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Abstract We apply the modulated Fourier expansion to a class of second order dif-
ferential equations which consists of an oscillatory linear part and a nonoscillatory
nonlinear part, with the total energy of the system possibly unbounded when the oscil-
lation frequency grows. We comment on the difference between this model problem
and the classical energy bounded oscillatory equations. Based on the expansion, we
propose the multiscale time integrators to solve the ODEs under two cases: the non-
linearity is a polynomial or the frequencies in the linear part are integer multiples
of a single generic frequency. The proposed schemes are explicit and efficient. The
schemes have been shown from both theoretical and numerical sides to converge with
a uniform second order rate for all frequencies. Comparisons with popular exponential
integrators in the literature are done.

Keywords Multiscale time integrator · Oscillatory equations · Large data ·
Unbounded energy · Error estimate · Uniform accuracy · Exponential integrator

Mathematics Subject Classification 65M12 · 65M15 · 65M70

1 Introduction

A large amount of work in the literature has been devoted to study the following second
order oscillatory differential equations arising from various aspects of Hamiltonian
dynamics [19,21,23,24,36,38,39,41,42,46,49]
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ẍ(t) + Ax(t) + g(x(t)) = 0, t > 0, (1.1)

where x = x(t) ∈ R
d and A = Ω2 ∈ R

d×d is a positive semi-definite symmetric
matrix of arbitrarily large norm. In a Hamiltonian system, x is interpreted as the posi-
tions of the particles and ẋ denotes the corresponding velocities. By a diagonalization
of the matrix, one can consider

A = 1

ε2
Λ2,

where 0 < ε ≤ 1 is inversely proportional to the spectral radius of Ω and Λ is a
diagonal matrix with nonnegative entries independent of ε. The function g(·) : Rd →
R
d is a possible nonlinearity and has a Lipschitz constant bounded independently

of ε [41,42], which in a Hamiltonian system, usually represents the internal force
generated by a potential function V (·) [42,44], i.e. ∇V (x) = g(x), and consequently
the total energy E(t) of the system is conserved as

E(t) := 1

2

[
ẋTẋ + 1

ε2
xTΛ2x

]
+ V (x) ≡ E(0), t ≥ 0. (1.2)

When large frequencies are involved in the Hamiltonian system, which corresponds to
the parameter 0 < ε � 1, the solution of the ODEs (1.1) becomes highly oscillatory
and propagates waves with wavelength at O(ε). Due to the high oscillations, designing
uniformly accurate numerical integrators for solving (1.1) in the limit regime is the
major and challenging subject in order to study the ODE system efficiently. The ODEs
(1.1) is widely considered in the literatures [36,38,39,41,42,46,49] to associate with
two given initial values, i.e. x(0) and ẋ(0), that make the reduced energy

Ẽ(t) := ẋTẋ + 1

ε2
xTΛ2x, t ≥ 0,

uniformly bounded as ε → 0. For simplicity of illustration, let us assume here Λ is
non-singular. Then the boundedness of the reduced energy implies

x(t) = O(ε), ẋ(t) = O(1), t ≥ 0, 0 < ε � 1.

Thus, the initial value problem of (1.1) is imposed as

⎧⎨
⎩
ẍ(t) + 1

ε2
Λ2x(t) + g(x(t)) = 0, t > 0,

x(0) = εφ0, ẋ(0) = φ1,

(1.3)

with given data φ0, φ1 ∈ R
d independent of ε. This energy bounded type data usually

arises from classical Hamiltonian system. In particular, we would like to remark in
molecular dynamics, the nonlinearity g(·) is often generated by some nonbonded
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potentials [44]. The two most typical nonbonded potentials are the Coulomb potential
VC with n0 particles in m0 (d = n0m0) dimensions as [44]

VC (x) :=
n0∑
l=2

l−1∑
j=1

−cl j
|ql − q j | , cl j > 0, (1.4)

where ql ∈ R
m0 and x = (q1, . . . ,qn0)

T and the Lennard-Jones potential VL J [42]

VL J (x) :=
n0∑
l=2

l−1∑
j=1

(
cl j

|ql − q j |
)12

−
(

cl j
|ql − q j |

)6

, cl j > 0. (1.5)

In these two cases, in order to provide that the nonlinearity g(x) in (1.3) has a Lipschitz
constant essentially independent of ε, one has to modify the practical potential V (x)
used in (1.2) for generating f(x) to

V (x) = ε3VC (x) or V (x) = ε14VL J (x), (1.6)

instead of taking V = VC or V = VL J directly. It is clear to see that it is the initial
data in (1.3) makes the position value small in the highly oscillatory regime. The
higher the oscillation frequency is, however the smaller the amplitude is. The problem
(1.3) with this type of initial data has been well studied by Sanz-Serna and Lubich
etc in the past decades. The exponential (wave) integrators (EIs) or also known as
trigonometric integrators with different kinds of filters [25,32,36–40,42] have been
proposed and shown to offer uniform second order accuracy in the absolute position
error for 0 < ε ≤ 1 and offer uniform first order accuracy in velocity error. The long
time energy preserving property of the EIs has been analyzed in [19,21,22,41] by
means of a powerful tool known as modulated Fourier expansion. Besides, Enquist
etc developed a general methodology known as the heterogeneous multiscale method
(HMM) [2,26,50–52] for problems with widely different scales, and the method has
been applied to solve the highly oscillatory ODEs [2,26,50]. Different from numerical
methods like EIs which look for complete knowledge of the problem at every scale,
the HMM only solves an averaged effective model by a macro-solver and predicts
local information of the original model by a micro-solver. The modulated Fourier
expansions have been used to analyze HMM in [47].

Recently, another type initial datawhich comes from some limit regimes of quantum
physics [3–6,14] has been considered to the ODEs as

⎧⎪⎨
⎪⎩
ÿ(t) + 1

ε2
Λ2y(t) + f(y(t)) = 0, t > 0,

y(0) = φ0, ẏ(0) = φ1

ε
,

(1.7)

where in order to distinguish the scales, we switch the notations from x and g to y and f ,
respectively. This type of initial datamakes the reduced energy Ẽ(t) = ẏTẏ+ 1

ε2
yTΛ2y
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turn to infinity as ε → 0. Without confusions, we shall address the problem (1.7) as
the energy unbounded type and refer to (1.3) as energy bounded type. Compared to
the previous energy bounded case, the energy unbounded type problem corresponds
to larger position value case, that is y(t) = O(1) as 0 < ε � 1, and it leads to much
wider oscillations in the solution. Thus, we also address the initial data in (1.7) as
large initial data. The two types of problems are connected by a scaling. In fact, by
introducing a scaling to the variables as

y(t) = x(t)
ε

, (1.8)

we can rewrite the energy bounded problem (1.3) in an energy unbounded form

⎧⎪⎨
⎪⎩
ÿ(t) + 1

ε2
Λ2y(t) + 1

ε
g(εy(t)) = 0, t > 0,

y(0) = φ0, ẏ(0) = φ1

ε
,

(1.9)

or rewrite the energy unbounded problem (1.7) in an energy bounded form

⎧⎪⎨
⎪⎩
ẍ(t) + 1

ε2
Λ2x(t) + εf

(
x(t)
ε

)
= 0, t > 0,

x(0) = εφ0, ẋ(0) = φ1.

(1.10)

Thus, to consider the energy bounded problem (1.3) is to consider (1.7) with the
nonlinearity

f(y) = gε(y) := 1

ε
g(εy),

and conversely to consider the energy unbounded problem (1.7) is to consider (1.3)
with the nonlinearity

g(x) = fε(x) := εf
(x

ε

)
.

Now comparing (1.3) with (1.10) or (1.7) with (1.9), we can see that under the scaling,
the essential difference between the two types of initial data lies on the behavior of the
function g(·) (or f). For the linear function, i.e. g(x) = MxwithM ∈ R

d×d , clearly the
energy bounded problem (1.9) (or (1.10)) is completely equivalent to the unbounded
case (1.7) (or (1.3)). However for nonlinear g(·), they could be quite different. For
g = ∇V in (1.3) generated by the practical unbonded potential V in (1.6), the scaled
gε(y) in (1.9) is indeed generated by the original unbond potential functions (1.4) or
(1.5). In practise, another major brunch of nonlinearities g(·) take the power functions,
i.e. each component g j (x) ( j = 1, . . . , d) of g is a (or a sum of) pth-order (p ≥ 2)
pure power function of x1, . . . , xd . These power type nonlinearities widely occur in
the scalar field theory in quantum physics [3–5] and in the classical dynamical systems

123



Uniformly accurate multiscale time integrators for second... 653

such as the Fermi–Pasta–Ulam (FPU) problem [42,43]. These type of functions make
the nonlinearity in the equation (1.9) a very small quantity. For example, if g j (x)
is a cubic power function, then gε(y) = O(ε2) as 0 < ε � 1. The higher the
order of the polynomial is, the smaller the nonlinearity becomes. Thus, the energy
bounded problem (1.3) with the power nonlinearity is just a very small perturbation
to the harmonic oscillator as ε is small. While for the energy unbounded problem
(1.7) with power nonlinearity where f(y) = O(1) as 0 < ε � 1, the nonlinearity
is no longer a small perturbation. Under this sense, we can also say that considering
the energy unbounded problem (1.7) is considering a much stronger nonlinearity in
the second order oscillatory equations, where wider resonance could happen in the
solution in a shorter time scale.Wegive an example to illustrate the different oscillatory
behaviors in the solutions of the two types of problems. We choose in (1.3) and (1.7):
d = 2, x = (x1, x2)T, y = (y1, y2)T, φ0 = (1, 2)T, φ1 = (1, 3)T,Λ = diag(π, π)

and g(x) = (x1x22 , x
2
1 x2)

T, f(y) = (y1y22 , y
2
1 y2)

T, and the solutions under different ε
are shown in Fig. 1. Figure 2 shows the error between the solution of (1.3) or (1.7)
and its corresponding the harmonic oscillator by removing the nonlinearity:

⎧⎨
⎩
ẍho(t) + 1

ε2
Λ2xho(t) = 0, t > 0,

xho(0) = εφ0, ẋho(0) = φ1,

or

⎧⎪⎨
⎪⎩
ÿho(t) + 1

ε2
Λ2yho(t) = 0, t > 0,

yho(0) = φ0, ẏho(0) = φ1

ε
.

(1.11)
By denoting ẏ = ε−1u, (1.7) reads u̇ = −ε−1y − εf(y) and one can see that the non-
linearity is a higher order perturbation to the linear part. Formally as ε → 0, both x(t)
and y(t) converges to xho(t) and yho(t) respectively for fixed t > 0 (we shall see more
clearly later). Figure 2 indicates the convergence rates of the two types of problems in
ε are quite different. Another way to analyse (1.7), for example under the polynomial
nonlinearity of degree p+ 1, is to define u = (ε1/py+ iε(p+1)/pΛ−1ẏ)/

√
2, then the

problem becomes

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
i u̇ = ε−1Λu + ε(p+1)/p

√
2

Λ−1f
(

u + u√
2ε1/p

)
,

u(0) = ε1/p
φ0 + iΛ−1φ1√

2
.

It corresponds to a nonlinear Schrödinger-type equation with small initial data and has
been intensively studied by means of the modulated Fourier expansion [20,27,28,34,
35].

Another essential difference between the energy bounded and unbounded problems
is that from the computational point of view, if one has a numerical integrator to
(1.3) and (1.9) or (1.7) and (1.10) with numerical solutions denoted as xn and yn as
approximations to x(tn) and y(tn) respectively at some time grids tn = nτ with n ∈ N

and τ > 0 the time step, the absolute position error for the energy unbounded problem

en := y(tn) − yn = x(tn) − xn

ε
≈ x(tn) − xn

|x(tn)| , 0 < ε � 1,
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Fig. 1 Solutions of the energy bounded problem (1.3) (left) and the energy unbounded problem (1.7) (right)
under different ε
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Fig. 2 First row errors |x(t) − xho(t)|/ε and |y(t) − yho(t)| between the solutions of (1.3) and (1.7) and
their corresponding the harmonic oscillators under different ε. Second row growths of the maximum errors
ex (t) := sup0≤s≤t {|x(s) − xho(s)|/ε} and ey(t) := sup0≤s≤t {|y(s) − yho(s)|}

can be treated as the relative error for the energy bounded case. Though uniform
accurate second order numerical integrators have been developed for solving energy
bounded problem (1.3) as we mentioned before, the approximations could make no
sense when the step size τ 2 � ε since the solution x(t) = O(ε), and the uniform
convergence would be lost after scaling by ε−1. Thus, considering the relative error
bound to the energy bounded case or switching to considering the energy unbounded
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Table 1 Relations between
different quantities by the
scaling (1.8) in the two types of
problems (1.3) and (1.7)

g(x) in (1.3) f(y) in (1.7)

ε3∇VC (x) ∇VC (y)

ε14∇VL J (x) ∇VL J (y)

p(x): pth-power function (p ≥ 2) ε p−1p(y)

f(y) in (1.7) g(x) in (1.3)

∇VC (y) ε3∇VC (x)

∇VL J (y) ε14∇VL J (x)

p(y): pth-power function (p ≥ 2) ε1−pp(x)

en : absolute error in position y en : relative error in position x

type problem is more convincible for uniform convergence. A detailed table of the
relations between each quantity connected by the scaling (1.8) in the two problems
is given in Table 1. Along the numerical aspects for the energy unbounded ODEs
(1.7), investigations in the literatures so far are limited. Due to the strong oscilla-
tion features, existing numerical methods in the energy bounded case do not give any
clues on their performance in the energy unbounded case. Popular multiscale integra-
tors in the literature such as the stroboscopic averaging method (SAM) [8–10] and
the multi-revolution composition method (MRCM) [12,13] could apply in the limit
regime. Generalisations of SAM and MRCM are known as the envelope-following
methods which we refer to [45] and the references therein. Other methods that could
apply to (1.7) include the flow averaging integrators (FLAVORS) [48] and the HMM
with Poincaré map technique [1]. To design the uniformly accurate (UA) schemes for
solving (1.7) for all 0 < ε ≤ 1, there are two approaches. One is the two-scaled for-
mulation [14] which extends the problem with another degree-of-freedom. The other
one is the multiscale time integrator which is based on some asymptotic expansion of
the solution [3,5–7].

In this paper, we are going to propose and study some multiscale time integrators
(MTIs) for solving the energy unbounded model problem (1.7) in the highly oscilla-
tory regime. The basic tools we are utilizing here are the modulated Fourier expansion
which is well-known as a fundamental framework for solving and analyzing highly
oscillatory differential equations [19,21–24,41,42,47]. We shall apply the expansion
to the solution at every time step and decompose the equations according to the ε

amplitude and frequency, which is different from the usual way of applying the modu-
lated Fourier expansion. We find out not only the leading order terms in the modulated
Fourier expansion, but also take care of the remainder’s equationwith proper numerical
integrators. The strategy has been used before in [3,5–7]. However, unlike the previ-
ous work, for the model (1.7) we are able to identify the leading order term exactly
and approximate the oscillatory remainder with uniform accuracy, which essentially
benefit us in the end to reach a uniform second order accuracy. On the contrast, for
the problem studied in [3,5–7], only a uniform first order accuracy is achieved. For
the polynomial type nonlinearity case in (1.7), we use the exponential integrators to
get the remainder. As for general nonlinearity case, under the assumption that the

123



656 X. Zhao

diagonal entries of Λ are multiples of a generic constant α > 0, we apply the strobo-
scopic like numerical integrator [8–10,29,30]. The proposed MTIs are explicit, easy
to implement and have uniformly second order convergence in the absolute position
error for solving (1.1) with (1.7), which in turn shows the MTIs can give uniformly
second order convergence in the relative position error for the energy bounded model
(1.3). We remark that for the general nonlinearity with multiple irrational frequencies
case, designing and analyzing uniformly accurate integrators in the highly-oscillatory
regime are very challenging. We refer to [11] for some recent progress which makes
use of Diophantine approximation from number theory.

The rest of the paper is organized as follows. In Sect. 2, we shall propose the MTIs
based on the multiscale decomposition. In Sect. 3, we shall give the main convergence
theoremand the proof.Numerical results and comparisons are given in Sect. 4 followed
by conclusions drawn in Sect. 5. Throughout this paper, we use the notation A � B
for two scalars A and B to represent that there exists a generic constant C > 0, which
is independent of time step τ (or n) and ε, such that |A| ≤ CB, and all the absolute
value of a vector |y| is interpreted as the standard Euclidian norm.

2 Numerical schemes

Now assume 0 < ε ≤ 1 and we are solving the energy unbounded model problem
(1.7) which we write it down again for readers’ convenience.

⎧⎪⎨
⎪⎩
ÿ(t) + 1

ε2
Λ2y(t) + f(y(t)) = 0, t > 0,

y(0) = φ0, ẏ(0) = φ1

ε
.

To keep us away from extra troubles in presenting the core of our method, we first
assume Λ is positive definite and later we will come to discuss the case when Λ has
some zero entries.

Take τ = 	t > 0 and denote tn = nτ for n = 0, 1, . . . ,. With

y(tn) = φn
0 = O(1), ẏ(tn) = φn

1

ε
= O

(
1

ε

)
, n ≥ 0, (2.1)

for t = tn +s, we take ansatz of the solution, which is known as the modulated Fourier
expansion, as

y(tn + s) = e
is
ε

Λzn + e− is
ε

Λzn + rn(s), 0 ≤ s ≤ τ, (2.2)

where rn(s) = (rn1 (s), . . . , rnd (s))T ∈ R
d and zn = (zn1, . . . , z

n
d)

T ∈ C
d is indepen-

dent of time. Here and after, the exponential function of a matrix A is interpreted as
eA := ∑∞

n=0
An

n! . Plugging the ansatz back to (1.7), we get
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r̈n(s) + 1

ε2
Λ2rn(s) + f

(
e
is
ε

Λzn + e− is
ε

Λzn + rn(s)
)

= 0, 0 ≤ s ≤ τ. (2.3)

With s = 0 in (2.2) and the derivative of (2.2) with respect to s, we find

y(tn) = zn + zn + rn(0) = φn
0 , ẏ(tn) = i

ε
Λ

(
zn − zn

) + ṙn(0) = φn
1

ε
.

We choose rn(0) = ṙn(0) = 0 to keep the remainder rn(s) as small as possible, and
then by matching the O( 1

ε
) and O(1) terms in the second equation, we get

zn + zn = φn
0 , zn − zn = −iΛ−1φn

1 .

Solving the above equations we get

⎧⎨
⎩
zn = 1

2

(
φn
0 − iΛ−1φn

1

)
,

rn(0) = 0, ṙn(0) = 0.
(2.4)

Then by using the variation-of-constant formula to (2.3), we get

rn(s) = − εΛ−1
∫ s

0
sin

(
Λ

ε
(s−θ)

)
f
(
e
iθ
ε

Λzn+e− iθ
ε

Λzn+rn(θ)
)
dθ, 0 ≤ s ≤ τ.

Taking derivative with respect to s on both sides of above equation, we get

ṙn(s) = −
∫ s

0
cos

(
Λ

ε
(s − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn(θ)
)
dθ, 0 ≤ s ≤ τ.

Let s = τ , we then get

⎧⎪⎪⎨
⎪⎪⎩

rn(τ ) = − εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn(θ)
)
dθ,

ṙn(τ ) = −
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn(θ)
)
dθ.

(2.5)

Now we can see in the modulated expansion (2.2), we have found out the leading
order term zn = O(1) exactly and the unknowns become the next order terms which
are denoted as the remainder rn(s) satisfying the equations (2.3). From (2.5), we
can see clearly rn(s) = O(ε), ṙn(s) = O(1). Thus, though the equations (2.3) of
the remainder are similar to the original problem (1.7), the oscillation amplitude is
reduced. Based on (2.5), we can start to design numerical integrators hoping to get
uniform convergence. The numerical integrator is designed in two different cases. One
is when the nonlinearity is polynomial type, the other is when Λ is a multiple of a
single frequency but for general nonlinearity.
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Once we obtain the approximations of rn(τ ) and ṙn(τ ), then we use the ansatz to
recover the approximations of yn+1 and ẏn+1, i.e.

⎧⎪⎨
⎪⎩
y(tn+1) = e

iτ
ε

Λzn + e− iτ
ε

Λzn + rn(τ ) =: φn+1
0 ,

ẏ(tn+1) = iΛ

ε

(
e
iτ
ε

Λzn − e− iτ
ε

Λzn
)

+ ṙn(τ ) =: φn+1
1

ε
.

At each time step, the algorithm proceeds as a decomposition-solution-reconstruction
flow [3,5,6]. We refer to the numerical integrators proposed the following based on
the multiscale decomposition (2.2) as multiscale time integrators (MTIs).

Remark 2.1 We remark that the above multiscale decomposition also shows the aver-
age of the problem (1.7). One can consider the expansion (2.2) as

y(t) = e
i t
ε
Λz0 + e− i t

ε
Λz0 + r(t), t ≥ 0.

Hence with r(t) = O(ε) from (2.5), we see that formally for a fixed t > 0, as ε → 0,

y(t) converges to e
i t
ε
Λz0 + e− i t

ε
Λz0 which solves the linear model in (1.11). At last,

by using the setup in example (4.2), we show in Fig. 3 the dynamics of r(t) which
solves ⎧⎪⎨

⎪⎩
r̈(t) + 1

ε2
Λ2r(t) + f

(
e
i t
ε
Λz + e− i t

ε
Λz + r(t)

)
= 0, t > 0,

r(0) = ṙ(0) = 0, z = 1

2

(
φ0 − iΛ−1φ1

)
.
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Fig. 3 Absolute value of the solution r(t) under different ε
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2.1 MTIs for polynomial case

We begin with the case that the nonlinearity f is polynomial type, where we can find

out the explicit dependence of f(e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn) on the fast variable θ
ε
, in

particular for the leading order part f(e
iθ
ε

Λzn + e− iθ
ε

Λzn) for

Λ =
⎛
⎜⎝

ω1
. . .

ωd

⎞
⎟⎠ ,

with ω1, . . . , ωd > 0 independent of ε.
We denote for j = 1, . . . , d,

f j
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn
)

= f j
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)

+ h j
(
zn, rn, θ

)
, (2.6)

and further we can find

f j
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)

=
∑
m j

e
iθ
ε
Lm j gm j

(
zn, zn

)
, (2.7)

where Lm j =
∑d

l=1
n

(m j )

l ωl , n
(m j )

l ∈ N and gm j is a pure power function of zn and

zn , i.e.

gm j

(
zn, zn

) = λm j

d∏
l

(znl )
p

(m j )

l (zl
n)q

(m j )

l , p
(m j )

l − q
(m j )

l = n
(m j )

l , (2.8)

with p
(m j )

l , q
(m j )

l ∈ N, λm j ∈ R. Then the integral in (2.5) becomes

∫ τ

0
sin

(ω j

ε
(τ − θ)

)
f j

(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn(θ)
)
dθ

=
∑
m j

∫ τ

0
sin

(ω j

ε
(τ − θ)

)
e
iθ
ε
Lm j dθ · gm j

(
zn, zn

)

+
∫ τ

0
sin

(ω j

ε
(τ − θ)

)
h j

(
zn, rn(θ), θ

)
dθ

=
∑
m j

Cm j · gm j

(
zn, zn

) +
∫ τ

0
sin

(ω j

ε
(τ − θ)

)
h j

(
zn, rn(θ), θ

)
dθ, (2.9)

where

Cm j = Cm j (τ ) :=
∫ τ

0
sin

(ω j

ε
(τ − θ)

)
e
iθ
ε
Lm j dθ,
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can be obtained exactly. For the last unknown integral in (2.9) which depends on rn(θ),
noticing that from (2.13) we have

∣∣h j
(
zn, rn, θ

)∣∣ =
∣∣∣∣
∫ 1

0
∇ f j

(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + ρrn
)
dρ rn

∣∣∣∣ = O(ε),

so we simply apply the standard single step trapezoidal rule to approximate it. Noting
(2.4) and h j (zn, 0, 0) = 0, all together in (2.5) we get for each j = 1, . . . , d,

rnj (τ ) ≈ − ε

ω j

∑
m j

Cm j · gm j

(
zn, zn

)
.

Similarly, we have

ṙ nj (τ ) ≈ −
∑
m j

Ċm j · gm j

(
zn, zn

) − τ

2
h j (zn, rnj (τ ), τ ),

with

Ċm j = Ċm j (τ ) :=
∫ τ

0
cos

(ω j

ε
(τ − θ)

)
e
iθ
ε
Lm j dθ.

Then the detailed numerical scheme of the MTI for the polynomial type nonlinearity
case reads as follows.

For n ≥ 0, let yn and ẏn be the approximations of y(tn) and ẏ(tn), rn+1 =
(rn+1

1 , . . . , rn+1
d )T and ṙn+1 = (ṙ n+1

1 , . . . , ṙ n+1
d )T be the approximations of rn(τ )

and ṙn(τ ), and Zn be zn , respectively. Choosing y0 = y(0) = φ0, ẏ0 = ẏ(0) = φ1
ε
,

for n ≥ 0, yn+1 and ẏn+1 are updated as

⎧⎨
⎩
yn+1 = e

iτ
ε

ΛZn + e− iτ
ε

ΛZ
n + rn+1,

ẏn+1 = iΛ

ε

(
e
iτ
ε

ΛZn − e− iτ
ε

ΛZ
n
)

+ ṙn+1,
(2.10)

where

Zn = 1

2

(
yn − iεΛ−1ẏn

)
, (2.11a)

rn+1
j = − ε

ω j

∑
m j

Cm j · gm j

(
Zn, Z

n
)

, (2.11b)

ṙ n+1
j = −

∑
m j

Ċm j · gm j

(
Zn, Z

n
)

− τ

2
h j (Z

n, rn+1, τ ), j = 1, . . . , d. (2.11c)
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2.2 MTIs for general nonlinearity case

Next we consider the case for general nonlinearity but under the assumption that Λ is
a multiply of a single frequency α > 0, i.e.

Λ =
⎛
⎜⎝

ω1
. . .

ωd

⎞
⎟⎠ = α

⎛
⎜⎝
n1

. . .

nd

⎞
⎟⎠ =: αD, n1, . . . , nd ∈ N

+. (2.12)

We also introduce the function,

h(zn, rn(θ), θ) := f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + rn(θ)
)

− f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)

,

(2.13)
for n ≥ 0 and 0 ≤ θ ≤ τ , and we rewrite (2.3) as

rn(τ ) = −εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ

−εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)dθ, (2.14a)

ṙn(τ ) = −
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ

−
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)dθ. (2.14b)

For the second integral term on the right hand side of (2.14a) or (2.14b), we do the
single step trapezoidal rule as before. As for the first integral, we do a change of
variable s = αθ

ε
and denote ατ

2πε
= m + γ with m ∈ N, 0 ≤ γ < 1, then

∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ

= ε

α

∫ ατ
ε

0
sin

(
Λ

ε
τ − Ds

)
f
(
eisDzn + e−isDzn

)
ds

= ε

α

m−1∑
l=0

∫ 2π(l+1)

2πl
sin

(
Λ

ε
τ − Ds

)
f
(
eisDzn + e−isDzn

)
ds

+ ε

α

∫ 2πm+2πγ

2πm
sin

(
Λ

ε
τ − Ds

)
f
(
eisDzn + e−isDzn

)
ds.
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Due to the periodicity and denoting g (zn, s) := f
(
eisDzn + e−isDzn

)
, we get

∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ (2.15)

= mε

α

∫ 2π

0
sin

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds + ε

α

∫ 2πγ

0
sin

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds.

Similarly,

∫ τ

0
cos

(
Λ

ε
(τ −θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ (2.16)

= mε

α

∫ 2π

0
cos

(
Λ

ε
τ −Ds

)
g
(
zn, s

)
ds+ ε

α

∫ 2πγ

0
cos

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds.

Now the functions in the integrals (2.15) and (2.16) become smooth in terms of s.
Though the explicit formulas of (2.15) and (2.16) are not available for general f , with
zn known, they can be approximated very accurately with error bounds independent of
ε. Here since the first integral part in (2.15) or (2.16) is over a complete period, so we
apply the composite trapezoidal rule which can efficiently offer spectral accuracy as∫ 2π

0
sin

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds

≈ 2π

M

M−1∑
j=0

sin

(
Λ

ε
τ − Ds j

)
g
(
zn, s j

) =: I1(zn), (2.17a)

∫ 2π

0
cos

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds

≈ 2π

M

M−1∑
j=0

cos

(
Λ

ε
τ − Ds j

)
g
(
zn, s j

) =: J1(zn), (2.17b)

with s j = 2π j
M and M ∈ N chosen sufficiently large such that the truncation error

of the quadrature is negligible. For the second integral in (2.15) or (2.16), we can do
further transformation and use the Gauss-Legendre quadrature which is also spectrally
accurate as

∫ 2πγ

0
sin

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds

= πγ

∫ 1

−1
sin

(
Λ

ε
τ − πγ D(x + 1)

)
g
(
zn, πγ (x + 1)

)
dx

≈ πγ

M∑
j=1

ν j sin

(
Λ

ε
τ − πγ D(x j + 1)

)
g
(
zn, πγ (x j + 1)

) =: I2(zn),

(2.18a)
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∫ 2πγ

0
cos

(
Λ

ε
τ − Ds

)
g
(
zn, s

)
ds

= πγ

∫ 1

−1
cos

(
Λ

ε
τ − πγ D(x + 1)

)
g
(
zn, πγ (x + 1)

)
dx

≈ πγ

M∑
j=1

ν j cos

(
Λ

ε
τ − πγ D(x j + 1)

)
g
(
zn, πγ (x j + 1)

) =: J2(zn),

(2.18b)

where x j for j = 1, . . . , M, is the j-th root of the Legendre polynomial PM (x) and ν j

is the associatedweight. Again we chooseM large enough such that all the approxima-
tions here are ‘accurate’. Note that the integrals in both (2.17) and (2.18) are for func-
tions without any large frequencies on O(1) intervals. The errors from the quadratures
are uniformly bounded with respect to ε. Hence, M can be chosen independently from
ε. Moreover, if the nonlinearity f is smooth, then thanks to the spectral accuracy of the
used quadratures, the practical demand on M ∈ N to reach high accuracy is not severe.

Then the detailed numerical scheme of the MTI in this case reads as follows. For
n ≥ 0, let yn and ẏn be the approximations of y(tn) and ẏ(tn), rn+1 and ṙn+1 be the
approximations of rn(τ ) and ṙn(τ ), and Zn be zn , respectively. Choosing y0 = y(0) =
φ0, ẏ0 = ẏ(0) = φ1

ε
, for n ≥ 0, yn+1 and ẏn+1 are updated the same as (2.10)–(2.11a),

but with

rn+1 = −ε2

α
Λ−1 (

mI1(Zn) + I2(Zn)
)
, (2.19a)

ṙn+1 = − ε

α

(
mJ1(Zn) + J2(Zn)

) − τ

2
h(Zn, rn+1, τ ), (2.19b)

where I1, I2, J1, J2 are defined in (2.17) and (2.18).
It is clear that the proposedMTI (2.10)with (2.11) or (2.19) is fully explicit and easy

to implement in practice. We remark that the ansatz (2.2) we used is just a modulated
Fourier expansion of the solution y(tn + s) for s ∈ [0, τ ]. The solution is expanded
at every time grid, thus it is different from the standard use of the modulated Fourier
expansion in the studies of oscillatory equations in [19,21,22,41].

We remark that when the nonlinearity f in this case is taken as a polynomial type
function, then the practical computational results of the MTI (2.19) is indeed the same
as the MTI (2.11) derived for the polynomial case in Sect. 2.1. This is because both
numerical schemes evaluate the leading order oscillatory part of the solution exactly or
very accurately, and approximate the remainder by the same way. From computational
cost point of view, the MTI (2.19) is more expensive than the MTI (2.11), since the
MTI (2.19) for the general case needs to compute the integrals I j and J j ( j = 1, 2) at
each time level by quadratures, while in MTI (2.11) the integral coefficients Cm j and
Ċm j are computed once for all. Thus, when both (2.19) and (2.11) are applicable, we
would recommend the MTI (2.11) for the polynomial case.
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We summarize here the schemes proposed so far which are the main algorithm
for solving (1.7). The rest part of this section will discuss two practical situations as
complements to the main algorithm.

Main algorithm: MTI for (1.7)
1. Set y0 = φ0, ẏ0 = φ1

ε
.

2. For n ≥ 0, define Zn = 1
2

(
yn − iε�−1ẏn

)
. Compute rn+1 and ṙn+1 for f(·) under

• polynomial case (2.7)-(2.8): by (2.11);
• general case with (2.12): by (2.19).

3. Step forward as

yn+1 = e
iτ
ε

�Zn + e− iτ
ε

�Z
n + rn+1, ẏn+1 = i�

ε

(
e
iτ
ε

�Zn − e− iτ
ε

�Z
n
)

+ ṙn+1.

2.3 Two scales in the linear part

At last, we write this subsection as a short note for the case

ÿ(t) + Ay(t) + f(y(t)) = 0, t > 0, (2.20)

where in the linear oscillatory part, the matrix A has two different scales, i.e.

A =
( 1

ε2
Λ2

M2

)
∈ R

d×d .

Here Λ ∈ R
d1×d1 is similar as before with all positive entries kept away from zero as

ε → 0, and M ∈ R
d2×d2 (d1 + d2 = d) is a non-negative matrix independent of ε.

In this situation, the highly oscillatory part and the non-oscillatory part in (2.20) are
separated. Denoting the solution y = (yO , yN )T with yO ∈ R

d1 and yN ∈ R
d2 , and

f = (fO , fN )T, with fO ∈ R
d1 and fN ∈ R

d2 , (2.20) becomes

⎧⎨
⎩
ÿO(t) + 1

ε2
Λ2yO(t) + fO(yO(t), yN (t)) = 0,

ÿN (t) + M2yN (t) + fN (yO(t), yN (t)) = 0, t > 0.
(2.21)

Then one can apply the expansion (2.2) to the oscillatory part yO(tn + s) and carry
out the same decomposition as used before. Whenever the approximation to the
non-oscillatory part yN (tn + s) is needed, since it is smooth so one can apply any
quadratures, for example the Gautschi’s type quadrature,

yN (tn + s) ≈ yN (tn) + sẏN (tn),

for a second order of accuracy. Then for the polynomial case discussed in Sect. 2.1,
it is straightforward to derive an MTI with uniform convergence. As for the general
case in Sect. 2.2, one can use
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f(yO(tn + s), yN (tn + s)) = f(yO(tn + s), yN (tn) + sẏN (tn) + O(s2))

= f(yO(tn + s), yN (tn)) + s∇yN f(yO(tn + s), yN (tn))ẏN (tn) + O(s2),

in order to make it easier to evaluate the integration of the oscillatory but periodic part.

2.4 With source terms

The above MTIs in Sects. 2.1 and 2.2 can be extended to study the second order
oscillatory ODEs with a source term. The problem reads

⎧⎪⎨
⎪⎩
ÿ(t) + 1

ε2
Λ2y(t) + f(y(t)) = s(t), t > 0,

y(0) = φ0, ẏ(0) = φ1

ε
.

(2.22)

where the source term s(t) is given as

s(t) =
M∑
l=1

al(t)eiυl t , M ∈ N, (2.23)

with al(t) ∈ R
d a smooth function and υl ∈ R. The source term s(t) denotes the

external force applied to the system and the form (2.23) usually arise from the studies
of electronic circuits [15–18].

Carrying out the decomposition of the differential equations (2.22) based on the
same ansatz (2.2) similarly as before, one will end up with

r̈n(s) + 1

ε2
Λ2rn(s) + f

(
e
is
ε

Λzn + e− is
ε

Λzn + rn(s)
)

= s(tn + s), 0 ≤ s ≤ τ,

(2.24)
with initial data (2.4). We will have two additional integrations regarding to the source
term in the variation-of-constant formulas, i.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn = εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
s (tn + θ) dθ

= εΛ−1
M∑
l=1

∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
al (tn + θ) eiυl (tn+θ)dθ,

Ṡn =
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
s (tn + θ) dθ

=
M∑
l=1

∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
al (tn + θ) eiυl (tn+θ)dθ, n ≥ 0.

(2.25)

From real application point of view, al(t) are usually simple analytic functions such as
polynomials and trigonometric functions [16,17], where the above integration (2.25)
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can be either evaluated exactly or approximated as accurate as desired. In this sense,
we can always integrate the source term Sn = (Sn1 , . . . , Snd ) and Ṡn = (Ṡn1 , . . . , Ṡnd )

accurately and uniformly for 0 < ε ≤ 1 and the rest approximations in the MTIs can
be done similarly as before.

3 Convergence results

In this section, we shall give the convergence result of the proposed MTIs for solving
(1.7) under the two cases. In order to obtain rigorous error estimates, we assume that
the exact solution y(t) to (1.7) satisfies the following assumptions

f ∈ C1(Rd), y(t) ∈ C2(0, T ), and

∥∥∥∥ dm

dtm
y

∥∥∥∥
L∞(0,T )

� 1

εm
, m = 0, 1, 2,

(3.1)
for 0 < T < T ∗ with T ∗ the maximum existence time. Denoting

C0 := max
{‖y‖L∞(0,T ), ε‖ẏ‖L∞(0,T )

}
, (3.2)

and the error functions as

en := y(tn) − yn, ėn := ẏ(tn) − ẏn, 0 ≤ n ≤ T

τ
, (3.3)

then we have the following error estimates for the MTIs.

Theorem 3.1 (Error bounds of MTIs) For the numerical integrator MTIs, i.e. (2.10)
with (2.11) or (2.19), under the assumption (3.1) and Λ is nonsingular, there exits a
constant τ0 > 0 independent of ε and n, such that for any 0 < ε ≤ 1,

|Λen| + ε|ėn| � τ 2, |Λen| + ε|ėn| � ε2, 0 < τ ≤ τ0, (3.4a)

|yn| ≤ C0 + 1, |ẏn| ≤ C0 + 1

ε
, 0 ≤ n ≤ T

τ
. (3.4b)

Here we shall only show the proof of the theorem for the MTI (2.10) with (2.19)
for solving (1.7) under the case (2.12), while the other case is similar. To proceed to
proof, we first establish some lemmas.

Lemma 3.1 Suppose yn and ẏn are the numerical solutions from the MTI (2.10) with
(2.19), then we have
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yn+1 = cos

(
Λ

ε
τ

)
yn + εΛ−1 sin

(
Λ

ε
τ

)
ẏn (3.5a)

−εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)
dθ, 0 ≤ n <

T

τ
,

ẏn+1 = −Λ

ε
sin

(
Λ

ε
τ

)
yn + cos

(
Λ

ε
τ

)
ẏn (3.5b)

−
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)
dθ − τ

2
h(Zn, rn+1, τ ).

Proof First of all, as we remarked before, we assume in (2.19) the quadratures in
I j (Zn), J j (Zn)( j = 1, 2) are accurate enough to recover

ε

α

(
mI1(Zn) + I2(Zn)

) =
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)
dθ,

ε

α

(
mJ1(Zn) + J2(Zn)

) =
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)
dθ.

(3.6)
Then plugging (2.11a) into (2.10), we get

yn+1 = cos

(
Λ

ε
τ

)
yn + εΛ−1 sin

(
Λ

ε
τ

)
ẏn + rn+1,

ẏn+1 = − Λ

ε
sin

(
Λ

ε
τ

)
yn + cos

(
Λ

ε
τ

)
ẏn + ṙn+1.

Then by using (2.19) and (3.6), we get directly the assertion (3.5). ��
Introducing the local truncation errors based on (3.5) as

ξn = y(tn+1) − cos

(
Λ

ε
τ

)
y(tn) − εΛ−1 sin

(
Λ

ε
τ

)
ẏ(tn)

+ εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ, (3.7a)

ξ̇n = ẏ(tn+1) + Λ

ε
sin

(
Λ

ε
τ

)
y(tn) − cos

(
Λ

ε
τ

)
ẏ(tn)

+
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ + τ

2
h(zn, rn(τ ), τ ),

(3.7b)

then we have

Lemma 3.2 For the local truncation errors ξn and ξ̇n, we have estimates

|Λξn| + ε|ξ̇n| � τ 3, |Λξn| + ε|ξ̇n| � τε2, 0 ≤ n <
T

τ
. (3.8)
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Proof Applying the variation-of-constant formula directly to (1.7) for t = tn + s, we
have

y(tn+1) = cos

(
Λ

ε
τ

)
y(tn) + εΛ−1 sin

(
Λ

ε
τ

)
ẏ(tn)

− εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f (y(tn + θ)) dθ, 0 ≤ n <

T

τ
.

Using the expansion (2.2) and noticing (2.13), we find

y(tn+1) = cos

(
Λ

ε
τ

)
y(tn) + εΛ−1 sin

(
Λ

ε
τ

)
ẏ(tn)

− εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)
dθ

− εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)dθ.

Now since the leading order oscillatory part is evaluated exactly, so the truncation
error is only caused by the single step trapezoidal rule, i.e.

ξn = εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)dθ, 0 ≤ n <

T

τ
. (3.9)

We note that

h
(
zn, rn(θ), θ

) =
∫ 1

0
∇f

(
e
iθ
ε

Λzn + e− iθ
ε

Λzn + ρrn(θ)
)
dρ rn(θ),

and under (3.1) and (2.3),

‖rn‖L∞(0,τ ) + ε‖ṙn‖L∞(0,τ ) + ε2‖r̈n‖L∞(0,τ ) � ε, 0 ≤ n <
T

τ
,

then by using the error formula of trapezoidal rule we get

|Λξn| =
∣∣∣∣∣ε

τ 3

12

d2

dθ2

[
sin

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)

] ∣∣∣∣
θ=θ∗∈[0,τ ]

∣∣∣∣∣ � τ 3,

or using (3.9) directly we get

|Λξn| � τε2.

Similarly, we can get the results for ξ̇n as

|ξ̇n| � τ 3

ε
, |ξ̇n| � τε,
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and the proof is completed. ��
Next, we introduce the nonlinear errors

ηn = εΛ−1
∫ τ

0
sin

(
Λ

ε
(τ − θ)

)[
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)

− f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
) ]

dθ,

η̇n =
∫ τ

0
cos

(
Λ

ε
(τ − θ)

)[
f
(
e
iθ
ε

ΛZn + e− iθ
ε

ΛZ
n
)

− f
(
e
iθ
ε

Λzn + e− iθ
ε

Λzn
)]

dθ

+ τ

2

[
h(Zn, rn+1, τ ) − h(zn, rn(τ ), τ )

]
, 0 ≤ n <

T

τ
,

then we have

Lemma 3.3 For the errors from the nonlinearity ηn and η̇n, under (3.4b) which will
be proven by induction later, we have estimates

|Ληn| + ε|η̇n| � τ
(|Λen| + ε|ėn|) + τ 3, 0 ≤ n <

T

τ
. (3.10)

Proof Firstly, under assumption (3.1) and (3.4b), we can easily have

|Ληn| �
∫ τ

0

∫ 1

0

∣∣∣∇f
(
e
iθ
ε

Λ(ρ(Zn − zn) + zn) + e− iθ
ε

Λ(ρ(Z
n − zn) + zn)

)∣∣∣
dρdθ |Zn − zn| � τ |Zn − zn| � τ

(|en| + ε|ėn|) .

Then similarly, together with triangle inequality we get

|η̇n| � τ
(|en| + ε|ėn|) + τ

∣∣∣h(Zn, rn+1, τ ) − h(zn, rn(τ ), τ )

∣∣∣
� τ

(|en| + ε|ėn|) + τ |Zn − zn| + τ |rn+1 − rn(τ )|
� τ

(|en| + ε|ėn|) + τ |rn+1 − rn(τ )|. (3.11)

Noting (2.3) and (3.5), we have

|rn+1 − rn(τ )| � |Zn − zn| +
∣∣∣∣εΛ−1

∫ τ

0
sin

(
Λ

ε
(τ − θ)

)
h(zn, rn(θ), θ)dθ

∣∣∣∣
�

(|en| + ε|ėn|) + τ 2.

Plugging the above estimate back to (3.11), we complete the proof. ��
Combing the above lemmas, now we can prove the main theorem by the energy

method and it is carried out in the framework of mathematical induction in order to
guarantee the boundedness of the numerical solutions [3–5].
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Proof of Theorem 3.1 For n = 0, from the choice of initial data in the scheme, we
have

|e0| = 0, |ė0| = 0,

and results (3.4a) and (3.4b) are obviously true.
Now for n ≥ 1, assume (3.4a) and (3.4b) are true for all n ≤ m ≤ T

τ
− 1, and then

we need to show results (3.4a) and (3.4b) are still valid for n = m + 1. Subtracting
(3.7) from (3.5), we get

en+1 = cos

(
Λ

ε
τ

)
en + εΛ−1 sin

(
Λ

ε
τ

)
ėn + ξn + ηn, (3.12a)

ėn+1 = −Λ

ε
sin

(
Λ

ε
τ

)
en + cos

(
Λ

ε
τ

)
ėn + ξ̇n + η̇n, (3.12b)

Multiplying Λ to the left on both sides of (3.12a) and multiplying (3.12b) by ε, then
taking the inner product with themself, respectively, by the Hölder inequality, we get

∣∣∣Λen+1
∣∣∣2 ≤ (1 + τ)

∣∣∣∣Λ cos

(
Λ

ε
τ

)
en + ε sin

(
Λ

ε
τ

)
ėn

∣∣∣∣
2

+
(
1 + 1

τ

) ∣∣Λ(ξn + ηn)
∣∣2 , (3.13a)

ε2
∣∣∣ėn+1

∣∣∣2 ≤ (1 + τ)

∣∣∣∣−Λ sin

(
Λ

ε
τ

)
en + ε cos

(
Λ

ε
τ

)
ėn

∣∣∣∣
2

+
(
1 + 1

τ

)
ε2

∣∣ξ̇n + η̇n
∣∣2 . (3.13b)

Adding (3.13b) to (3.13a), with definition

E (ėn, en) := ε2
∣∣ėn∣∣2 + ∣∣Λen

∣∣2 , 0 ≤ n ≤ T

τ
,

we get

E (ėn+1, en+1) − E (ėn, en) � τE (ėn, en) + 1

τ
E n(ξ̇n + η̇n, ξn + ηn), 0 ≤ n ≤ m.

(3.14)

Summing (3.14) up for n = 0, . . . ,m, we get

E (ėm+1, em+1) − E (ė0, e0) � τ

m∑
n=0

E (ėn, en) + 1

τ

m∑
n=0

E n(ξ̇n + η̇n, ξn + ηn).
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Noting E (ė0, e0) = 0 and using results from (3.2) and (3.3), we get

E (ėm+1, em+1) � τ

m∑
n=0

E (ėn, en) + min{τ 4, ε4}.

Then by discrete Gronwall’s inequality, we get

E (ėm+1, em+1) � min{τ 4, ε4},

which implies (3.4a) is true for n = m + 1. Furthermore, by triangle inequality,

|ym+1| ≤ |em+1| + |y(tm+1)| ≤ ρ(Λ−1)|Λem+1| + |y(tm+1)| ≤ C0 + 1,

|ẏm+1| ≤ |ėm+1| + |ẏ(tm+1)| ≤ C0 + 1

ε
,

when 0 < τ ≤ τ0 for some τ0 > 0 independent of ε and n. Thus (3.4b) also holds for
n = m + 1 and the proof is completed. ��
Remark 3.2 We remark in the Theorem 3.1 and the proof, we use the assumption the
nonlinearity f is smooth in Rd . Thus the error estimates (3.4a) in the Theorem 3.1 do
not give any clues about the error bounds of the MTIs for solving the rational type
nonlinearities generated by unbond potentials. We will study this case numerically
later.

4 Numerical results

In this section,we show thenumerical results of the proposedMTIs for bothpolynomial
case and smooth general case. Also, we show the numerical results of the rational type
nonlinearity. As benchmark of comparisons, we consider the EIs with three most
popular filters as suggested in [36].

The general scheme of the EIs with filters are widely presented in the literatures
[33,36–39,42]. Three most popular groups of filters which offer the best numerical
performance for solving (1.1) with energy bounded type initial data are suggested in
[36] as

si(ρ) = sinc(ρ)φ(ρ), φ(ρ) = sinc(ρ); (4.1a)

ψ(ρ) = sinc2
(
1

2
ρ

)
, φ(ρ) = sinc(ρ)

(
1 + 1

3
sin2

(
1

2
ρ

))
; (4.1b)

ψ(ρ) = sinc3(ρ), φ(ρ) = sinc(ρ). (4.1c)

The filter (4.1a) is proposed by García-Archilla et al. in [31] (shorted as GA), (4.1b)
is proposed by Hochbruck and Lubich in [39] (shorted as HL) and (4.1c) is proposed
by Grimm and Hochbruck in [36] (shorted as GH).
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Firstly, we test the MTI (2.11) for the polynomial nonlinearity case. We choose

d = 4, Λ = diag(1, e, 3, π), φ0 = (1, 1, 2, 1)T, φ1 = (1, 2, 1,−1)T,

and
f(y) = (y34 , y

3
3 , y

3
2 , y

3
1)

T, (4.2)

in model (1.7). Here since the analytical solution to this problem is not available, the
‘exact’ solution y(T ) is obtained numerically by the MTI (2.11) under a very small
time step τ = 10−5. The position error eN = y(T ) − yN is computed at N = T

τ
and measured under standard Euclidian norm. The results of the MTI method and the
three chosen EIs under different time steps τ and ε are shown in Table 2 at T = 2.

Secondly, we test the MTI (2.19) for the general smooth nonlinearity case under
condition (2.12). We choose

d = 4, Λ = π · diag(1, 2, 2, 1), φ0 = (1, 1, 2, 1)T, φ1 = (1, 2, 1, 1)T,

and
f(y) = (sin(y4), sin(y3), sin(y2), sin(y1))

T, (4.3)

in problem (1.7). The position error of the MTIs and EIs under different time steps
τ and ε are shown in Table 3 at T = 2. We take the M = 10 in (2.17) and (2.18) to
reach machine accuracy.

Thirdly, we test theMTIs for solving the ODEs (1.7) with rational type nonlinearity.
We choose

d = 4, y = (q1,q2)T, q1 = (y1, y2)
T, q2 = (y3, y4)

T,

and the nonlinearity generated by the Coulomb potential VC (1.4), i.e.

f(y) = − (y1 − y3, y2 − y4, y3 − y1, y4 − y2)T[
(y1 − y3)2 + (y2 − y4)2

] 3
2

, (4.4)

with

Λ = π · diag(1, 1, 2, 1), φ0 = (1, 1,−1,−1)T, φ1 = 1

2
(−1,−1, 1, 1)T,

in (1.7).M = 10 is also used in (2.17) and (2.18) to getmachine accuracy. The position
error of different numerical methods are shown in a similar way in Table 4 at T = 2.

From Tables 2, 3 and 4, Figs. 4, 5 and 6 and additional results not shown here for
brevity, the following observations can be drawn:

1. With fixed τ as ε decreases, the MTIs in all cases have uniform error bounds (cf.
Tables 2, 3 and 4), while the EIs have clearly increase in the sine nonlinearity test
and the rational nonlinearity test (cf. Fig. 6).
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Fig. 4 Error |eN | of the MTIs for the polynomial case (4.2) (left figure) and the general smooth case (4.3)
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2. For the smooth nonlinearity cases, the MTIs have second order convergence in τ

when τ � ε decreases (cf. Tables 2, 3; Fig. 4), and have second order convergence
in ε when ε � τ decreases (cf. Tables 2, 3; Fig. 5). Thus, the theoretical error
estimates are optimal.
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3. The MTIs work very well for rational nonlinearity case from both stability and
accuracy points of view (cf. Table 4). For all cases, the MTIs offer much smaller
position error than the EIs under the same time step.

Next, we show a numerical example with zero mode frequency in the linear part
and a standard forced Van der Pol oscillator type source term [16] with a frequency
υ > 0: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ÿ1(t) + 1

ε2
y1(t) + sin(y2(t)) = sin(υ t),

ÿ2(t) + (y1(t))
3 = 0, t > 0,

y1(0) = y2(0) = 1, ẏ1(0) = 1

ε
, ẏ2(0) = 3

2
,

(4.5)

by using the MTIs with the techniques mentioned in Sects. 2.3 and 2.4.
The error at T = 1 for two different υ under different τ and ε are shown in Fig. 7.

The numerical results show that the MTI with the techniques from Sects. 2.3 and 2.4
works well in this case with performance similarly as before and clearly once again
illustrate that the convergence is uniform in ε.

At last, we use an example to show the long-time behaviour of the proposed MTI
for solving (1.7). We take in (1.7)

d = 2, Λ = diag(1, e), φ0 = (1, 2)T , φ1 = (1,−1)T , f(y) = (y1y
2
2 , y2y

2
1 )

T.

(4.6)
Then the energy H(t) is conserved by (1.7), i.e.

H(t) := ẏT (t)ẏ(t) + 1

ε2
yT (t)Λy(t) + y21 (t)y

2
2 (t) ≡ H(0), t ≥ 0.

We solve (1.7) by MTI (2.11) and compute the numerical energy Hn = (ẏn)T ẏn +
1
ε2

(yn)TΛyn + (yn1 y
n
2 )2 from the numerical solution. The relative energy error |Hn −

H(0)|/|H(0)| for ε = 0.1 and ε = 0.01 are shown in Fig. 8 till t = 100 under several
step size τ .
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Fig. 8 Relative energy error of MTI for ε = 0.1 and ε = 0.01 till T = 100 under different τ

5 Conclusion

In this paper, we proposed some multiscale time integrators (MTIs) for solving oscil-
latory second order ODEs with large initial data that leads to unbounded energy in the
limit regime. Comments on the relation between the energy unbounded type initial
data and the widely used energy bounded type initial data in the ODEs are given. The
MTIs are proposed based on modulated Fourier expansion of the solution at every
time step. Detailed numerical schemes are derived for the case when the nonlinearity
in the ODEs is a polynomial type, and for the case of general nonlinearity but with the
linear oscillatory part in the ODEs is multiples of a single frequency. The schemes are
fully explicit and easy to implement. Rigorous error estimates of the proposed MTIs
for solving the oscillatory ODEs with smooth nonlinearity are established to show
the uniform second order convergence rate when the oscillation frequency increases.
Extensive numerical experiments of theMTIs are done to confirm the analysis together
with comparisons with popular EIs. Numerical explorations of the MTIs for solving
the ODEs with rational type nonlinearity are also done.
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