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Abstract In this paper the numerical approximation of stochastic differential equa-
tions satisfying a global monotonicity condition is studied. The strong rate of
convergence with respect to the mean square norm is determined to be 1

2 for the
two-step BDF-Maruyama scheme and for the backward Euler–Maruyama method. In
particular, this is the first paper which proves a strong convergence rate for a multi-step
method applied to equations with possibly superlinearly growing drift and diffusion
coefficient functions.We also present numerical experiments for the 3

2 -volatilitymodel
from finance and a two dimensional problem related to Galerkin approximation of
SPDE, which verify our results in practice and indicate that the BDF2-Maruyama
method offers advantages over Euler-type methods if the stochastic differential equa-
tion is stiff or driven by a noise with small intensity.
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1 Introduction

Strong convergence rates of numerical approximations to stochastic differential equa-
tions (SDEs) are a well studied topic. Under a global Lipschitz condition on the
coefficients the picture is rather complete, both for one-step methods [13,17] and
multi-step methods [2,14]. Many important equations in application have coefficients
that do not satisfy the global Lipschitz condition, and it is therefore important to study
a more general setting. Many convergence results for explicit and implicit one-step
methods have also been proven for equations without the global Lipschitz condition,
see for instance [1,7–10,12,16,19,21]. In the present paper we determine the strong
rate 1

2 for the backward Euler–Maruyama method (BEM), in the mean-square norm,
which improves [16] in terms of a weaker assumption on the coefficients.

For multi-step schemes, on the other hand, there are no previously known results
on strong convergence for equations with coefficients not satisfying a global Lipschitz
condition. In this paperwedetermine the strong rate 1

2 for theBDF2-Maruyama scheme
for equations whose, possibly superlinearly growing, coefficient functions satisfy a
global monotonicity condition. Backward difference formulas (BDF) are popular in
applied sciences for the approximation of stiff equations, see [2] for a list of references
to such works.

Let d, m ∈ N, T > 0 and (Ω,F , (Ft )t∈[0,T ],P) be a filtered probability space
satisfying the usual conditions, on which an Rd -valued standard (Ft )t∈[0,T ]-Wiener
process W : [0, T ] × Ω → Rd is defined. We consider the equation

X (t) = X0 +
∫ t

0
f (X (s)) ds +

∫ t

0
g(X (s)) dW (s), t ∈ [0, T ], (1.1)

with drift f : Rm → Rm and diffusion coefficient function g : Rm → Rm×d . The
functions f and g are assumed to satisfy a global monotonicity, a coercivity and a
local Lipschitz condition in Assumption 2.1 below. The initial condition fulfills X0 ∈
L2(Ω,F0,P;Rm) with some additional integrability, admitting higher moments of
the solution.

For a given equidistant time step size h ∈ (0, 1) we discretize the exact solution to
(1.1) along the temporal grid τh = {tn = nh : n = 0, 1, . . . , Nh}. Here Nh ∈ N is
uniquely determined by the inequality tNh ≤ T < tNh+1. We set Δh W j := W (t j ) −
W (t j−1) for j ∈ {1, . . . , Nh}. We consider discretizations by means of the backward
Euler–Maruyama method

X j
h − X j−1

h = h f (X j
h) + g(X j−1

h )Δh W j , j ∈ {1, . . . , Nh}, (1.2)

with (X0
h)h∈(0,1) satisfying E[‖X0

h − X0‖2] = O(h), and by means of the BDF2-
Maruyama scheme from [2]. The latter is given by the recursion

3

2
X j

h −2X j−1
h + 1

2
X j−2

h = h f (X j
h)+ 3

2
g(X j−1

h )Δh W j − 1

2
g(X j−2

h )Δh W j−1, (1.3)
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Mean-square convergence of the BDF2-Maruyama... 23

for j ∈ {2, . . . , Nh}, with initial values (X0
h, X1

h) where (X0
h)h∈(0,1) is the same as

above and (X1
h)h∈(0,1) is determined, for instance, by one step of the backward Euler

scheme or some other one-step method satisfying E[‖X1
h − X (h)‖2] = O(h). In

practice, the implementation of the methods (1.2) and (1.3) often requires to solve a
nonlinear equation in each time step. In Sect. 3 we discuss that under our assumptions
a solution does indeed always exists provided the step size h is small enough. The
choice of the root-finding algorithm may depend on the coefficient function f and its
smoothness. We refer to [18] for a collection of such methods.

We prove that for (X j
h) j∈{0,...,Nh},h∈(0,1), determined either by (1.2) or (1.3), and X

being the solution to (1.1), there exist a constantC such that the followingmean-square
convergence holds:

max
j∈{0,...,Nh}

∥∥X (t j ) − X j
h

∥∥
L2(Ω;Rm )

≤ C
√

h, h ∈ (0, 1). (1.4)

The precise statements of our convergence results are found in Theorems 4.4 and 5.4.
The proofs are based on two elementary identities: for all u1, u2 ∈ Rm it holds that

2(u2 − u1, u2) = |u2|2 − |u1|2 + |u2 − u1|2, (1.5)

and for all u1, u2, u3 ∈ Rm it holds that

4

(
3

2
u3 − 2u2 + 1

2
u1, u3

)

= |u3|2 − |u2|2 + |2u3 − u2|2 − |2u2 − u1|2 + |u3 − 2u2 + u1|2, (1.6)

found in [3], which has been derived from results on G-stability for linear multi-step
methods, see [4,20]. Up to the best of our knowledge (1.6) has not previously been
used in the study of the BDF2 scheme for stochastic differential equations.

The paper is organized as follows: Sect. 2 contains notation and our precise assump-
tions on the coefficients f and g in (1.1). We cite well known results on existence,
uniqueness and moment bounds for the solution under these conditions. A well-
posedness result for general implicit stochastic difference equations is proved in
Sect. 3. Sections 4 and 5 contain the analysis of the backward Euler–Maruyama and
the BDF2-Maruyama schemes, respectively. Sections 4.1 and 5.1 contain a priori esti-
mates for the respective schemes, in Sects. 4.2 and 5.2 stability results are proved,
while Sects. 4.3 and 5.3 are concerned with the consistency of the two schemes. The
two main results on the strong mean-square convergence rate are stated in Sects. 4.4
and 5.4, respectively. Further, in Sect. 5.5 we have a closer look on the second initial
value for the BDF2-Maruyama scheme and it is shown that using one step of the BEM
method is a feasible choice. Section 6 contains numerical experiments involving the
3
2 -volatility model from finance which verify our theoretical results and indicate that
the BDF2-Maruyama method performs better than Euler-type methods in case of stiff
problems or equations with a small noise intensity.
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24 A. Andersson, R. Kruse

2 Setting and preliminaries

2.1 Notation and function spaces

Let (·, ·) and | · | denote the scalar product and norm in Rm and let | · |HS denote the
Hilbert–Schmidt norm on the space Rm×d of all m times d matrices, i.e., |S|HS =√
Tr(S∗S)) for S ∈ Rm×d .
Let (Ω,F , (Ft )t∈[0,T ],P) be a filtered probability space satisfying the usual con-

ditions. For p ∈ [1,∞) and a sub-σ -field G ⊂ F we denote by L p(Ω,G ,P; E) the
Banach space of all p-fold integrable, G /B(E)-measurable random variables taking
values in a Banach space (E, | · |E ) with norm

‖Z‖L p(Ω,G ,P;E) = (
E
[|Z |p

E

]) 1
p , Z ∈ L p(Ω,G ,P; E).

If G = F we write L p(Ω; E) := L p(Ω,F ,P; E). If p = 2 and E = Rm we obtain
the Hilbert space L2(Ω;Rm) with inner product and norm

〈
X, Y

〉 = E
[
(X, Y )

]
, ‖X‖ = √〈X, X〉,

for all X, Y ∈ L2(Ω;Rm). We denote by ||| · ||| the norm in L2(Ω;Rm×d), i.e.,

|||Z ||| = (E[|Z |2HS])
1
2 for Z ∈ L2(Ω;Rm×d).

We next introduce notation related to the numerical discretizations. Recall from
Sect. 1 the temporal grids τh , h ∈ (0, 1). For h ∈ (0, 1) and j ∈ {0, . . . , Nh}, we
denote by

P j
h : L2(Ω,F ,P;Rm) → L2(Ω,Ft j ,P;Rm),

the orthogonal projector onto the closed sub-space L2(Ω,Ft j ,P;Rm), which is also
known as the conditional expectation. More precisely, for Y ∈ L2(Ω;Rm) we set
P j

h Y = E[Y |Ft j ]. We introduce the spaces (G 2
h )h∈(0,1) of all adapted grid functions,

which enjoy the following integrability properties

G 2
h := {

Z : {0, . . . , Nh} × Ω → Rm : Zn, f (Zn) ∈ L2(Ω,Ftn ,P;Rm),

g(Zn) ∈ L2(Ω,Ftn ,P;Rm×d) for n ∈ {0, . . . , Nh}}.
These will play an important role in the error analysis.

2.2 Setting

Consider the setting introduced in Sect. 1. We now formulate our assumptions on the
initial condition and the coefficient functions f and g which we work with throughout
this paper.

Assumption 2.1 There existsq ∈ [1,∞) such that the initial condition X0 : Ω → Rm

satisfies X0 ∈ L4q−2(Ω,F0,P;Rm). Moreover, the mappings f : Rm → Rm and
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Mean-square convergence of the BDF2-Maruyama... 25

g : Rm → Rm×d , are continuous and there exist L ∈ (0,∞) and η ∈ ( 12 ,∞) such
that for all x1, x2 ∈ Rm it holds

( f (x1) − f (x2), x1 − x2) + η
∣∣g(x1) − g(x2)

∣∣2
HS ≤ L|x1 − x2|2, (2.1)∣∣ f (x1) − f (x2)

∣∣ ≤ L
(
1 + |x1|q−1 + |x2|q−1

)
|x1 − x2|, (2.2)

where q ∈ [1,∞) is the same as above. Further, it holds for all x ∈ Rm that

( f (x), x) + 4q − 3

2

∣∣g(x)
∣∣2
HS ≤ L

(
1 + |x |2

)
. (2.3)

Assumption 2.1 guarantees the existence of an up to modification unique adapted
solution X : [0, T ] × Ω → Rm to (1.1) with continuous sample paths, satisfying

sup
t∈[0,T ]

‖X (t)‖L4q−2(Ω;Rm ) < ∞, (2.4)

see, e.g., [15, Chap. 2]. In the proof of Theorem 5.3 on the consistency of the BDF2
scheme, the L4q−2(Ω;Rm)-moment bound is of importance in order to apply the
bounds (4.5), (4.6) below.

For later reference we note several consequences of Assumption 2.1. From (2.2)
we deduce the following polynomial growth bound:

∣∣ f (x)
∣∣ ≤ L̃

(
1 + |x |q) , x ∈ Rm, (2.5)

where L̃ = 2L + | f (0)|. Indeed, (2.2) implies that

∣∣ f (x)
∣∣ ≤ ∣∣ f (x) − f (0)

∣∣+ ∣∣ f (0)
∣∣ ≤ L

(
1 + |x |q−1

)
|x | + ∣∣ f (0)

∣∣
≤ (2L + | f (0)|) (1 + |x |q) , x ∈ Rm .

Moreover, from (2.1) followed by a use of (2.2) it holds, for x1, x2 ∈ Rm , that

∣∣g(x1) − g(x2)
∣∣2
HS ≤ L

η
|x1 − x2|2 + 1

η

∣∣ ( f (x1) − f (x2), x1 − x2)
∣∣

≤ L

η

(
2 + |x1|q−1 + |x2|q−1

)
|x1 − x2|2.

This gives the local Lipschitz bound

∣∣g(x1) − g(x2)
∣∣2
HS ≤ 2L

η

(
1 + |x1|q−1 + |x2|q−1

)
|x1 − x2|2, x1, x2 ∈ Rm,

(2.6)
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26 A. Andersson, R. Kruse

and, in the same way as above, the polynomial growth bound

∣∣g(x)
∣∣
HS ≤ L̄

(
1 + |x | q+1

2

)
, x ∈ Rm, (2.7)

where L̄ = 2
√

2L
η

+ |g(0)|HS. Finally, we note for later use that the restriction X |τh

of the exact solution to the time grid τh , given by

[
X |τh

] j := X ( jh), j ∈ {0, . . . , Nh},

is an element of the space G 2
h for every h ∈ (0, 1). This follows directly from (2.4)

and the growth bounds (2.5) and (2.7).

2.3 Preliminaries

Here we list some basic results that we use in this paper. Frequently, we apply the
Young inequality and the weighted Young inequality

ab ≤ a2

2
+ b2

2
and ab ≤ ν

2
a2 + 1

2ν
b2, (2.8)

which holds true for all a, b ∈ R and ν > 0. We make use of the following discrete
version of Gronwall’s Lemma: If h > 0, a1, . . . , aNh , b, c ∈ [0,∞), then

∀n ∈ {1, . . . , Nh} : an ≤ c + bh
n−1∑
j=1

a j implies ∀n ∈ {1, . . . , Nh} : an ≤ cebtn .

(2.9)

Finally we cite a standard result from nonlinear analysis which we use for the
well-posedness of the numerical schemes, see for instance [18, Chap. 6.4] or [20,
Thm. C.2]:

Proposition 2.1 Let G : Rm → Rm be a continuous mapping satisfying for some
c ∈ (0,∞)

(G(x1) − G(x2), x1 − x2) ≥ c|x1 − x2|2, x1, x2 ∈ Rm .

Then G is a homeomorphism with Lipschitz continuous inverse. In particular, it holds

∣∣G−1(y1) − G−1(y2)
∣∣ ≤ 1

c
|y1 − y2|

for all y1, y2 ∈ Rm.
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Mean-square convergence of the BDF2-Maruyama... 27

3 A well-posedness result for stochastic difference equations

In this section we prove existence and uniqueness of solutions to general stochas-
tic k-step difference equations. This result applies in particular to all implicit linear
multi-step schemes for SDE with coefficients satisfying Assumption 2.1 including the
backward Euler–Maruyama method, the Crank–Nicolson scheme, the k-step BDF-
schemes, and the k-step Adams–Moulton methods. We refer the reader to [2,14] for
a thorough treatment of these schemes for stochastic differential equations with Lip-
schitz continuous coefficients.

Theorem 3.1 Let the mappings f and g satisfy Assumption 2.1 with q ∈ [1,∞)

and L ∈ (0,∞), let k ∈ N, α0, . . . , αk−1, β0, . . . , βk−1, γ0, . . . , γk−1 ∈ R,
αk = 1, βk ∈ (0,∞), and h1 ∈ (0, 1

βk L ) with kh1 < T . Assume that initial

values U �
h ∈ L2(Ω,Ft� ,P;Rm) are given with f (U �

h ) ∈ L2(Ω,Ft� ,P;Rm) and
g(U �

h ) ∈ L2(Ω,Ft� ,P;Rm×d) for all � ∈ {0, . . . , k − 1}. Then, for every h ∈ (0, h1]
there exists a unique family of adapted random variables Uh ∈ G 2

h satisfying

k∑
�=0

αk−�U j−�
h = h

k∑
�=0

βk−� f (U j−�
h ) +

k∑
�=1

γk−�g(U j−�
h )Δh W j−�+1, (3.1)

for j ∈ {k, . . . , Nh}. In particular, it holds true that U j
h , f (U j

h ) ∈ L2(Ω,Ft j ,P;Rm)

and g(U j
h ) ∈ L2(Ω,Ft j ,P;Rm×d) for all j ∈ {k, . . . , Nh}.

Proof Let Fh : Rm → Rm , h ∈ (0, h1], be the mappings defined by

Fh(x) := x − hβk f (x), x ∈ Rm; h ∈ (0, h1].

Note that for every h ∈ (0, h1] it holds that 1− βkhL ≥ 1− βkh1L > 0 and from the
global monotonicity condition (2.1) we have that

(Fh(x1) − Fh(x2), x1 − x2) = |x1 − x2|2 − βkh ( f (x1) − f (x2), x1 − x2)

≥ (1 − βkh1L) |x1 − x2|2.

Consequently, by Proposition 2.1 the inverse F−1
h of Fh exists for every h ∈ (0, h1]

and is globally Lipschitz continuous with Lipschitz constant (1 − h1βL)−1. Using
these properties and the fact that αk = 1 we can rewrite (3.1) as

Fh(U j
h ) = R j

h ⇐⇒ U j
h = F−1

h (R j
h ) (3.2)

for all j ∈ {k, . . . , Nh}, where

R j
h := −

k∑
�=1

αk−�U j−�
h + h

k∑
�=1

βk−� f (U j−�
h ) +

k∑
�=1

γk−�g(U j−�
h )Δh W j−�+1,

123



28 A. Andersson, R. Kruse

for j ∈ {k, . . . , Nh}. Therefore, by (3.2) and the continuity of F−1
h we have that

for every h ∈ (0, h1], Uh is an adapted collection of random variables, uniquely
determined by the initial values U 0

h , . . . , U k−1
h .

In order to prove that Uh ∈ G 2
h for all h ∈ (0, h1], by means of an induction

argument, we introduce U j,n
h := U j

h 1{0,...,n−1}( j). By the assumptions on the initial

values U 0
h , . . . , U k−1

h it holds that (U j,k
h ) j∈{0,...,Nh} ∈ G 2

h . For the induction step, we

now assume that (U j,n
h ) j∈{0,...,Nh} ∈ G 2

h for some n ∈ {k, . . . , Nh}. This assumption
and the fact that

∥∥g(U j−�
h )Δh W j−�+1

∥∥2 = h|||g(U j−�
h )|||2,

imply immediately that Rn
h ∈ L2(Ω,Ftn ,P;Rm). Thus, from the linear growth of

F−1
h we get U n

h = F−1
h (Rn

h ) ∈ L2(Ω,Ftn ,P;Rm).
In addition, we recall from [1, Cor. 4.2] the fact that under Assumption 2.1 the

mapping h
1
2 g ◦ F−1

h is also globally Lipschitz continuous with a Lipschitz constant
independent of h. More precisely, there exists a constant C such that for all h ∈ (0, h1]
and all x1, x2 ∈ Rm it holds true that

h
∣∣g(F−1

h (x1)) − g(F−1
h (x2))

∣∣2
HS ≤ C |x1 − x2|2. (3.3)

Consequently, the mapping h
1
2 g ◦ F−1

h : Rm → Rm is also of linear growth and we
conclude as above

‖g(U n
h )Δh W n+1‖2 = h|||g(U n

h )|||2 = h|||g(F−1
h (Rn

h ))|||2 ≤ C
(
1 + ‖Rn

h‖2
)

.

In particular, this gives g(U n
h ) ∈ L2(Ω,Ftn ,P;Rm×d). Finally, from the definition

of Fh and (3.2) we have that

f (U n
h ) = 1

βkh
(U n

h + βkh f (U n
h ) − U n

h ) = 1

βkh
(U n

h − Fh(U n
h ))

= 1

βkh
(F−1

h (Rn
h ) − Rn

h ).

Hence, by the linear growth of F−1
h and the fact that Rn

h ∈ L2(Ω,Ftn ,P;Rm) we
conclude that f (U n

h ) ∈ L2(Ω,Ftn ,P;Rm).

Altogether, this proves that (U j,n+1
h ) j∈{0,...,Nh} ∈ G 2

h and, therefore, by induction

(U j,n
h ) j∈{0,...,Nh} ∈ G 2

h for every n ∈ {k, . . . , Nh + 1}. By finally noting that U j
h =

U j,Nh+1
h , j ∈ {0, . . . , Nh}, the proof is complete. ��

4 The backward Euler–Maruyama method

In this section we prove that the backward Euler–Maruyama scheme is mean-square
convergent of order 1

2 under Assumption 2.1. The proof is split over several subsec-
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Mean-square convergence of the BDF2-Maruyama... 29

tions: First we familiarize ourselveswith the connection between theBEMmethod and
the identity (1.5). This is done by proving an a priori estimate in Sect. 4.1. In Sect. 4.2
we then derive a stability result which gives an estimate of the distance between an
arbitrary adapted grid function and the one generated by the BEMmethod. As it turns
out this distance is bounded by the error in the initial value and a local truncation error.
The latter is estimated for the restriction of the exact solution to (1.1) to the temporal
grid τh in Sect. 4.3. Altogether, this will then yield the desired convergence result in
Sect. 4.4.

4.1 Basic properties of the backward Euler–Maruyama scheme

Here and in Sect. 4.2 we study U ∈ G 2
h , h ∈ (0, 1

L ), satisfying

U j = U j−1 + h f (U j ) + g(U j−1)Δh W j , j ∈ {1, . . . , Nh}, (4.1)

with initial conditionU 0 ∈ L2(Ω,F0,P;Rm) such that f (U 0) ∈ L2(Ω,F0,P;Rm)

and g(U 0) ∈ L2(Ω,F0,P;Rm×d). Here L is the parameter in Assumption 2.1 and
from Theorem 3.1 there exist for every h ∈ (0, 1

L ) a unique U ∈ G 2
h satisfying (4.1).

U0 is not necessarily related to the initial value X0 of (1.1).
In order to prove the a priori bound of Theorem 4.1 and the stability in Theorem 4.2

the following lemma is used:

Lemma 4.1 For all h ∈ (0, 1
L ) and U, V ∈ G 2

h with U satisfying (4.1) it holds for all
j ∈ {1, . . . , Nh} P-almost surely that

|E j |2 − |E j−1|2 + |E j − E j−1|2

= 2h
(

f (U j ), E j
)

+ 2
(

g(U j−1)Δh W j , E j − E j−1
)

− 2
(

V j − V j−1, E j
)

+ Z j ,

where E := U − V and (Z j ) j∈{1,...Nh} are the centered random variables given by

Z j := 2
(

g(U j−1)Δh W j , E j−1
)

.

Proof From the identity (1.5), and since U satisfies (4.1) by assumption the assertion
follows directly. Note that Z j is well-defined as a centered real-valued integrable
random variable due to the independence of the centered Wiener increment Δh W j

and the square integrable random variables g(U j−1) and E j−1. ��
The proof of the next theorem is the first and simplest demonstration of the, in

principle, same technique used to prove Theorems 4.2, 5.1 and 5.2 below. This a priori
estimate is in fact not needed further in the analysis and it can be deduced from the
stability Theorem 4.2, but with larger constants, and for a more narrow range for the
parameter h. We include it for completeness.

123



30 A. Andersson, R. Kruse

Theorem 4.1 Let Assumption 2.1 hold with L ∈ (0,∞), q ∈ [1,∞). For h ∈ (0, 1
2L )

denote by U ∈ G 2
h the unique adapted grid function satisfying (4.1). Then, for all

n ∈ {1, . . . , Nh} it holds that

‖U n‖2 + h|||g(U n)|||2 ≤ Ch exp

(
2Ltn

1 − 2Lh

)(
1 + ‖U 0‖2 + h|||g(U 0)|||2

)
,

where Ch = max{1, 2LT }(1 − 2Lh)−1.

Proof Lemma 4.1 applied with V = 0 and taking expectations yields

‖U j‖2 − ‖U j−1‖2 + ‖U j − U j−1‖2
= 2h

〈
f (U j ), U j 〉+ 2

〈
g(U j−1)Δh W j , U j − U j−1〉.

From the coercivity condition (2.3) and the Young inequality (2.8) we have that

‖U j‖2 − ‖U j−1‖2 ≤ 2h

(
L
(
1 + ‖U j‖2

)
− 4q − 3

2
|||g(U j )|||2

)
+ h|||g(U j−1)|||2.

Summing over j from 1 to n gives that

(1 − 2Lh) ‖U n‖2 + (4q − 3)h|||g(U n)|||2

≤ 2LT + ‖U 0‖2 + h|||g(U 0)|||2 + (4 − 4q)h
n−1∑
j=1

|||g(U j )|||2 + 2Lh
n−1∑
j=1

‖U j‖2.

Since q ∈ [1,∞) it holds 1 ≤ 4q − 3 and 4 − 4q ≤ 0. By elementary bounds we get

‖U n‖2 + h|||g(U n)|||2 ≤ 2LT + ‖U 0‖2 + h|||g(U 0)|||2
1 − 2Lh

+ 2L

1 − 2Lh
h

n−1∑
j=1

‖U j‖2.

We conclude by a use of the discrete Gronwall Lemma (2.9). ��

4.2 Stability of the backward Euler–Maruyama scheme

For the formulation of the stability Theorem 4.2 we define for h ∈ (0, 1) and V ∈ G 2
h

the local truncation error of V given by

ρBEM
h (V ) :=

Nh∑
j=1

∥∥ j
h(V )

∥∥2 + 1

h

Nh∑
j=1

∥∥P j−1
h 

j
h(V )

∥∥2, (4.2)

where the local residuals 
j
h(V ) of V are defined as


j
h(V ) := h f (V j ) + g(V j−1)Δh W j − V j + V j−1,
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for j ∈ {2, . . . , Nh}. Note that 
j
h(V ) ∈ L2(Ω,Ft j ,P;Rm) for every V ∈ G 2

h . We
also introduce a maximal step size hE for the stability, which guarantees that the
stability constant in Theorem 4.2 does not depend on h. It is given by

hE = 1

max{4L , 2} . (4.3)

Using the same arguments as in Theorem 4.1 the assertion of Theorem 4.2 stays true
for all h ∈ (0, 1

2L ) but with a constant C depending on 1
1−2hL as in Theorem 4.1.

Theorem 4.2 Let Assumption 2.1 hold with L ∈ (0,∞), η ∈ ( 12 ,∞). For all h ∈
(0, hE ], U ∈ G 2

h satisfying (4.1), V ∈ G 2
h , and all n ∈ {1, . . . , Nh} it holds that

‖U n − V n‖2 + h|||g(U n) − g(V n)|||2

≤ C exp (2(1 + 2L)tn)
(
‖U 0 − V 0‖2 + h|||g(U 0) − g(V 0)|||2 + ρBEM

h (V )
)

,

where C = max{3, 4η,
4η

2η−1 }.

Proof Fix arbitrary h ∈ (0, hE ] and V ∈ G 2
h . To ease the notation we suppress the

dependence of h and V and simply write, for instance,ΔW j := Δh W j . We also write
E j := U j − V j and

Δ f j := f (U j ) − f (V j ), Δg j := g(U j ) − g(V j ), j ∈ {0, . . . , Nh}. (4.4)

From Lemma 4.1 we get after taking expectations that

‖E j‖2 − ‖E j−1‖2 + ‖E j − E j−1‖2
= 2h

〈
Δ f j , E j 〉+ 2

〈
Δg j−1ΔW j +  j , E j − E j−1〉+ 2〈 j , E j−1〉.

In order to treat the residual term we first notice that P j−1
h E j−1 = E j−1. Then, by

taking the adjoint of the projector and by applying the weighted Young inequality (2.8)
with ν = h > 0 we obtain

2
〈
 j , E j−1〉 = 2

〈
P j−1

h  j , E j−1〉 ≤ 1

h

∥∥P j−1
h  j

∥∥2 + h
∥∥E j−1

∥∥2.
Moreover, further applications of the Cauchy-Schwarz inequality, the triangle inequal-
ity, and the weighted Young inequality (2.8) with ν = μ yield

2
〈
Δg j−1ΔW j +  j , E j − E j−1〉
≤ ∥∥Δg j−1ΔW j +  j

∥∥2 + ∥∥E j − E j−1
∥∥2

≤ (1 + μ)
∥∥Δg j−1ΔW j

∥∥2 +
(
1 + 1

μ

)∥∥ j
∥∥2 + ∥∥E j − E j−1

∥∥2.
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Therefore, together with the global monotonicity condition (2.1) this gives

‖E j‖2 − ‖E j−1‖2 ≤ 2hL
∥∥E j

∥∥2 − 2hη|||Δg j |||2 + (1 + μ)h|||Δg j−1|||2

+ h
∥∥E j−1

∥∥2 +
(
1 + 1

μ

)∥∥ j
∥∥2 + 1

h

∥∥P j−1
h  j

∥∥2.

Setting μ = 2η − 1 > 0 gives that 1 + μ = 2η. Then, summing over j from 1 to n
and thereby identifying two telescoping sums yields

(1 − 2Lh) ‖En‖2 + 2ηh|||Δgn|||2

≤ (1 + h)‖E0‖2 + 2ηh|||Δg0|||2 + (1 + 2L)h
n−1∑
j=1

∥∥E j
∥∥2

+ 2η

2η − 1

n∑
j=1

∥∥ j
∥∥2 + 1

h

n∑
j=1

∥∥P j−1
h  j

∥∥2.

Since 1 − 2Lh ≥ 1 − 2LhE > 1
2 as well as h ≤ hE < 1

2 and η > 1
2 we obtain after

some elementary transformations the inequality

‖En‖2 + h|||Δgn|||2 ≤ max
{
3, 4η,

4η

2η − 1

} (
‖E0‖2 + h|||Δg0|||2 + ρBEM

h (V )
)

+ 2(1 + 2L)h
n−1∑
j=1

∥∥E j
∥∥2.

The proof is completed by applying the discrete Gronwall Lemma (2.9). ��

4.3 Consistency of the backward Euler–Maruyama scheme

In this subsection we give an estimate for the local truncation error (4.2) of the BEM
method. For the proof we first recall that the restriction X |τh of the exact solution to
the temporal grid τh is an element of the space G 2

h , see Sect. 2.2. Further, we make
use of [1, Lemmas 5.5, 5.6], which provide estimates for the drift integral

∫ τ2

τ1

∥∥ f (X (τ )) − f (X (s))
∥∥ ds ≤ C

(
1 + sup

t∈[0,T ]
∥∥X (t)

∥∥2q−1
L4q−2(Ω;Rm )

)
|τ2 − τ1| 32 ,

(4.5)
for all τ, τ1, τ2 ∈ [0, T ] with τ1 ≤ τ ≤ τ2, and for the stochastic integral

∥∥∥
∫ τ2

τ1

(g(X (τ1)) − g(X (s))) dW (s)
∥∥∥≤C

(
1 + sup

t∈[0,T ]
∥∥X (t)

∥∥2q−1
L4q−2(Ω;Rm )

)
|τ2−τ1|,

(4.6)
for all τ1, τ2 ∈ [0, T ] with τ1 ≤ τ2, respectively.
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Theorem 4.3 Let Assumption 2.1 hold and let X |τh be the restriction of the exact
solution to (1.1) to the temporal grid τh. Then there exists C > 0 such that

ρBEM
h (X |τh ) ≤ Ch, h ∈ (0, 1),

where the local truncation is defined in (4.2).

Proof Recall the definitions of ρBEM
h (X |τh ) and 

j
h(X |τh ) from (4.2). It suffices to

show

max
j∈{1,...,Nh}

(∥∥ j
h(X |τh )

∥∥2 + 1

h

∥∥P j−1
h 

j
h(X |τh )

∥∥2
)

≤ Ch2. (4.7)

Inserting (1.1) it holds for every j ∈ {1, . . . , Nh} that


j
h(X |τh ) =

∫ t j

t j−1

(
f (X (t j )) − f (X (s))

)
ds

+
∫ t j

t j−1

(
g(X (t j−1)) − g(X (s))

)
dW (s)

P j−1
h 

j
h(X |τh ) = E

[ ∫ t j

t j−1

(
f (X (t j )) − f (X (s))

)
ds
∣∣Ft j−1

]
.

Note that inequalities (4.5) and (4.6) apply to (4.7) due to the moment bound (2.4).
These estimates together with an application of the triangle inequality and the fact that
‖E[V |Ft j−1]‖ ≤ ‖V ‖ for every V ∈ L2(Ω;Rm) completes the proof of (4.7). ��

4.4 Mean-square convergence of the backward Euler–Maruyama method

Here we consider the numerical approximations (X j
h)

Nh
j=0, h ∈ (0, hE ], uniquely

determined by the backward Euler–Maruyama method (1.2) with a corresponding
family of initial values (X0

h)h∈(0,hE ]. Recall from (4.3) that hE = 1
2(4L+1) . This family

is assumed to satisfy the following assumption.

Assumption 4.1 The family of initial values (X0
h)h∈(0,hE ] satisfies

X0
h, f (X0

h) ∈ L2(Ω,F0,P;Rm), g(X0
h) ∈ L2(Ω,F0,P;Rm×d), (4.8)

for all h ∈ (0, hE ] and is consistent of order 1
2 in the sense that

‖X (0) − X0
h‖2 + h|||g(X (0)) − g(X0

h)|||2 = O(h), (4.9)

as h ↓ 0, where X is the exact solution to (1.1).

Note that Assumption 4.1 is obviously satisfied for the choice X0
h := X0 for every

h ∈ (0, hE ]. This said we are now ready to state the main result of this section.

123



34 A. Andersson, R. Kruse

Theorem 4.4 Let Assumptions 2.1 and 4.1 hold, let X be the exact solution to (1.1)
and let (X j

h)
Nh
j=0, h ∈ (0, hE ], be the family of backward Euler–Maruyama approx-

imations determined by (1.2) with initial values (X0
h)h∈(0,hE ]. Then, the backward

Euler–Maruyama method is mean-square convergent of order 1
2 , more precisely, there

exists C > 0 such that

max
n∈{0,...,Nh} ‖Xn

h − X (nh)‖ ≤ C
√

h, h ∈ (0, hE ].

Proof For h ∈ (0, hE ], we apply Theorem 4.2 with U = (X j
h)

Nh
j=0 ∈ G 2

h and V =
X |τh = (X (t j ))

Nh
j=0 ∈ G 2

h and get that there is a constant C > 0, not depending on h,
such that

‖Xn
h − X (nh)‖2 ≤ C

(
‖X0

h − X (0)‖2 + h|||g(X0
h) − g(X (0))|||2 + ρBEM

h (X |τh )
)

.

The first and second term on the right hand side are of orderO(h) by Assumption 4.1.
Since the same holds true for the consistency term ρBEM

h (X |τh ) by Theorem 4.3 the
proof is completed. ��

5 The BDF2-Maruyama method

In this section we follow the same procedure as in Sect. 4 with identity (1.6) in place of
(1.5). Every result in Sect. 4 has its counterpart here for the BDF2-Maruyama method.
As the multi-step method involves more terms the proofs in this section are naturally
a bit more technical, but rely in principle on the same arguments as in the previous
section.

5.1 Basic properties of the BDF2-Maruyama method

Here and in Sect. 5.2 our results concern U ∈ G 2
h , h ∈ (0, 3

2L ), satisfying

3

2
U j − 2U j−1 + 1

2
U j−2 = h f (U j ) + 3

2
g(U j−1)Δh W j

− 1

2
g(U j−2)Δh W j−1, j ∈ {2, . . . , Nh}, (5.1)

with initial values U � ∈ L2(Ω,Ft� ,P;Rm) such that f (U �) ∈ L2(Ω,Ft� ,P;Rm)

and g(U �) ∈ L2(Ω,Ft� ,P;Rm×d) for � ∈ {0, 1}. Here L is the parameter ofAssump-
tion 2.1 and from Theorem 3.1 there exists for every h ∈ (0, 3

2L ) a unique U ∈ G 2
h

satisfying (5.1). The initial values (U 0, U 1) are not necessarily related to the initial
value X0 of (1.1).

Next, we state an analogue of Lemma 4.1, used for the proof of the a priori estimate
in Theorem 5.1 and the stability result in Theorem 5.2.
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Lemma 5.1 For all h ∈ (0, 3
2L ) and U, V ∈ G 2

h with U satisfying (5.1) it holds for
all j ∈ {2, . . . , Nh} P-almost surely that

|E j |2 − |E j−1|2 + |2E j − E j−1|2 − |2E j−1 − E j−2|2 + |E j − 2E j−1 + E j−2|2

= 4h
(

f (U j ), E j
)

+ 2
(

g(U j−1)Δh W j − g(U j−2)Δh W j−1, E j − 2E j−1 + E j−2
)

+ 2
(

g(U j−1)Δh W j , 2E j − E j−1
)

− 2
(

g(U j−2)Δh W j−1, 2E j−1 − E j−2
)

− 4

(
3

2
V j − 2V j−1 + 1

2
V j−2, E j

)
+ Z j ,

where E := U − V and (Z j ) j∈{2,...Nh}, are the centered random variables given by

Z j :=
(

g(U j−1)Δh W j , 6E j−1 − 2E j−2
)

.

Proof From the identity (1.6) and since U satisfy (5.1) by assumption it holds for
j ∈ {2, . . . , Nh} that

|E j |2 − |E j−1|2 + |2E j − E j−1|2 − |2E j−1 − E j−2|2 + |E j − 2E j−1 + E j−2|2

= 4

(
3

2
E j − 2E j−1 + 1

2
E j−2, E j

)

= 4

(
3

2
U j − 2U j−1 + 1

2
U j−2, E j

)
− 4

(
3

2
V j − 2V j−1 + 1

2
V j−2, E j

)

= 4h
(

f (U j ), E j
)

+ 6
(

g(U j−1)Δh W j , E j
)

− 2
(

g(U j−2)Δh W j−1, E j
)

− 4

(
3

2
V j − 2V j−1 + 1

2
V j−2, E j

)
.

Adding, subtracting and rearranging terms completes the proof of the asserted identity.
Further note that Z j is centered due to the independence of the centered Wiener
increment Δh W j from g(U j−1), E j−1, and E j−2. ��
Theorem 5.1 Let Assumption 2.1 hold with L ∈ (0,∞), η ∈ [ 12 ,∞), q ∈ [1,∞).
For h ∈ (0, 1

4L ) denote by U ∈ G 2
h the unique adapted grid function satisfying (5.1).

Then, for all n ∈ {2, . . . , Nh} it holds that

‖U n‖2 + h|||g(U n)|||2

≤ Ch exp

(
4Ltn

1 − 4Lh

)(
1 + ‖U 1‖2 + ‖2U 1 − U 0‖2 +

1∑
l=0

|||g(Ul)|||2
)

,

where Ch = 4max{1, LT }(1 − 4Lh)−1.

Proof Applying Lemma 5.1 with V = 0 and taking expectations yields

‖U j ‖2 − ‖U j−1‖2 + ‖2U j − U j−1‖2 − ‖2U j−1 − U j−2‖2 + ‖U j − 2U j−1 + U j−2‖2
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= 4h
〈
f (U j ), U j 〉+ 2

〈
g(U j−1)Δh W j − g(U j−2)Δh W j−1, U j − 2U j−1 + U j−2〉

+ 2
〈
g(U j−1)Δh W j , 2U j − U j−1〉− 2

〈
g(U j−2)Δh W j−1, 2U j−1 − U j−2〉.

From the Young inequality (2.8), the orthogonality

∥∥g(U j−1)Δh W j − g(U j−2)Δh W j−1
∥∥2 = h|||g(U j−1)|||2 + h|||g(U j−2)|||2,

and the coercivity condition (2.3) we have that

‖U j‖2 − ‖U j−1‖2 + ‖2U j − U j−1‖2 − ‖2U j−1 − U j−2‖2

≤ 4h

(
L
(
1 + ‖U j‖2

)
− 4q − 3

2
|||g(U j )|||2

)
+ h|||g(U j−1)|||2 + h|||g(U j−2)|||2

+ 2
〈
g(U j−1)Δh W j , 2U j − U j−1〉− 2

〈
g(U j−2)Δh W j−1, 2U j−1 − U j−2〉.

Summing over j from 2 to n, identifying three telescoping sums, using the Young
inequality (2.8) gives that

‖U n‖2 + ‖2U n − U n−1‖2

≤ 4LT + ‖U 1‖2 + ‖2U 1 − U 0‖2 + 4Lh
n∑

j=2

‖U j‖2 − (8q − 6)h
n∑

j=2

|||g(U j )|||2

+ h
n−1∑
j=1

|||g(U j )|||2 + h
n−2∑
j=0

|||g(U j )|||2 + h|||g(U n−1)|||2 + ∥∥2U n − U n−1
∥∥2

+ h|||g(U 0)|||2 + ∥∥2U 1 − U 0
∥∥2.

This yields

(1 − 4Lh) ‖U n‖2 + (8q − 6)h|||g(U n)|||2

≤ 4LT + ‖U 1‖2 + 2‖2U 1 − U 0‖2 + 2h
1∑

l=0

|||g(Ul)|||2

+ (8 − 8q)h
n−1∑
j=2

|||g(U j )|||2 + 4Lh
n−1∑
j=2

‖U j‖2.

Since q ∈ [1,∞) it holds 8− 8q ≤ 0 and 8q − 6 ≥ 2. By elementary bounds we get

‖U n‖2 + h|||g(U n)|||2 ≤ 4L

1 − 4Lh
h

n−1∑
j=2

‖U j‖2

+ 1

1 − 4Lh

(
4LT + ‖U 1‖2 + 2‖2U 1 − U 0‖2 + 2h

1∑
l=0

|||g(Ul)|||2
)

.
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We conclude by a use of the discrete Gronwall Lemma (2.9). ��

5.2 Stability of the BDF2-Maruyama scheme

Similar to the stability of the BEM scheme, for h ∈ (0, 1), V ∈ G 2
h we define the local

truncation error of V by

ρBDF2
h (V ) := max

j∈{1,...,Nh}
1

h

∥∥ρ j
1,h(V )

∥∥2 +
Nh∑
j=2

∥∥ρ j
2,h(V ) + ρ

j
3,h(V )

∥∥2

+1

h

Nh∑
j=2

∥∥P j−1
h ρ

j
2,h(V )

∥∥2 + 1

h

Nh∑
j=2

∥∥P j−2
h ρ

j
3,h(V )

∥∥2, (5.2)

where

ρ
j
1,h(V ) := h f (V j ) + g(V j−1)Δh W j − V j + V j−1,

ρ
j
2,h(V ) := 1

2

(
h f (V j−1) + g(V j−1)Δh W j − V j + V j−1

)
,

ρ
j
3,h(V ) := −1

2

(
h f (V j−1) + g(V j−2)Δh W j−1 − V j−1 + V j−2

)
, (5.3)

for j ∈ {2, . . . , Nh}. Similar to (4.3) we define the maximal step size

hB = 1

2(4L + 1)
.

Note that the proof of Theorem5.1 indicates that the assertion of the following theorem
actually holds true for all h ∈ (0, 1

4L ) but the constants on the right hand side then
depend on 1

1−4hL .

Theorem 5.2 Let Assumption 2.1 hold with L ∈ (0,∞), η ∈ ( 12 ,∞). For all h ∈
(0, hB], U ∈ G 2

h satisfying (5.1), V ∈ G 2
h , and all n ∈ {2, . . . , Nh} it holds that

‖U n − V n‖2 + h|||g(U n) − g(V n)|||2

≤ C exp

(
4max

{
(1 + 2L),

η

2η − 1

}
tn

)

×
(

1∑
�=0

(
‖U � − V �‖2 + h|||g(U �) − g(V �)|||2

)
+ ρBDF2

h (V )

)
,

where C = max{30, 4η + 2, 16η
2η−1 }.
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Proof Fix arbitrary h ∈ (0, hB] and V ∈ G 2
h . We reuse the notation from the proof

of Theorem 4.2. In particular we set E := U − V and we often suppress h from the
notation. The local residual of V is given by

 j := h f (V j ) + 3

2
g(V j−1)ΔW j − 1

2
g(V j−2)ΔW j−1 − 3

2
V j + 2V j−1 − 1

2
V j−2,

for j ∈ {2, . . . , Nh}. From Lemma 5.1 we get after taking expectations that

‖E j‖2 − ‖E j−1‖2 + ‖2E j − E j−1‖2 − ‖2E j−1 − E j−2‖2 + ‖E j − 2E j−1 + E j−2‖2
= 4

〈
Δ f j , E j 〉+ 2

〈
Δg j−1ΔW j − Δg j−2ΔW j−1, E j − 2E j−1 + E j−2〉+ 4〈 j , E j 〉

+ 2
〈
Δg j−1ΔW j , 2E j − E j−1〉− 2

〈
Δg j−2ΔW j−1, 2E j−1 − E j−2〉.

We observe that P j−1
h (2E j−1 − E j−2) = 2E j−1 − E j−2 and P j−2

h E j−2 = E j−2.
Further, we decompose the local residual of V by

 j = ρ
j
1 + ρ

j
2 + ρ

j
3 , (5.4)

where ρ
j
i := ρ

j
i (V ), i ∈ {1, 2, 3}, are defined in (5.3). Then, by taking the adjoints of

the projectors and by applying the weighted Young inequality (2.8) with ν = μ > 0
and with ν = h > 0, respectively, and by noting that −2ρ j

3 = ρ
j−1
1 , we obtain

〈
 j , E j 〉 = 〈

ρ
j
1 , E j 〉+ 〈

ρ
j
2 + ρ

j
3 , E j − 2E j−1 + E j−2〉+ 〈

ρ
j
2 + ρ

j
3 , 2E j−1 − E j−2〉

≤ 〈
ρ

j
1 , E j 〉+ μ

2

∥∥ρ j
2 + ρ

j
3

∥∥2 + 1

2μ

∥∥E j − 2E j−1 + E j−2
∥∥2

+ 〈
ρ

j
2 , P j−1

h

(
2E j−1 − E j−2

) 〉+ 〈
ρ

j
3 , 2E j−1〉− 〈

ρ
j
3 , P j−2

h E j−2〉

≤ 〈
ρ

j
1 , E j 〉− 〈

ρ
j−1
1 , E j−1〉+ μ

2

∥∥ρ j
2 + ρ

j
3

∥∥2 + 1

2μ

∥∥E j − 2E j−1 + E j
∥∥2

+ 1

2h

∥∥P j−1
h ρ

j
2

∥∥2 + h

2

∥∥2E j−1 − E j−2
∥∥2 + 1

2h

∥∥P j−2
h ρ

j
3

∥∥2 + h

2

∥∥E j−2
∥∥2.

Togetherwith the globalmonotonicity condition (2.1) and theweightedYoung inequal-
ity (2.8) with ν = 2η this gives that

‖E j‖2 − ‖E j−1‖2 + ‖2E j − E j−1‖2 − ‖2E j−1 − E j−2‖2
≤ 4hL

∥∥E j
∥∥2 − 4hη|||Δg j |||2 + 2ηh|||Δg j−1|||2 + 2ηh|||Δg j−2|||2

+
(
2

μ
+ 1

2η
− 1

)∥∥E j − 2E j−1 + E j−2
∥∥2 + 2h

∥∥2E j−1 − E j−2
∥∥2 + 2h

∥∥E j−2
∥∥2

+ 2
〈
Δg j−1ΔW j , 2E j − E j−1〉− 2

〈
Δg j−2ΔW j−1, 2E j−1 − E j−2〉

+ 4
〈
ρ

j
1 , E j 〉− 4

〈
ρ

j−1
1 , E j−1〉+ 2μ

∥∥ρ j
2 + ρ

j
3

∥∥2 + 2

h

∥∥P j−1
h ρ

j
2

∥∥2 + 2

h

∥∥P j−2
h ρ

j
3

∥∥2.
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Setting μ = 4η
2η−1 > 0 gives that 2

μ
+ 1

2η − 1 = 0. Then, summing over j from 2 to n
and identifying four telescoping sums yields

‖En‖2 + ‖2En − En−1‖2

≤ ‖E1‖2 + ‖2E1 − E0‖2 + 4hL
n∑

j=2

∥∥E j
∥∥2 − 4ηh

n∑
j=2

|||Δg j |||2 + 2ηh
n−1∑
j=1

|||Δg j |||2

+ 2ηh
n−2∑
j=0

|||Δg j |||2 + 2h
n−1∑
j=1

∥∥2E j − E j−1
∥∥2 + 2h

n−2∑
j=0

∥∥E j
∥∥2

+ 2
〈
Δgn−1ΔW n, 2En − En−1〉− 2

〈
Δg0ΔW 1, 2E1 − E0〉+ 4

〈
ρn
1 , En 〉

− 4
〈
ρ1
1 , E1〉+ 8η

2η − 1

n∑
j=2

∥∥ρ j
2 + ρ

j
3

∥∥2 + 2

h

n∑
j=2

∥∥P j−1
h ρ

j
2

∥∥2 + 2

h

n∑
j=2

∥∥P j−2
h ρ

j
3

∥∥2.

Next, we get from the weighted Young inequality (2.8) with ν = 2
h that 4

〈
ρn
1 , En

〉 ≤
4
h ‖ρn

1‖2 + h‖En‖2. A further application of the weighted Young inequality (2.8) with
ν = 2η yields

(1 − (4L + 1)h) ‖En‖2 +
(
1 − 1

2η

)
‖2En − En−1‖2

≤ (1 + h)‖E1‖2 + (1 + h)‖2E1 − E0‖2 + 4hL
n−1∑
j=2

∥∥E j
∥∥2 − 4ηh

n∑
j=2

|||Δg j |||2

+ 2ηh
n−1∑
j=1

|||Δg j |||2 + 2ηh
n−2∑
j=0

|||Δg j |||2 + 2h
n−1∑
j=1

∥∥2E j − E j−1
∥∥2 + 2h

n−2∑
j=0

∥∥E j
∥∥2

+ 2ηh|||Δgn−1|||2 + h|||Δg0|||2 + 4

h
‖ρn

1‖2 + 4

h
‖ρ1

1‖2 + 8η

2η − 1

n∑
j=2

∥∥ρ j
2 + ρ

j
3

∥∥2

+ 2

h

n∑
j=2

∥∥P j−1
h ρ

j
2

∥∥2 + 2

h

n∑
j=2

∥∥P j−2
h ρ

j
3

∥∥2.

At this point we notice that

2ηh
n−1∑
j=1

|||Δg j |||2 + 2ηh
n−2∑
j=0

|||Δg j |||2 + 2ηh|||Δgn−1|||2 + h|||g0|||2 − 4ηh
n∑

j=2

|||Δg j |||2

≤ −4ηh|||Δgn |||2 + (2η + 1)h|||Δg0|||2 + 4ηh|||Δg1|||2.

In addition, since 1 − h(4L + 1) > 1 − hB(4L + 1) = 1
2 and h ≤ hB < 1

2 and
η > 1

2 as well as ‖2E1+ E0‖2 ≤ 5(‖E1‖2+‖E0‖2)we obtain after some elementary
transformations the inequality

‖En‖2 + 2η − 1

η
‖2En − En−1‖2 + h|||Δgn|||2 ≤ max

{
30, 4η + 2,

16η

2η − 1

}
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×
(
‖E0‖2 + ‖E1‖2 + h|||Δg0|||2 + h|||Δg1|||2 + ρBDF2

h (V )
)

+ 4max
{
(1 + 2L),

η

2η − 1

}
h

n−1∑
j=2

(∥∥E j
∥∥2 + 2η − 1

η

∥∥2E j − E j−1
∥∥2
)

.

The proof is completed by an application of (2.9). ��

5.3 Consistency of the BDF2 scheme

In this Subsection we bound the local truncation error of the exact solution.

Theorem 5.3 Let Assumption 2.1 hold and let X be the solution to (1.1). Then there
exists C > 0 such that

ρBDF2
h (X |τh ) ≤ Ch, h ∈ (0, 1).

Proof In this proof we write ρ
j
i := ρ

j
h,i (X |τh ), i ∈ {1, 2, 3}, j ∈ {2, . . . , Nh}, h ∈

(0, 1). From the definition of ρh we see that it suffices to show that

max
j∈{2,...,Nh}

(∥∥ρ j
1

∥∥2 + ∥∥ρ j
2 + ρ

j
3

∥∥2 + 1

h

∥∥P j−1
h ρ

j
2

∥∥2 + 1

h

∥∥P j−2
h ρ

j
3

∥∥2
)

≤ Ch2.

(5.5)
It holds for j ∈ {2, . . . , Nh} that

ρ
j
1 =

∫ t j

t j−1

(
f (X (t j )) − f (X (s))

)
ds +

∫ t j

t j−1

(
g(X (t j−1)) − g(X (s))

)
dW (s),

ρ
j
2 + ρ

j
3 = 1

2

(∫ t j

t j−1

(
g(X (t j−1)) − g(X (s))

)
dW (s) −

∫ t j

t j−1

f (X (s)) ds

−
∫ t j−1

t j−2

(
g(X (t j−2)) − g(X (s))

)
dW (s) +

∫ t j−1

t j−2

f (X (s)) ds

)
,

P j−1
h ρ

j
2 = 1

2
E
[ ∫ t j

t j−1

(
f (X (t j−1)) − f (X (s))

)
ds
∣∣Ft j−1

]
,

P j−2
h ρ

j
3 = −1

2
E
[ ∫ t j−1

t j−2

(
f (X (t j−2)) − f (X (s))

)
ds
∣∣Ft j−2

]
.

As in the proof of Theorem 4.3, we note that the estimates (4.5) and (4.6) are applica-
ble to (5.5) due to the moment bound (2.4). We further make use of the fact that
‖E[V |Ft j−1]‖ ≤ ‖V ‖ for every V ∈ L2(Ω;Rm) and the bound

∥∥∥
∫ τ2

τ1

f (X (s)) ds
∥∥∥ ≤ C

(
1 + sup

t∈[0,T ]
∥∥X (t)

∥∥q
L2q (Ω;Rm )

)
|τ2 − τ1|, t1, t2 ∈ [0, T ],
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which is obtained from (2.5). By these estimates and an application of the triangle
inequality we directly deduce (5.5). ��

5.4 Mean-square convergence of the BDF2 scheme

Here we consider the numerical approximations (X j
h)

Nh
j=0, h ∈ (0, hB], hB =

1
max{8L ,2} , which are uniquely determined by the backward difference formula (1.3)

and a family of initial values (X0
h, X1

h)h∈(0,h B ]. This family is assumed to satisfy the
following assumption.

Assumption 5.1 The family of initial values (X0
h, X1

h)h∈(0,h B ] satisfies

X�
h, f (X�

h) ∈ L2(Ω,Ft� ,P;Rm), g(X�
h) ∈ L2(Ω,Ft� ,P;Rm×d), (5.6)

for all h ∈ (0, hB], � ∈ {0, 1}, and is consistent of order 1
2 in the sense that

1∑
�=0

‖X (h�) − X�
h‖2 + h

1∑
�=0

|||g(X (h�)) − g(X�
h)|||2 = O(h), (5.7)

as h ↓ 0, where X is the solution to (1.1).

We are now ready to state the main result of this section.

Theorem 5.4 Let Assumptions 2.1 and 5.1 hold, let X be the solution to (1.1) and
(X j

h)
Nh
j=0, h ∈ (0, hB], the solutions to (1.3)with initial values (X0

h, X1
h)h∈(0,h B ]. Under

these conditions the BDF2-Maruyama method is mean-square convergent of order 1
2 ,

more precisely, there exists C > 0 such that

max
n∈{0,...,Nh} ‖Xn

h − X (nh)‖ ≤ C
√

h, h ∈ (0, hB].

Proof For h ∈ (0, hB], we apply Theorem 5.2 with U = (X j
h)

Nh
j=0 ∈ G 2

h and V =
X |τh = (X (t j ))

Nh
j=0 ∈ G 2

h and get that there is a constant C > 0, independent of h,
such that

‖Xn
h − X (nh)‖2

≤ C

( 1∑
�=0

‖X�
h − X (h�)‖2 + h

1∑
�=0

|||g(X�
h) − g(X (h�))|||2 + ρBDF2

h (X |τh )

)
.

The sums are of order O(h) by (5.7). In addition, the consistency term ρBDF2
h (X |τh )

is also of order O(h) by Theorem 5.3. ��
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5.5 Admissible initial values for the BDF2-Maruyama scheme

Assumption 5.1 provides an abstract criterion for an admissible choice of the initial
values for the BDF2-Maruyama method such that the mean-square convergence of
order 1

2 is ensured. Here we consider a concrete scheme for the computation of the
second initial value, namely the computation of X1

h by one step of the backward
Euler–Maruyama method.

Theorem 5.5 Let Assumption 2.1 be fulfilled. Consider a family (X0
h)h∈(0,h B ] of

approximate initial values satisfying Assumption 4.1. If (X1
h)h∈(0,h B ] is determined

by one step of the backward Euler–Maruyama method, i.e, if for all h ∈ (0, hB] the
random variable X1

h solves the equation

X1
h = X0

h + h f (X1
h) + g(X0

h)Δh W 1,

then (X0
h, X1

h)h∈(0,h B ] satisfy the conditions of Assumption 5.1.

Proof The fact that the solution of (1.2) belongs toG 2
h proves (5.6) of Assumption 5.1.

By Theorem 4.2 it holds that

1∑
�=0

‖X (t�) − X�
h‖2 + h

1∑
�=0

|||g(X (t�)) − g(X�
h)|||2

≤
(
1 + Ce2(1+2L)h

) (
‖X (0) − X0

h‖2 + h|||g(X (0)) − g(X0
h)|||2 + ρBEM

h (X |τh )
)

.

From Theorem 4.3 and Assumption 4.1 the right hand side is of order O(h) as h ↓ 0,
and this proves (5.7). ��
Remark 5.1 Consider the same assumption as in Theorem 5.5. From the Hölder con-
tinuity of the solution X of (1.1) and Assumption 4.1 it holds that

‖X (h) − X0
h‖ ≤ ‖X (h) − X (0)‖ + ‖X (0) − X0

h‖ ≤ C
√

h.

Therefore, also the choice X1
h := X0

h satisfies the conditions of Assumption 5.1 and,
therefore, is feasible in terms of the asymptotic rate of convergence. However, numer-
ical simulations similar to those in Sect. 6 indicate that, although the experimental
convergence rates behave as expected, this simple choice of the second initial value
leads to a significantly larger error compared to X1

h being generated by one step of the
backward Euler–Maruyama method.

6 Numerical experiments

In this section we perform some numerical experiments which illustrate the theoretical
results from the previous sections. In Sect. 6.1 we consider the 3

2 -volatility model from
finance, which is a one dimensional equation. In Sect. 6.2 we do computations for a
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two dimensional dynamics which mimics the form and properties of the discretization
of a stochastic partial differential equation, like the Allen-Cahn equation.

6.1 An example in one dimension: the 3
2 -volatility model

Hereby we consider the stochastic differential equation

dX (t) = [
X (t) − λX (t)|X (t)|] dt + σ |X (t)| 32 dW (t), t ∈ [0, T ],

X (0) = X0, (6.1)

with m = d = 1, λ > 0, σ ∈ R, and X0 ∈ R. For positive initial conditions this
equation is also known as the 3

2 -volatility model [5,6]. From the quadratic growth
of the drift it holds that q = 2 in Assumption 2.1 and, as the reader can check, the
coercivity condition (2.3) is valid for L = 1 provided that λ ≥ 4q−3

2 σ 2 = 5
2σ

2. From
the calculation in [19, Appendix] it holds for all x1, x2 ∈ R that

( f (x1) − f (x2), x1 − x2) + η
∣∣g(x1) − g(x2)

∣∣2
≤ |x1 − x2|2 + (2σ 2η − λ) (|x1| + |x2|) (|x1| − |x2|)2 .

The global monotonicity condition (2.1) is therefore satisfiedwith L = 1 and η ≤ λ
2σ 2 .

As we require η > 1
2 this imposes the condition λ > σ 2 and altogether we have that

Assumption 2.1 is valid for L = 1, q = 2, η ∈ ( 12 ,
λ

2σ 2 ) provided that λ ≥ 5
2σ

2.
In our experiments we approximate the strong error of convergence for the explicit

Euler–Maruyama method (EulM) (see [13]), the backward Euler–Maruyama method
(BEM), and the BDF2-Maruyama method (BDF2), respectively. More precisely, we
approximate the root mean square error by a Monte Carlo simulation based on M =
106 samples, that is

error(h) := max
0≤n≤Nh

(
1

M

M∑
m=1

∣∣X (m)(hn) − Xn,(m)
h

∣∣2
) 1

2

≈ max
0≤n≤Nh

∥∥X (nh) − Xn
h

∥∥,

where for every m ∈ {1, . . . , M} the processes X (m) and (Xn,(m)
h )

Nh
n=0 denote inde-

pendently generated copies of X and Xh , respectively. Here we set h := T
Nh

and for

the number of steps Nh we use the values {25 · 2k : k = 0, . . . , 7}, i.e., Nh ranges
from 25 to 3200. Since there is no explicit expression of the exact solution to (6.1)
available, we replace X (m) in the error computation by a numerical reference solution
generated by the BDF2-Maruyama method with Nref = 25 · 212 steps.

As already discussed in Sect. 3, in every time step of the implicit schemes we have
to solve a nonlinear equation of the form

X j
h − hβ f (X j

h) = R j
h , (6.2)
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for X j
h . Here, we have f (x) = x − λx |x | and g(x) = σ |x | 32 for x ∈ R and

β = 1, R j
h = X j−1

h + g(X j−1)Δh W j , (6.3)

for the backward Euler–Maruyama method, and

β = 2

3
, R j

h = 4

3
X j−1

h − 1

3
X j−2

h + g(X j−1
h )Δh W j − 1

3
g(X j−2

h )Δh W j−1, (6.4)

for the BDF2-Maruyama method. For the 3
2 -volatility model it turns out that (6.2) is

a simple quadratic equation, which can be solved explicitly. Depending on the sign of
the right hand side X j

h is given by

X j
h =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 1−βh
2βhλ

+
((

1−βh
2βhλ

)2 + R j
h

βhλ

) 1
2

, if R j
h ≥ 0,

1−βh
2βhλ

−
((

1−βh
2βhλ

)2 − R j
h

βhλ

) 1
2

, if R j
h < 0.

As the first initial value we set X0
h ≡ X0 for both schemes. In addition, we generate the

second initial value for the BDF2-Maruyama method by one step of the BEMmethod
as proposed in Sect. 5.5. Note that the computation of one step of the BDF2-Maruyama
method is, up to some additional operations needed for the evaluation of R j

h , as costly
as one step of the BEM method.

In all simulations the initial condition of Eq. (6.1) is set to be X0 = 1, while the
length of the time interval equals T = 1. Regarding the choice of the noise intensity σ

let us note that in the deterministic situation with σ = 0 it is well-known that the BDF2
method converges with order 2 to the exact solution. In the stochastic case with σ > 0,
however, the order of convergence reduces asymptotically to 1

2 due to the presence of
the noise. Hence, the BDF2-Maruyama method offers apparently no advantage over
the backward Euler–Maruyama method. But, as it has already been observed in [2],
one still benefits from the higher deterministic order of convergence if the intensity
of the noise is small compared to the step size of the numerical scheme. To illustrate
this effect we use three different noise levels in our simulations: the deterministic case
σ = 0, a small noise intensity with σ = 1

3 , and a higher intensity with σ = 1.
Moreover, the Eq. (6.1) behaves stiffer in the sense of numerical analysis if the

value for λ is increased. Since implicit numerical schemes like the backward Euler
method and the BDF2 method are known to behave more stable in this situation than
explicit schemes, we will perform our simulations with two different values for λ:
The non-stiff case with λ = 4 and the stiff case with λ = 25. Note that the condition
λ ≥ 5

2σ
2 is satisfied for all combinations of λ and σ .

Further, to better illustrate the effect of the parameter λ on explicit schemes
explains why we also included the explicit Euler–Maruyama method in our simu-
lations. Although this scheme is actually known to be divergent for SDEs involving
superlinearly growing drift- and diffusion coefficient functions, see [11], it nonetheless
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Table 1 Non-stiff case without noise: λ = 4, σ = 0

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.024635 0.020186 0.010594

50 0.011619 1.08 0.010528 0.94 0.003739 1.50

100 0.005659 1.04 0.005388 0.97 0.001134 1.72

200 0.002793 1.02 0.002726 0.98 0.000325 1.80

400 0.001388 1.01 0.001371 0.99 0.000088 1.89

800 0.000692 1.00 0.000688 1.00 0.000023 1.93

1600 0.000345 1.00 0.000344 1.00 0.000006 1.96

3200 0.000173 1.00 0.000172 1.00 0.000002 1.98

Table 2 Non-stiff case with smaller noise intensity: λ = 4, σ = 1
3

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.026853 0.020812 0.011949

50 0.012788 1.07 0.011020 0.92 0.004961 1.27

100 0.006398 1.00 0.005816 0.92 0.002662 0.90

200 0.003334 0.94 0.003115 0.90 0.001695 0.65

400 0.001818 0.87 0.001733 0.85 0.001140 0.57

800 0.001051 0.79 0.001016 0.77 0.000785 0.54

1600 0.000647 0.70 0.000632 0.69 0.000546 0.52

3200 0.000417 0.63 0.000411 0.62 0.000380 0.52

often yields reliable numerical results. But let us stress that the observed experimental
convergence of the explicit Euler–Maruyama scheme is purely empirical and does not
indicate its convergence in the sense of (1.4).

The first set of numerical results are displayed in Tables 1, 2 and 3, which are
concerned with the non-stiff case λ = 4. In Table 1 we see the errors computed in the
deterministic case σ = 0. As expected the explicit Euler scheme and the backward
Euler method perform equally well, while the experimental errors of the BDF2method
are much smaller. This is also indicated by the experimental order of convergence
(EOC) which is defined for successive step sizes and errors by

EOC = log(error(hi )) − log(error(hi−1))

log(hi ) − log(hi−1)
.

As expected the numerical results are in line with the theoretical orders.
In Table 2 the noise intensity is increased to σ = 1

3 . Here we see that for larger step
sizes, that is Nh ∈ {25, 50}, the erros are only slightly larger than in the deterministic
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Table 3 Non-stiff case with higher noise intensity: λ = 4, σ = 1

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.069083 0.048076 0.048450

50 0.039639 0.80 0.032517 0.56 0.032775 0.56

100 0.024776 0.68 0.022244 0.55 0.022382 0.55

200 0.016454 0.59 0.015563 0.52 0.015617 0.52

400 0.011187 0.56 0.010873 0.52 0.010894 0.52

800 0.007770 0.53 0.007656 0.51 0.007665 0.51

1600 0.005412 0.52 0.005375 0.51 0.005377 0.51

3200 0.003790 0.51 0.003778 0.51 0.003778 0.51

Table 4 Stiff case without noise: λ = 25, σ = 0

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.475184 0.114050 0.114050

50 0.157860 1.59 0.067366 0.76 0.062722 0.86

100 0.054660 1.53 0.038126 0.82 0.027090 1.21

200 0.024244 1.17 0.020389 0.90 0.010049 1.43

400 0.011541 1.07 0.010594 0.94 0.003426 1.55

800 0.005640 1.03 0.005404 0.97 0.001017 1.75

1600 0.002789 1.02 0.002730 0.98 0.000289 1.81

3200 0.001387 1.01 0.001372 0.99 0.000078 1.90

case. In fact, for the two Euler methods the discretization error of the drift part seems
to dominate the total error for almost all step sizes as the errors mostly coincide
with those in Table 1. On the other hand, the BDF2-Maruyama method performs
significantly better for larger and medium sized step sizes. Only on the two finest
refinement levels Nh ∈ {1600, 3200} the estimated errors of all three schemes are
of the same magnitude. This picture changes drastically in Table 3, which shows the
result of the same experiment but with σ = 1. Here the errors of all schemes agree for
almost all step sizes and the BDF2-Maruyama method is no longer superior.

The second set of experiments shown in Tables 4, 5 and 6 are concerned with the
stiff case λ = 25 while all other parameters remain unchanged. At first glance we see
that the explicit Euler–Maruyama method performs much worse than the two implicit
methods for Nh ∈ {25, 50, 100, 200} in the deterministic case σ = 0. This even stays
true when noise is present. On the other hand, the BDF2 method clearly performs best
in the deterministic case although the experimental order of convergence increases
rather slowly to 2 compared to the non-stiff case in Table 1. Further note that the error
of the BEM method and the BDF2 method agree for Nh = 25. This is explained by
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Table 5 Stiff case with smaller noise intensity: λ = 25, σ = 1
3

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.477006 0.114345 0.114345

50 0.159402 1.58 0.067506 0.76 0.062802 0.86

100 0.055190 1.53 0.038191 0.82 0.027099 1.21

200 0.024422 1.18 0.020420 0.90 0.010129 1.42

400 0.011622 1.07 0.010614 0.94 0.003471 1.55

800 0.005679 1.03 0.005416 0.97 0.001074 1.69

1600 0.002811 1.01 0.002739 0.98 0.000351 1.61

3200 0.001401 1.00 0.001379 0.99 0.000182 0.95

Table 6 Stiff case with higher noise intensity: λ = 25, σ = 1

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 0.492313 0.117432 0.117432

50 0.171504 1.52 0.069266 0.76 0.064308 0.87

100 0.060257 1.51 0.039290 0.82 0.028057 1.20

200 0.026558 1.18 0.021182 0.89 0.011774 1.25

400 0.012821 1.05 0.011208 0.92 0.005207 1.18

800 0.006477 0.98 0.005938 0.92 0.002991 0.80

1600 0.003414 0.92 0.003215 0.89 0.001922 0.64

3200 0.001897 0.85 0.001814 0.83 0.001295 0.57

the fact that the second initial value of the multi-step method is generated by the BEM
method and, apparently, this is where the error is largest for both schemes.

Moreover, we observe that the errors in Table 5 with σ = 1
3 are of the same

magnitude as those in Table 4. Due to the larger value of λ the presence of the noise
only seems to have a visible impact on the error of the BDF2-Maruyama method
with Nh = 3200. Hence, the BEM method performs significantly worse than the
BDF2-Maruyama scheme for all larger values of Nh .

In contrast to the non-stiff case this behaviour does not change so drastically when
the noise intensity is increased to σ = 1. In Table 6 we still observe a better perfor-
mance of the BDF2-Maruyama method, although the estimated errors are seemingly
affected by the presence of a stronger noise.

To sum up, in our numerical experiments the BDF2-Maruyama method and the
two Euler methods performed equally well if the equation is non-stiff and driven
by a higher noise intensity. In all other tested scenarios (with stiffness and/or with
small noise intensity) the BDF2-Maruyama method is often superior to the two Euler
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methods in terms of the experimental error. Hence, our observations confirm the results
reported earlier in [2].

6.2 An example in two dimensions: a toy discretization of an SPDE

Here we consider the two dimensional equation

dX1(t) + 1

2
((1 + λ)X1(t) + (1 − λ)X2(t)) dt

=
(

X1(t) − X1(t)
3
)
dt + σ X1(t)

2 dW1(t),

dX2(t) + 1

2
((1 − λ)X1(t) + (1 + λ)X2(t)) dt

=
(

X2(t) − X2(t)
3
)
dt + σ X2(t)

2 dW2(t),

for t ∈ (0, T ], X (0) = X0 ∈ R2 with σ ≥ 0 and λ >> 0. We write this equation in
the form

dX (t) + AX (t) dt = f (X (t)) dt + g(X (t)) dW (t), t ∈ (0, T ], X (0) = X0,

(6.5)

with A being the positive and symmetric 2 × 2-matrix

A = 1√
2

[
1 1
1 −1

] [
1 0
0 λ

]
1√
2

[
1 1
1 −1

]
= 1

2

[
1 + λ 1 − λ

1 − λ 1 + λ

]
,

and the non-linearities f : R2 → R2, g : R2 → R2×2 given by

f (x) =
[

x1 − x31
x2 − x22

]
, g(x) = σ

[
x21 0
0 x22

]
, X0 = (x1, x2) ∈ R2.

The reason why we are interested in (6.5) is its similarity to the equation obtained
when discretizing a stochastic partial differential equationwith aGalerkinmethod. The
matrix −A is a substitute for a discrete Laplacian, which is a symmetric and negative
definite matrix. With a Galerkin approximation in k dimensions the eigenvalues λ1 <

λ2, . . . , λk−1 < λk satisfy that λk >> 0 is very large, causing a stiff system. Our
matrix A is chosen to mimic this stiffness. Moreover, our choice of f is due to its
similarity with the nonlinearity of the Allen–Cahn equation. We take the diffusion
coefficient to be quadratic in order to demonstrate an example with superlinear growth.

Assumption 2.1 is valid for all λ ≥ 0 and σ ∈ [0,√2/3) with L = 1, q = 3 and
η = 1

2σ 2 . The coercivity condition (2.3) is left to the reader to check and it is in fact
it that determines the upper bound for σ . To verify the global monotonicity condition
(2.1), we first notice that for x, y ∈ R2, it holds that

( f (x) − f (y), x − y)
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= |x − y|2 − (x31 − y31)(x1 − y1) − (x32 − y32)(x2 − y2)

= |x − y|2 − (x21 + x1y1 + y21 )(x1 − y1)
2 − (x22 + x2y2 + y22 )(x2 − y2)

2,

and that

|g(x) − g(y)|2HS = Tr((g(x) − g(y))∗(g(x) − g(y)))

= σ 2Tr

([
(x21 − y21 )

2 #
# (x22 − y22 )

2

])

= σ 2 ((x21 − y21 )
2 + (x22 − y22 )

2)
= σ 2 ((x1 − y1)

2(x1 + y1)
2 + (x2 − y2)

2(x2 + y2)
2)

= σ 2 ((x1 − y1)
2(x21 + 2x1y1 + y21 ) + (x2 − y2)

2(x22 + 2x2y2 + y22 )
)
.

Since it also holds that −(A(x − y), x − y) ≤ 0 we get for all x, y ∈ R2 that

(A(x − y) + f (x) − f (y), x − y) + η|g(x) − g(y)|2HS
≤ |x − y|2 + (ησ 2 − 1)

(
(x21 + y21 )(x1 − y1)

2 + (x22 + y22 )(x2 − y2)
2
)

+ (2ησ 2 − 1)
(

x1y1(x1 − y1)
2 + x2y2(x2 − y2)

2
)

Under the assumption that 2ησ 2 = 1 we obtain that

(A(x − y) + f (x) − f (y), x − y) + η|g(x) − g(y)|2HS ≤ |x − y|2, x, y ∈ R2,

which proves the global monotonicity for L = 1.
We use the experimental setup of Sect. 6.1. As the equation (6.2) is not explicitly

solvable with f and g from the present subsection we use K = 5 Newton iterations
in each time step to obtain an approximate solution. More precisely, these iterations
X̃ j,0

h , . . . , X̃ j,K
h = X j

h are given X̃ j,0
h = X j−1

h and for k ∈ {1, . . . , K } by X̃ j,k
h =

X̃ j,k−1
h − (DΦ

j
h (X j,k−1

h ))−1Φ
j

h (X j,k−1
h ), where Φ

j
h (x) = x − βh( f (x) − Ax) − R j

h

and DΦ
j

h is the Jacobian. With c = 1−λ
2 it holds that

(DΦ
j

h (x))−1Φ
j

h (x) = 1

(1 − βh(c − 3x21 ))(1 − βh(c − 3x22 )) − (βhc)2

×

⎡
⎢⎢⎢⎣

(1 − βh(c − 3x22 ))(x1 − βh(c(x1 − x2) − x31) − R j
h,1)

−βhc(x2 − βh(c(x2 − x1) − x32) − R j
h,2)

(1 − βh(c − 3x21 ))(x2 − βh(c(x2 − x1) − x32) − R j
h,2)

−βhc(x1 − βh(c(x1 − x2) − x31) − R j
h,1)

⎤
⎥⎥⎥⎦ .

This is used for the Newton iterations.
We perform three experiments, all with λ = 96, T = 1, X0 = [2, 3]t , one without

noise, i.e., σ = 0, one with small noise intensity σ = 0.47, which is just below the
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Fig. 1 Sample trajectories computed with BDF2 and N = 25 ·212 time steps for different noise intensities.
The same sample path of the noise is used in both plots

Fig. 2 Projections of several sample paths with different noise intensity onto the eigenvectors v1 and v2
of the matrix A, respectively
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Table 7 Without noise: σ = 0

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 – 0.095559 0.062955

50 0.512850 – 0.052993 0.85 0.031538 1.00

100 0.036046 3.83 0.028182 0.91 0.013142 1.26

200 0.016245 1.15 0.014630 0.95 0.005002 1.39

400 0.007861 1.05 0.007472 0.97 0.001784 1.49

800 0.003875 1.02 0.003779 0.98 0.000575 1.63

1600 0.001925 1.01 0.001901 0.99 0.000169 1.76

3200 0.000959 1.00 0.000953 1.00 0.000048 1.83

Table 8 Small noise intensity: σ = 0.47

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 – 0.091651 0.056638

50 – – 0.051324 0.84 0.029411 0.94

100 0.044452 – 0.027599 0.90 0.012246 1.26

200 0.019432 1.19 0.014429 0.94 0.004621 1.41

400 0.009300 1.06 0.007403 0.96 0.001613 1.52

800 0.004538 1.04 0.003792 0.97 0.000523 1.62

1600 0.002253 1.01 0.001910 0.99 0.000187 1.48

3200 0.001124 1.00 0.000961 0.99 0.000095 0.97

threshold
√
2/3 for σ , allowed for the theoretical results to be valid, and one with large

noise intensity σ = 1 to see how the methods compare outside the allowed parameter
regime. Comparing Tables 7 and 8 we observe that the errors differ very little. This
suggests that the noise is negligible for the small noise case and therefore does not
effect the dynamics much, but this suggestion is false. This is clear from Fig. 1, where
a typical path is shown and in Fig. 2, where the same solution path, together with two
other solution paths are projected in the directions of the eigenvectors v1 = 1√

2
[1, 1]t

and v2 = 1√
2
[1,−1]t , corresponding to the eigenvalues 1 and λ, respectively, of the

matrix A. Direction v2 is the stiff direction. This expresses itself in Fig. 2 by a strong
drift towards zero of (X, v2), while (X, v1) is more sensitive to the noise.

For Nh = 25 the CFL-condition |1−λh| < 1 is not satisfiedwhile for Nh ≥ 50 it is.
Table 7 shows, in the case of no noise, explosion of the Euler–Maruyama method, for
the crude refinement levels for which the CFL condition is not satisfied. The backward
Euler–Maruyama andBDF2methodswork for all refinement levels and perform better
than the Euler–Maruyama method, but only the BDF2 method performs significantly
better. For small noise Table 8 shows essentially the same errors as for those without
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Table 9 Large noise intensity:
σ = 1

Nh EulM BEM BDF2

Error EOC Error EOC Error EOC

25 – 0.085359 0.107572

50 – – 0.054110 0.66 0.054215 0.99

100 – – 0.030864 0.81 0.027929 0.96

200 – – 0.016582 0.89 0.014925 0.90

400 – – 0.008928 0.89 0.007853 0.93

800 – – 0.004635 0.95 0.004010 0.97

1600 – – 0.002372 0.97 0.002135 0.91

3200 – – 0.001221 0.96 0.001127 0.92

noise, only with slightly worse performance for the Euler–Maruyama scheme. Taking
into account that the computational effort for the BEM and BDF2-Maruyama schemes
are essentially the same our results show the latter to be superior for this problem. Our
results confirm the conclusion from the previous subsection that the BDF2-Maruyama
scheme performs better for stiff equations with small noise. For σ = 1 the Euler–
Maruyama scheme explodes for all refinement-levels and BDF2 has lost most of its
advantage over BEM. For the crudest step size the error is even higher than for BEM.
In Table 9 the errors for the large noise simulations are shown.
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