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1 Introduction

Strong convergence rates of numerical approximations to stochastic differential equa-
tions (SDEs) are a well studied topic. Under a global Lipschitz condition on the
coefficients the picture is rather complete, both for one-step methods [13,17] and
multi-step methods [2, 14]. Many important equations in application have coefficients
that do not satisfy the global Lipschitz condition, and it is therefore important to study
a more general setting. Many convergence results for explicit and implicit one-step
methods have also been proven for equations without the global Lipschitz condition,
see for instance [1,7-10,12,16,19,21]. In the present paper we determine the strong
rate % for the backward Euler—Maruyama method (BEM), in the mean-square norm,
which improves [16] in terms of a weaker assumption on the coefficients.

For multi-step schemes, on the other hand, there are no previously known results
on strong convergence for equations with coefficients not satisfying a global Lipschitz
condition. In this paper we determine the strong rate % for the BDF2-Maruyama scheme
for equations whose, possibly superlinearly growing, coefficient functions satisfy a
global monotonicity condition. Backward difference formulas (BDF) are popular in
applied sciences for the approximation of stiff equations, see [2] for a list of references
to such works.

Letd,m € N, T > 0and (£2, .7, (%):¢(0.1], P) be a filtered probability space
satisfying the usual conditions, on which an R-valued standard (Z1)1ef0,11-Wiener
process W: [0, T] x 2 — RY is defined. We consider the equation

t t
X () = Xo +/ f(X(s))ds +/ 8(X(s)dW(s), te€[0,T], (1.1)
0 0

with drift f: R” — R™ and diffusion coefficient function g: R” — R"*?. The
functions f and g are assumed to satisfy a global monotonicity, a coercivity and a
local Lipschitz condition in Assumption 2.1 below. The initial condition fulfills Xo €
L%(2, %, P; R™) with some additional integrability, admitting higher moments of
the solution.

For a given equidistant time step size & € (0, 1) we discretize the exact solution to
(1.1) along the temporal grid t;, = {t, =nh : n=0,1,..., N;}. Here N, € N is
uniquely determined by the inequality ty, < T < ty, 1. We set 4, Wi =W i) =
Wi(tj—y) for j € {1,..., Ny}. We consider discretizations by means of the backward
Euler—-Maruyama method

X=X = hf XD+ eXITHAWT, j el Nal, (1.2)

with (X0)neo,1) satisfying E[|| X)) — Xo|?] = €'(h), and by means of the BDF2-
Maruyama scheme from [2]. The latter is given by the recursion

3 . i1 1 i, .3 i1 | - -
SXn=2XG T A X = (X + 5 (G AW = Sg (X AW L13)
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Mean-square convergence of the BDF2-Maruyama... 23

for j € {2,..., Ny}, with initial values (X?, X}l) where (X2)he<o,1> is the same as
above and (X ;I,)he(o,l) is determined, for instance, by one step of the backward Euler
scheme or some other one-step method satisfying E[||X,ll —XW|* = O). In
practice, the implementation of the methods (1.2) and (1.3) often requires to solve a
nonlinear equation in each time step. In Sect. 3 we discuss that under our assumptions
a solution does indeed always exists provided the step size & is small enough. The
choice of the root-finding algorithm may depend on the coefficient function f and its
smoothness. We refer to [18] for a collection of such methods.

We prove that for (X;/,)je{o ,,,,, Ny).he(0, 1), determined either by (1.2) or (1.3), and X
being the solution to (1.1), there exist a constant C such that the following mean-square
convergence holds:

X(t;) — X! < CvVh, he,]1). 1.4
e, XD = Xi 12 e, = Vi O 4

The precise statements of our convergence results are found in Theorems 4.4 and 5.4.
The proofs are based on two elementary identities: for all uy, uo € R™ it holds that

2u — uy, uz) = lua* — lur|* + luz — uy|?, (1.5)

and for all uy, uo, u3 € R™ it holds that

2
= |us)? — |2 + 12u3 — uz|® — 2up — ur|* + |uz — 2us + ui >, (1.6)

3 1
4 §u3 —2ur + —uyg, us

found in [3], which has been derived from results on G-stability for linear multi-step
methods, see [4,20]. Up to the best of our knowledge (1.6) has not previously been
used in the study of the BDF2 scheme for stochastic differential equations.

The paper is organized as follows: Sect. 2 contains notation and our precise assump-
tions on the coefficients f and g in (1.1). We cite well known results on existence,
uniqueness and moment bounds for the solution under these conditions. A well-
posedness result for general implicit stochastic difference equations is proved in
Sect. 3. Sections 4 and 5 contain the analysis of the backward Euler—Maruyama and
the BDF2-Maruyama schemes, respectively. Sections 4.1 and 5.1 contain a priori esti-
mates for the respective schemes, in Sects. 4.2 and 5.2 stability results are proved,
while Sects. 4.3 and 5.3 are concerned with the consistency of the two schemes. The
two main results on the strong mean-square convergence rate are stated in Sects. 4.4
and 5.4, respectively. Further, in Sect. 5.5 we have a closer look on the second initial
value for the BDF2-Maruyama scheme and it is shown that using one step of the BEM
method is a feasible choice. Section 6 contains numerical experiments involving the
%-volatility model from finance which verify our theoretical results and indicate that
the BDF2-Maruyama method performs better than Euler-type methods in case of stiff
problems or equations with a small noise intensity.
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24 A. Andersson, R. Kruse

2 Setting and preliminaries
2.1 Notation and function spaces

Let (-, -) and | - | denote the scalar product and norm in R” and let | - |gs denote the
Hilbert—Schmidt norm on the space R”*? of all m times d matrices, i.e., |S|ys =
JTr(S%S)) for § € R"™*4,

Let (£2, .7, (%1):e0,17, P) be a filtered probability space satisfying the usual con-
ditions. For p € [1, 00) and a sub-o-field 4 C .% we denote by L? (52,9, P; E) the
Banach space of all p-fold integrable, ¢/ 2 (E)-measurable random variables taking
values in a Banach space (E, | - |g) with norm

<I-

1ZlIlLr@.2 w6y = (E[IZIZ]) 7. Z € LP(2,9,P; E).

If9Y = .% we write LP($2; E) := LP(2, %,P; E).If p =2and E = R" we obtain
the Hilbert space L?(£2; R™) with inner product and norm

(x.¥)=E[X. V)], IX] =V(X.X),

for all X,Y € L*(£2;R™). We denote by || - || the norm in L%(£2; R"*%) ie.,
IZIl = (E[Z[ZsD? for Z € L*(2; R™).

We next introduce notation related to the numerical discretizations. Recall from
Sect. 1 the temporal grids 75, & € (0,1). For h € (0,1) and j € {0, ..., Ni}, we
denote by

Pl L*(2, 7, P;R") — LX(2, 7,,,P;R™),

the orthogonal projector onto the closed sub-space L2(.s’2, ﬁ,j , P; R™), which is also
known as the conditional expectation. More precisely, for ¥ € L?(£2; R™) we set
P}{ Y =E[Y L%j]. We introduce the spaces (%2);15(0, 1y of all adapted grid functions,
which enjoy the following integrability properties

G2 :={Z:10,..., Ny} x 2 - R" : Z", f(Z") € L*(2, F,,,P;R™),
g(Z" € L*(2, 7, P; R™ ) forn € {0, ..., Ny}}.

These will play an important role in the error analysis.

2.2 Setting

Consider the setting introduced in Sect. 1. We now formulate our assumptions on the
initial condition and the coefficient functions f and g which we work with throughout
this paper.

Assumption 2.1 Thereexistsg € [1, co) such that the initial condition X¢: £2 — R™
satisfies Xo € L*2(2, Zo, P; R™). Moreover, the mappings f: R” — R™ and
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Mean-square convergence of the BDF2-Maruyama... 25

g:R" —> R™*4 are continuous and there exist L € (0, 0o) and n e (%, 00) such
that for all x1, x, € R™ it holds

(fx1) = f(x2), x1 —x2) +0]ge) — g < Llxi — 32’ (2.1)
G0 = fo] = L (14 ™ 4l ) v = xal, 22)

where g € [1, 00) is the same as above. Further, it holds for all x € R that

4qg -3

(f&x). )+ —

\gm@sgL(LHﬂﬁ. 2.3)

Assumption 2.1 guarantees the existence of an up to modification unique adapted
solution X : [0, T'] x £2 — R to (1.1) with continuous sample paths, satisfying

sup (| X ()l pag-2(@:rm) < 00, 2.4
tel0,T]

see, e.g., [15, Chap. 2]. In the proof of Theorem 5.3 on the consistency of the BDF2
scheme, the L*~2(£2; R™)-moment bound is of importance in order to apply the
bounds (4.5), (4.6) below.

For later reference we note several consequences of Assumption 2.1. From (2.2)
we deduce the following polynomial growth bound:

|f)| <L(1+1x9), xeR", 2.5)

where L = 2L + | f(0)]. Indeed, (2.2) implies that

[F@] = [f0) = FO]+] O] = L (14 1x177") 15+ | £O)
<QL+[fO))(1+Ix7), xeR".

Moreover, from (2.1) followed by a use of (2.2) it holds, for xj, x, € R™, that

A

2 L 5 1
lg(x1) — g(x2) [y < Sl —xl 4 ;\ (f(x) = f(x2), x1 — x2) |

IA

L
o e U BT TR
This gives the local Lipschitz bound

, 2L _ ~
[s0e) = gl = 57 (1 bt + bl by~ a1 € R,

(2.6)
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26 A. Andersson, R. Kruse

and, in the same way as above, the polynomial growth bound

gy = L(1+ 1T ), xeR™, @7

where L = 2./ % + |g(0)|us. Finally, we note for later use that the restriction X|,

of the exact solution to the time grid 7, given by
[XIo]) = X(h), jefo,..., Ny},

is an element of the space %12 for every h € (0, 1). This follows directly from (2.4)
and the growth bounds (2.5) and (2.7).

2.3 Preliminaries

Here we list some basic results that we use in this paper. Frequently, we apply the
Young inequality and the weighted Young inequality

2 p? 1

a v

b<—+— and ab < —a*+ —b* 2.8

a_2+2an a_2a+2v’ (2.8)

which holds true for all @, b € R and v > 0. We make use of the following discrete

version of Gronwall’s Lemma: If & > 0, a1, ..., an,, b, c € [0, 00), then

n—1

Vnef{l,....Ny}: ay <c+bhY a; implies Vne{l,....Ny}: ay < ce’.
Jj=1

2.9)

Finally we cite a standard result from nonlinear analysis which we use for the
well-posedness of the numerical schemes, see for instance [18, Chap. 6.4] or [20,
Thm. C.2]:

Proposition 2.1 Let G: R™ — R™ be a continuous mapping satisfying for some
c € (0,00)

(G(x1) — G(x2),x1 —x2) > clx1 —x2|*, x1,x2 € R™.
Then G is a homeomorphism with Lipschitz continuous inverse. In particular, it holds
6700~ 67 0] = =i —
forall y1, y, € R™.
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Mean-square convergence of the BDF2-Maruyama... 27

3 A well-posedness result for stochastic difference equations

In this section we prove existence and uniqueness of solutions to general stochas-
tic k-step difference equations. This result applies in particular to all implicit linear
multi-step schemes for SDE with coefficients satisfying Assumption 2.1 including the
backward Euler—Maruyama method, the Crank—Nicolson scheme, the k-step BDF-
schemes, and the k-step Adams—Moulton methods. We refer the reader to [2, 14] for
a thorough treatment of these schemes for stochastic differential equations with Lip-
schitz continuous coefficients.

Theorem 3.1 Let the mappings f and g satisfy Assumption 2.1 with q € [1, 00)
and L € (0,00), let k € N, ag,...,%—1,80s---»Bk=1,70,--->»Vi—1 € R
o = 1, Bx € (0,00), and hy € (0, /3;+L) with khy < T. Assume that initial
values Uf € L*(22, %,,P;R™) are given with f(U}) € L*(2, ,,P;R™) and
g(Uf) € LX(2, Z,, P; R™ ) forall € € {0, ...,k — 1}. Then, for every h € (0, hi]
there exists a unique family of adapted random variables Uy, € th satisfying

k k k
DU = h D B f WU+ D vimegUTH AW 3
=0 £=0 =1

forj € {k, ..., Ny}. Inparticular, it holds true that U}, f(U]) € L*(2, #,,, P; R™)
and g(Uj)) € L*(22, F1,, P; R™) forall j € {k, ..., Np).

Proof Let F,: R™ — R™, h € (0, h1], be the mappings defined by
Fr(x) =x—hBf(x), xeR™, he(,h.

Note that for every & € (0, h]itholds that 1 — SxhL > 1 — Byhi L > 0 and from the
global monotonicity condition (2.1) we have that

(Fn(x1) — Fp(x2), x1 — x2) = |x1 — x21* — Bih (f (x1) — f(x2), X1 — x2)
> (1= BchiL) |x) — x|

Consequently, by Proposition 2.1 the inverse F)~ ! of Fy, exists for every h € (0, hq]
and is globally Lipschitz continuous with Lipschitz constant (1 — #;8L)~!. Using
these properties and the fact that ¢y = 1 we can rewrite (3.1) as

FaUD =R} < Ul =F'(R) (3.2)

forall j € {k, ..., N}, where

k k k
j j—¢ j—¢ j—¢ i—
Ry == U +h D Bef WU )+ D viegU] HAWIH,
=1 =1 =1
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28 A. Andersson, R. Kruse

for j € {k,..., Np}. Therefore, by (3.2) and the continuity of F,;l we have that
for every h € (0, k1], Uy is an adapted collection of random variables, uniquely
determined by the initial values U 2, ) ,]f -1

In order to prove that U, € gh2 for all & € (0, h1], by means of an induction

.....

values U,?, ., U}]L‘_l. it holds that (U;{’k)je{o ,,,,, Ny} € %2 For the induction step, we
now assume that (U,{’n)je{o ,,,,, Ny} € %hz for some n € {k, ..., N}. This assumption
and the fact that

|2 A, W= = njlgwi O,

imply immediately that RZ e L%, F1,, Py R™). Thus, from the linear growth of
F, ' weget U = F, '(R)) € L*(2, 7, P; R™).
In addition, we recall from [1, Cor. 4.2] the fact that under Assumption 2.1 the

mapping h? gokF, !is also globally Lipschitz continuous with a Lipschitz constant
independent of 4. More precisely, there exists a constant C such that forall 2 € (0, k1]
and all x1, x» € R™ it holds true that

hlg(Fy ' (o)) — g(Fy ' (02)) g < Clxt — xaf (3.3)

Consequently, the mapping h3 go Fh*1 : R — R is also of linear growth and we
conclude as above

Wi As W12 = hllg DI = hllg(Fy (RIIP < € (1+1R;I)

In particular, this gives g(U;)) € L2(£2, F1, P; R™*dy, Finally, from the definition
of Fy, and (3.2) we have that

1 1
fwy)) = ,Bk_h(U;‘l + Bkhf (U} — Up) = ,Bk_h(U;’l — Fp(UM)
1
= m—h(F,;‘(RZ) — R)).

Hence, by the linear growth of F h_l and the fact that R} € L3($2, F1,, Py R™) we
conclude that f(U}) € L*(2, %, P; R™).

(U;{’n)je{O,...,Nh} € %2 forevery n € {k,..., N; + 1}. By finally noting that U,{ =

U}{,Nﬁl’ Jj €1{0, ..., Np}, the proof is complete. o

4 The backward Euler-Maruyama method

In this section we prove that the backward Euler—Maruyama scheme is mean-square
convergent of order % under Assumption 2.1. The proof is split over several subsec-
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Mean-square convergence of the BDF2-Maruyama... 29

tions: First we familiarize ourselves with the connection between the BEM method and
the identity (1.5). This is done by proving an a priori estimate in Sect. 4.1. In Sect. 4.2
we then derive a stability result which gives an estimate of the distance between an
arbitrary adapted grid function and the one generated by the BEM method. As it turns
out this distance is bounded by the error in the initial value and a local truncation error.
The latter is estimated for the restriction of the exact solution to (1.1) to the temporal
grid tj, in Sect. 4.3. Altogether, this will then yield the desired convergence result in
Sect. 4.4.

4.1 Basic properties of the backward Euler-Maruyama scheme

Here and in Sect. 4.2 we study U € G2 he 0, %), satisfying
U/ =0+ hf(U)) + (U7 AWT, j el .. Ny}, @.1)

with initial condition U® € L2(82, %, P; R™) suchthat £ (U°) € L%(2, %y, P; R™)
and g(U°) € L*(2, %o, P; R"*%). Here L is the parameter in Assumption 2.1 and
from Theorem 3.1 there exist for every i € (0, %) aunique U € gh2 satisfying (4.1).
Uy is not necessarily related to the initial value X of (1.1).

In order to prove the a priori bound of Theorem 4.1 and the stability in Theorem 4.2
the following lemma is used:

Lemma 4.1 Forallh € (0, %) and U,V € %hz with U satisfying (4.1) it holds for all
je{l,..., Ny} P-almost surely that

BT = |E7I P B — BTN
— 2 (f(uf), Ef) ) (g(Uffl)Ath', E/ - EH) 2 (vf' _ i, Ef) + 7,

where E .= U — V and (Zj)je{l,,_Nh} are the centered random variables given by
7/ =2 (g(Uf—l)Ah Wi, Ej_l) .

Proof From the identity (1.5), and since U satisfies (4.1) by assumption the assertion
follows directly. Note that Z/ is well-defined as a centered real-valued integrable
random variable due to the independence of the centered Wiener increment A, W/
and the square integrable random variables g(U/~') and E/~1. O

The proof of the next theorem is the first and simplest demonstration of the, in
principle, same technique used to prove Theorems 4.2, 5.1 and 5.2 below. This a priori
estimate is in fact not needed further in the analysis and it can be deduced from the
stability Theorem 4.2, but with larger constants, and for a more narrow range for the
parameter /. We include it for completeness.
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30 A. Andersson, R. Kruse

Theorem 4.1 Let Assumption 2.1 hold with L € (0, 00), g € [1, 00). For h € (0, ﬁ)

denote by U € ffhz the unique adapted grid function satisfying (4.1). Then, for all
n €{l,..., Ny} it holds that

2L,
IU" 17 + hllg(U™II* < Chexp (m) (14 1001 + Rl WOIR)

where Cy, = max{1,2LT}(1 —2Lh)~".

Proof Lemma 4.1 applied with V = 0 and taking expectations yields

WU 11> = o=+ o = o
= 20(f W), UT) +2{gUi™h A, W U7 — Ui,

From the coercivity condition (2.3) and the Young inequality (2.8) we have that
jn2 j—1y2 in2 49 -3 2 =1y 12
1U01° = 107217 = 2h \ L\ 1+ 11U/l — = lls@Hl + hlllg (U I

Summing over j from 1 to n gives that

(1 —2Lh) |U™ + (4g — 3)hllg (UM

n—1 n—1
<2LT + U7 + hllgUOII* + (4 = 4g)h D llgWHII> +2Lh D |U7 |,
j=1 j=1

Since g € [1, 00) itholds 1 < 4g — 3 and 4 — 49 < 0. By elementary bounds we get

U™ 117 + Rllg UM <

2LT +[|U°)12 + hllg(UO)I? 2L S
R IO,
1—2Lh I—-2Lh =

We conclude by a use of the discrete Gronwall Lemma (2.9). m|

4.2 Stability of the backward Euler-Maruyama scheme

For the formulation of the stability Theorem 4.2 we define for 2 € (0, 1) and V € ffhz
the local truncation error of V given by

2
)

Np Np
. 1 L
™MWy =2 o I” + 2 3B e (v) 4.2)
j=1

Jj=1
where the local residuals Q}{(V) of V are defined as

0L (V) ;= hf (V7)) + g(VITH AW — VI 4 Vi,

@ Springer



Mean-square convergence of the BDF2-Maruyama... 31

for j € {2,..., Nj}. Note that of (V) € L2(2, F,, P; R") for every V € 42. We
also introduce a maximal step size hg for the stability, which guarantees that the
stability constant in Theorem 4.2 does not depend on 4. It is given by

1

- max{4L,2} )

Using the same arguments as in Theorem 4.1 the assertion of Theorem 4.2 stays true
for all 1 € (O, ﬁ) but with a constant C depending on ﬁ as in Theorem 4.1.

Theorem 4.2 Let Assumption 2.1 hold with L € (0,00), n € (%, 00). For all h €
(0, hgl, U € 97 satisfying (4.1), V € 972, and alln € {1, ..., Ny} it holds that

U™ = V" I? + kllg(U™) = g(VHII?
< Coxp (1 +2L)1) (1U° = VOI2 + hllgU®) = sVOIP + o™ (V).

where C = max{3, 4n, 2n 1}
Proof Fix arbitrary h € (0, hgland V € gh2 To ease the notation we suppress the
dependence of i and V and simply write, for instance, AW/ := A, W/. We also write
El:=UJ —V/ and

Aff = fWU7) = f(V)), Agli=gU))—g(V)), je{0,....Ns}. (44)
From Lemma 4.1 we get after taking expectations that

IEZ|> = | ES7N? + I1ES — ET71)1?
= 2h(AfT ET)+2(Ag! T AW + o/ | ET — ETT 4 207 ETT).

In order to treat the residual term we first notice that Phj - E/=! = EJ=1 Then, by

taking the adjoint of the projector and by applying the weighted Young inequality (2.8)
with v = h > 0 we obtain

2ol 1Y) =2{p] ol 1Y < 1| P70 P+ £

Moreover, further applications of the Cauchy-Schwarz inequality, the triangle inequal-
ity, and the weighted Young inequality (2.8) with v = p yield

2Ag! AW + o/ EV — ETTH)
< Jag~ awi + /| + | £/ — £

<@+ lag=awif+ (4 D) o1+ 18 - 2 )
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32 A. Andersson, R. Kruse

Therefore, together with the global monotonicity condition (2.1) this gives
IEZ|> = |ES1* < 2hL| E7|” = 2hnllAg 11> + (1 + )kl Ag 12

1|2 Nioi 12+ L1pi1 002
nl B (1) 1o+ 12 )

I

Setting u = 2n — 1 > 0 gives that 1 + w = 2n. Then, summing over j from 1 to n
and thereby identifying two telescoping sums yields

(1 —2Lh) |E"|? 4 2nh|| Ag"||*

n—1
< (L4 WIE? + 20l Ag°N2 + (1 + 2Ly > | EZ|)?
j=1

20 2 LN et g2
+ N+ - Pl ol ||"

Since 1 —2Lh >1—2Lhg > % aswellash < hg < % and n > % we obtain after
some elementary transformations the inequality

4n
2n —1

1E" I + il Ag"I> < max {3, 4n, s} (IEOI? + Al A0 + pf™(V))

n—1
+201+20)h > |ET |
j=1

The proof is completed by applying the discrete Gronwall Lemma (2.9). O

4.3 Consistency of the backward Euler—-Maruyama scheme

In this subsection we give an estimate for the local truncation error (4.2) of the BEM
method. For the proof we first recall that the restriction X|, of the exact solution to
the temporal grid 7;, is an element of the space %72, see Sect. 2.2. Further, we make
use of [1, Lemmas 5.5, 5.6], which provide estimates for the drift integral

© 2g-1 3
/ | £ (X (@) = fFX )] ds < c(l + sup [ X0 gupey 172 — T2
71 tel0,T] ’
4.5)
for all 7, 71, 7o € [0, T'] with 71 < t© < 13, and for the stochastic integral
w2 2g—1
| [ @) —gxem aws| el 1+ s X040 g |71l
. 1€[0.7] ’
4.6)

for all 7y, .o € [0, T'] with 71 < 13, respectively.
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Theorem 4.3 Let Assumption 2.1 hold and let X\, be the restriction of the exact
solution to (1.1) to the temporal grid tj,. Then there exists C > 0 such that

pp™M(X|y,) < Ch, he(0,1),
where the local truncation is defined in (4.2).

Proof Recall the definitions of pEEM(X |z,) and Qi (X|q,) from (4.2). It suffices to
show

i 2 1 . . )
je{rlr}fl.)ho}(||Q’]1(X|fh)|| + 17 ol (X1o) | ) < Ch?. @7

Inserting (1.1) it holds for every j € {1, ..., Ny} that

. 1
07 (X|z) =/ (f(X(tj) — f(X(s))) ds
-

Jj—1

lj
+ / (e(X(1j-1)) — g(X(5))) AW (s)

rj—1

. . tj
Pl o) (Xly) = E[/ (F X0 = FX D) ds|F, |
tj—

j—1

Note that inequalities (4.5) and (4.6) apply to (4.7) due to the moment bound (2.4).
These estimates together with an application of the triangle inequality and the fact that
IELVI|Z; 1l < IVl forevery V € L2(£2; R™) completes the proof of (4.7). O

4.4 Mean-square convergence of the backward Euler-Maruyama method

Here we consider the numerical approximations (X ;J,)ivi o» B € (0, hg], uniquely
determined by the backward Euler—-Maruyama method (1.2) with a corresponding
family of initial values (Xg)he(o,hgy Recall from (4.3) that hp = 2(4L1+1) . This family
is assumed to satisfy the following assumption.

Assumption 4.1 The family of initial values (X,(l))he(o, hp] satisfies
0 0 2 ar, .M 0 2 ar . pmxd
Xy, f(Xy) € L7°(82, %9, P; R™), g(X}) € L7(£2, Fo, P, R"7), (4.8)
for all & € (0, hg] and is consistent of order % in the sense that
1X(0) — X% + Allg(X (0)) — g(XDII* = O b, (4.9)

as h | 0, where X is the exact solution to (1.1).

Note that Assumption 4.1 is obviously satisfied for the choice X 2 := Xy for every
h € (0, hg]. This said we are now ready to state the main result of this section.
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Theorem 4.4 Let Assumptions 2.1 and 4.1 hold, let X be the exact solution to (1.1)
and let (X 2 )fi o I € (0, hgl, be the family of backward Euler-Maruyama approx-
imations determined by (1.2) with initial values (X?,)he(o,hg]- Then, the backward
Euler—Maruyama method is mean-square convergent of order %, more precisely, there

exists C > O such that

max | X2 — X(nh)|| < Cvh, he (0, hg]
ne{0,...,Np}

Proof For h € (0, hg], we apply Theorem 4.2 with U = (X{;);VLO € %2 and V =

X, = (X (tj))?/io € %hz and get that there is a constant C > 0, not depending on 4,
such that

13 = X)I? = € (1X] = XOI + hllg(X§) — gX DI+ pFM(X],))

The first and second term on the right hand side are of order &'(h) by Assumption 4.1.
Since the same holds true for the consistency term pEEM(X |z,) by Theorem 4.3 the
proof is completed. O

5 The BDF2-Maruyama method

In this section we follow the same procedure as in Sect. 4 with identity (1.6) in place of
(1.5). Every result in Sect. 4 has its counterpart here for the BDF2-Maruyama method.
As the multi-step method involves more terms the proofs in this section are naturally
a bit more technical, but rely in principle on the same arguments as in the previous
section.

5.1 Basic properties of the BDF2-Maruyama method

Here and in Sect. 5.2 our results concern U € %2, h e (0, %), satisfying

3 . . 1 . . 3 . .
SUT =207 U = R U) + Se T H AW

Vi -1

with initial values U* € L*(22, %, P; R™) such that f(U%) € L*(2, %,,P; R")
and g(UY) € L?(£2, Fi,, P; R"™*)for ¢ € {0, 1}. Here L is the parameter of Assump-
tion 2.1 and from Theorem 3.1 there exists for every & € (0, %) a unique U € gh2
satisfying (5.1). The initial values (U 0 Uy are not necessarily related to the initial
value X of (1.1).

Next, we state an analogue of Lemma 4.1, used for the proof of the a priori estimate
in Theorem 5.1 and the stability result in Theorem 5.2.

@ Springer



Mean-square convergence of the BDF2-Maruyama... 35

Lemma 5.1 Forall h € (0, %) and U,V € %? with U satisfying (5.1) it holds for
all j € {2, ..., Ny} P-almost surely that

\EJ 2 — |EI Y2 4 2E) — EI Y2 —pEI BT 4 ET —2Ei T 4 TR
— 4h (f(U-/), E/) 2 (g(Uf—l)Ah Wi — Ui A, Wi\ EJ — 2B~ 4 Ej_z)
+2 (g(Uj_l)Ath, 2B — Ej_l) -2 (g(Uj_z)Ath_l, 2B/~ - Ej_z)

. ) 1 . . )
—a(2vicavittp bvie2 gi) 4 2
2 2
where E .= U — V and (Zj)je{szh}, are the centered random variables given by
7= (g(Uf—l)Ath',6E-/—1 - 2E/—2).

Proof From the identity (1.6) and since U satisfy (5.1) by assumption it holds for
Jj€{2,..., Ny} that

\E/> = |E/ 2 4 RE) — BV — 2B/ —EVT2R 4 |EJ — 2B 4 BT
=4 (éEj _opily lpi Ef)
2 27

3 ; 1 . . 3 . . 1 . )
=4(zu/ —2v0/ ' U2 E ) —4( SV —2vithp _viT2 B
2 2 2 2

= 4h (£ W), ET) +6 (g ™) anW!, ET) =2 (g4, Wi~ EV)
3 . . 1 . .

—4(zv/i—2vitl 4 —vi72 E/).
(2 "3 )

Adding, subtracting and rearranging terms completes the proof of the asserted identity.
Further note that Z/ is centered due to the independence of the centered Wiener
increment A, W/ from g(Uf_l), EJ=1 and EJ2. ]

Theorem 5.1 Let Assumption 2.1 hold with L € (0, 00), n € [%, ), g € [1, 00).
For h € (0, ﬁ) denote by U € %hz the unique adapted grid function satisfying (5.1).
Then, foralln € {2, ..., Ny} it holds that

IU™MI1* + hllg (U™

1

4Lt

< Chexp (m) (1 +IUP + 120" U0+ |||g<ul>|||2),
=0

where Cj, = 4max{1, LT}(1 —4Lh)~".

Proof Applying Lemma 5.1 with V = 0 and taking expectations yields

1o/ = 1o/ =42 + 20/ — v/ Y2 — 2o/ - v 2 o - 207 U
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= 4h(f U, UI) 4 2(gUI= YA, W — g2 a, Wi Ul — 2077 4 UT2)
+ 20 ha,wi 207 — Uit —2gIH AW 20 Ui,

From the Young inequality (2.8), the orthogonality
le@/ =AW/ — g AW * = Rllg@IHIP + Rllg W),
and the coercivity condition (2.3) we have that
WU = 1o/ =P+ 1207 = o= = 2ot — v AR
< 4h (L (1+10712) - ?nmwl‘)mz) +Allg I THI + Allg @)1
+ 2(gHaWi 207 — U = 2(g(UI A A, W 20T — U ),

Summing over j from 2 to n, identifying three telescoping sums, using the Young
inequality (2.8) gives that

U1 + 120" = Ut

n n
<ALT + |UYP + 120" = UP2 + 4Lk D U712 = 8g — 6)h D 1)
j=2 j=2

n—1 n—2
+ h GO+ D gWHIP + hllg@"HII> + [2u" — v
j=1 j=0

2
+ hllgWOHI* + 20" - U°|".
This yields
(1 —4Lh) U + (8¢ — 6)hllg(U™)|I?

1
<ALT + UM+ 220" = U1 + 20 > lleWHIIP

=0
n—1 n—1 '
+ B =8q)h > _llgWHI*+4Lh > |U/|.
j=2 j=2

Since g € [1, 0o) it holds 8 — 8¢ < 0 and 8¢ — 6 > 2. By elementary bounds we get

n—1

4L .
1012+l U < T 2 10712
j=2

1
1
—— 4LT + UY? + 212U = U2 + 2R uhir).
+1—4Lh( + U 17 + 2| -+ Eolllg( Ml
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We conclude by a use of the discrete Gronwall Lemma (2.9). O

5.2 Stability of the BDF2-Maruyama scheme

Similar to the stability of the BEM scheme, forh € (0, 1),V € %hz we define the local
truncation error of V by

Np
1, ; 5 . . 5
PPy = max ol D7+ D0 02, (V) + pd, (V)
jell,...Ny} h ' = ) ,
1 Nj, 1 Ny,
=1 J 2 i—2 ) 2
+o 2B o P+ 2 IR e, 0 6
j=2 j=2
where
plj,h(v) = hf (V) +g(ViTHha,wi —vi 4 vitl,
i 1 ; . . . .
pLa(V) =5 (VI + gV AWl — v v
i 1 . ) . . )
pLa (V)= =5 (W) 4 gV AW - Vi v ) L (s3)
for j € {2,..., Np}. Similar to (4.3) we define the maximal step size
1
hp = ——.
24L + 1)

Note that the proof of Theorem 5.1 indicates that the assertion of the following theorem
actually holds true for all 2 € (0, ﬁ) but the constants on the right hand side then

1
depend on 1—;7-

Theorem 5.2 Let Assumption 2.1 hold with L € (0,00), n € (%, o). Forall h €
(0,hpl, U € 97 satisfying (5.1), V € 92, and all n € {2, ..., Ny} it holds that

1}’”)

1
x (Z (10 = VA2 + hllgW" - g(VOI) + p,‘fDFZ(V)),

=0

1U" — V™I? + hllg(U™) — g(VHII?
n

< Cexp (4max {(l +2L), 3
n

where C = max{30, 4n + 2, ;,,L_"]}-

@ Springer



38 A. Andersson, R. Kruse

Proof Fix arbitrary h € (0, hp]l and V € %hz We reuse the notation from the proof
of Theorem 4.2. In particular we set £ := U — V and we often suppress 4 from the
notation. The local residual of V is given by

. 3 ; o1 ; ; 3 ; |
o) == hf (V) + Eg(V/_l)AWJ - Eg(V/_Z)AW/_l -5+ 2vi-t — 5\//—2,
for j € {2,..., Np}. From Lemma 5.1 we get after taking expectations that

IET |2 = |ES" N2 + 12E7 — EZ7Y2 — 2B/~ — ET72)12 + |E/ — 2B/~ + E772)2
=HAfI BN +2(Ag7 AW — AgIT2AWI T BT —2ETT! 4 ETT) + 4407, EY)
+ 2(Ag/ T AW 2B — ETTY) — 2(Ag/ AW T 2B — ET ).

We observe that P}{'_I(ZEJ'_l —E/7%) =2FE/"' —E/"Zand P] 2Ei—2 = Ei—2,
Further, we decompose the local residual of V by
o) = pl +pJ + pi, (5.4)

where ,oij = ,oij(V), i € {1, 2,3}, are defined in (5.3). Then, by taking the adjoints of
the projectors and by applying the weighted Young inequality (2.8) with v = p > 0
and with v = h > 0, respectively, and by noting that —2,0; = ,o{ ! , we obtain
(. E/) = (p]. E7) + (o3 + p{. B} = 2B/~ + EI7%) + (p] + pf. 2E77" — ET72)

< {pl B} Lpd ol 4 5| - 280 4 57

2 21
+(pd P (2B = ET2) )+ (pd 2B ) = (pd. PP ET )
. . i1 ; " . i 1 . . 202
< (pf, El)=oi™ BT+ Zlor + o3| "+ | B/ 2B + £

||P] ol + ||2E"‘1—Ej‘2||2+ 1203+ HE"‘ZHQ'

Together with the global monotonicity condition (2.1) and the weighted Young inequal-
ity (2.8) with v = 2 this gives that

VE N2 — |E/N1? + 12E) — EZ712 — 2B/~ — EJ72)2

<4hL|E7|* — 4hnllAgZ > + 2nhll g/~ II? + 20kl Ag? 22
+ (3 - zi - 1) |E/ = 2B~ 4 B2 4 20 2E/ 7" — EV2|7 4 2n| B2
1% n

+2(Ag/ AW 2B — ET7Y) — 2<Agj_2AWj_l 2B/~ — Ej_z)

4ol E7) = 4lp{~" BT+ 2] of + pd +*|| s +*|| iy
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Setting u = n_— > () gives that 2 Tias 2 — 1 = 0. Then, summing over j from 2 ton
and identifying four telescoping sums y1elds

IE"|* + I2E" — E"'||?

n—1
< IE"? + I12E" — E°)? +4hLZHEf|| —4nhZ|||Agf||| +2nh D llAg?|I?
j=2 j=2 j=1
n—2 ) n—2 )
+ 200> [lAgl |12 +2hZHZE/ EYPw2n > |ET)
j=0 j=1 i

+ 2(Ag" AW 2E" — E"TY) — 2(Ag°AW1 2E' — E%) + 4(p{', E")

J+oill" + ZHP’ ol + ZIIP’ il

— 4{pl, EN +

Next, we get from the weighted Young inequality (2.8) with v = # that 4{o}, E") <
% | o} > + h||E™||>. A further application of the weighted Young inequality (2.8) with
v = 27 yields

1
(1— &L+ Dh) |E")? + (1 _ f> RE" — B2

2n
n—1
<A+WIEP + A +nIRE" - E2 +4hL > |ET | —4nhZ|llAg’|||
j=2 j=2
n—1 n—2 ) 5 n—2 .
+ 20k > llAg I + 20k > l1Ag? |1 +2h2||2Ef EFY 20> | E||
j=1 Jj=0 j=1 Jj=0
n—12 o2 L Yooz L4 2 NS j 2
+ 2nhllAg" T + AllAgl +leplll +Ellp1 l 5 IZsz + 03|
j=2
-1 /2 2 « =2 2
+ ZHP; el =+ 2 1P e
j=2
At this point we notice that
n—1 n—2
2r7hZ:|||Ag’||| +2nhZIIIAgJIII + 20kl Ag" M I* + Allig® NI —4nhZIIIAg’|||
j=1 j=0 j=2

—4nh|| Ag" I + 2n + DAl AO* + 4nhllAg'll1>.

In addition, since | — h(4L + 1) > 1 —hp(4L + 1) = % and h < hp < % and
n > % aswellas [[2E'+ E9|2 < 5(| EV||Z + | EY||?) we obtain after some elementary
transformations the inequality

2n

-1 16
+ T 2B — "R 4 il Ag” I < max {30, 40 +2, 5

IE" |12 5
n—1
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x (IECIZ + IE" 12 + Rl A I + Rl AgH I + o2 (V)

n—1

N (I

j=2

+4max {(1+2L). 3 1H2Ej—Ej_1||2).

The proof is completed by an application of (2.9). O

5.3 Consistency of the BDF2 scheme

In this Subsection we bound the local truncation error of the exact solution.

Theorem 5.3 Let Assumption 2.1 hold and let X be the solution to (1.1). Then there
exists C > 0 such that

PP (X|,,) < Ch, h e (0,1).

Proof Tn this proof we write pf := pj (X|z,).i € {1,2.3}, j € {2,.... Ny}, h €
(0, 1). From the definition of p;, we see that it suffices to show that

oo (e R R Tl - L B e

(5.5)
It holds for j € {2, ..., N} that

. 1j 1j
g / (f(X (1)) — f(X(s5))) ds + / (8(X(tj—1)) — g(X(s))) dW(s),

rj—1

=
Il

. ] )
p5+p;=5(/ (g(X(tj-1)) — g(X(5))) dW(s)_/t. f(X(5))ds

ijl
/ (8(X(1j2)) —g(X(s)) dW) + [ f (X(S))ds)’
tj,z
P/ ) = —E[/ (fX @) = f(X(s)) ds|. 7, ‘]
P pf = —E[/, (f(X(tj-2)) = f(X(5))) ds|'%f*2]‘
-2

As in the proof of Theorem 4.3, we note that the estimates (4.5) and (4.6) are applica-
ble to (5.5) due to the moment bound (2.4). We further make use of the fact that
||E[V|<%H]I| < |V|| forevery V e L?(£2; R™) and the bound

(X(s))ds”sc(H sup ||X(r)||qu(9R,,,))|rz—m, t,0 €0, T,
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which is obtained from (2.5). By these estimates and an application of the triangle
inequality we directly deduce (5.5). O

5.4 Mean-square convergence of the BDF2 scheme

Here we consider the numerical approximations (X 111 Il.vio, h € (0,hgl, hg =
m, which are uniquely determined by the backward difference formula (1.3)

and a family of initial values (X 2, X 1£)he(0,h - This family is assumed to satisfy the
following assumption.

Assumption 5.1 The family of initial values (Xg, X ;l,)he(o, h) satisfies
14 ya 2 .M l 2 a .pmxd
th f(Xh)EL (‘vafg’P’R )7 g(Xh)eL (Qafjl(pPsR )’ (56)

forallh € (0, hp], £ € {0, 1}, and is consistent of order % in the sense that

1 1
DX RO = X412 +h D g(X (o) — gXIF = Oy,  (5.7)
£=0 =0

as h | 0, where X is the solution to (1.1).
We are now ready to state the main result of this section.

Theorem 5.4 Let Assumptions 2.1 and 5.1 hold, let X be the solution to (1.1) and
(X,jq)i.vio, h € (0, hg), the solutions to (1.3) with initial values (X,?, X/i)he(o,hB} Under
these conditions the BDF2-Maruyama method is mean-square convergent of order %,
more precisely, there exists C > 0 such that

max | X2 — X(nh)|| < Cvh, h e (0, hp].
nel{0,...,N,}

Proof For h € (0, hp], we apply Theorem 5.2 with U = (X,{);VLO € %,12 and V =

Xy = (X(¢ j))?]i o0 € %hz and get that there is a constant C > 0, independent of 4,
such that

IX} — X (nh)||*

1 1
< C(Z 1X5 = XROI> +h D> llg(X)) — g(Xhe)I* + p}?DFZ(Xm)).

=0 =0

The sums are of order '(h) by (5.7). In addition, the consistency term pEDFz (Xlq,)
is also of order &'(h) by Theorem 5.3. O

@ Springer



42 A. Andersson, R. Kruse

5.5 Admissible initial values for the BDF2-Maruyama scheme

Assumption 5.1 provides an abstract criterion for an admissible choice of the initial
values for the BDF2-Maruyama method such that the mean-square convergence of
order % is ensured. Here we consider a concrete scheme for the computation of the

second initial value, namely the computation of X }l by one step of the backward
Euler—Maruyama method.

Theorem 5.5 Let Assumption 2.1 be fulfilled. Consider a family (X2)11E(07h31 of

approximate initial values satisfying Assumption 4.1. If (X },)he(o,h 51 is determined
by one step of the backward Euler—-Maruyama method, i.e, if for all h € (0, hp] the
random variable X ,i solves the equation

X) =X\ +hf(X}p) +gXDAW!,
then (Xg, X ;ll)he(o,h 1 satisfy the conditions of Assumption 5.1.

Proof The fact that the solution of (1.2) belongs to gh2 proves (5.6) of Assumption 5.1.
By Theorem 4.2 it holds that

1 1
DX @) — X +h D g(X 1)) — g(XpIIP

=0 =0
= (14 €e2¥200) (1x0) = XPI2 + Allg (X ) — gXDII + P (X))

From Theorem 4.3 and Assumption 4.1 the right hand side is of order &'(h) as h |, 0,
and this proves (5.7). O

Remark 5.1 Consider the same assumption as in Theorem 5.5. From the Holder con-
tinuity of the solution X of (1.1) and Assumption 4.1 it holds that

X (h) — X2 < X (h) — XO)|| + |1X(0) — XJ|| < C/h.

Therefore, also the choice X ,ll = Xg satisfies the conditions of Assumption 5.1 and,
therefore, is feasible in terms of the asymptotic rate of convergence. However, numer-
ical simulations similar to those in Sect. 6 indicate that, although the experimental
convergence rates behave as expected, this simple choice of the second initial value
leads to a significantly larger error compared to X ,ll being generated by one step of the
backward Euler—-Maruyama method.

6 Numerical experiments
In this section we perform some numerical experiments which illustrate the theoretical

results from the previous sections. In Sect. 6.1 we consider the %-Volatility model from
finance, which is a one dimensional equation. In Sect. 6.2 we do computations for a
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two dimensional dynamics which mimics the form and properties of the discretization
of a stochastic partial differential equation, like the Allen-Cahn equation.

6.1 An example in one dimension: the %-Volatility model

Hereby we consider the stochastic differential equation

dX (1) = [X(t) = 2 XOI1X (0[] dt + o |X ()2 dW (1), t € [0, T],
X (0) = Xo, (6.1)

withm =d = 1,2 > 0,0 € R, and Xy € R. For positive initial conditions this
equation is also known as the %—volatility model [5,6]. From the quadratic growth
of the drift it holds that ¢ = 2 in Assumption 2.1 and, as the reader can check, the

coercivity condition (2.3) is valid for L = 1 provided that A > #02 = %02. From
the calculation in [19, Appendix] it holds for all x1, x; € R that
2
(f(x1) = f(x2), x1 = x2) + n[g(x1) — g(x2)|
< a1 — x> + Q070 = 1) (et | + [x2)) (I | = 1x2)?
The global monotonicity condition (2.1) is therefore satisfied with L = 1 and n < #
As we require n > % this imposes the condition A > o and altogether we have that

Assumption 2.1 is valid for L = 1, ¢ = 2,7 € (4, 525) provided that A > 302

In our experiments we approximate the strong error of convergence for the explicit
Euler—-Maruyama method (EulM) (see [13]), the backward Euler—-Maruyama method
(BEM), and the BDF2-Maruyama method (BDF2), respectively. More precisely, we
approximate the root mean square error by a Monte Carlo simulation based on M =
100 samples, that is

0<n<Nj 0<n<Nj

1 M 2
error(h) := max (MZ}X(”’)(hn)—XZ’(’")|2) ~ max | X(nh) — X},

m=1

where for every m € {1, ..., M} the processes X 0 and (XZ’(’"))SZO denote inde-
N
the number of steps N;, we use the values {25 -2% : k =0,...,7}, i.e., Nj ranges
from 25 to 3200. Since there is no explicit expression of the exact solution to (6.1)
available, we replace X in the error computation by a numerical reference solution
generated by the BDF2-Maruyama method with Nyt = 25 - 212 steps.

As alr