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Abstract In this paper, we study a triple-parameter modified SSOR (TMSSOR)
method for solving singular saddle point problems. We prove the semi-convergence
of the TMSSOR method under suitable restrictions on the iteration parameters, and
obtain the local optimal parameters which minimize the pseudo-spectral radii of the
associated iteration matrices. Finally, numerical experiments demonstrate the effec-
tiveness of the TMSSOR method for solving singular saddle point problems.
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1 Introduction

We consider the iterative solutions of a consistent linear system with the following
form:
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AX =
(

A B
−BT 0

) (
x
y

)
=

(
b

−q

)
(1.1)

where A ∈ Rm×m is positive real, i.e., vT Av > 0, for any nonzero v ∈ Rm , B ∈ Rm×n

is rank-deficient, i.e., rank(B) < n and b ∈ Rm , q ∈ Rn with m ≥ n. We use BT and
B∗ to denote the transpose and the conjugate transpose of the matrix B, respectively.
Linear system (1.1) is often referred to a saddle point problem, which is important and
arises in awide variety of scientific and engineering applications such as computational
fluid dynamics, optimization, optimal control, constrained least-squares problems, and
so on, see [1,6,7,9,12,13]. For a wider class of (generalized) saddle point problems,
the readers can refer to [10,14,15,17,18,20–22].

In the case of A being symmetric positive definite and B being of full column
rank, a number of efficient iteration methods as well as their numerical properties
have been studied. Bai et al. [3–7] proposed Hermitian and skew-Hermitian splitting
(HSS) iteration method and developed it to solving standard and generalized saddle
point problems. Golub et al. [21] presented SOR-like methods for solving the linear
system (1.1). Bai et al. [9,10] developed SOR-like methods, and presented the gen-
eralized SOR method and the parameterized inexact Uzawa method. Wu et al. [26]
proposed themodified symmetric SOR (MSSOR)method. Recently, Najari Saberi and
Edalatpanah [24] proposed a triple-parameter modified SSOR (TMSSOR) method for
solving saddle point problems based on a new splitting and new relaxation parameters.

In the linear system (1.1), when B is rank-deficient, then the coefficient matrix is
singular, and we call the linear system (1.1) a singular saddle point problem. Some
iteration methods and preconditioning techniques for solving singular saddle point
problems are proposed in the recent literature, see, e.g., [2,16,23,27,28,30,31]. Zheng
et al. [30] applied parameterized Uzawa methods to solve singular saddle point prob-
lems. Li and Huang [23] investigated the semi-convergence of the generalized SSOR
methods. Bai et al. [8,22] studied constraint preconditioners, and for non-Hermitian
singular saddle point problems, Zhang and Shen [28] provided some constraint pre-
conditioners to accelerate GMRES. In this paper, we study the TMSSOR method for
solving singular saddle point problems.

The rest of this paper is organized as follows. In Sect. 2, we present the TMSSOR
method for solving the singular saddle point problem (1.1). In Sect. 3, we demonstrate
the semi-convergence of this newmethod. In Sect. 4, we give the local optimal parame-
ters of the TMSSOR method under certain restrictions on the parameters involved. In
Sect. 5, several numerical experiments are given to show the efficiency of the method.
Finally, conclusions are made for this paper in Sect. 6.

2 The triple-parameter modified SSOR method

For solving the singular saddle point problem (1.1), we make the following matrix
splitting [24] (

A B
−BT 0

)
= D − L −U (2.1)
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where

D =
(

βA 0
0 Q

)
, L =

(
0 0
BT αQ

)
, U =

(
(β − 1)A −B

0 (1 − α)Q

)

Q ∈ Rn×n is symmetric positive definite, and α, β are two real parameters. Let c =
(bT ,−qT )T and z(i) = ((x (i))T , (y(i))T )T be the i-th approximate solution to (1.1).

We compute the approximate solution z(i+1) as follows.

z

(
i+ 1

2

)
= Lα,β,ωz

(i) + ω(D − ωL)−1c (2.2)

z(i+1) = Uα,β,ωz

(
i+ 1

2

)
+ ω(D − ωU )−1c (2.3)

where

Lα,β,ω = (D − ωL)−1[(1 − ω)D + ωU ]

=
⎛
⎜⎝

(1 − ω

β
)Im −ω

β
A−1B

ω(β − ω)

β(1 − αω)
Q−1BT In − ω2

β(1 − αω)
Q−1BT A−1B

⎞
⎟⎠ (2.4)

Uα,β,ω = (D − ωU )−1[(1 − ω)D + ωL]

=
⎛
⎜⎝

(1−ω)β

β+ω−βω
Im− ω2

(β + ω − βω)(1−ω+αω)
A−1BQ−1BT − ω

β+ω−βω
A−1B

ω

1−ω+αω
Q−1BT In

⎞
⎟⎠

(2.5)

Notice

D − ωL =
(

βA 0
−ωBT (1 − αω)Q

)
,

D − ωU =
(

(β + ω − βω)A ωB
0 (1 − ω + αω)Q

)

Assume that α �= 0, 1, β �= 1, ω �= 0. Since A is positive real and Q is symmetric
positive definite, then we obtain that

det (D − ωL) = βm(1 − αω)ndet (A)det (Q) �= 0

and

det (D − ωU ) = (β + ω − βω)m(1 − ω + αω)ndet (A)det (Q) �= 0

if and only if β(1 − αω) �= 0, (β + ω − βω)(1 − ω + αω) �= 0, β �= 0, i.e.,

ω �=
{
0,

1

α
,

1

1 − α
,

β

β − 1

}
. From the above corresponding equations, we obtain the

TMSSOR method as follows:
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z(i+1) = Tα,β,ωz
(i) + Cα,β,ω (2.6)

with

Tα,β,ω = Uα,β,ωLα,β,ω =
(
T11 T12
T21 T22

)
(2.7)

Here, Tα,β,ω is the iteration matrix of the TMSSOR iteration, where

T11 = (1 − ω)(β − ω)

β + ω − βω
Im

− ω2(β − ω)(2 − ω)

β(β + ω − βω)(1 − ω + αω)(1 − αω)
A−1BQ−1BT

T12 = − ω(2 − ω)

β + ω − βω
A−1B

+ ω3(2 − ω)

β(β + ω − βω)(1 − ω + αω)(1 − αω)
A−1BQ−1BT A−1B

T21 = ω(β − ω)(2 − ω)

β(1 − ω + αω)(1 − αω)
Q−1BT ,

T22 = In − ω2(2 − ω)

β(1 − ω + αω)(1 − αω)
Q−1BT A−1B

and

Cα,β,ω = ω(D − ωU )−1[(1 − ω)D + ωL](D − ωL)−1
(

b
−q

)

+ ω(D − ωU )−1
(

b
−q

)

= ω(2 − ω)(D − ωU )−1D(D − ωL)−1
(

b
−q

)

= ω(2 − ω)

×

⎛
⎜⎜⎜⎜⎜⎝

1

β+ω−βω
A−1b− ω2

β(β+ω−βω)(1−ω+αω)(1−αω)
A−1BQ−1BT A−1b

+ ω

(β+ω−βω)(1−ω+αω)(1−αω)
A−1BQ−1q

ω

β(1 − ω+αω)(1−αω)
Q−1BT A−1b − 1

(1 − ω + αω)(1 − αω)
Q−1q

⎞
⎟⎟⎟⎟⎟⎠

Let

Mα,β,ω =
(
ω(2 − ω)(D − ωU )−1D(D − ωL)−1

)−1

= 1

ω(2 − ω)
(D − ωL)D−1(D − ωU )
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= 1

ω(2 − ω)

×
⎛
⎝ (β + ω − βω)A ωB

−ω(β + ω − βω)

β
BT −ω2

β
BT A−1B + (1 − αω)(1 − ω + αω)Q

⎞
⎠

Then Cα,β,ω = M−1
α,β,ω

(
b

−q

)
, and it is easy to see that the TMSSOR method can

also be induced by the splitting

A = Mα,β,ω − (Mα,β,ω − A ) = Mα,β,ω − Nα,β,ω (2.8)

and

Tα,β,ω = M−1
α,β,ωNα,β,ω

Obviously, Mα,β,ω can be regarded as the preconditioner of the linear system (1.1). It
is easy to see the TMSSOR method (2.6) can be written in the following form:

⎧⎪⎨
⎪⎩

y(i+1) = y(i)+ ω(2−ω)

β(1−αω)(1−ω+αω)
Q−1[(β−ω)BT x (i)−ωBT A−1By(i)+ωBT A−1b−βq]

x (i+1) = (1−ω)(β−ω)

β+ω−βω
x (i)+ ω(2−ω)

β+ω−βω
A−1b− ω

β+ω−βω
A−1B[y(i+1)+(1−ω)y(i)]

(2.9)
Evidently, when the relaxed parameters satisfy α = 1

2 , β = 1, the TMSSOR method
reduces to the MSSOR method [26]; which is also the GMSSOR method when the
two parameters τ and ω of the GMSSOR method [31] are equal.

3 The semi-convergence of the TMSSOR method

In this section, we discuss the semi-convergence of the TMSSOR method. It is well
known that if A is nonsingular, the iteration (2.6) is convergent when the spectral
radius of the iteration matrix is less than 1. When A is singular, so I − Tα,β,ω is
singular. Then Tα,β,ω has an eigenvalue 1, which means its spectral radius cannot be
less than 1. So, for the iteration matrix Tα,β,ω of the singular linear system (1.1), we
need to introduce its pseudo-spectral radius [11] ν(Tα,β,ω):

ν(Tα,β,ω) = max{|λ| : λ ∈ σ(Tα,β,ω), λ �= 1}

If the iteration (2.6) is convergent to a solution of the linear system (1.1), then
we call the iteration (2.6) is semi-convergent. It is known that the iteration (2.6) is
semi-convergent, if and only if the iteration matrix Tα,β,ω is semi-convergent. The
semi-convergence of the matrix Tα,β,ω can be described as follows [11]:

(a) The elementary divisors of the iterationmatrix Tα,β,ω associatedwith its eigenvalue
λ = 1 are linear, i.e., rank(I − Tα,β,ω)2 = rank(I − Tα,β,ω), or equivalently,
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index(I − Tα,β,ω) = 1, where index(.) denotes the index of the corresponding
matrix;

(b) ν(Tα,β,ω) < 1.

Theorem 3.1 Let Tα,β,ω be the iterationmatrix of the TMSSORmethodwithω �= 0, 2.
For any eigenvalue μ of Q−1BT A−1B, if λ satisfies

(λ−1)(1−ω+αω)(1−αω)[(β−ω)(1−ω)−λ(β+ω−ωβ)] = λω2(2−ω)2μ (3.1)

then, λ is an eigenvalue of Tα,β,ω. Conversely, for any eigenvalue λ of Tα,β,ω, and
there exists μ which satisfies Eq. (3.1), then μ is an eigenvalue of Q−1BT A−1B.

Proof Let λ be an eigenvalue of Tα,β,ω, not loss of generality, we assume that λ �= 0
and z = (xT , yT )T be the corresponding eigenvector. By

Tα,β,ω

(
x
y

)
= λ

(
x
y

)

we have

(1 − λ)(D − ωU )z = ω(2 − ω)D(D − ωL)−1
(

A B
−BT 0

)
z

Then

(1 − λ)

(
(β + ω − βω)A ωB

0 (1 − ω + αω)Q

)

z = ω(2 − ω)

⎛
⎝ A B

(ω − β)

β(1 − αω)
BT ω

β(1 − αω)
BT A−1B

⎞
⎠ z

That is, it holds

[(1 − λ)(β + ω − βω) − ω(2 − ω)] x = ω(λ + 1 − ω)A−1By (3.2)

(1 − λ)(1 − ω + αω)(1 − αω)βy − ω2(2 − ω)Q−1BT A−1By

= ω(2 − ω)(ω − β)Q−1BT x (3.3)

If (1 − λ)(β + ω − βω) − ω(2 − ω) = 0, which means λ = (1 − ω)(β − ω)

β + ω − βω
, then

it is easy to see μ = 0 is a zero eigenvalue of Q−1BT A−1B which satisfies (3.1). If

λ �= (1 − ω)(β − ω)

β + ω − βω
, then it is easy to see y �= 0. Substituting x of (3.2) to the Eq.

(3.3), we obtain

[(1 − λ)2(β + ω − βω) − ω(2 − ω)(1 − λ)](1 − ω + αω)(1 − αω)

y = −λω2(2 − ω)2Q−1BT A−1By
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and

Q−1BT A−1By= [(1 − λ)2(β+ω−βω)−ω(2 − ω)(1−λ)](1 − ω+αω)(1 − αω)

−λω2(2 − ω)2
y

For λ �= 0 and ω �= 0, 2, by the above equation it is easy to see that μ is an eigenvalue
of Q−1BT A−1B which satisfies (3.1).

Conversely, for any eigenvalue μ of Q−1BT A−1B, if λ satisfies (3.1), then we can
prove similarly that λ is an eigenvalue of Tα,β,ω, here omitted. ��

Remark 3.1 From Theorem 3.1, we know that
(1 − ω)(β − ω)

β + ω − βω
is an eigenvalue of

Tα,β,ω. In fact, if λ = (1 − ω)(β − ω)

β + ω − βω
�= 0, then from Eq. (3.2), it holds A−1By = 0

for y = 0. Also, we have

(1 − ω + αω)(1 − αω)β

β + ω − βω
y − ωQ−1BT A−1By = (ω − β)Q−1BT x

Notice B is rank-deficient, then the equation BT x = 0 has nonzero solutions. There-

fore,
(1 − ω)(β − ω)

β + ω − βω
is an eigenvalue of Tα,β,ω with the corresponding eigenvector

(xT , 0T )T .

To obtain the semi-convergence conditions of the TMSSOR method, we introduce
some lemmas which will be useful for our discussion.

Lemma 3.1 [9,10]Both roots of the quadratic equation x2− px+q = 0 are less than
one in modulus if and only if |p − pq| < 1 − |q|2, where p is the complex conjugate
of p.

Lemma 3.2 [31] Let A be positive real, Q be symmetric positive definite and B be
rank-deficient. Then for any nonzero eigenvalue μ = μRe + iμIm of Q−1BT A−1B,
where μRe and μIm are the real part and imaginary part of μ, respectively, and
i = √−1, it holds μRe > 0.

Theorem 3.2 Let A be positive real, Q be symmetric positive definite and B be rank-
deficient. Then ν(Tα,β,ω) < 1 if the following conditions hold:

(C1) For ω ∈ (0, 1) ∪ (2,+∞), it holds
ω2

2(ω − 1)
< β ; for ω ∈ (−∞, 0) ∪ (1, 2),

it holds β <
ω2

2(ω − 1)
;

(C2) ω(2 − ω)(1 − αω)(1 − ω + αω) > 0;

(C3)
ω(2 − ω)

ω2 − 2ωβ + 2β
μ2
Re + ω2 − 2ωβ + 2β

ω(2 − ω)
μ2
Im <

2(1 − αω)(1 − ω + αω)

ω(2 − ω)
μRe.
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Proof Making use of Eq. (3.1) and by some algebra, we have

λ2 −
[
2 − ω(2 − ω)

β + ω − βω
− ω2(2 − ω)2μ

(1 − αω)(1 − ω + αω)(β + ω − βω)

]

× λ + 1 − ω(2 − ω)

β + ω − βω
= 0 (3.4)

From the above equation, we observe that λ = 1 or λ = (1 − ω)(β − ω)

β + ω − βω
in the case

of μ = 0, and λ �= 1 in the case of μ �= 0.

Case 1 When λ = (1 − ω)(β − ω)

β + ω − βω
, it holds

|λ| < 1 ⇔
∣∣∣∣1 − ω(2 − ω)

β + ω − βω

∣∣∣∣ < 1

⇔ 0 <
ω(2 − ω)

β + ω − βω
< 2

Notice when ω = 1, the above inequality reduces to 0 < 1 < 2, which holds true
trivially. Excluding ω = 1, the above inequality is equivalent to

⎧⎨
⎩

ω(2 − ω) > 0
β + ω − βω > 0
ω(2 − ω) < 2(β + ω − βω)

or

⎧⎨
⎩

ω(2 − ω) < 0
β + ω − βω < 0
ω(2 − ω) > 2(β + ω − βω)

(3.5)

By some algebra we have
⎧⎪⎪⎨
⎪⎪⎩
0 < ω < 1, β >

ω2

2(ω − 1)

1 < ω < 2, β <
ω2

2(ω − 1)

or

⎧⎪⎪⎨
⎪⎪⎩

ω < 0, β <
ω2

2(ω − 1)

ω > 2, β >
ω2

2(ω − 1)

(3.6)

i.e., ⎧⎨
⎩

ω ∈ (0, 1) ∪ (2,+∞)

β >
ω2

2(ω − 1)

or

⎧⎨
⎩

ω ∈ (−∞, 0) ∪ (1, 2)

β <
ω2

2(ω − 1)

(3.7)

which means the condition (C1) holds.

Case 2When λ �=
{

(1 − ω)(β − ω)

β + ω − βω
, 1

}
, by Lemma 3.1, for the nonzero eigenvalue

λ of Tα,β,ω, denote d = ω(2 − ω)

β + ω − βω
, e = ω(2 − ω)

(1 − αω)(1 − ω + αω)
. Then it holds

|λ| < 1 ⇔
⎧⎨
⎩

|1 − d| < 1∣∣∣∣2 − d − deμ − [2 − d − eμ][1 − d]
∣∣∣∣ + |1 − d|2 < 1

(3.8)
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The first inequality of (3.8) is equivalent to 0 < d < 2, same as in Case 1, we
immediately obtain the condition (C1).

After some algebra, the second inequality of (3.8) is equivalent to

∣∣d [
2 − d + e

[
(1 − d)μ − μ

]]∣∣ < 1 − |1 − d|2 ⇔ ∣∣d [
2 − d + e

[
(1 − d)μ − μ

]]∣∣
< d

(
2 − d

)

Notice 0 < d < 2, μ = μRe + iμIm . Then the above inequality is equivalent to

|2 − d + e[(1 − d)μ − μ]| < 2 − d ⇔ ∣∣2 − d − e[dμRe + i
(
2 − d

)
μIm]∣∣ < 2 − d

⇔ [2 − d − edμRe]2 + [e (2 − d) μIm]2
< (2 − d)2

which is also equivalent to

[deμRe]
2 + [(2 − d) eμIm]

2 < 2d (2 − d) eμRe (3.9)

By Lemma 3.2, we have μRe > 0, and together with 0 < d < 2, it is easy to see

e = ω(2 − ω)

(1 − αω)(1 − ω + αω)
> 0 from (3.9), which is equivalent to the condition

(C2).
After some algebra, the inequality (3.9) can be simplified as

d

2 − d
μ2
Re + 2 − d

d
μ2
Im < 2

1

e
μRe

i.e.,

ω(2 − ω)

ω2 − 2ωβ + 2β
μ2
Re + ω2 − 2ωβ + 2β

ω(2 − ω)
μ2
Im < 2

(1 − αω)(1 − ω + αω)

ω(2 − ω)
μRe

which is the condition (C3). ��
Lemma 3.3 [29] I ndex(I − Tα,β,ω) = 1 if and only if, for any 0 �= Y ∈ R(A ),
Y /∈ N (A M−1

α,β,ω).

Theorem 3.3 Assume A be positive real and Q be symmetric positive definite, and B
be of rank-deficient. Then index(I − Tα,β,ω) = 1.

Proof Let

0 �= Y = A X =
(

A B
−BT 0

)(
z1
z2

)
=

(
Az1 + Bz2
−BT z1

)
(3.10)

By Lemma 3.3, to prove index(I − Tα,β,ω) = 1, it suffices to proveA M−1
α,β,ωY �= 0,

we give the proof for A M−1
α,β,ωY �= 0 by contradiction. Suppose A M−1

α,β,ωY = 0.

Notice N (A ) = span

{(
0
ϕ

)}
, where Bϕ = 0.
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Then there exists a vector ϕ0 such that

M−1
α,β,ωY =

(
0
ϕ0

)
, Bϕ0 = 0.

So

Y = Mα,β,ω

(
0
ϕ0

)

= 1

ω(2−ω)

⎛
⎝ (β+ω−βω)A ωB

−ω(β+ω−βω)

β
BT −ω2

β
BT A−1B+(1−αω)(1−ω+αω)Q

⎞
⎠

(
0
ϕ0

)

= 1

ω(2 − ω)

(
0

(1 − αω)(1 − ω + αω)Qϕ0

)

(3.11)
Making use of Eqs. (3.10) and (3.11), we have Bϕ0 = −BQ−1BT z1 = 0. Noticing
Q−1 is symmetric positive definite, then BT z1 = 0, whichmeansϕ0 = −Q−1BT z1 =
0. Hence,

Y = Mα,β,ω

(
0
ϕ0

)
= 0

which contradicts with Y �= 0, so we reach the conclusion that index(I − T ) = 1.
The proof is completed. ��

4 The optimal iteration parameters

In this section, we will discuss the optimal iteration parameters and the correspond-
ing optimal semi-convergence factor for the TMSSOR method. Let A ∈ Rm×m and
Q ∈ Rn×n be symmetric positive definite. Then all the eigenvalues of the matrix
Q−1BT A−1B are real and nonnegative. Denote the smallest and largest nonzero
eigenvalues of the matrix Q−1BT A−1B by μmin and μmax , respectively. By the
proof of Theorem 3.2, we see that the eigenvalues λ of Tα,β,ω can be λ = 1,

λ = (1 − ω)(β − ω)

β + ω − βω
or λ can be represented by the following λ1, λ2:

λ1(α, β, ω,μ) = 1

2

(
f (α, β, ω,μ) +

√
f (α, β, ω,μ)2 − 4g(β, ω)

)

λ2(α, β, ω,μ) = 1

2

(
f (α, β, ω,μ) −

√
f (α, β, ω,μ)2 − 4g(β, ω)

)

123



A triple-parameter modified SSOR method for… 511

where

f (α, β, ω,μ) = 2 − ω(2 − ω)

β + ω − βω
− ω2(2 − ω)2μ

(1 − αω)(1 − ω + αω)(β + ω − βω)

g(β, ω) = 1 − ω(2 − ω)

β + ω − βω

Consider the following two cases:

1. If Δ = f (α, β, ω,μ)2 − 4g(β, ω) ≤ 0, then

|λ1(α, β, ω,μ)| = |λ2(α, β, ω,μ)| =
√
1 − ω(2 − ω)

β + ω − βω
=

√
(1 − ω)(β − ω)

β + ω − βω

(4.1)
2. If Δ > 0, then both λ1(α, β, ω,μ) and λ2(α, β, ω,μ) are real, and it holds

λ(α, β, ω,μ) =
{

λ1(α, β, ω,μ) i f f (α, β, ω,μ) > 0
−λ2(α, β, ω,μ) i f f (α, β, ω,μ) ≤ 0

where λ(α, β, ω,μ) = max {|λ1(α, β, ω,μ)|, |λ2(α, β, ω,μ)|}. From the Eq. (3.1),
we obtain

λ1(α, β, ω,μ)λ2(α, β, ω,μ) = 1 − ω(2 − ω)

β + ω − βω
= (1 − ω)(β − ω)

β + ω − βω
So, it is easy to see

λ(α, β, ω,μ) ≥
√∣∣∣∣1 − ω(2 − ω)

β + ω − βω

∣∣∣∣ =
√∣∣∣∣ (1 − ω)(β − ω)

β + ω − βω

∣∣∣∣ (4.2)

Hence, the pseudo-spectral radius of the TMSSOR iteration matrix can be defined by:
ν(Tα,β,ω) = max

0 �=μ∈σ(Q−1BT A−1B)
{λ(α, β, ω,μ)}

Denote
λi (α, β, ω) = max

0 �=μ∈σ(Q−1BT A−1B)
{|λi (α, β, ω,μ)|}, i = 1, 2

Obviously, it holds

ν(Tα,β,ω) = max {λ1(α, β, ω), λ2(α, β, ω)} (4.3)

By Theorem 3.2, it follows that 0 <
ω(2 − ω)

β + ω − βω
< 2,

ω(2 − ω)

(1 − αω)(1 − ω + αω)
> 0

which means
ω2(2 − ω)2

(1 − αω)(1 − ω + αω)(β + ω − βω)
> 0 (4.4)

From the above equations, it holds |λ1(α, β, ω)| ≥ |λ2(α, β, ω)| while Δ > 0
and f (α, β, ω,μ) > 0, and |λ2(α, β, ω)| ≥ |λ1(α, β, ω)| while Δ > 0 and
f (α, β, ω,μ) ≤ 0. So, we have

123



512 J. Li, N.-M. Zhang

⎧⎨
⎩

λ1(α, β, ω) = 1
2

[
f (α, β, ω,μmin) + √

f (α, β, ω,μmin)2 − 4g(β, ω)
]

λ2(α, β, ω) = 1
2

[
− f (α, β, ω,μmax ) + √

f (α, β, ω,μmax )2 − 4g(β, ω)
]
(4.5)

Now we consider the optimal parameters which minimize the pseudo-spectral radius
of the iteration matrix Tα,β,ω. Generally, it is very difficult to determine the global
optimal parameters of the TMSSOR method. So, here, we consider a special case and
discuss the local optimal parameters, that is, we assume the three parameters satisfying

α = ω(2 − ω)

β + ω − βω
∈ (0, 1) (4.6)

Remark 4.1 By Eqs. (4.1) and (4.2), it is easy to see, to investigate the optimal
parameters which minimize ν(Tα,β,ω), it suffices to consider the case of Δ =
f (α, β, ω,μ)2 − 4g(β, ω) > 0. So, from now on, we always assume Δ > 0.

Notice

ωα(2 − ω)

(1 − αω)(1 − ω + αω)
> 0

Then it is easy to see there exist two variables μ1 and μ2 satisfying the following
equations:

2 − α − ωα(2 − ω)μ1

(1 − αω)(1 − ω + αω)
= 2

√
1 − α (4.7)

2 − α − ωα(2 − ω)μ2

(1 − αω)(1 − ω + αω)
= −2

√
1 − α (4.8)

where 0 ≤ μ1 ≤ μ2, furthermore, by (4.5), it is easy to see μ1, μ2 ∈ [μmin, μmax ].
Actually, ifμ1 < μmin orμmax < μ2, then−2

√
1 − α < f (α, β, ω,μ) < 2

√
1 − α,

which leads to Δ < 0. So it is in contradiction with Δ > 0.
From (4.7) and (4.8), by some algebra, it holds

1 − α = (
√

μ1 − √
μ2)

2

(
√

μ1 + √
μ2)2

(4.9)

ω(2 − ω)

(1 − αω)(1 − ω + αω)
= 1√

μ1μ2
(4.10)

So, f (α, β, ω,μ) can be rewritten as

f (α, β, ω,μ) = 2(μ1 + μ2 − 2μ)

(
√

μ1 + √
μ2)2

(4.11)
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Substituting f (α, β, ω,μ) to (4.5), therefore, we have

⎧⎪⎪⎨
⎪⎪⎩

λ1(α, β, ω) = (
√

μ2 − μmin + √
μ1 − μmin)

2

(
√

μ1 + √
μ2)2

λ2(α, β, ω) = (
√

μmax − μ1 + √
μmax − μ2)

2

(
√

μ1 + √
μ2)2

(4.12)

For convenience, let λ1(α, β, ω) = λ1(μ1, μ2), and λ2(α, β, ω) = λ2(μ1, μ2). It is
easy to see that the following results hold true.

⎧⎪⎨
⎪⎩

λ1(μ1, μ2) = λ2(μ1, μ2) if μ1 + μ2 = μmax + μmin,

λ1(μ1, μ2) > λ2(μ1, μ2) if μ1 + μ2 > μmax + μmin,

λ1(μ1, μ2) < λ2(μ1, μ2) if μ1 + μ2 < μmax + μmin .

(4.13)

Then by Eqs. (4.3) and (4.13), it holds

ν(Tα,β,ω) =
{

λ1(μ1, μ2) i f μ1 + μ2 ≥ μmax + μmin

λ2(μ1, μ2) i f μ1 + μ2 < μmax + μmin
(4.14)

By some algebra, it holds that

⎧⎪⎪⎨
⎪⎪⎩

∂λ1(μ1, μ2)

∂μ1
=

√
μ2−μmin+√

μ1−μmin√
μ1+√

μ2
.

√
μ1μ2+μmin−√

(μ1−μmin)(μ2−μmin)√
μ1(μ1−μmin)(

√
μ1+√

μ2)2

∂λ2(μ1, μ2)

∂μ1
=−

√
μmax −μ1+√

μmax −μ2√
μ1+√

μ2
.

√
μ1μ2+μmax −√

(μmax −μ1)(μmax −μ2)√
μ1(μmax −μ1)(

√
μ1+√

μ2)2

Hence, we have

∂λ1(μ1, μ2)

∂μ1
> 0,

∂λ2(μ1, μ2)

∂μ1
< 0

In the same way, we obtain

∂λ1(μ1, μ2)

∂μ2
> 0,

∂λ2(μ1, μ2)

∂μ2
< 0

We now declare that ν(Tα,β,ω) has no minimum when μ1 + μ2 �= μmin + μmax .
Observe the following two cases:

1. Assume ν(Tα,β,ω) has minimum at μ1 + μ2 < μmin + μmax . By (4.14), it holds
that ν(Tα,β,ω) = λ2(μ1, μ2). Let μ = μmin + μmax − μ2. Then, μ1 < μ. By the
monotone property of the function λ2(μ1, μ2), we have λ2(μ1, μ2) > λ2(μ,μ2),
which contradicts the assumption.

2. Assume ν(Tα,β,ω) has minimum at μ1 + μ2 > μmin + μmax . By (4.14), it holds
that ν(Tα,β,ω) = λ1(μ1, μ2). Let μ = μmin + μmax − μ2. Then, μ1 > μ. By the
monotone property of the function λ1(μ1, μ2), we have λ1(μ1, μ2) > λ1(μ,μ2),
which also contradicts the assumption.
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So ν(Tα,β,ω) may have minimum only at μ1 + μ2 = μmin + μmax .
Nowwe give the local optimal parameters and the corresponding optimal convergence
factor of the TMSSOR method by follows.

Theorem 4.1 Let A and Q be symmetric positive definite, and B be rank-deficient.
Assume Eq. (4.6) is satisfied. Then the optimal parameters of the TMSSOR method
are given by

αopt = 4
√

μmaxμmin

(
√

μmax + √
μmin)2

,

βopt = (
√

μmax + √
μmin)

2ωopt (2 − ωopt ) − 4ωopt
√

μmaxμmin

4
√

μmaxμmin(1 − ωopt )
(4.15)

ωopt is the root of the equation

√
μmaxμmin(a1 + 4a2 − 16

√
μminμmax )ω

2 − (1 + 2
√

μmaxμmin)a1ω + a1 = 0

where

a1 = (
√

μmax + √
μmin)

4, a2 = (
√

μmax − √
μmin)

2

Furthermore, the corresponding optimal semi-convergence factor of the TMSSOR
method is

min
α,β,ω

ν(Tα,β,ω) = ν(Tαopt ,βopt ,ωopt ) =
√

μmax − √
μmin√

μmax + √
μmin

(4.16)

Proof From the above analysis, we know that ν(Tα,β,ω) may have minimum only at
μ1 + μ2 = μmin + μmax . When μ1 + μ2 = μmin + μmax , from (4.13) and (4.14), it
holds

ν(Tα,β,ω) = λ1(μ1, μ2) = λ2(μ1, μ2)

=
μmax − μmin + 2

√
−μ2

1 + (μmin + μmax )μ1 − μminμmax

μmin + μmax + 2
√

−μ2
1 + (μmin + μmax )μ1

By the technique in [19], let r = −μ2
1 + (μmin + μmax )μ1 ≥ μminμmax and define

g(r) = ν(Tα,β,ω) = μmax − μmin + 2
√
r − μminμmax

μmin + μmax + 2
√
r

It is easy to see that g(r) has minimum at r = μminμmax , which means that ν(Tα,β,ω)

has minimum
√

μmax − √
μmin√

μmax + √
μmin

at μ1 = μmin and μ2 = μmax . By Eqs. (4.6), (4.9),
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(4.10) and together with μ1 = μmin , μ2 = μmax , after some simple algebra, we
obtain the following optimal parameters:

αopt = 4
√

μmaxμmin

(
√

μmax + √
μmin)2

,

βopt = (
√

μmax + √
μmin)

2ωopt (2 − ωopt ) − 4ωopt
√

μmaxμmin

4
√

μmaxμmin(1 − ωopt )

and ωopt is the root of the equation

√
μmaxμmin(a1 + 4a2 − 16

√
μminμmax )ω

2 − (1 + 2
√

μmaxμmin)a1ω + a1 = 0

where a1 = (
√

μmax + √
μmin)

4, a2 = (
√

μmax − √
μmin)

2. ��
Remark 4.2 Theorem 4.1 shows that the TMSSOR method has the same asymptotic
convergence rate as the GSOR method [9] at their own optimal points of the iteration
parameters.Otherwise, these twomethodsmay exhibit different convergence behavior.
The GSOR method has less computational cost per iteration, so, the GSOR method is
more effective in practical applications.

5 Numerical experiments

In this section, some numerical experiments are given to compare the performance of
the TMSSOR method with GSOR, MSSOR, MSSOR-like [25], GMSSOR methods.
We denote the number of iteration steps by I T , elapsed CPU time in seconds byCPU
and the norm of residual vectors by RES, respectively.

All the computations are implemented in MATLAB 7.0.19920 (R14) on a PC
computer with a 1.86GHz 64-bit processor and 2GBmemory. In actual computations,
we choose the right-hand vector (bT ,−qT )T ∈ Rm+n such that the exact solution of
the augmented linear system (1.1) is ((x∗)T , (y∗)T )T = (1, 1, . . . , 1)T ∈ Rm+n and
all runs are started from the initial vector ((x (0))T )T , (y(0))T )T = (0, 0, . . . , 0)T ∈
Rm+n . The stopping criterion is takenwhen the current iteration satisfies RES ≤ 10−6,
where

RES :=
√

||b − Ax (k) − By(k)||22 + ||q − BT x (k)||22√
||b − Ax (0) − By(0)||22 + ||q − BT x (0)||22

with ((x (k))T , (y(k))T )T being the final approximate solution.

Example 5.1 Consider the Oseen equation:

⎧⎨
⎩

−νΔμμμ + (ωωω · ∇)μμμ + ∇ p = f, in Ω

−∇ · μμμ = 0, in Ω

∇ · ωωω = 0.
(5.1)
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where Ω is an open bounded domain in R2 or R3, the vector field μμμ represents the
velocity in Ω , p denotes pressure, and the scalar ν is the viscosity, which is inversely
proportional to the Reynolds number. The test problem is a leaky two-dimensional
lid-driven cavity problem in the square domain: Ω = (0 < x < 1; 0 < y < 1),
where μμμ = (μ, υ)T denotes the velocity field, and ωωω = (a, b)T denotes the wind.
The boundary conditions are μ = υ = 0 on the three walls (x = 0, y = 0, x = 1),
and μ = 1, υ = 0 on the moving wall(y = 1). We take constant “wind” a =
1, b = 2. To discretize (5.1), we use the “market and cell”(MAC) finite difference
scheme [20]. Divide Ω into a uniform l × l grid of cells of width h = 1

l . The discrete
velocities and pressures are defined on a staggered grid in which the discrete values
of μ lie in the centers of the cell boundaries orthogonal to the x − axis, the discrete
values of υ lie in center boundaries orthogonal to the y − axis, and the discrete
pressures lie in the cell centers. Then we obtain the matrix representation of the Oseen
equations (5.1):

(
A B

−BT 0

) (
μ

p

)
=

(
f
0

)
(5.2)

with the matrix blocks of the following form:

A =
(
F1 0
0 F2

)
∈ R2l(l−1)×2l(l−1), B = (B1, B2) ∈ R2l(l−1)×l2 ,

Fi = νAi + Ni ∈ Rl(l−1)×l(l−1), (i = 1, 2). For convenience, let m = 2l(l −
1), n = l2 in this example, and A is positive real, rank(B) = l2 − 1. N (B) =
span{en}, en = (1, 1, . . . , 1)T ∈ Rn . To ensure the (1,1)-block matrix symmetric
positive definite, finally we take the test coefficient matrix as follows:

(
Ā BT

−B 0

)

where Ā = 1
2 (A + AT ). For the preconditioner of the TMSSOR method, notice

M−1
α,β,ω

= t

⎛
⎜⎜⎝

(1−ω+αω)(1−αω) Ā−1− ω2

β
Ā−1BQ−1BT Ā−1 −ω Ā−1BQ−1

ω(β+ω−βω)

β
Q−1BT Ā−1 (β+ω − βω)Q−1

⎞
⎟⎟⎠

and t = ω(2 − ω)

(β + ω − βω)(1 − ω + αω)(1 − αω)
. We compute the Ā−1, Q−1 in

M−1
α,β,ω by the incomplete LU factorization with drop tolerance 0.001. We take the

viscosity ν = 0.5 in our experiments and choose the matrix Q by Table 1. For this
example, here we consider the following four cases when l = 8, l = 16, l = 24 and
l = 32.

In Fig. 1, we choose Q as Case II in Table 1, and we display the distribution on the
eigenvalues of matrixA and the matrices M−1

α,β,ωA for different iteration parameters.
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Fig. 1 The distribution of the eigenvalues of A and M−1
α,β,ωA with different parameters. a The

distribution of the eigenvalues of A . b The distribution of the eigenvalues of M−1
α,β,ωA with

ω = 0.426, α = 0.952, β = 0.485, l = 8. c The distribution of the eigenvalues of M−1
α,β,ωmathscr A

with ω = 0.477, α = 0.916, β = 0.604, l = 16. d The distribution of the eigenvalues of M−1
α,β,ωA

with ω = 0.501, α = 0.898, β = 0.671, l = 24

Table 1 Choices of matrix Q,
with
Q̂ = Diag(BT Â−1B, BT B)

Case no. Matrix Q Description

I tr idiag(Q̂) Â = tr idiag( Ā)

II Q̂ Â = diag( Ā)

III Q̂ Â = Ā

We find that the eigenvalues of the preconditioned matrices are quite clustered. In
Tables 2, 3, 4 and 5, we choose Q as Case III in Table 1, and we present the numer-
ical results for the different iteration methods, both as solvers and preconditioners to
accelerate the restarted GMRES(k). In Table 6, we choose Q as Case I and Case II in
Table 1, respectively, andwe list the optimal parameters and the corresponding optimal
convergence factors of the different iteration methods. When the optimal parameters
are employed, it reveals that the TMSSOR method is effective, especially it has the
smallest number of iterations.
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Table 2 Numerical results for
Case III with l = 8 Iteration method CPU(s) IT RES × 10−7

GSOR 0.239 43 8.0632

MSSOR 0.218 22 2.9920

GMSSOR 0.220 18 2.6041

TMSSOR 0.262 9 9.2353

GSOR-GMRES(18) 4.257 31 7.6343

MSSOR-GMRES(18) 7.546 28 8.8796

GMSSOR-GMRES(18) 2.319 27 2.7786

TMSSOR-GMRES(18) 1.030 10 4.4938

Table 3 Numerical results for
Case III with l = 16 Iteration method CPU(s) IT RES × 10−7

GSOR 0.816 47 9.8942

MSSOR 0.940 30 8.8023

GMSSOR 1.029 30 1.4462

TMSSOR 0.889 14 9.1427

GSOR-GMRES(18) 9.789 58 7.5641

MSSOR-GMRES(18) 10.570 56 6.5821

GMSSOR-GMRES(18) 21.487 34 5.1137

TMSSOR-GMRES(18) 8.424 14 7.8347

Table 4 Numerical results for
Case III with l = 24 Iteration method CPU(s) IT RES × 10−7

GSOR 2.757 55 9.0771

MSSOR 5.879 38 3.0635

GMSSOR 6.336 43 2.1824

TMSSOR 5.869 15 6.5279

GSOR-GMRES(18) 26.607 40 6.2180

MSSOR-GMRES(18) 28.745 38 5.5814

GMSSOR-GMRES(18) 76.571 25 4.4692

TMSSOR-GMRES(18) 27.534 9 7.0937

Table 5 Numerical results for
Case III with l = 32 Iteration method CPU(s) IT RES × 10−7

GSOR 8.545 59 8.5286

MSSOR 20.891 40 2.2858

GMSSOR 22.121 46 7.7115

TMSSOR 21.068 18 6.4050

GSOR-GMRES(18) 40.368 39 6.8921

MSSOR-GMRES(18) 43.056 31 4.5180

GMSSOR-GMRES(18) 76.571 25 4.4692

TMSSOR-GMRES(18) 92.758 10 5.5695
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Table 6 Numerical results for Case I and Case II

m 112 480 1104 1984
n 64 256 576 1024
m + n 176 736 1680 3008

Case I GSOR ωopt 0.9479 0.8876 0.7175 0.6966

τopt 1.0833 1.2018 1.1217 1.0793

ρopt 0.2193 0.2889 0.3188 0.3367

IT 16 19 21 22

CPU 0.187 0.609 2.246 7.893

RES(10−7) 4.8260 7.6412 4.4871 7.7860

GMSSOR ωopt 0.8412 0.7512 0.7212 0.7542

τopt 0.4476 0.5040 0.5255 0.5112

ρopt 0.2192 0.2888 0.3188 0.3367

IT 14 18 20 21

CPU 0.223 0.750 5.105 18.186

RES(10−7) 5.2579 8.3271 7.1346 5.8310

TMSSOR ωopt 0.4264 0.4777 0.5014 0.5156

αopt 0.9520 0.9166 0.8983 0.8866

βopt 0.4854 0.6044 0.6719 0.7177

ρopt 0.2192 0.2888 0.3188 0.3367

IT 10 12 13 14

CPU 0.502 0.772 5.116 18.109

RES(10−7) 3.0544 5.3608 6.0118 4.2216

Case II GSOR ωopt 0.7050 0.4035 0.3247 0.8709

τopt 0.5159 0.3124 0.1940 0.4132

ρopt 0.3871 0.4012 0.0946 0.2382

IT 45 55 117 396

CPU 0.281 0.733 3.807 17.674

RES(10−7) 8.4118 8.0730 9.7845 9.7643

GMSSOR ωopt 0.6029 0.5788 0.4454 0.4518

τopt 0.4516 0.5569 0.4175 0.4134

ρopt 0.3871 0.4012 0.0946 0.2382

IT 14 15 22 20

CPU 0.214 0.872 5.783 20.085

RES(10−7) 5.4172 5.6036 5.1872 8.9884

TMSSOR ωopt 0.4380 0.5322 0.4061 0.3974

αopt 0.8502 0.8390 0.9910 0.9543

βopt 0.6526 0.8526 0.4159 0.4609

ρopt 0.3871 0.4012 0.0946 0.2382

IT 12 13 21 32

CPU 0.224 0.768 5.812 19.688

RES(10−7) 5.1851 2.8272 7.4531 9.6766
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6 Conclusion

In this paper, we propose a triple-parameter modified SSOR iteration method to solve
a class of large sparse singular saddle point problems. We prove the semi-convergence
of the TMSSOR method under suitable restrictions on the iteration parameters, and
obtain the local optimal parameters which minimize the pseudo-spectral radii of the
associated iteration matrices, as for the global optimal parameters, it still needs further
studies.
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