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Abstract We consider the three-dimensional Euler equations of gas dynamics on a
bounded periodic domain and a bounded time interval. We prove that Lax–Friedrichs
scheme can be used to produce a sequence of solutions with ever finer resolution
for any appropriately bounded (but not necessarily small) initial data. Furthermore,
with some technical assumptions, e.g. that the density remains strictly positive in
the sequence of solutions at hand, a subsequence converges to an entropy solution.
We provide numerical evidence for these results by computing a sensitive Kelvin–
Helmholtz problem.

Keywords Euler equations · Weak solutions · Entropy solutions · Convergence ·
Lax–Friedrichs scheme
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1 Introduction

In three space dimensions, the compressible Euler equations on conservative form are,

ut + f1x + f2y + f3z = 0 (1.1)
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1480 M. Svärd

where

f1 = (ρu, ρu2 + p, ρuv, ρuw, u(E + p))T ,

f2 = (ρv, ρvu, ρv2 + p, ρvw, v(E + p))T , (1.2)

f3 = (ρw, ρwu, ρwv, ρw2 + p, w(E + p))T ,

u = (ρ, ρvT , E)T conservative variables.

v denotes the velocity vector with components (u, v, w); ρ is the density, p the
pressure, E the total energy, e the specific internal energy and, T the temperature.
cp and cv denote the specific heats at constant pressure or volume. Furthermore,
E = 1

2ρ|v|2 + ρe, e = cvT , ρe = p
γ−1 and γ = cp/cv . (For air, γ = 7/5 but

generally 1 < γ < 5/3.) The thermodynamic variables are related through the ideal
gas law, p = ρRT where R is the gas constant.

In this paper, we consider the Euler equations (1.1) on the domainQ = [0,T ]×Ω ,
where T is an arbitrary but finite time and Ω = [0, 1]3 is the unit cube. We assume
periodicity in all three space dimensions.

Assumption 1.1 Assume that the initial data are provided in the following spaces:

u(0, x)∈(L2(Ω))5, T (0, x)∈ L2(Ω), v(0, x)∈(L2(Ω))3, ρ(0, x), T (0, x)>0.

For initial data with small total variation, existence and uniqueness have been proven
in [1] for the 1-D problem. However, to date there are no global well-posedness results
for the systemofEuler equations in 3-D. The goal of thiswork is to address the question
of existence of so-called (weak) entropy solutions.

1.1 Definitions

It is well-known that the Euler equations may develop discontinuities in finite time.
Therefore its solutions are usually interpreted in a weak sense.

A solution u is a weak solution, if it satisfies the equations in a distributional sense.
That is, if u satisfies

∫ T

0

∫
Ω

(
(φt )u + (φx )f1 + (φy)f2 + φzf3

)
dx dt +

∫
Ω

φ(x, 0)u(0, x) dx = 0

(1.3)

for all non-negative test functions φ ∈ D(Q) (these functions are periodic since Ω

is periodic). Weak solutions are generally not unique and conservation laws, such as
(1.1), are supplemented with an entropy condition. To define the entropy condition,
we need the following definition.

Definition 1.1 Let d be the number of space dimensions. An entropy pair, is a pair of
functions (U,F) with U : R5 → R, F : R5 → R

d where U is convex and F′ = U ′f ′.
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Entropy solutions of the compressible Euler equations 1481

Here, we consider three space dimensions, i.e., d = 3 and F = (F1, F2, F3). Fur-
thermore, qT = Uu are the entropy variables. We denote the entropy potential as
Ψ i = 〈q, f i (u(q))〉 − Fi (u(q)), i = 1, 2, 3. A vanishing viscosity solution of a
conservation law, results in the following inequality for the entropy pair.

Ut + ∇F ≤ 0 (1.4)

Since solutions of conservation laws are often assumed to be a vanishing viscosity
limits of a viscous equation, (1.4) is often used as an entropy condition or admissibility
criterion.

Definition 1.2 A weak solution u of (1.1) is an entropy solution, if (1.4) is satisfied
in a distributional sense for all entropy pairs.

For the Euler equations, it is not clear if this entropy condition will single out a
unique solution. As mentioned above, the entropy inequality is satisfied for vanishing
viscosity solutions but other entropy conditions have been proposed. We refer to [6]
for a discussion on entropy conditions for the Euler equations.

Let S = ln( p
ργ ) be the specific entropy. Then the entropy pairs for the Euler equa-

tions are given by

U = −ρh(S)

F1 = −ρuh(S),

F2 = −ρvh(S),

F3 = −ρwh(S),

h′′(S)

h′(S)
<

1

γ
(See [5].)

For an entropy U , Uuu is symmetric positive definite. (For the Euler equations this is
the case if ρ, T > 0.)

Integrating (1.4) over Ω leads to the familiar global entropy inequality.

∫
Ω

Ut dx ≤ 0. (1.5)

The inequality (1.5) results in a bound on U (T ), which leads to the following result,
which is standard. (See [3].)

Proposition 1.1 Assume that the initial conditions are given as in Assumption 1.1.
Furthermore, we assume that ρ(x, t) > 0, T (x, t) > 0, t ∈ [0,T ], x ∈ Ω . Then
entropy solutions u of (1.1), satisfy

u(t) ∈ (L2(Ω))5, p, ρ|v|2 ∈ L2(Ω). (1.6)

Such estimates are possible to obtain for numerical schemes (so-called entropy stable
schemes). However, they are not sufficient to prove convergence to a weak solution.
The problem is the non-linear flux function.
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1482 M. Svärd

Our strategy is the following.We use (essentially) the local Lax–Friedrichs scheme,
in a semi-discrete form, and demonstrate that it generates a sequence of solutions up
to any finite time on the bounded periodic domain. This part is accomplished with
the help of entropy estimates and a proof that the thermodynamic variables remain
non-negative to any final time T .

Having established that a sequence of solutions can be generated on ever finer grids,
we consider sequences that have no vacuum regions. (We regard this as an a posteriori
examination since an existing sequence either has this property or not.) For sequences
whose density remain bounded away from 0 (and another technical assumption), we
prove convergence to a weak entropy solution.

Finally, we present numerical results for a Kelvin–Helmholtz problem that is very
sensitive to perturbations. Numerical simulations of this problem were used in [4] as
evidence of the non-existence of entropy solutions. Contrary to their results, we do see
convergence to an entropy solution. This is in accordance with the main conclusion
in this paper: If a numerical simulation of Lax–Friedrichs scheme is “well-behaved”,
then the solution approximates a weak entropy solution.

2 Lax–Friedrichs scheme

We discretize the domain Ω with N + 1 points in the x, y, z directions. That
means h = 1/N and xi = ih, y j = jh, and zk = kh, i, j, k = 0, . . . , N . Let
uh
i jk = (ρi jk,m1

i jk,m
2
i jk,m

3
i jk, Ei jk)

T where the components are the numerical vari-
ables corresponding to density, momentum in the x-y-z-direction and total energy. All
variables satisfy the same algebraic relations as their continuous counterparts. E.g.
Ei jk = pi jk

γ−1 + 1
2ρi jk

((m1
i jk)

2 + (m2
i jk)

2 + (m3
i jk)

2). We use ui jk , vi jk and wi jk to

denote the velocity components. With a slight abuse of notation, we use Dx− to denote

the operator Dx−ai jk = ai jk−ai−1 jk
h irrespective if a is a scalar or a vector. If it is a vec-

tor, the operation is carried out on each component. We define Dy
−, Dz−, Dx+, Dy

+, Dz+
analogously. Furthermore, D0 = 1

2 (D+ + D−).
The periodic boundary conditions are enforced through the following relations:

uh
0 jk = uN+1 jk, uh

i0k = ui N+1k, uh
i j0 = ui j N+1. (2.1)

Let

g1i jk = (m1
i jk, ui jkm

1
i jk + pi jk, ui jkm

2
i jk, ui jkm

3
i jk, ui jk(Ei jk + pi j j ))

T ,

g2i jk = (m2
i jk, vi jkm

1
i jk, vi jkm

2
i jk + pi jk, vi jkm

3
i jk, vi jk(Ei jk + pi jk))

T ,

g3i jk = (m3
i jk, wi jkm

1
i jk, wi jkm

2
i jk, wi jkm

3
i jk + pi jk, wi jk(Ei jk + pi jk))

T ,

be the local flux vectors at the grid points. The semi-discrete local Lax–Friedrichs
scheme is,

(uh
i jk)t + Dx−f1i+1/2 jk + Dy

−f2i j+1/2k + Dz−f3i jk+1/2 = 0. (2.2)
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Entropy solutions of the compressible Euler equations 1483

where

f1i+1/2 jk = g1i+1 jk + g1i jk
2

− λ1i+1/2 jk

2
(ui+1, jk − ui jk),

f2i j+1/2k = g2i j+1k + g2i jk
2

− λ2i j+1/2k

2
(ui j+1k − ui jk), (2.3)

f3i jk+1/2 = g3i jk+1 + g3i jk
2

− λ3i jk+1/2

2
(ui jk+1 − ui jk),

and

λ1i+1/2 jk = max(|ui+1 jk | + ci+1 jk, |ui jk | + ci jk) + δ

λ2i j+1/2k = max(|vi j+1k | + ci j+1k, |vi jk | + ci jk) + δ

λ3i jk+1/2 = max(|wi jk+1| + ci jk+1, |wi jk | + ci jk) + δ

(2.4)

where δ > 0 is a constant.

Remark 2.1 With δ = 0 the scheme is the semi-discrete Local Lax–Friedrichs scheme.
For technical reasons, we need an (arbitrarily) small extra diffusion δ.

The numerical entropy flux in the x-direction is

F1
i+1/2 jk = 1

2
〈qi+1 jk + qi jk, f1i+1/2 jk〉 − 1

2

(
Ψ 1
i+1 jk + Ψ 1

i jk

)
. (2.5)

Entropy stability ensures that

〈qi+1 jk − qi jk, f1i+1/2 jk〉 ≤
(
Ψ 1
i+1 jk − Ψ 1

i jk

)
. (2.6)

(Similar relations hold in the other two directions). The key idea with entropy stability
is that upon contraction of (2.2) with the entropy variables, qi jk , one obtains,

(Ui jk)t + qT
i jk(D

x−f1i+1/2 jk + Dy
−f2i j+1/2k + Dz−f3i jk+1/2) = 0

which can be recast using the entropy stability properties (2.5) and (2.6) as,

(Ui jk)t + Dx−F1
i+1/2 jk + Dy

−F2
i j+1/2k + Dz−F3

i jk+1/2 ≤ 0. (2.7)

Note that (2.7) is a local entropy inequality in every point and corresponds to (1.4).
A numerical solution obtained with (2.2) will satisfy the entropy condition (i.e. it is
entropy stable) for all entropies. (See [9].) Hence, if the discrete solutions converge
as the grid is refined, the limit will be an entropy solution.
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1484 M. Svärd

2.1 The discrete entropy estimate

We will use the notation L2(ΩN ) to denote the discrete L2-space. It is equipped with
the norm, ‖uh‖22 = ∑N

i jk=0 h
3u2i jk where u

h denotes the entire vector of (in this case
x-velocity) values ui jk . (Other discrete norms are defined with the same analogy.)

We will use the superscript h to distinguish a discrete vector from the correspond-
ing continuous variable. E.g. u(x, t) is the continuous vector with five components
appearing in the Euler equations. ui jk is the discrete solution vector with five com-
ponents at xi , y j , zk . uh is the vector of all discrete solutions at all points such that
(uh)i jk = ui jk . The analogous relations hold for all variables, including scalars.

Assumption 2.1 The initial data are projections of the initial data given inAssumption
1.1 onto the grid. That is u0

i jk = u(0, xi jk). Hence, the discrete initial data reside in
the equivalent discrete spaces.

Proposition 2.1 Let the initial data be given as in Assumption 2.1. Assume that
T h(t), ρh(t) ≥ 0, t ∈ [0,T ], then the scheme (2.2) is entropy stable and its solutions
satisfy uh ∈ C(0,T ; (L2(ΩN ))5) and ph, (ρ(u2 +v2 +w2))h ∈ C(0,T ; L2(ΩN )).

Proof Multiplying (2.7) by h3 and summing in (periodic) space, lead to,

N∑
i, j,k=0

h3(Ui jk)t ≤ 0 (2.8)

To obtain an L2 bound on the variables, we repeat the calculation for the entropy Ū =
U −U (uh

0)−U ′(uh
0)

T (uh −uh
0)where uh

0 is a constant state. (This is an affine change,
which ensures that Ū is also an entropy.) We choose (u0)i jk = (ρ0, 0, 0, 0, E0), for
all i, j, k, where ρ0 and E0 are positive constants. This corresponds to a state at rest
with constant density, temperature and pressure.

The entropy Ū satisfies the analog estimate (2.8). We can recast this as

1

2

N∑
i, j,k=0

{h3(uh − uh
0)

TU ′′(θh(T )))(uh − uh
0)}i jk ≤

N∑
i, j,k=0

h3Ū (u0,h). (2.9)

Observe that U ′′(θh(t)), for t ∈ [0,T ], is symmetric positive definite, since θh(t)
is an intermediate state between uh and uh

0 . This implies that the thermodynamic
variables of θh(t) are positive and bounded away from 0 since we have assumed that
ρi jk ≥ 0, Ti jk ≥ 0. Hence, we obtain an L2 bound on uh (continuously in time).
(This argument was given in [3] and also presented in [7].) The estimates on ph and
(ρ(u2 + v2 + w2))h follows from the estimate of Eh and positivity. ��

2.2 Positivity and solvability of the ODE system

The estimate in the previous section hinges on positivity, i.e., ρi jk(t) ≥ 0 and Ti jk ≥ 0.
To demonstrate that the scheme produces positive solutions, we begin by considering
positivity of ρ. The scheme for the continuity equation is:
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Entropy solutions of the compressible Euler equations 1485

(ρi jk)t + Dx
0 (ρu)i jk + Dy

0 (ρv)i jk + Dz
0(ρw)i jk = Dx−

(
hλ1i+1/2 jk

2
Dx+ρi jk

)

+ Dy
−

(
hλ2i j+1/2k

2
Dy

+ρi jk

)
+ Dz−

(
hλ3i jk+1/2

2h
Dz+ρi jk

)

We present the argument for the terms in the x-direction keeping in mind that the other
two directions are treated similarly. Hence, we consider,

(ρi jk)t + Dx
0 (ρu)i jk + · · · − Dx−

(
hλ1i+1/2 jk

2
Dx+ρi jk

)
− · · · = 0

which can be restated as,

(ρi jk)t

+
(

(ui+1−λ1i+1/2)ρi+1+(λ1i+1/2+λ1i−1/2)ρi +(−ui−1−λ1i−1/2)ρi−1

2h

)

jk

· · ·=0.

For any given h > 0, let ρi be the minimum. If ρi → 0 then (ρi )t ≥ 0 since
λ1i+1/2 jk ≥ max(|ui+1 jk |, |ui jk |). (The terms in the yz-directions are balanced by

the same argument.) Hence, ρi ≥ 0 and ρh will always remain non-negative. (The
argument is based on the one given in [10].)

For positivity of ph , we rely on Lax–Friedrichs scheme being entropy stable for any
entropy. Then we can use the minimum entropy principle derived by Tadmor in [8].
From this result we have S = log(pρ−γ ) ≥ Smin , at each point, or p ≥ exp(Smin)ρ

γ ,
and positivity of p follows that of ρ. Finally, T h ≥ 0 follows from ρh, ph ≥ 0 and
the gas law.

Next, consider a solution up to a time τ , where ρh(t) ≥ 0 for all t ∈ (0, τ ].
Hence, Proposition 2.1 holds on this time interval. (Also, keep in mind that h is fixed
for a particular approximation implying that the conservative variables are pointwise
bounded from above thanks to the L2 estimates.) Since (ρi jk)t ≥ 0, we conclude that
(ρi jk) ≥ 0 in a neighborhood of t = τ . Hence, we can extend our a priori bounds
beyond t = τ , and repeat the argument till we reach any finite timeT (for all h > 0).

We summarize the results of this section.

Lemma 2.1 Let the initial data satisfy Assumption 2.1. Then a semi-discrete solution
of (2.2) satisfies ρi jk(t), Ti jk(t) ≥ 0 for all t ∈ [0,T ] and i, j, k = 1 . . . N.

The semi-discrete system constitutes a system of ordinary differential equations
(ODEs), uh

t = F (uh), where F (uh) symbolizes the spatial discretization of (2.2).
Having a priori determined the non-negativity of the numerical approximations, we
turn to the question of solvability of the resulting ODE system.

We know that the a priori estimates can be extended to any finite time T . From
these estimates it is straightforward to show that for a given grid size h, the function
F is Lipshitz continuous and hence there exists a unique solution on the arbitrary,
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1486 M. Svärd

but finite, interval [0,T ]. Consequently, we can generate a sequence of solutions uh

satisfying the a priori bounds given in Proposition 2.1 and Lemma 2.1.

2.3 Estimates for strictly positive sequences

The estimates obtained from entropy considerations along with non-negativity are not
enough to establish convergence to a weak solution. However, at this point we know
that we can generate a sequence of solutions using the numerical scheme.

It is well-known that vacuum creates mathematical problems. Here, we can not pre-
clude formation of vacuum regions in the limiting solution. However, close to vacuum
(or generally large Knudsen numbers) the continuum hypothesis breaks down and the
Euler equations are not valid. Hence, there is no practical limitation to henceforth con-
sider sequences satisfying ρh(t) ≥ ε > 0. We will term this an a posteriori condition
since we can examine its validity after a sequence has been generated.

Remark 2.2 Mathematically, one may argue that it is desirable to be able to prove that
a weak solution is obtained even in the presence of vacuum. However, such a solution
is not physically admissible. Consequently, it must be subject to the same a posteriori
examination to ensure admissibility.

Lemma 2.2 If ρh(t) ≥ ε > 0, uniformly as h → 0, then T h ∈ L2(ΩN ) and vh ∈
(L2(ΩN ))3.

Proof By the gas law: T h ≤ ph/(Rε) ∈ L2(ΩN ). From the L2 estimates of the
momentum components, we get the L2 estimates on the velocities themselves. E.g.

uh ≤ (ρu)h

ε
∈ L2(ΩN ). ��

We can now bound the artificial diffusion terms in the numerical fluxes.

Lemma 2.3 Under the assumptions of Proposition 2.1 and Lemma 2.2, hλ1,2,3Dx,y,z
+

uk ∈ L1(0,T ; L1(ΩN )), k = 1 . . . 5.

Proof First, λ1,2,3 depend on velocity and the speed of sound, i.e.,
√
T , which are

bounded by Lemma 2.2 in L∞(0,T ; L2(ΩN )). Furthermore, hD+uk is bounded
thanks to uh ∈ C(0,T ; (L2(ΩN ))5) by Proposition 2.1. The result follows by
Cauchy–Schwarz. ��

2.4 Equi-integrability of the numerical flux

The next step is to establish weak convergence in L1 of the numerical fluxes.

Lemma 2.4 Under the assumptions of Proposition 2.1 and Lemma 2.2, the numerical
fluxes f1,2,3 are bounded in L1(Q).

Proof The fluxes f1,2,3 are arithmetic averages of g1,2,3 plus artificial diffusion terms.
Note that the entries of g1,2,3 are products of uh or ph , and vh . Consequently, the
estimates of g1,2,3 follow from uh ∈ L2(ΩN ), Lemma 2.2 and Cauchy-Schwarz. The
artificial diffusion terms are bounded by Lemma 2.3. ��

123



Entropy solutions of the compressible Euler equations 1487

L1 integrability is not sufficient for weak convergence. For that we need a slightly
stronger bound, namely equi-integrability. There are a number of equivalent conditions
for equi-integrability. We use the following:

Let U ∈ L1(Q) be a family of integrable functions, then U is equi-integrable if
and only if,

lim
ξ↑∞ sup

u∈U

∫
|u|>ξ

|u| dx = 0. (2.10)

(For more information on equi-integrability, see [2]).

Lemma 2.5 Under the assumptions of Proposition 2.1 and Lemma 2.2, the numerical
fluxes f1,2,3 are equi-integrable.

Proof Outline of the proof: We need to prove, term by term, that the numerical fluxes
(2.3) are equi-integrable. From Lemma 2.4 the numerical fluxes are in L1 and we only
have to show that the fluxes satisfy (2.10), which is a condition on the local growth
rate. We will use the artificial diffusion to bound the growth rate. Since it is a local
condition, we consider the case where all the growth is concentrated in a single cell
and show that this still leads to equi-integrability.

From the entropy estimate, and with our definition of λ, it is easy to see that we
obtain an estimate of

δ

∫ T

0

N∑
i jk=1

(
h(Dx+uh

i jk)
2 + h(Dy

+uh
i jk)

2 + h(Dz+uh
i jk)

2
)
h3 dt ≤ C . (2.11)

Hence, Dx,y,z
+ (

√
huh) ∈ L2(0,T ; L2(ΩN )). By Sobolev embedding,

√
huh ∈

L2(0,T ; L6(ΩN )) (in three space dimensions). Furthermore, ρ ≥ ε > 0, gives√
hvh(L2(0,T ; L6(ΩN )))3.
Since for any fixed finite N the L2 estimates imply bounds in L∞(ΩN ), we only

need to investigate equi-integrability when N → ∞. That is, N → ∞ gives the
supremum of the family U = {uh} in (2.10). (Or rather, if it does not give the
supremum, {uh} is equi-integrable since we would have a uniform bound in L∞(Q).)
Equi-integrability concerns the measure of max |u|. Hence, we consider the worst case
scenario: all mass is concentrated on h3 × Δt part of the domain Q.

Remark 2.3 It is only if uh is not in L∞ that it might not be equi-integrable. Further-
more, the measure, h3 × Δt , of the set where mass is concentrated, can be replaced
by any larger but vanishing set of width H3 × Δt̃ . It has to be a vanishing set or else,
the maximum will not grow out of bounds. However, the patch can not have a smaller
width than h so that determines the maximal growth.

Consider the lth component of uh , here denoted uli jk and let ul be its maximum

on the small patch of measure h3 × Δt . Given that,
√
huh ∈ L2(0,T ; L6(ΩN )), we

have
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1488 M. Svärd

∫ T

0

N∑
i jk=1

((
√
huli jk)

6h3)2/6 dt ≤ C.

Hence, if all mass is concentrated on the small subset.

((
√
hul)6h3)2/6Δt ≤ C

((ul)6h6)1/3Δt ≤ C

(ul)2h2Δt ≤ C

|ul | ≤ C
1√
Δth

.

The velocitieswill also satisfy the analogous estimates.We nowestimate a flux compo-
nent, g proportional to u times a velocity component. (Here, we take the y-component
v as a generic example.)

lim
ξ↑∞ lim

N↑∞

∫
|g|>ξ

|g| dx dt ≤ lim
ξ↑∞ lim

N↑∞

∫
|g|>ξ

|vul |dx dt

≤ lim
N↑∞

(
C

1√
Δth

)2

h3Δt ∼ lim
N↑∞ h = 0. (2.12)

There are also flux components proportional to “velocity times pressure”. Hence, we
need a maximal growth of pressure which can be obtained from the L2 estimate of
ph . It is easy to see that on the same patch, we have

pmax ≤ C√
Δth3/2

. (2.13)

Hence, with g now symbolizing, say vp, we have

lim
ξ↑∞ lim

N↑∞

∫
|g|>ξ

|vpmax |dx dt ≤ lim
N↑∞C

1√
Δth

1√
Δth3/2

h3Δt ∼ lim
N↑∞

√
h = 0.

(2.14)

For the artificial diffusion term, we apply the same argument noting that one part is
proportional to vhuh and is bounded as in (2.12). The part involving the speed of sound
is straightforward, since the sound speed (∼√

T ) is bounded inC(0,T ; L4(ΩN ). This
term is approaching 0 somewhat faster than the term in (2.12). ��

2.5 Convergence of flux terms

Equi-integrability ensures that a subsequence converges weakly in L1. E.g., the
momentum terms in the continuity equations m1,h ⇀ m1. In this case, this imme-
diately establishes that the continuity equation is satisfied weakly. However, for the
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Entropy solutions of the compressible Euler equations 1489

momentum and energy equations more information is needed. Consider the momen-
tum equations. Equi-integrability gives

uhm1,h ⇀ um1 ∈ L1,

ph ⇀ ph ∈ L1.

(Similarly for all the other products of velocity and momentum). The pressure term
needs no further attention but the momentum term does. We know that

uh ⇀ u ∈ L1, L2, m1,h ⇀ m1 ∈ L1, L2,

and must show that um1 = um1. Thanks to equi-integrability of the sequence uhm1,h ,
and weak convergence of uh and m1,h it is sufficient to prove that either uh or m1,h

converges a.e. (sub-sequentially).
To prove this, we will, once again, use the artificial diffusion. However, we will

need the following technical assumption.

Assumption 2.2 Assume that the sequence uh of numerical solutions, satsify√
h(Dx,y,x

+ uh
i jk) ∈ L∞(0,T , L2(ΩN )).

Remark 2.4 This assumption rules out that the artifical diffusion term oscillates wildly
in time. (Something that should be apparent in a simulation if it was not true.)

From (2.11) we have,

∫ T

0

N∑
i, j,k=1

h3
|Δm1,h

i+1/2, j,k |2
h

dt < C. (2.15)

First, we check how this estimate caps the formation of concentrations. Assume we
localize all “mass” of the integrals to one point, say xmnp. Then

∫ T

0
|Δm1

m+1/2np|2 dt <
C

h2
. (2.16)

In this special case, we conclude that the estimate ensures that Dx+m1,h ∈ L1(ΩN ×
[0,T ]). To see this we consider,

∫ T

0
‖Dx+m1,h‖1 dt =

∫ T

0

N∑
i, j,k=1

h3
|Δm1

i+1/2 jk |
h

dt < C

which, with all mass located at one point,

∫ T

0
|Δmm+1/2np| dt <

C

h2
. (2.17)
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With |Δm1
m+1/2np| > 1, (2.16) dominates (2.17). A similar argument reveals that

(2.15) bounds ‖Dx+m1,h‖1 on sets up toO(N 2) points. Hence, concentrations will not
destroy the a.e. convergence, since ifm1,h ∈ L1(0,T ;W 1,1(ΩN )) andbyAssumption
2.2, we would have strong convergence of a subsequence in L1(0,T ; L3/2(ΩN )).

Remark 2.5 We stress that we have not proven that m1,h ∈ L1(0,T ;W 1,1(ΩN )) in
general. We only claim that families of functions with mass concentrated on sets less
than O(N 2), are bounded in L1(0,T ; L3/2(ΩN )). Consequently, we can draw from
such an (infinite) family of functions a strongly convergent subsequence in L3/2.

What is left to prove is that oscillations are kept at bay such that a.e. convergence
can be inferred. Hence, we consider an O(N 3) set, denoted BN3 . (The general case
O(N 2Nα), α ∈ (0, 1], is straightforward to handle in a similar way.)

On such a set, we obtain from (2.15) that every difference is bounded as

∫ T

0
|Δm1

m+1/2np|2 dt < Ch, for all (xm, yn, z p) ∈ BN3 . (2.18)

Unfortunately, this will not bound ‖Dx+m1,h‖ but it clearly shows that the differ-
ences are decreasing to 0. The highest frequency in the x-direction is proportional to
aN sin(Nx). Hence, aN (sin(Nx) − sin(N (x + h))) ∼ aN Nh ∼ aN , where h is the
grid step. We conclude that aN ∼ √

h. Hence, we obtain a.e. convergence of m1,h for
such functions. By this we have shown that m1,h converges a.e. on any subset of ΩN .
In conjunction with equi-integrability, we conclude that um1 = um1. (Assumption
2.2 ensures that oscillations in time do not destroy convergence.)

Moving to the energy equation, we can make the same argument to prove conver-
gence of uh Eh-type terms. To prove that uh ph converges, we observe that this follows
from weak convergence of m1,hT h ∈ L1, m1,h ⇀ m1 ∈ L1 and almost everywhere,
and weak convergence of T h ∈ L2.

Finally, we need to show that the artificial diffusion terms converge to 0 weakly in
L1. We denote the artificial diffusion part of f1i+1/2 jk in (2.3) as

gAD,1
i+1/2 jk = hλ1

2
Dx+uh

i jk . (2.19)

(Similarly for the other two fluxes.) We first note that thanks to the a priori estimates,
we have

√
hλ1Dx+uh

i jk ∈ L2(0,T , L2(ΩN )). (2.20)

As already noted, λ1(∼|u| + √
T ) ∈ L2(0,T , L2(ΩN )). By Cauchy-Schwarz,

g∗,1
i+1/2 jk = gAD,1

i+1/2 jk√
h

=
√
hλ1

2
Dx+uh

i jk ∈ L1(Q).
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From (2.12), the artificial diffusion flux satisfies the equi-integrability relation

lim
ξ↑∞ lim

N↑∞

∫
|gAD,1|>ξ

|gAD,1| dx dt ∼ lim
N↑∞ h = 0. (2.21)

and, therefore, the function g∗,1 = gAD,1√
h
, is also equi-integrable, and we can extract a

convergent subsequence that converges weakly in L1(Q). We conclude that gAD,1 =√
hg∗,1 converges weakly in L1 to 0.
We summarize the results in a proposition.

Proposition 2.2 Let uh , onQ = ΩN × [0,T ] be a sequence of solutions generated
by the scheme (2.2) with ρi jk(t) ≥ ε > 0 and satisfying Assumption 2.2. Then for a
subsequence, the numerical fluxes (2.3) converge weakly in L1(Q).

2.6 Entropy solutions

At this point, we can summarize our findings in the main theorem.

Theorem 2.3 The scheme (2.2) generates a sequence of numerical solutions, uh , on
ΩN × [0,T ]. If the sequence satisfies ρi jk(t) ≥ ε > 0 and Assumption 2.2, then a
subsequence converges weakly to an entropy solution of the Euler equations (1.1).

Proof First, the scheme satisfies the entropy stability condition (2.7), which ensures
that a weak solution is also an entropy solution.

Multiplying (2.2) by test functionsφ ∈ D(Q) (projected onto the grid) it is straight-
forward tomove the spatial differences onto the test function using summation by parts
and periodicity.

∫ T

0

N∑
i jk=1

h3
(
(φi jk)tui jk+(Dx+φi jk)f1i+1/2 jk+(Dy

+φi jk)f2i j+1/2k+(Dz+φi jk)f3i jk+1/2

)
dt

+ h3
N∑

i jk=1

φi jk(0)u
h,0
i jk = 0. (2.22)

Equation (2.22) will converge to (1.3) in a distributional sense, if uh, fmi jk are (at

least) equi-integrable and the fluxes f i (uh) ⇀ f i (u). By Proposition 2.1 uh ∈
C(0,T ; L2(ΩN )) and a subsequence will converge weakly. The fluxes are equi-
integrable by Lemma 2.5 and a subsequence converges in L1(Q). Finally, by
Proposition 2.2, we have f i (uh) ⇀ f i (u) and we conclude that the limit is a weak
solution. ��
We make a few remarks on the implications of this theorem.

– Equation (1.1) is satisfied in D ′(Q) but uh will converge weakly in L2 (and L1).
– In smooth regions, i.e, where the solution is differentiable, the effect of the artificial
diffusion will vanish as h → 0.
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– While the thermodynamic variables remain positive till any finite time, the scheme
can not preclude the appearance of large vacuum regions. Nevertheless, the numer-
ical solution, uh , will remain bounded but the velocities and temperature may not
be bounded.Under such circumstances, {uh}may not approximate aweak solution.

– It is possible to relax the scheme to the standard local Lax–Friedrichs by setting
δ = 0. We only need to use (2.11) for sequences with ρ, T ≥ constant > 0, since
it is only for such sequences we are able to prove convergence to weak solutions.
Moreover, for such sequences, we have an estimate (2.11) with

√
Tmin in place of

δ. (The minimum of the speed of sound.)

We also note that Lax–Friedrichs scheme is not the only scheme satisfying estimates
like the ones derived above (excluding positivity). All entropy stable schemes do. (See
[9] for a definition of entropy stability.) These include entropy-fixedRoe,Godunov and
others. There are also several examples of high-order entropy stable schemes, which
have wider stencils and are usually less diffusive. It is a non-trivial task to prove that
the estimates at hand are sufficient for convergence of more complicated numerical
fluxes. In general, convergence can not be assumed based on the estimates alone.

3 Kelvin–Helmholtz problem

As an example of entropy solutions obtainedwith Lax–Friedrichs scheme,we consider
a Kelvin–Helmholtz problem. (Here, we use δ = 0.) This problem was proposed in
[4] as a sensitive test case for the Euler equations, and we have used the same set-up.
The initial conditions are given by

u0 =
{

u1 if 0.25 < y < 0.75

u2 if y ≤ 0.25 or y ≥ 0.75
(3.1)

where u1 and u2 are the conservative variables obtained from the states: ρ1 = 2
and ρ2 = 1; u1 = −0.5 + ε sin(2πx) and u2 = 0.5 + ε sin(2πx); v1 = v2 =
0 + ε sin(2πy); p1 = p2 = 2.5. With ε = 0, u0 is a steady state solution of the
Euler equations. To trip the instability and obtain a time dependent solution we set
ε = 0.1. This will produce the familiar Kelvin–Helmholtz swirls. In the presence of
shear stress (i.e. with the Navier-Stokes equations), these swirls usually break up in
smaller vortices and the flow may even become turbulent. Without any shear stress
(the Euler equations), the swirls roll up as vortex sheets.

The results from running Lax–Friedrichs scheme (with Euler-forward in time) till
T = 2 are shown in Table 1. We present the L1 norms of ρu and ρv. The L2-norm
values are given for ρ and E since the L1 norms are constant (too machine precision)
thanks to positivity and conservation. Furthermore, we tabulate the L1-differences of
the variables on consecutive grids. Upon convergence, these values should approach 0.

As seen in Table 1, the L1-/L2-norms of the variables are converging. The differ-
ences are also decreasing and form Cauchy sequences. The only deviance is in ρv

where there is a large decrease between 20482 and 40962 followed by a slight increase
(81922) and a substantial decrease to the finest grid (163842). It is not unexpected
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Table 1 L2/L1-norm values of variables and L1-differences between two consecutive refinements

N ρ E ρu ρv

L2 L1-diff L2 L1-diff L1 L1-diff L1 L1-diff

512 1.5557 – 6.4488 –

1024 1.5637 0.076 6.4521 0.13 0.5651 – 0.09254 –

2048 1.5706 0.070 6.4573 0.10 0.5818 0.067 0.1329 0.058

4096 1.5756 0.052 6.4602 0.052 0.5886 0.036 0.1790 0.021

8192 1.5802 0.040 6.4629 0.051 0.5959 0.023 0.1858 0.024

16384 1.5842 0.038 6.4653 0.045 0.6034 0.022 0.1876 0.016

that the sequence is not perfectly decreasing since there is dynamics in between the
variables. Nevertheless, it should be clear that the simulations indicate convergence.

In Fig. 1, the solutions on the sequence of grids are shown. Finer structures appear
on finer grids and the large structures become better resolved. We also see the roll-up
of the vortex sheets.

Remark 3.1 For smooth solutions, the convergence of Lax–Friedrichs should be 1
(based on linear theory). In Table 1, the convergence is less than 1, but the solution is
non-smooth. The theory in this paper does not predict convergence rates, which could
be very slow. However, if the convergence were to stall on a finer grid, at least one
of the two assumptions must have failed. That is, the solution would have to start to
develop a vacuum not noticed on the existing grids, or begin to oscillate wildly in time.

Next, we investigate the behaviour as ε → 0. We compute numerical solutions uh
ε

till T = 2 for a decreasing sequence of ε values. With ε = 0, we should expect to
see u0 unchanged in time since it is a steady state solution. In Table 2 the L1 and L2

differences between uh
ε and u0 are listed.

The first part of Table 2 shows the sequence of errors as ε decreases, computed on a
grid with N 2 = 10242 grid points. We note that the errors decrease towards 0, as they
should, but they do not reach 0 when ε = 0. The reason is that the artificial viscosity
diffuses the discontinuity and introduces an error proportional to the grid size. Hence,
we should see a further reduction of the error if the resolution is increased. Indeed,
that is the case. The discontinuity becomes sharper, as depicted in Fig. 2, and we see
in the last two rows of Table 2 that the error continues to decrease towards zero.

Our numerical results for theKelvin–Helmholtz problem contradict those presented
in [4], where numerical solutions were generated by an entropy-stable high-order
ENO scheme (termed TeCNO). Their solutions were “turbulent-like” in that smaller
and smaller, seemingly random, vortices were introduced on finer grids. Similarly,
they report that there is no convergence to the steady state solution when the initial
perturbation vanish.

In this regard, we remark that the Kelvin–Helmholtz roll-ups generated by the
standard Lax–Friedrichs scheme are well-known and observed both in nature and
experiments. Furthermore, it seems reasonable that in the ideal case of no physical
viscosity, and no initial perturbation, the Kelvin–Helmholtz instability would not be
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2 2

2 2

2

(a) 512 (b) 1024

(c) 2048 (d) 4096

(e) 8192 (f) 163842

Fig. 1 Figures of density at T = 2.0 on different grids. ε = 0.1

tripped. (The sheets of fluid would simply slip by each other as is the case in the
Lax–Friedrichs solution.)

A few properties of the Lax–Friedrichs scheme are: it is locally diffusive; the stencil
does not change between points; the scheme is everywhere linearly stable. As a sim-
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2(a) 2048 (b) 40962

Fig. 2 Figures of density at T = 2.0 on different grids with ε = 0

Table 2 ε-convergence
measured in ρ. Difference
between steady state solution
and numerical solution at
T = 2

N ε L1 L2

1024 0.1 0.205 0.344

1024 0.01 0.0922 0.166

1024 0.0 0.0898 0.160

2048 0.0 0.0644 0.135

4096 0.0 0.0431 0.1039

ple test of the influence of the diffusive terms, the Kelvin–Helmholtz problem (with
perturbation) was run with the same code but with a smaller diffusion coefficient. All
simulations remained stable and positive but when the diffusion was about an order
of magnitude less than the standard Lax–Friedrichs, roll-ups on smaller scales grows,
creating a “turbulent-like” behavior. Hence, it appears that the level of diffusion deter-
mineswhether or not unresolvednumerical noise is dampedor if theKelvin–Helmholtz
instability is allowed to amplify the perturbation.

4 Conclusions

We have shown that in the regime where the Euler equations constitute a valid
physical model, there exists (weak) entropy solutions for possibly large but appro-
priately bounded initial data. This was accomplished by using the standard local
Lax–Friedrichs scheme, which has the following key features:

– It always produces a numerical solution to any finite time T .
– If, and this condition can be examined a posteriori, the density remains bounded
away from 0, the scheme is convergent to a weak solution.
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– The scheme is entropy stable for all entropies and the approximated weak solution
is an entropy solution.

We have already stressed the importance of the second point but emphasize it again.
We do not use positivity as an a priori assumption. It is only used to determine whether
or not a weak solution has been recovered. If vacuum occurs, we do not get a weak
solution but even IF a weak solution exists, it would not model physics since the Euler
equations do not constitute a valid model for vacuum. So from amodeling perspective,
this a posteriori examination should anyway be carried out.

In Sect. 3, we presented numerical results for a Kelvin–Helmholtz problem,
obtained with the Lax–Friedrichs scheme. We observed strong convergence in L1.
Furthermore, we demonstrated that the steady state solution is recovered when the
perturbation ε → 0 and the grid is refined. In summary, the numerical experiments
corroborate the theoretical findings.
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