eigenvalue zero.

Let λ1, . . . , λn be the eigenvalues of R and let η1, . . . , ηn be the eigenvalues of
R + ΔR , where both lists are arranged in nondecreasing order, i.e.,

0 ≤ λ1 ≤ · · · ≤ λn and η1 ≤ · · · ≤ ηn .

Since ΔR is of rank two, by the Cauchy interlacing theorem [6],

λk ≤ ηk+2 and ηk ≤ λk+2 for k = 1, . . . , n − 2. (3.4)

This implies that 0 ≤ η3 ≤ · · · ≤ ηn , and thus the assertion follows once we show that
η1 = 0 and η2 = 0. If R is positive definite, then λ1, . . . , λn satisfy 0 < λ1 ≤ · · · ≤ λn
and, therefore, 0 < η3 ≤ · · · ≤ ηn . Therefore we must have η1 = 0 and η2 = 0
by (3.3).

If R is positive semidefinite but singular, then let k be the dimension of the kernel
of R. We then have k < n, because R �= 0. Letting � be the dimension of kernel of
R + ΔR , then using (3.4) we have that

k − 2 ≤ � ≤ k + 2,

and we have η1 = 0 and η2 = 0 if we show that � = k + 2. Since W is nonsingu-
lar, the kernels of R and RW have the same dimension k. Let x1, . . . , xk be linearly
independent eigenvectors of RW associated with the eigenvalue zero, i.e., we have
RWxi = 0 for all i = 1, . . . , k. Then ΔRWxi = 0 for all i = 1, . . . , k, and hence
(R+ΔR)Wxi = 0 for all i = 1, . . . , k. The linear independence of x1, . . . , xk together
with the nonsingularity of W implies that Wx1, . . . ,Wxk are linearly independent.
By (3.3) we have (R + ΔR)W Re x = 0 and (R + ΔR)W Im x = 0. Moreover,
the vectors W Re x,W Im x,Wx1, . . . ,Wxk are linearly independent. Indeed, let
α, β, α1, . . . , αk ∈ R be such that

αW Re x + βW Im x + α1Wx1 + · · · + αkW xk = 0.

Then we have R(αW Re x + βW Im x) = 0 as RWxi = 0 for all i = 1, . . . , k.
This implies that α = 0 and β = 0, because RW Re x and RW Im x are linearly
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independent. The linear independence of Wx1, . . . ,Wxk then implies that αi = 0 for
all i = 1, . . . , k, and henceW Re x,W Im x,Wx1, . . . ,Wxk are linearly independent
eigenvectors of R+ΔR corresponding to the eigenvalue zero. Thus, the dimension of
the kernel of R + ΔR is at least k + 2 and hence we must have η1 = 0 and η2 = 0. �

Using these lemmas, we obtain a formula for the structured real stability radius of
DH systems.

Theorem 3.2 Consider an asymptotically stable DH system of the form (1.1). Let
B ∈ R

n,r with rank(B) = r , and let p ∈ {2, F}. Furthermore, for j ∈ {1, 2} let
Ω j denote the set of all eigenvectors x of J Q such that (In − BB†)RQx = 0 and

rank
( [

RQx RQx̄
] ) = j , and let Ω := Ω1 ∪ Ω2. Then rSd

R,p(R; B) is finite if and
only if Ω is nonempty. If this is the case, then

rSd
R,p(R; B) = min

{
inf
x∈Ω1

∥∥∥∥ (B†RQx)(B†RQx)H

xH QRQx

∥∥∥∥
p
, inf

x∈Ω2
‖Y (Y H X)−1Y H‖p

}
,

where X = BT Q[Re x Im x] and Y = B†RQ[Re x Im x].
Proof By definition, we have

rSd
R,p(R; B) := inf

{
‖Δ‖p

∣∣∣ Δ ∈ Sd(R, B), �
(
(J − R)Q − (BΔBT )Q

)
∩ iR �= ∅

}
,

where Sd(R, B) := {
Δ ∈ R

r,r
∣∣ΔT = Δ ≤ 0 and (R + BΔBT ) ≥ 0

}
. By using

Lemma 1.1, we obtain that

rSd
R,p(R; B)

= inf
{
‖Δ‖p

∣∣∣ Δ ∈ Sd(R, B), (R + BΔBT )Qx = 0 for some eigenvector x of J Q
}

= inf
{
‖Δ‖p

∣∣∣Δ ∈ Sd(R, B), BΔBT Qx = −RQx for some eigenvector x of J Q
}

= inf
{
‖Δ‖p

∣∣∣Δ ∈ Sd(R, B), ΔBT Qx = −B†RQx for some x ∈ Ω
}
, (3.5)

since by Lemma 2.3 we have BΔBT Qx = −RQx if and only if ΔBT Qx =
−B†RQx and BB†RQx = RQx , and thus x ∈ Ω . From (3.5) and Sd(R, B) ⊆
{Δ ∈ R

r,r | ΔT = Δ ≤ 0}, we obtain that

rSd
R,p(R; B) ≥ inf

{
‖Δ‖p

∣∣∣Δ
= ΔT ∈ R

r,r , Δ ≤ 0, ΔBT Qx = −B†RQx for some x ∈ Ω
}

=: �.

(3.6)

The infimum on the right hand side of (3.6) is finite if and only if Ω is nonempty. The
same will also hold for rSd

R,p(R; B) if we show equality in (3.6). To this end we will
use the abbreviations
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� j := inf
{
‖Δ‖p | Δ = ΔT ∈ R

r,r , Δ≤0, ΔBT Qx = −B†RQx for some x ∈ Ω j

}

for j ∈ {1, 2}, i.e., we have � = min{�1, �2}, and we consider two cases.
Case (1): � = �1. If x ∈ Ω1, then BB†RQx = RQx , and RQx and RQx̄

are linearly dependent. But then also B†RQx and B†RQx̄ are linearly dependent and
hence, byLemma2.4 there existsΔ ∈ R

r,r such thatΔ ≤ 0 andΔBT Qx = −B†RQx
(and thus (−Δ) ≥ 0 and (−Δ)BT Qx = B†RQx) if and only xH QRQx > 0. This
condition is satisfied for all x ∈ Ω1. Indeed, since R is positive semidefinite, we
find that xH QRQx ≥ 0, and xH QRQx = 0 would imply RQx = 0 and thus
(J − R)Qx = J Qx which means that x is an eigenvector of (J − R)Qx associated
with an eigenvalue on the imaginary axis in contradiction to the assumption that
(J − R)Q only has eigenvalues in the open left half plane.

Using minimal norm mappings from Theorem 2.4 we thus have

rSd
R,p(R; B) ≥ �1

= inf
{
‖Δ‖p | Δ = ΔT ∈ R

r,r , Δ ≤ 0, ΔBT Qx = −B†RQx, x ∈ Ω1

}

= inf
x∈Ω1

{∥∥∥∥ (B†RQx)(B†RQx)H

xH QBB†RQx

∥∥∥∥
}

= inf
x∈Ω1

{∥∥∥∥ (B†RQx)(B†RQx)H

xH QRQx

∥∥∥∥
}

.

(3.7)

As the expression in (3.7) is invariant under scaling of x , it is sufficient to take the
infimum over all x ∈ Ω1 of norm one. Then a compactness argument shows that the
infimum is actually attained for some x̃ ∈ Ω1 and by [20, Theorem 4.2], the matrix

Δ̂ := (B†RQx̃)(B†RQx̃)H

x̃ H QRQx̃

is the unique (resp. a) complex matrix of minimal Frobenius (resp. spectral) norm
satisfying Δ̂T = Δ̂ ≤ 0 and Δ̂BT Qx = −B†RQx . Also, by Theorem 2.4 the matrix
Δ̂ is real and by [20, Lemma 4.1] we have R + BΔ̂BT ≥ 0. Thus Δ̂ ∈ Sd(R, B). But
this means that rSd

R,p(R; B) = �1 = �.

Case (2):� = �2. If x ∈ Ω2, then BB†RQx = RQx , andRe RQx and Im RQx are
linearly independent. But then, also Re B†RQx and Im B†RQx are linearly indepen-
dent, because otherwise, also Re RQx = Re BB†RQx and Im RQx̄ = Im BB†RQx̄
would be linearly dependent. Thus, by Lemma 2.4 there exists Δ ∈ R

r,r such that
Δ ≤ 0 and ΔBT Qx = −B†RQx if and only if xH QRQx > |xT QRQx |. By
Lemma 3.1 this condition is satisfied for all x ∈ Ω2, because R and thus QRQ is
positive semidefinite.

Using minimal norm mappings from Theorem 2.3 we then obtain
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rSd
R,p(R; B)

≥ �2 = inf
{
‖Δ‖p | Δ = ΔT ∈ R

r,r , Δ ≤ 0, ΔBT Qx = −B†RQx, x ∈ Ω2

}

= inf
{

‖Y (Y H X)−1Y H‖p

∣∣∣ X = BT Q [Re x Im x], Y = B†RQ [Re x Im x], x ∈ Ω2

}

= ∥∥Ỹ (Ỹ H X̃)−1Ỹ H
∥∥
p, (3.8)

for some x̃ ∈ Ω2, where X̃ = BT Q [Re x̃ Im x̃] and Ỹ = B†RQ [Re x̃ Im x̃]. Indeed,
the matrix Y (Y H X)−1Y H is invariant under scaling of x , so that it is sufficient to take
the infimum over all x ∈ Ω2 having norm one. A compactness argument shows that
the infimum is actually a minimum and attained for some x̂ ∈ Ω2. Then setting

Δ̃R := −Ỹ (Ỹ H X̃)−1Ỹ H ,

we have equality in (3.8) if we show that R+BΔ̃R BT is positive semidefinite, because
this would imply that Δ̃R ∈ Sd(R, B). But this follows from Lemma 3.2 by noting
that BB†RQ [Re x̃ Im x̃] = RQ [Re x̃ Im x̃]. Indeed, by the definition of Ω2, the
vectors Re RQx̃ and Im RQx̃ are linearly independent, and

R + BΔ̃R B
T = R − BỸ (Ỹ H X̃)−1Ỹ H BT

= R − BB†RQ[Re x Im x]([Re x Im x]H QRQ[Re x Im x])−1

×[Re x Im x]H QR(B†)T BT

= R − RQ[Re x Im x]([Re x Im x]H QRQ[Re x Im x])−1[Re x Im x]H QR.

is positive semidefinite by Lemma 3.2. This proves that rSd
R,p(R; B) = �2 = �. �

Remark 3.1 In the case that R > 0 and J are invertible, the set Ω1 from Theorem 3.2
is empty and hence Ω = Ω2, because if R > 0 and if x is an eigenvector of J Q with
rank

( [
RQx RQx̄

] ) = 1 then, x is necessarily an eigenvector associated with the
eigenvalue zero of J Q. Indeed, if RQx and RQx̄ are linearly dependent, then x and
x̄ are linearly independent, because RQ is nonsingular as R > 0 and Q > 0. This
is only possible if x is associated with a real eigenvalue, and since the eigenvalues of
J Q are on the imaginary axis, this eigenvalue must be zero.

Remark 3.2 We mention that in the case that R and J are invertible, rSd
R,p(R; B) is

also the minimal norm of a structure-preserving perturbation of rank at most two that
moves an eigenvalue of (J − R)Q to the imaginary axis. To be more precise, if

S2(R, B) :=
{
Δ ∈ R

r,r
∣∣ΔT = Δ, rankΔ ≤ 2, and (R + BΔBT ) ≥ 0

}

and

rS2
R,p(R; B) := inf

{
‖Δ‖p

∣∣∣ Δ ∈ S2(R, B),�
(
(J−R)Q−(BΔBT )Q

)
∩ iR �= ∅

}
,
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then we have rS2
R,p(R; B) = rSd

R,p(R; B). Indeed, assume that Δ ∈ S2(R, B) is such

that (J − R)Q − (BΔBT )Q has an eigenvalue on the imaginary axis. By Lemma 1.1
we then have (R+ BΔBT )Qx = 0 for some eigenvector x of J Q. Since R and J are
invertible, it follows from Remark 3.1 that RQx and RQx̄ are linearly independent.
Since Δ has rank at most two, it follows that the kernel of Δ has dimension at least
n − 2. Thus, let w3, . . . , wn be linearly independent vectors from the kernel of Δ.
Then BT Qx, BT Qx̄, w3, . . . , wn is a basis ofCn . Indeed, let α1, . . . , αn ∈ C be such
that

α1B
T Qx + α2B

T Qx + α3w3 + · · · + αnwn = 0. (3.9)

Then multiplication with BΔ yields

0 = α1BΔBT Qx + α2BΔBT Qx̄ = α1RQx + α2RQx̄

and we obtain α1 = α2 = 0, because RQx and RQx̄ are linearly independent. But
then (3.9) and the linear independence of w3, . . . , wn imply α3 = · · · = αn = 0.
Thus, setting T := [BT Qx, BT Qx̄, w3, . . . , wn] we obtain that T is invertible and
T HΔT = diag(D, 0), where

D =
[
xH QBΔBT Qx xT QBΔBT Qx

xT QBΔBT Qx xH QBΔBT Qx

]
=
[
xH QRQx xT QRQx
xT QRQx xH QRQx

]
.

Since by Lemma 3.1 we have xH QRQx > |xT QRQx |, it follows that D is positive
definite which implies Δ ∈ Sd(R; B) and hence rS2

R,p(R; B) ≥ rSd
R,p(R; B). The

inequality “≤” is trivial as minimal norm elements from Sd(R; B) have rank at most
two.

In this subsection we have characterized the real structured restricted stability radius
under positive semidefinite perturbations to the dissipation matrix R. In the next sub-
section we extend these results to indefinite perturbations that keep R semidefinite.

3.2 The stability radius rSi
R, p(R; B)

If the perturbation matrices ΔR are allowed to be indefinite then the perturbation
analysis is more complicated. We start with the following lemma.

Lemma 3.3 Let 0 < R = RT , ΔR = ΔT
R ∈ R

n,n be such that ΔR has at most two
negative eigenvalues. If dim (Ker(R + ΔR)) = 2, then R + ΔR ≥ 0.

Proof Let λ1, . . . , λn be the eigenvalues of ΔR . As ΔR has at most two negative
eigenvalues we may assume that λ3, λ4, . . . , λn ≥ 0 and we have the spectral decom-
position

ΔR =
n∑

i=1

λi ui u
H
i
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with unit norm vectors u1, . . . , un ∈ R
n . Since

R̃ = R +
n∑

i=3

λi ui u
H
i > 0.

andλ1u1uH
1 +λ2u2uH

2 is of rank two,we can apply theCauchy interlacing theoremand
obtain that R +ΔR = R̃ +λ1u1uH

1 +λ2u2uH
2 has at least n− 2 positive eigenvalues.

But then using the fact that dim(Ker(R + ΔR)) = 2 we get R + ΔR ≥ 0. �

Using this lemma,we obtain the following results on the stability radius rSi
R,p(R; B).

Theorem 3.3 Consider an asymptotically stable DH system of the form (1.1). Let
B ∈ R

n,r with rank(B) = r and let p ∈ {2, F}. Furthermore, for j ∈ {1, 2} let
Ω j denote the set of all eigenvectors x of J Q such that BB†RQx = RQx and
rank

( [
BT Qx BT Qx̄

] ) = j , and let Ω = Ω1 ∪ Ω2.

(1) If R > 0, then rSi
R,p(R; B) is finite if and only if Ω is nonempty. In that case we

have

rSi
R,2(R; B) = min

{
inf
x∈Ω1

‖(B†RQx)‖
‖BT Qx‖ , inf

x∈Ω2
‖Y X†‖

}
(3.10)

and

rSi
R,F (R; B)

= min

{
inf
x∈Ω1

‖(B†RQx)‖
‖BH Qx‖ , inf

x∈Ω2

√
‖Y X†‖2F − trace

(
Y X†(Y X†)H XX†

)}
,

(3.11)

where X = [Re BT Qx Im BT Qx] and Y = [Re B†RQx Im B†RQx] for
x ∈ Ω2.

(2) If R ≥ 0 is singular and if rSi
R,p(R; B) is finite, then Ω is nonempty and we have

rSi
R,2(R; B) ≥ min

{
inf
x∈Ω1

‖(B†RQx)‖
‖BT Qx‖ , inf

x∈Ω2
‖Y X†‖

}
(3.12)

and

rSi
R,F (R; B)

≥ min

{
inf
x∈Ω1

‖(B†RQx)‖
‖BT Qx‖ , inf

x∈Ω2

√
‖Y X†‖2F − trace

(
Y X†(Y X†)H XX†

)}
,

(3.13)

where X = [Re BT Qx Im BT Qx] and Y = [Re B†RQx Im B†RQx] for
x ∈ Ω2.
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Proof By definition

rSi
R,p(R; B)= inf

{
‖Δ‖p

∣∣∣ Δ ∈ Si (R, B), �
(
(J − R)Q−(BΔBT )Q

)
∩ iR �=∅

}
,

where Si (R, B) := {
Δ = ΔT ∈ R

r,r
∣∣ (R + BΔBT ) ≥ 0

}
. Using Lemma 1.1 and

Lemma 2.3 and following the lines of the proof of Theorem 3.2, we get

rSi
R,p(R; B) = inf

{‖Δ‖p

∣∣Δ ∈ Si (R, B), ΔBT Qx = −B†RQx for some

eigenvector x of J Q satisfying BB†RQx = RQx
}
.

Since all elements of Si (R, B) are real symmetric, we obtain that

rSi
R,p(R; B) ≥ inf

{
‖Δ‖p

∣∣ Δ=ΔT ∈ R
r,r ,ΔBT Qx=−B†RQx for some x ∈Ω

}

=: �(p). (3.14)

The infimum in the right hand side of (3.14) is finite ifΩ is nonempty, as byLemma 2.5
for x ∈ Ω there exist Δ = ΔT ∈ R

r,r such that ΔBT Qx = −B†RQx if and only if
xH QBB†RQx ∈ R. This condition is satisfied because of the fact that BB†RQx =
RQx and R is real symmetric. If rSi

R,p(R; B) is finite, then Ω is nonempty because
otherwise the right hand side of (3.14) would be infinite. To continue, we will use the
abbreviations

�
(p)
j := inf

{
‖Δ‖p | Δ = ΔT ∈ R

r,r , ΔBT Qx = −B†RQx for some x ∈ Ω j

}

for j ∈ {1, 2}, i.e., �(p) = min{�(p)
1 , �

(p)
2 }, and we consider two cases.

Case (1): �(p) = �
(p)
1 . If x ∈ Ω1, then BB†RQx = RQx and BT Qx and BT Qx̄

are linearly dependent. Then using mappings of minimal spectral resp. Frobenius
norms (and again using compactness arguments), we obtain from Theorem 2.6 that

rSi
R,p(R; B)≥�

(p)
1 = inf

{
‖Δ‖p

∣∣Δ = ΔT ∈ R
r,r , ΔBT Qx = −B†RQx, x ∈ Ω1

}

= inf
x∈Ω1

{‖B†RQx‖p

‖BT Qx‖p

}
= ‖B†RQx̂‖p

‖BT Qx̂‖p

for some x̃ := x̂ ∈ Ω1. This proves assertion (2) and “≥” in (3.10) and (3.11) in the
case �(p) = �

(p)
1 .
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Case (2): �(p) = �
(p)
2 . If x ∈ Ω2, then BB†RQx = RQx and BT Qx and BT Qx̄

are linearly independent. Using mappings of minimal spectral resp. Frobenius norms
(and once more using compactness arguments), we obtain from Theorem 2.5 that

rSi
R,2(R; B) ≥ �

(2)
2 = inf

{
‖Δ‖ ∣∣ Δ = ΔT ∈ R

r,r , ΔBT Qx = −B†RQx, x ∈ Ω2

}

= inf
{
‖Y X†‖ |X = [Re BT Qx Im BT Qx], Y = [Re B†RQx Im B†RQx], x ∈ Ω2

}

= ‖Ŷ X̂†‖,

for some x̂ ∈ Ω2, where X̂ = [Re BT Qx̂ Im BT Qx̂] and Ŷ = [Re B†RQx̂
Im B†RQx̂], and
(
rSi
R,F (R; B)

)2 ≥
(
�

(F)
2

)2

= inf
{
‖Δ‖2F

∣∣ Δ = ΔT ∈ R
r,r , ΔBT Qx = −B†RQx, x ∈ Ω2

}

= inf
{
2‖Y X†‖2F − trace

(
Y X†(Y X†)H XX†

) ∣∣∣ X = [Re BT Qx Im BT Qx],
Y = [Re B†RQx Im B†RQx], x ∈ Ω2

}

= 2‖Ỹ X̃†‖2F − trace
(
Ỹ X̃†(Ỹ X̃†)H X̃ X̃†

)

for some x̃ ∈ Ω2, where X̃ = [Re BT Qx̃ Im BT Qx̃] and Ỹ = [Re B†RQx̃
Im B†RQx̃]. This proves assertion (2) and “ ≥” in (3.10) and (3.11) in the case
�(p) = �

(p)
2 .

In both cases (1) and (2), it remains to show that equality holds in (3.10) and (3.11)
when R > 0. This would also prove that in the case R > 0 the non-emptiness of Ω

implies the finiteness of rSi
R,F (R; B).

Thus, assume that R > 0 and let Δ̂ = Δ̂T ∈ R
r,r and Δ̃ = Δ̃T ∈ R

r,r be such that
they satisfy

Δ̂BT Qx̂ = −B†RQx̂ and Δ̃BT Qx̃ = −B†RQx̃, (3.15)

and such that they are mappings of minimal spectral or Frobenius norm, respectively,
as in Theorem 2.5 or Theorem 2.6, respectively. The proof is complete if we show
that (R + BΔ̂BT ) ≥ 0 and (R + BΔ̃BT ) ≥ 0, because this would imply that Δ̂ and
Δ̃ belong to the set Si (R, B). In the case �(p) = �

(p)
1 this follows exactly as in the

proof of [20, Theorem 4.5] which is the corresponding result to Theorem 3.3 in the
complex case. (In fact, in this case Δ̃ and Δ̂ coincide with the corresponding complex
mappings of minimal norm.)

In the case �(p) = �
(p)
2 , we obtain from Lemma 2.2, that the matrices Δ̂ and Δ̃

are of rank at most four with at most two negative eigenvalues. This implies that also
the matrices BΔ̂BT and BΔ̃BT individually have at most two negative eigenvalues.
Indeed, let B1 ∈ R

n,n−r be such that [B B1] ∈ R
n,n is invertible then we can write

BΔ̂BT = [B B1]
[

Δ̂ 0
0 0

]
[B B1]H
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and by Sylvester’s law of inertia also BΔ̂BT has at most two negative eigenvalues. A
similar argument proves the assertion for BΔ̃BT .

Furthermore, using (3.15), we obtain

(R + BΔ̂BT )Qx̂ = RQx̂ − BB†RQx̂ = RQx̂ − RQx̂ = 0

and

(R + BΔ̃BT )Qx̃ = RQx̃ − BB†RQx̃ = RQx̃ − RQx̃ = 0,

since x̂, x̃ ∈ Ω , i.e., BB†RQx̂ = RQx̂ and BB†RQx̃ = RQx̃ . Also rank[̂x ¯̂x] = 2
and rank[x̃ ¯̃x] = 2, respectively, imply that

dim
(
Ker(R + BΔ̂BT )

)
= 2 and dim

(
Ker(R + BΔ̃BT )

)
= 2.

Thus, Lemma 3.3 implies that (R + BΔ̂BT ) ≥ 0 and (R + BΔ̃BT ) ≥ 0. �
Remark 3.3 It follows from the proof of Theorem 3.3 that in the case R ≥ 0, the
inequalities in (3.12) and (3.13) are actually equalities if theminimal normmappings Δ̃

and Δ̂ from (3.15) satisfy (R+BΔ̂BT ) ≥ 0 and (R+BΔ̃BT ) ≥ 0, respectively. Thus,
when a method for the computation of the stability radius is implemented following
the ideas in the proof of Theorem 3.3, then one has to explicitly compute the mappings
Δ̃ and Δ̂ from (3.15) and hence it is easy to check if the conditions (R+ BΔ̂BT ) ≥ 0
and/or (R + BΔ̃BT ) ≥ 0 are satisfied. In our numerical experiments this was always
the case, so that we conjecture that equality in (3.12) and (3.13) holds in general.

4 Numerical experiments

In this section, we present some numerical experiments to illustrate that the real struc-
tured stability radii are indeed larger than the real unstructured ones. To compute the
distances, in all cases we used the function fminsearch in MATLAB Version No.
7.8.0 (R2009a) to solve the associated optimization problems.

We computed the real stability radii rR,2(R; B, BT ), rSi
R,2(R; B) and rSd

R,2(R; B)

with respect to real restricted perturbations to R, as obtained in Theorems 3.1–3.3
(taking into account Remark 3.3), respectively, and compared them to the correspond-
ing complex distances rC,2(R; B, BT ), rSi

C,2(R; B) and rSd
C,2(R; B) as obtained in [20,

Theorem 3.3], [20, Theorem 4.5] and [20, Theorem 4.2], respectively.
We chose random matrices J, R, Q, B ∈ R

n,n for different values of n ≤ 14 with
J T = −J, RT = R ≥ 0 and B of full rank, such that (J − R)Q is asymptotically
stable and all restricted stability radii were finite. The results in Table 1 illustrate that
the stability radius rR,2(R, B, BT ) obtained under general restricted perturbations is
significantly smaller than the real stability radii obtained under structure-preserving
restricted perturbations, and it also illustrates that the real stability radii may be sig-
nificantly larger than the corresponding complex stability radii.
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Table 1 Comparison between complex and real stability radii

Size n rC,2(R; B, BT ) rR,2(R; B, BT ) r
Si
C,2(R; B) r

Si
R,2(R; B) r

Sd
C,2(R; B) r

Sd
R,2(R; B)

4 0.1649 0.1649 4.8237 8.2820 15.7348 17.2941

6 0.2390 0.2932 6.0391 15.0695 32.1021 38.1951

8 0.0665 0.1211 3.7859 5.1034 18.5757 24.0881

9 0.1648 0.1950 8.7892 25.3983 118.6212 227.5047

11 0.1135 0.1146 1.4003 1.6289 4.0695 4.5260

13 0.1013 0.1315 4.8191 5.6550 21.6680 43.9863

14 0.0410 0.1071 1.3693 1.7953 4.9894 6.1504

Example 4.1 As a second example consider the lumped parameter, mass-spring-
damper dynamical system, see, e.g., [32] with two point masses m1 and m2, which
are connected by a spring-damper pair with constants k2 and c2, respectively. Mass
m1 is linked to the ground by another spring-damper pair with constants k1 and c1,
respectively. The system has two degrees of freedom. These are the displacements
u1(t) and u2(t) of the two masses measured from their static equilibrium positions.
Known dynamic forces f1(t) and f2(t) act on the masses. The equations of motion
can be written in the matrix form as

Mü + Du̇ + Ku = f,

where

M =
[
m1 0
0 m2

]
, D =

[
c1 + c2 −c2
−c2 c2

]
, K =

[
k1 + k2 −k2

−k2 k2

]
, f =

[
f1
f2

]
,

where the real symmetricmatricesM, D and K denote themass, damping and stiffness
matrices, respectively, and f, u, u̇ and ü are the force, displacement, velocity, and
acceleration vectors, respectively. With the values m1 = 2, m2 = 1, c1 = 0.1, c2 =
0.3, k1 = 6, and k2 = 3 we have M, D, K > 0 and an appropriate first order
formulation has the linear DH pencil λI4 − (J − R)Q,

J =
[
0 −K
K 0

]
, R =

[
D 0
0 0

]
, Q =

[
M 0
0 K

]−1

. (4.1)

The eigenvalues of (J −R)Q are−0.2168±2.4361i and−0.0332±1.2262i and thus
the system is asymptotically stable. Setting B = CT = [

e1 e2
] ∈ R

4, we perturb only
the damping matrix D and the corresponding real stability radii are given as follows.

rR,2(R, B, BT ) r
Si
R,2(R, B) r

Sd
R,2(R, B)

0.0796 0.1612 0.3250
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Table 2 Various stability radii
for mass-spring-damper system
of increasing size

Size n rR,2(R; B, BT ) r
Si
R,2(R; B) r

Sd
R,2(R; B)

4 0.2827 0.3213 0.3642

6 0.1755 0.2417 0.3299

8 0.1220 0.1995 0.3221

10 0.1013 0.3221 0.9009

12 0.0772 0.2817 0.9308

14 0.0618 0.2577 0.9938

16 0.0524 0.2560 1.1537

As long as the norm of perturbation in damping matrix D is less than the stability
radius the system remains asymptotically stable. We also see that the stability radii
rSi
R,2(R, B) and rSd

R,2(R, B) that preserve the semidefiniteness of R are significantly

larger than rR,2(R, B, BT ).

In Table 2, we list the values of various stability radii for mass-spring-damper
systems [32] of increasing size. The corresponding masses, damping constants and
spring constants were chosen from the top of the vectors

m = [0.6857 1.7812 0.3785 0.2350 2.6719 0.7919 1.0132 1.3703]T ,

c = [0.6231 1.3050 2.3721 1.5574 1.0474 1.8343 0.3242 1.7115]T

and

k = [0.2637 1.5203 0.8644 0.2485 0.7850 0.4135 2.3963 0.1022]T ,

respectively, i.e., the four dimensional (n = 4) DH pencil as in (4.1) is corresponding
to the first two entries ofmass vectorm, damping vector c and spring vector k, similarly
n = 6 is corresponding to the first three entries from the vectorsm, c and k, and so on.
The restriction matrices B = CT = [e1 e2 · · · en/2] ∈ R

n, n2 are such that only the
damping matrix D in R is perturbed. In addition to the conclusions of Example 4.1,
we found that as expected, the stability radius with respect to general perturbations
decreases as the system dimension increases, while this is much less pronounced for
the stability radii with respect to structure preserving perturbations.

5 Conclusions

We have presented formulas for the stability radii under real restricted structure-
preserving perturbations to the dissipation term R in dissipative Hamiltonian systems.
The results and the numerical examples show that the system is much more robustly
asymptotically stable under structure-preserving perturbations thanwhen the structure
is ignored. Open problems include the computation of the real stability radii when the
energy functional Q or the structure matrix J , or all three matrices R, Q, and J are
perturbed.

123



842 C. Mehl et al.

References

1. Adhikari, B.: Backward perturbation and sensitivity analysis of structured polynomial eigenvalue
problem. PhD thesis, Dept. of Math., IIT Guwahati, Assam, India (2008)

2. Byers, R.: A bisection method for measuring the distance of a stable to unstable matrices. SIAM J.
Sci. Stat. Comput. 9, 875–881 (1988)

3. Dalsmo, M., van der Schaft, A.J.: On representations and integrability of mathematical structures in
energy-conserving physical systems. SIAM J. Control Optim. 37, 54–91 (1999)

4. Davis, C., Kahan, W., Weinberger, H.: Norm-preserving dialations and their applications to optimal
error bounds. SIAM J. Numer. Anal. 19, 445–469 (1982)

5. Freitag, M.A., Spence, A.: A Newton-based method for the calculation of the distance to instability.
Linear Algebra Appl. 435(12), 3189–3205 (2011)

6. Gantmacher, F.R.: Theory of Matrices, vol. 1. Chelsea, New York (1959)
7. Gohberg, I., Lancaster, P., Rodman, L.: Indefinite Linear Algebra and Applications. Birkhäuser, Basel

(2006)
8. Golo, G., van der Schaft, A.J., Breedveld, P.C., Maschke, B.M.: Hamiltonian formulation of bond

graphs. In: Rantzer, A., Johansson, R. (eds.) Nonlinear and Hybrid Systems in Automotive Control,
pp. 351–372. Springer, Heidelberg (2003)

9. Golub,G.H.,VanLoan,C.F.:MatrixComputations, 3rd edn. JohnsHopkinsUniversityPress,Baltimore
(1996)

10. Gräbner, N., Mehrmann, V., Quraishi, S., Schröder, C., von Wagner, U.: Numerical methods for para-
metric model reduction in the simulation of disc brake squeal. Z. Angew. Math. Mech. 96, 1388–1405
(2016). doi:10.1002/zamm.201500217

11. He, C., Watson, G.A.: An algorithm for computing the distance to instability. SIAM J. Matrix Anal.
Appl. 20(1), 101–116 (1998)

12. Hinrichsen, D., Pritchard, A.J.: Stability radii of linear systems. Syst. Control Lett. 7, 1–10 (1986)
13. Hinrichsen, D., Pritchard, A.J.: Stability radius for structured perturbations and the algebraic Riccati

equation. Syst. Control Lett. 8, 105–113 (1986)
14. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I. Modelling, State Space Analysis,

Stability and Robustness. Springer, New York (2005)
15. Kahan, W., Parlett, B.N., Jiang, E.: Residual bounds on approximate eigensystems of nonnormal

matrices. SIAM J. Numer. Anal. 19, 470–484 (1982)
16. Mackey, D.S., Mackey, N., Tisseur, F.: Structured mapping problems for matrices associated with

scalar products. Part I: Lie and Jordan algebras. SIAM J. Matrix Anal. Appl. 29(4), 1389–1410 (2008)
17. Martins, N., Lima, L.: Determination of suitable locations for power system stabilizers and static var

compensators for damping electromechanical oscillations in large scale power systems. IEEE Trans.
Power Syst. 5, 1455–1469 (1990)

18. Martins, N., Pellanda, P.C., Rommes, J.: Computation of transfer function dominant zeros with appli-
cations to oscillation damping control of large power systems. IEEE Trans. Power Syst. 22, 1657–1664
(2007)

19. Maschke, B.M., van der Schaft, A.J., Breedveld, P.C.: An intrinsic Hamiltonian formulation of network
dynamics: non-standard poisson structures and gyrators. J. Frankl. Inst. 329, 923–966 (1992)

20. Mehl, C., Mehrmann, V., Sharma, P.: Stability radii for linear Hamiltonian systems with dissipation
under structure-preserving perturbations. SIAM J. Matrix Anal. Appl. 37, 1625–1654 (2016)

21. Ortega, R., van der Schaft, A.J., Mareels, Y., Maschke, B.M.: Putting energy back in control. Control
Syst. Mag. 21, 18–33 (2001)

22. Ortega, R., van der Schaft, A.J., Maschke, B.M., Escobar, G.: Interconnection and damping assignment
passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002)

23. Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E., Young, P., Doyle, J.: A formula for computation
of the real stability radius. Automatica 31, 879–890 (1995)

24. Rommes, J., Martins, N.: Exploiting structure in large-scale electrical circuit and power system prob-
lems. Linear Algebra Appl. 431, 318–333 (2009)

25. Schiehlen, W.: Multibody Systems Handbook. Springer, Heidelberg (1990)
26. van der Schaft, A.J.: Port-Hamiltonian systems: an introductory survey. In: Verona, J.L., Sanz-Sole,

M., Verdura, J. (eds.) Proceedings of the International Congress of Mathematicians, vol. III, Invited
Lectures, pp. 1339–1365, Madrid, Spain

123

http://dx.doi.org/10.1002/zamm.201500217


Stability radii for real linear Hamiltonian systems with… 843

27. van der Schaft, A.J.: Port-Hamiltonian systems: network modeling and control of nonlinear physical
systems. In:AdvancedDynamics andControl of Structures andMachines, CISMCourses andLectures,
vol. 444. Springer, New York (2004)

28. van der Schaft, A.J., Maschke, B.M.: The Hamiltonian formulation of energy conserving physical
systems with external ports. Arch. Elektron. Übertragungstech. 45, 362–371 (1995)

29. van der Schaft, A.J., Maschke, B.M.: Hamiltonian formulation of distributed-parameter systems with
boundary energy flow. J. Geom. Phys. 42, 166–194 (2002)

30. van der Schaft, A.J., Maschke, B.M.: Port-Hamiltonian systems on graphs. SIAM J. Control Optim.
51, 906–937 (2013)

31. Van Loan, C.F.: How near is a matrix to an unstable matrix? Contemp.Math. AMS 47, 465–479 (1984)
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