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Abstract In this paper, we study a triple-parameter modified SSOR (TMSSOR)
method for solving singular saddle point problems. We prove the semi-convergence
of the TMSSOR method under suitable restrictions on the iteration parameters, and
obtain the local optimal parameters which minimize the pseudo-spectral radii of the
associated iteration matrices. Finally, numerical experiments demonstrate the effec-
tiveness of the TMSSOR method for solving singular saddle point problems.
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1 Introduction

We consider the iterative solutions of a consistent linear system with the following
form:
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(B DO-() o

where A € R™*™ is positive real, i.e., v Av > 0, for any nonzerov € R™, B € R™*"
is rank-deficient, i.e., rank(B) < nand b € R™,q € R" withm > n. We use BT and
B* to denote the transpose and the conjugate transpose of the matrix B, respectively.
Linear system (1.1) is often referred to a saddle point problem, which is important and
arises in a wide variety of scientific and engineering applications such as computational
fluid dynamics, optimization, optimal control, constrained least-squares problems, and
so on, see [1,6,7,9,12,13]. For a wider class of (generalized) saddle point problems,
the readers can refer to [10,14,15,17,18,20-22].

In the case of A being symmetric positive definite and B being of full column
rank, a number of efficient iteration methods as well as their numerical properties
have been studied. Bai et al. [3—7] proposed Hermitian and skew-Hermitian splitting
(HSS) iteration method and developed it to solving standard and generalized saddle
point problems. Golub et al. [21] presented SOR-like methods for solving the linear
system (1.1). Bai et al. [9,10] developed SOR-like methods, and presented the gen-
eralized SOR method and the parameterized inexact Uzawa method. Wu et al. [26]
proposed the modified symmetric SOR (MSSOR) method. Recently, Najari Saberi and
Edalatpanah [24] proposed a triple-parameter modified SSOR (TMSSOR) method for
solving saddle point problems based on a new splitting and new relaxation parameters.

In the linear system (1.1), when B is rank-deficient, then the coefficient matrix is
singular, and we call the linear system (1.1) a singular saddle point problem. Some
iteration methods and preconditioning techniques for solving singular saddle point
problems are proposed in the recent literature, see, e.g., [2,16,23,27,28,30,31]. Zheng
et al. [30] applied parameterized Uzawa methods to solve singular saddle point prob-
lems. Li and Huang [23] investigated the semi-convergence of the generalized SSOR
methods. Bai et al. [8,22] studied constraint preconditioners, and for non-Hermitian
singular saddle point problems, Zhang and Shen [28] provided some constraint pre-
conditioners to accelerate GMRES. In this paper, we study the TMSSOR method for
solving singular saddle point problems.

The rest of this paper is organized as follows. In Sect. 2, we present the TMSSOR
method for solving the singular saddle point problem (1.1). In Sect. 3, we demonstrate
the semi-convergence of this new method. In Sect. 4, we give the local optimal parame-
ters of the TMSSOR method under certain restrictions on the parameters involved. In
Sect. 5, several numerical experiments are given to show the efficiency of the method.
Finally, conclusions are made for this paper in Sect. 6.

2 The triple-parameter modified SSOR method

For solving the singular saddle point problem (1.1), we make the following matrix

splitting [24]
A B
(—BT 0):D—L—U 2.1
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where

_(BA O (0 0 _((B-DA B
= (5 0) = (o ae) = (" 0 Zh0)

0 € R™ is symmetric positive definite, and «, 8 are two real parameters. Let ¢ =
b, —¢"HT and z9 = ()T, (y)T)T be the i-th approximate solution to (1.1).
We compute the approximate solution z+1 as follows.

1 .
Z(’+z) =Lypoi” +o(D—wl) e (2.2)
. il
0D = Ua,ﬁ,wz(”z) +w(D - wU) ¢ (2.3)
where

La,ﬁ,w = (D - O)L)il[(l —w)D + oU]

w [
(I—E)Im —EA B
@B =) oipr Ill_wizQ—IBTA—IB 24)
B — aw) Bl — aw)
Ugpo = (D — 0U)'[(1 —w)D + L]
(1-w)p ’ A-1BO-1BT @ 4
= | Bto—Bw " B+~ po)l-otaw) B+ow—pow
— 07 '8’ In
l—w+aw
(2.5)
Notice

_( BA 0
D-ol = (—a)BT (1—aa))Q)’

_((B+ow—Bw)A wB
D‘“’U—( 0 (1—a)+aw)Q)

Assume that o # 0,1, 8 # 1, w # 0. Since A is positive real and Q is symmetric
positive definite, then we obtain that

det(D — wL) = " (1 — aw)"det (A)det (Q) # 0
and
det(D — wU) = (B + ® — fw)" (1 — @ + aw)"det (A)det (Q) # 0
if and onlly if ,f(l —aw) £ 0, B+ow— o)1l —w+aw) £ 0,8 £ 0, ie.,

0 #10, -, ——, ——
a l—a B—1
TMSSOR method as follows:

. From the above corresponding equations, we obtain the
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29 =Ty 50z + Copo (2.6)

with
Th T
Topo =Unpolapo = (T; TZ) 2.7

Here, Ty g, is the iteration matrix of the TMSSOR iteration, where

Ty = M}m
B+w—Pow
2
_ w (B —w)(2—-w) A-'BO1BT
BB+ w—Bw)(l —w+aw)(l —aw)
Tp=_ C2=® ,-ip
B+w—Pow
37 _
+ o (2 — @) AT'BO7'BTA™'B
BB+ w—Bw)(l —w+aw)(l —aw)
L 0B-0C-0) g
T = B —w+ aw)(l —aw)Q B
209 _
T =1, G 0 'BTA7'B

B — 0+ aw)(l — aw)

and

Copw=w(D —oU) '[(1 =)D+ oLI(D - wL)~! ( b )

—-q
_ b
D_ 1
+ w( wl) (—q)

=w?2-w) (D —-oU) DD - oL)™! (_bq)
=w2 - w)

— A lp— A~'Bo~ BT A p
Bt+w—pBw /3(/3+w—/3a))(1—ww+aw)(l—aw)

AT'BO™ g

* (BFw—pBw)(1 —w+aa))(1—aa1))

—1pT 4—15 _ -1
/S(l—a)+ota))(1—ota))Q BEATD (l—a)—{—zxa))(l—aw)Q a

w

Let
-1
Moo = (a)(2 —w)(D—wU)"'D(D — wL)*‘)

— 1 _ -1 .
==y P ebD (D -0l
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B 1
_w(Z—a))
(B+w— Pw)A ®B
. _ 2
N PO PO pr O T A B 4 (1 - aw)(1 - 0 + a)Q

B B

b

Then Cy g0 = M} —q ), and it is easy to see that the TMSSOR method can

o, B0

also be induced by the splitting
o = Ma,ﬂ,w - (Ma.ﬁ,w - M) = Ma,ﬁ,w - Na,ﬁ,w (28)

and

Ta,ﬂ,w = Moz:g’wNa,ﬂ,w

Obviously, M g, . can be regarded as the preconditioner of the linear system (1.1). It
is easy to see the TMSSOR method (2.6) can be written in the following form:

B(l faa;()z(l_j)c)o+aw) 0 ' [(B~w)BTxV —wBT A By +wBT A~'b—fq]

204D = “ﬂ‘:’a))(f;:)")ﬁw ﬁ“ﬁ:‘;l} o AT B 4 (1)

Y+ — ) 4

2.9)
Evidently, when the relaxed parameters satisfy o = % B = 1, the TMSSOR method
reduces to the MSSOR method [26]; which is also the GMSSOR method when the
two parameters T and o of the GMSSOR method [31] are equal.

3 The semi-convergence of the TMSSOR method

In this section, we discuss the semi-convergence of the TMSSOR method. It is well
known that if 27 is nonsingular, the iteration (2.6) is convergent when the spectral
radius of the iteration matrix is less than 1. When 7 is singular, so / — Ty g, is
singular. Then Ty g ., has an eigenvalue 1, which means its spectral radius cannot be
less than 1. So, for the iteration matrix Ty g ., of the singular linear system (1.1), we
need to introduce its pseudo-spectral radius [11] v(Ty, g,0):

V(Tot,f},a)) =max{|A| : X € G(Ta,ﬂ,w)a A # 1}

If the iteration (2.6) is convergent to a solution of the linear system (1.1), then
we call the iteration (2.6) is semi-convergent. It is known that the iteration (2.6) is
semi-convergent, if and only if the iteration matrix Ty g ., is semi-convergent. The
semi-convergence of the matrix Ty g, can be described as follows [11]:

(a) The elementary divisors of the iteration matrix T g, ., associated withits eigenvalue
A = 1 are linear, i.e., rank(l — Tw,ﬂ’w)2 = rank(l — Ty g,»), or equivalently,
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index(I — Ty g.») = 1, where index(.) denotes the index of the corresponding
matrix;
(b) v(Top0) < 1.

Theorem 3.1 Let Ty, g ., be the iteration matrix of the TMSSOR method with @ # 0, 2.
For any eigenvalue v of QBT A= B, if A satisfies

=D (1 —o+aw) (1 —ao)[(B—w)(1 —w)—r(B+o—wp)] = Ao?2—w)2u1 (3.1)

then, A is an eigenvalue of Ty g . Conversely, for any eigenvalue A of Ty g o, and
there exists |1 which satisfies Eq. (3.1), then  is an eigenvalue of Q7' BT A~!B.

Proof Let A be an eigenvalue of Ty g ., not loss of generality, we assume that A # 0
and z = (xT, y7)T be the corresponding eigenvector. By

e (3) =)

we have
(1—1)(D —wl)z=w@2—w)D(D —wL)™! (_2T ﬁ)) z
Then
B+w—BwA wB
(1_“( 0 (1—w+aw)Q)
A B
z=w2 — w) (@ —B) BT w BT A-'B z

U —aw) Bl —aw)

That is, it holds

(1= (B+w—Pw)—o2—-w)]x=o(+1—wA By (3.2)
A= -w+aw)(l —aw)y — o2 —w)Q 'BTA™'By
=w2-w(w—-B0 'BTx (3.3)
I (1= M)(B +w— o) — 02 — w) = 0, which means 4 = =~ 2P = oy
B+ w—Pw
it is easy to see 1 = 0 is a zero eigenvalue of Q' BT A~! B which satisfies (3.1). If

1— —

A F#E M, then it is easy to see y # 0. Substituting x of (3.2) to the Eq.
B+w—Bw

(3.3), we obtain

(A= B+w—Bw) —o@2—ov)(1 -] -o0+aw)(l —aw)
y=—-10*2 - )0 'BTA" !By
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and

[(1 =22 (B+o—Bw)—02 — 0)(1-V](1 — o+aw)(l — aw)
0?2 — w)?

0 'BTA"'By= y

For A # 0 and @ # 0, 2, by the above equation it is easy to see that u is an eigenvalue
of 0~!BT A=1 B which satisfies (3.1).

Conversely, for any eigenvalue p of 0~ 'BT A~1B, if A satisfies (3.1), then we can
prove similarly that A is an eigenvalue of Ty g ., here omitted. O

(1-—w)(B—w)
B+ w—Pw
# 0, then from Eq. (3.2), it holds A"!By =0

Remark 3.1 From Theorem 3.1, we know that

(I-0)(B -

B+w—pow
for y = 0. Also, we have

is an eigenvalue of

Ty p,0- Infact, if A =

(1 —w+aw)(l —aw)B
B+w—Bw

y—wQ 'BTA'By = (w—B)0 'BTx

Notice B is rank-deficient, then the equation BT x = 0 has nonzero solutions. There-
f (I-w)(B—w)
ore, ———————

B+w—Pow
T, 0THT.

is an eigenvalue of Ty g ., with the corresponding eigenvector

To obtain the semi-convergence conditions of the TMSSOR method, we introduce
some lemmas which will be useful for our discussion.

Lemma 3.1 [9,10] Both roots of the quadratic equation x*> — px +q = 0 are less than
one in modulus if and only if |p — pq| < 1 — |q|?, where P is the complex conjugate
of p.

Lemma 3.2 [31] Let A be positive real, Q be symmetric positive definite and B be
rank-deficient. Then for any nonzero eigenvalue i = pge + ipim of Q~'BT A~ B,
where [Lge and iy, are the real part and imaginary part of u, respectively, and
i=+/—1, it holds jug. > 0.

Theorem 3.2 Let A be positive real, Q be symmetric positive definite and B be rank-
deficient. Then v(Ty g.,) < 1if the following conditions hold:

2
(CI) For w € (0, 1) U (2, 4+00), it holds ﬁ < B, forw e (—o0,0) U (1, 2),
w —
2
it holds p < ———;
2(w — 1)

C2)w2 -0 —aw)(l —w+ aw) > 0;
C3 w2 — w) ’ w2—2a),3+2ﬂ s 2(1 —aw)(1 — w + aw)
( )w2—2a),3+2,3MRE w2 — w) Him = w2 — w)

HRe-
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Proof Making use of Eq. (3.1) and by some algebra, we have

32 [2 02— w) 02 — w)p ]
B+w—PLw (1—aw)(l —w+aw)f+w—Lw)
w2 — w)
xA+l———— =0 3.4)
B+ w—Pw
1 — —
From the above equation, we observe that A = 1 or A = M in the case
B+w—Bw
of w =0, and A # 1 in the case of u # 0.
1— _
Case 1 When A = M, it holds
B+w—pow
2 _
|)\|<1©‘1—M‘<1
B+w—po
02— w)
S0< ——m— <2
B+ow—PBw

Notice when w = 1, the above inequality reduces to 0 < 1 < 2, which holds true
trivially. Excluding w = 1, the above inequality is equivalent to

w2 —-—w)>0 0w2—-—w) <0
B+w—PBw=>0 or B+w—Bw<0 3.5
o2 —-w) <2+ w—Pw) w2—-—w)>2+w— Pw)

By some algebra we have

2 2
O<w<l, ,B>w— w <0, ,3<w—
2(w n 1) or Z(ww; 1) (3.6)
1 2, e 2, —_—
<w< '3<2(a)—1) w > '3>2(a)—1)
ie.,
we (0,1)U (2, +00) w e (—o0,0)U(1,2)
e w? or g < w? 3.7
2(w—1) 2(w — 1)
which means the condition (C1) holds.
1 — _
Case 2 When A # [ M, 1 ], by Lemma 3.1, for the nonzero eigenvalue
B+w—pow
2— 2—
A of Ty g, denote d = A Gl e= @2~ ») . Then it holds

B+w—pw (1 —aw)(l —w+ aw)

1—dl <1

M<1e ‘Z—d—depb—[Z—d—eﬁ][l—d]’+|1_d|2<1

(3.8)
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The first inequality of (3.8) is equivalent to 0 < d < 2, same as in Case 1, we
immediately obtain the condition (C1).
After some algebra, the second inequality of (3.8) is equivalent to

ld[2—d+e[0-dr—pn]]] <1-11-d? & |[d[2—d+e[(1 —d)i — u]]|
<d(2—d)

Notice 0 < d < 2, u = ftge + it ,. Then the above inequality is equivalent to

R—d+el(l—dp—pull<2—d & |2—d—elduge +i2 —d)uml| <2—d
& [2—d —edpgel’ + e @~ d) prnl®
<2 -d)?

which is also equivalent to
[deptrel® + 12 —d) eprm]) < 2d 2 = d) epee (3.9)

By Lemma 3.2, we have ug, > 0, and together with 0 < d < 2, it is easy to see
w2 — w)

T a0 -o+aw)
(C2).

After some algebra, the inequality (3.9) can be simplified as

e > 0 from (3.9), which is equivalent to the condition

d 2—d , 1

mﬂ%ee T i < 2 HRe
ie.,
w2 — w) , @ —2wB+28 , (1 —aw)(l — o+ aw)
w? — 2wf + 281 ke 02— Hin =<2 02— ) HRe
which is the condition (C3). O

Lemma 3.3 [29] Index(I — Ty p,0) = 1 if and only if, for any 0 # Y € Z(),
Y ¢ N (A My ).

Theorem 3.3 Assume A be positive real and Q be symmetric positive definite, and B
be of rank-deficient. Then index(I — Ty g.») = 1.

_ _( A BY[(zu)_ [(Az+Bzn
O#Y_MX_(_BT 0)(22)_( T, ) (3.10)

By Lemma 3.3, to prove index(I — Ty g ) = 1, it suffices to prove %Ma_,,ls,wy #0,
we give the proof for &/ M ~ly = 0 by contradiction. Suppose &/ M ~Ly =0.

a, B0 o, B0

Notice N () = span [(g) ], where By = 0.

Proof Let

@ Springer
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Then there exists a vector ¢q such that

. 0
Myp Y = ((po) . Bgo=

So
0
Y=M
who (900)
. (B+o—pw)A B
_ _ 2
T wQ2-w) —MBT —%BTA—13+(1—aw)(1—w+aw)Q
()
$0
B 1 0
02 -o0) \(-ao)(l —o+aw)Q¢
(3.1D)
Making use of Egs. (3.10) and (3.11), we have Bgy = —BQ 'BTz; =0. Noticing
0~ is symmetric positive definite, then BT z; = 0, whichmeans gy = —Q BTz =
0. Hence,

0
Y=M =0
o, B0 ((00)

which contradicts with Y # 0, so we reach the conclusion that index(I — T) = 1.
The proof is completed. O

4 The optimal iteration parameters

In this section, we will discuss the optimal iteration parameters and the correspond-
ing optimal semi-convergence factor for the TMSSOR method. Let A € R™*™ and
Q € R™" be symmetric positive definite. Then all the eigenvalues of the matrix
Q~'BTA™!B are real and nonnegative. Denote the smallest and largest nonzero
eigenvalues of the matrix Q’lBTA’lB by Wmin and Wp,ax, respectively. By the
proof of Theorem 3.2, we see that the eigenvalues A of Ty g can be A = 1,
L (=) —w)

i 5 or A can be represented by the following A, Aj:
w— pw

1
}\.](C{, ﬂ»w7 ,LL) = E (f(OC, 1390)’ ,LL) +\/f(06, ﬂ,(l), /'L)z _4g(ﬁa w))

1
)‘-2(“7 ,3’0)’ ,LL) = 5 (f(Ol, ﬂvwv ,LL) - \/f(Ol, ﬂ,a), H’)z - 4g(:3’ Cl)))
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where
_ w2 —w) 0?2 — )i
f b ) =2 = T U —aw)( — o+ aw) B+ o— fo)
L w2 —w)

Consider the following two cases:

1. IfA = f(a, B, w, n)? —4g(B, w) < 0, then

_ 0Q-w) _Ja—ww—w
B+w—Pw B+w—Bw
4.1)
2. If A > 0, then both A1 («, B8, w, ) and A> (e, B, w, ) are real, and it holds

|)‘1(a’ /3,(1), H‘)| = |}‘2(0[v ﬂvwv H‘)| = \/1

Al(a,ﬂ,w,u) lf f(avﬂvwvu)>0

Ma, B, w, 1) = [_)\2(% B.ow, ) if fla,B,o,pu) <0

where A(a, B, w, ) = max {|ri(a, B, @, W), [A2(a, B, @, w)|}. From the Eq. (3.1),

we obtain @ ) a N )
w —w —w —w
)Vl(avﬁ»a)vll’))\‘z(avﬁawau)z1_ﬂ+w_ﬂw: ﬂ—'—a)—ﬂa)

So, it is easy to see

w@—m‘:ﬂa—mw—m @2

W’ﬁ’wz/'l‘m pro—po

Hence, the pseudo-spectral radius of the TMSSOR iteration matrix can be defined by:
V(Ta,ﬂ,a)) = max {)\,(0{, ﬂ’ 0), M)}
0#ues(Q-'BTA-1B)
Denote
)\'l(a’ﬂ’w)z max {l)“l(a’ﬂ9w9u)|}5 l=172
0#pea(Q-1BTA-1B)
Obviously, it holds

V(Ty g,0) = max {1 (a, B, ®), Ma(a, B, w)} (4.3)
2 — 2 —
By Theorem 3.2, it follows that 0 < @ @) < 2, @l @) >0
B+ w—Bw (1 —aw)(l —w+ aw)
which means
0?2 — w)?

>0 4.4)
(1 —-—aw)(l —o+aw)(f+ v — Bw)

From the above equations, it holds |Aj(w, B, )| > |A2(e, B, w)| while A > 0
and f(o, B,w, ) > 0, and |Ax(a, B, w)| > |A1(x, B, w)| while A > 0 and
f(a, B, w, n) <0.So, we have
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M Bw) = § | (@ B, i) + v/ F (@ Bro tnin)® = 4B )
1
2

Ja(@, B 0) = 1 [ £ B0, tman) + /T @ B0, mar) — 486, ) |
4.5)
Now we consider the optimal parameters which minimize the pseudo-spectral radius
of the iteration matrix Ty g .. Generally, it is very difficult to determine the global
optimal parameters of the TMSSOR method. So, here, we consider a special case and
discuss the local optimal parameters, that is, we assume the three parameters satisfying

w2 — w)

Remark 4.1 By Egs. (4.1) and (4.2), it is easy to see, to investigate the optimal
parameters which minimize v(7y g,»), it suffices to consider the case of A =
fla, B, w, M)z —4g(B, w) > 0. So, from now on, we always assume A > 0.

Notice

wa(2 — w)
(1 —aw)(l —w+ aw)

>0

Then it is easy to see there exist two variables p; and u; satisfying the following
equations:

oo (2 — w)pu B —
R Py s —2J/T—«a (4.7)
I C )V 2T —« (4.8)

(1 —ao)(l —o+aw)

where 0 < p1 < up, furthermore, by (4.5), it is easy to see (1, U2 € [Umin> Kmax]-

Actually, if 11 < Wmin OF imax < H2,then —24/1 —a < f(o, B, 0, ) < 2+/1 — «,
which leads to A < 0. So it is in contradiction with A > 0.
From (4.7) and (4.8), by some algebra, it holds

L Wm - )’ wo
(Vi1 + J12)? '
w2 —w) _ 1 4.10)
(I-ao)(1l-w+aw) Juip
So, f(a, B, w, 1) can be rewritten as
2 -2
Flan oo, p) = WA M2~ 200 @.11)

T (VR J2)?
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Substituting f (¢, B, w, u) to (4.5), therefore, we have

(«/MZ — Mmin + «/ﬂl - //Lmin)2

)"l(a, ﬂ, (1)) = >
WL Vi) 4.12)
2 .
M(a, B, w) = (VHmax — W1+ v/ Hmax — 12)
. (VAT + P

For convenience, let A1 («, 8, ®) = A1(u1, w2), and o (o, B, w) = Ao(u, np). Itis
easy to see that the following results hold true.

A(prs p2) = Aoy, p2) it + w2 = tinax + Mmin,
A(ur, o) > Ao, m2) it g + w2 > wmax + Mmin, (4.13)
Ar(ur, n2) < Aa(py, p2) if m1+ w2 < Umax + Hmin-

Then by Eqgs. (4.3) and (4.13), it holds

Ar(pn, 12) if w1+ 12 > Wmax + Mmin
v(T, = . 4.14
( a,ﬂ,w) [)»2(#1, /LQ) lf M1+ K2 < Wmax + Umin ( )

By some algebra, it holds that

(11, 12) 2= Momin /10— fmin /BT + Hamin =~/ (1 = Pomin) (2 = Bomin)

our N(OENIT ' Vi Gt = pomin) (1T + /102)?
oA (pr, m2) —_ \/H«max — M1 +\/Mmax — M2 «/ILIMZ"'Mmax _\/(Mmax — 1) (Mmax — 12)
i NG Vi1 (Wmax =) (VT +/112)?

Hence, we have

A1 (p1, n2) A2 (i1, (H2)
—_—— >0, ———~ <0
o1 o
In the same way, we obtain
oA (pr, 12) A2 (1, H2)
— >0, —= <0
Y% 2

We now declare that v(7y g,,,) has no minimum when ©y + 12 # Wmin + Mmax-
Observe the following two cases:

1. Assume v(Ty,g,») has minimum at w1 + U2 < fmin + Mmax- By (4.14), it holds
that v(Ty, g,0) = A2(it1, 2). Let & = Wmin + Wmax — 2. Then, 1 < . By the
monotone property of the function Ao (11, 2), we have Ao (L1, 12) > Az (i, 12),
which contradicts the assumption.

2. Assume v(Ty,g,») has minimum at (1 + (2 > Umin + Wmax- By (4.14), it holds
that v(Ty,g,0) = A1 (i1, 12). Let & = Wmin + Wmax — 2. Then, py > 1. By the
monotone property of the function Aq (i1, w2), we have Ay (uq, n2) > A1 (i, w2),
which also contradicts the assumption.
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So v(Ty,p,») may have minimum only at (41 + 2 = fmin + Mmax-
Now we give the local optimal parameters and the corresponding optimal convergence
factor of the TMSSOR method by follows.

Theorem 4.1 Let A and Q be symmetric positive definite, and B be rank-deficient.
Assume Eq. (4.6) is satisfied. Then the optimal parameters of the TMSSOR method
are given by

4/ Womax Bomin
(VHmax + /Tomin)?’
(Tomax 4 /Homin) > @opt (2 — @opt) — 4@opi o/ Fomax omin “.15)
4 /Bemax Homin (1 — @opr) '

Qopt =

lgopt =
Wopy 1S the root of the equation

2V, Wmax Wmin(a1 + 4ay — 16\/ ,bLmin,bLmax)a)2 —(I+ 2\/ Wmax Wmin)a1w +a; =0

where

a) = (\/ Hmax + V/‘Lmin)4v a = (\/ Mmax — \/I'Lmin)2
Furthermore, the corresponding optimal semi-convergence factor of the TMSSOR

method is
v Mmax — A/ Mmin
Optaﬁopt,wopt) e — (416)
~/ Hmax + A/ Mmin

Proof From the above analysis, we know that v(7y, g,,,) may have minimum only at
W1+ 12 = min + Mmax- When g + 12 = tmin + fmax, from (4.13) and (4.14), it
holds

min v(Ty,g,0) = v(Ty
o, B0

V(To,B,0) = M (11, t2) = A2 (U1, u2)

Mmax — Wmin + 2\/_//‘% + (Wmin + Wmax) 41 — Hamin Kmax

Hmin + Hmax + 2\/_11/% + (Wmin + Mmax) 41

By the technique in [19], let r = —,u% + (Wmin + Wmax) 1 = WminMmax and define

Mmax — Mmin + 2T — Wminmax
Kmin + Kmax + 2\/;

8(r) =v(Tup0) =

It is easy to see that g(r) has minimum at 7 = nin max, Which means that v(Ty, g,«)

has minimum N Hmax = N/ Hmin at (1 = Upmin and w2 = Wmax- By Eqgs. (4.6), (4.9),
N Hmax + A/ Mmin
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(4.10) and together with w1 = min, U2 = Umax, after some simple algebra, we
obtain the following optimal parameters:

(VHmax + /Tomin)?’
(Tomax 4 /Fomin) > @opt (2 — @opt) — 4@ opi o/ Fomax min
4/ Bemax Homin (1 — @opr)

and w,); is the root of the equation

Qopt =

ﬂopt =

Y Mmax Mmin (a1 + 4az — 16\/ ,Uvminluvmax)w2 -1+ ZV MmaxMmin)a1® +ap =0
where a) = (»\/ Kmax + +/ Mmin)4’ ay = (\/ Mmax — «/ Mmin)z' O

Remark 4.2 Theorem 4.1 shows that the TMSSOR method has the same asymptotic
convergence rate as the GSOR method [9] at their own optimal points of the iteration
parameters. Otherwise, these two methods may exhibit different convergence behavior.
The GSOR method has less computational cost per iteration, so, the GSOR method is
more effective in practical applications.

5 Numerical experiments

In this section, some numerical experiments are given to compare the performance of
the TMSSOR method with GSOR, MSSOR, MSSOR-like [25], GMSSOR methods.
We denote the number of iteration steps by 17, elapsed CPU time in seconds by C PU
and the norm of residual vectors by RE' S, respectively.

All the computations are implemented in MATLAB 7.0.19920 (R14) on a PC
computer with a 1.86GHz 64-bit processor and 2GB memory. In actual computations,
we choose the right-hand vector (b7, —g7)T € R™*" such that the exact solution of
the augmented linear system (1.1) is ((x*)7, ()1)T = (1,1,..., DT € R™*" and
all runs are started from the initial vector ((x)")T, (y)"HT = (0,0,...,0)7 e
R™*"_The stopping criterion is taken when the current iteration satisfies RES < 1079,
where

JlIb = Ax® — By®|Z +lg — BTx®|3
RES =

Jlib = Ax© — ByOIZ 1 |ig — BTxO|3
with (x®)T | (y®0)THT being the final approximate solution.
Example 5.1 Consider the Oseen equation:

—vAp+ (- Vu+Vp=f inf2

-V-u=0, in £2 5.1)
V-w=0.
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where £2 is an open bounded domain in R? or R3, the vector field W represents the
velocity in £2, p denotes pressure, and the scalar v is the viscosity, which is inversely
proportional to the Reynolds number. The test problem is a leaky two-dimensional
lid-driven cavity problem in the square domain: 2 = (0 < x < ;0 <y < 1),
where u = (i, v)T denotes the velocity field, and @ = (a, b)” denotes the wind.
The boundary conditions are 4 = v = 0 on the three walls (x =0,y = 0,x = 1),
and . = 1,v = 0 on the moving wall(y = 1). We take constant “wind” a =
1, b = 2. To discretize (5.1), we use the “market and cell’(MAC) finite difference
scheme [20]. Divide £2 into a uniform / x / grid of cells of width i = % The discrete
velocities and pressures are defined on a staggered grid in which the discrete values
of w lie in the centers of the cell boundaries orthogonal to the x — axis, the discrete
values of v lie in center boundaries orthogonal to the y — axis, and the discrete
pressures lie in the cell centers. Then we obtain the matrix representation of the Oseen

equations (5.1):
A BY(n)_(f
(o o) (5)=(0) 6

with the matrix blocks of the following form:

A (1;1 I? e RAU-DX2U=1) g _ (B, By) e RAI-DxI*,
2

F; = vA; + N; e RIU=DxIU=D G = 1 2). For convenience, let m = 2[(I —
1), n = [? in this example, and A is positive real, rank(B) = I> — 1. 4 (B) =
spanfe,}, e, = (1,1,...,1)T € R". To ensure the (1,1)-block matrix symmetric
positive definite, finally we take the test coefficient matrix as follows:

(% 0")

where A = %(A + AT). For the preconditioner of the TMSSOR method, notice

—1
Ma,ﬁ,a)
- a)2 - - -
(l1—w+aw)(1—aw)A'——A"1BO"'BTA"! —wA~'BQ™!

=1
o(fto—Ppw) - _
TQ 'BTA™! (B+w— pw)Q~!

2— _
and ¢ Gl . We compute the A~!, 0~ in

T B4 ow—Bo)] —w+aw)(l —aw)
M, }3 » Dy the incomplete LU factorization with drop tolerance 0.001. We take the
viscosity v = 0.5 in our experiments and choose the matrix Q by Table 1. For this
example, here we consider the following four cases when 1 = 8, 1 = 16, 1 = 24 and

1=32.

In Fig. 1, we choose Q as Case Il in Table 1, and we display the distribution on the

eigenvalues of matrix %7 and the matrices M, }3 < for different iteration parameters.
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Fig. 1 The distribution of the eigenvalues of &/ and M, B0

o/ with different parameters. a The
distribution of the eigenvalues of </. b The distribution of the eigenvalues of M, }3 @ with

w = 0426, = 0.952,8 = 0.485,] = 8. ¢ The distribution of the eigenvalues of M(;}S wmathscrA

withw = 0477, = 0.916,8 = 0.604,/ = 16.d The distribution of the eigenvalues of M(;/]3 wﬂf

withw = 0.501, ¢ = 0.898,8 = 0.671,/ = 24

:?thhle 1 Choices of matrix Q, Case no. Matrix Q Description

A —_ DN T 3—1 T —~ —~ _

Q = Diag(B" A" B, B' B) I tridiag(Q) A = tridiag(A)
il 0 A = diag(A)
i 0 A=A

We find that the eigenvalues of the preconditioned matrices are quite clustered. In
Tables 2, 3, 4 and 5, we choose Q as Case III in Table 1, and we present the numer-
ical results for the different iteration methods, both as solvers and preconditioners to
accelerate the restarted GMRES(k). In Table 6, we choose Q as Case I and Case II in
Table 1, respectively, and we list the optimal parameters and the corresponding optimal
convergence factors of the different iteration methods. When the optimal parameters
are employed, it reveals that the TMSSOR method is effective, especially it has the
smallest number of iterations.
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Table 2 Numerical results for
Case IIl with1=8

Table 3 Numerical results for
Case IIT with 1 = 16

Table 4 Numerical results for
Case IIT with 1 =24

Table 5 Numerical results for
Case Il with 1 =32

@ Springer

Iteration method CPU(s) IT RES x 1077
GSOR 0.239 43 8.0632
MSSOR 0.218 22 2.9920
GMSSOR 0.220 18 2.6041
TMSSOR 0.262 9 9.2353
GSOR-GMRES(18) 4257 31 7.6343
MSSOR-GMRES(18) 7.546 28 8.8796
GMSSOR-GMRES(18) 2319 27 2.7786
TMSSOR-GMRES(18) 1.030 10 4.4938
Iteration method CPU(s) IT RES x 1077
GSOR 0.816 47 9.8942
MSSOR 0.940 30 8.8023
GMSSOR 1.029 30 1.4462
TMSSOR 0.889 14 9.1427
GSOR-GMRES(18) 9.789 58 7.5641
MSSOR-GMRES(18) 10.570 56 6.5821
GMSSOR-GMRES(18) 21.487 34 5.1137
TMSSOR-GMRES(18) 8.424 14 7.8347
Iteration method CPU(s) 1T RES x 1077
GSOR 2.757 55 9.0771
MSSOR 5.879 38 3.0635
GMSSOR 6.336 43 2.1824
TMSSOR 5.869 15 6.5279
GSOR-GMRES(18) 26.607 40 6.2180
MSSOR-GMRES(18) 28.745 38 5.5814
GMSSOR-GMRES(18) 76.571 25 4.4692
TMSSOR-GMRES(18) 27.534 9 7.0937
Iteration method CPU(s) 1T RES x 1077
GSOR 8.545 59 8.5286
MSSOR 20.891 40 2.2858
GMSSOR 22.121 46 77115
TMSSOR 21.068 18 6.4050
GSOR-GMRES(18) 40.368 39 6.8921
MSSOR-GMRES(18) 43.056 31 45180
GMSSOR-GMRES(18) 76.571 25 4.4692
TMSSOR-GMRES(18) 92.758 10 5.5695
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Table 6 Numerical results for Case I and Case II

m 112 480 1104 1984
n 64 256 576 1024
m+n 176 736 1680 3008
Case 1 GSOR Wopt 0.9479 0.8876 0.7175 0.6966
Topt 1.0833 1.2018 1.1217 1.0793
Popt 0.2193 0.2889 0.3188 0.3367
IT 16 19 21 22
CPU 0.187 0.609 2.246 7.893
RES(1077) 4.8260 7.6412 4.4871 7.7860
GMSSOR Wopt 0.8412 0.7512 0.7212 0.7542
Topt 0.4476 0.5040 0.5255 0.5112
Popt 0.2192 0.2888 0.3188 0.3367
IT 14 18 20 21
CPU 0.223 0.750 5.105 18.186
RES(1077) 5.2579 8.3271 7.1346 5.8310
TMSSOR Wopt 0.4264 0.4777 0.5014 0.5156
QAopt 0.9520 0.9166 0.8983 0.8866
Bopt 0.4854 0.6044 0.6719 0.7177
Popt 0.2192 0.2888 0.3188 0.3367
IT 10 12 13 14
CPU 0.502 0.772 5.116 18.109
RES(1077) 3.0544 5.3608 6.0118 4.2216
Case II GSOR Wopt 0.7050 0.4035 0.3247 0.8709
Topt 0.5159 0.3124 0.1940 0.4132
Popt 0.3871 0.4012 0.0946 0.2382
IT 45 55 117 396
CPU 0.281 0.733 3.807 17.674
RES(1077) 8.4118 8.0730 9.7845 9.7643
GMSSOR Wopt 0.6029 0.5788 0.4454 0.4518
Topt 0.4516 0.5569 0.4175 0.4134
Popt 0.3871 0.4012 0.0946 0.2382
IT 14 15 22 20
CPU 0.214 0.872 5.783 20.085
RES(1077) 5.4172 5.6036 5.1872 8.9884
TMSSOR Wopt 0.4380 0.5322 0.4061 0.3974
Qopt 0.8502 0.8390 0.9910 0.9543
Bopt 0.6526 0.8526 0.4159 0.4609
Popt 0.3871 0.4012 0.0946 0.2382
IT 12 13 21 32
CPU 0.224 0.768 5.812 19.688
RES(1077) 5.1851 2.8272 7.4531 9.6766
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6 Conclusion

In this paper, we propose a triple-parameter modified SSOR iteration method to solve
a class of large sparse singular saddle point problems. We prove the semi-convergence
of the TMSSOR method under suitable restrictions on the iteration parameters, and
obtain the local optimal parameters which minimize the pseudo-spectral radii of the
associated iteration matrices, as for the global optimal parameters, it still needs further
studies.

Acknowledgments The authors are grateful to the referees and the editor for their very detailed comments
and suggestions, which significantly improved this paper.
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