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Abstract This paper fills an important gap in the convergence analysis of collocation
solutions in spaces of continuous piecewise polynomials for Volterra integral equa-
tions of the second kind. Our analysis is then extended to Volterra functional integral
equations of the second kind with constant delays.
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1 Introduction

The convergence analysis of piecewise polynomial collocation solutions for Volterra
integral equations (VIEs) of the second kind,

u(t) = g(t) +
∫ t

0
K (t, s)u(s)ds, t ∈ I := [0, T ], (1.1)
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1340 H. Liang, H. Brunner

with continuous kernel K (t, s) is now largely well understood; see [4–6] and, espe-
cially, the surveys [1,3]. However, there has remained an important gap in the
convergence analysis of collocation solutions for the second-kind VIE (1.1): it con-
cerns the convergence/divergence of piecewise polynomial collocation solutions for
(1.1) that are globally continuous on I and correspond to collocation points that do
not include the points of the underlying mesh Ih .

It is the aim of this paper to close this gap and to employ the gained insight to estab-
lish the analogous convergence analysis for the Volterra functional integral equation
(VFIE) with constant delay τ > 0,

⎧⎪⎨
⎪⎩
u(t) = g(t) +

∫ t

t−τ

K (t, s)u(s)ds, t ∈ I,

u(t) = ϕ(t), t ∈ [−τ, 0].
(1.2)

The outline of the paper is as follows. In Sects. 2 and 3 we state our main results on
the convergence of globally continuous piecewise polynomial collocation solutions
for the second-kind VIE (1.1) and the second-kind VFIE (1.2); their proofs are given
in Sects. 4 and 5. In Sect. 6, we use a number of examples to illustrate the validity of
our results on the attainable order of these collocation solutions. Section 7 concludes
with a concluding remark.

2 Continuous collocation solutions for second kind VIEs

2.1 Meshes and collocation spaces

Let Ih := {tn := nh : n = 0, 1, . . . , N (tN = T )} be a given mesh on I = [0, T ],
with σn := [tn, tn+1] and mesh diameter h = T/N . We seek a collocation solution uh
for (1.1) in the space

S(0)
m (Ih) := {v ∈ C(I ) : v|σn ∈ πm = πm(σn) (0 ≤ n ≤ N − 1)

}
,

where πm denotes the space of all (real) polynomials of degree not exceeding m. For
a prescribed set of collocation points

Xh := {t = tn + ci h : 0 < c1 < · · · < cm ≤ 1 (0 ≤ n ≤ N − 1)} , (2.1)

uh is defined by the collocation equation

uh(t) = g(t) +
∫ t

0
K (t, s)uh(s)ds, t ∈ Xh, (2.2)

with uh(0) = g(0).
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Consequently the collocation polynomial can be written as (see [2])

u′
h(tn + sh) =

m∑
j=1

L j (s)Un, j , s ∈ (0, 1], (2.3)

where Un,i := u′
h(tn,i ), tn,i := tn + ci h and the polynomials

L j (s) :=
m∏

k �= j

s − ck
c j − ck

( j = 1, . . . ,m),

denote the Lagrange fundamental polynomialswith respect to the (distinct) collocation
parameters {ci }.

Integrating (2.3), we obtain

uh(tn + sh) = uh(tn) + h
m∑
j=1

β j (s)Un, j , s ∈ [0, 1], (2.4)

where β j (s) := ∫ s0 L j (v)dv.
Therefore, at t = tn,i ,

uh(tn,i ) = uh(tn) + h
m∑
j=1

ai jUn, j = g(tn,i ) +
∫ tn,i

0
K (tn,i , s)uh(s)ds

= g(tn,i ) + h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)

⎡
⎣uh(tl) + h

m∑
j=1

β j (s)Ul, j

⎤
⎦ ds

+ h
∫ ci

0
K (tn,i , tn + sh)

⎡
⎣uh(tn) + h

m∑
j=1

β j (s)Un, j

⎤
⎦ ds, (2.5)

where ai j := β j (ci ).
Denote A := (ai j )m×m , e := (1, . . . , 1)T , Gn := (g(tn,1), . . . , g(tn,m))T , Un :=

(Un,1, . . . ,Un,m)T , B(l)
n :=

(∫ 1
0 K (tn,i , tl + sh)β j (s)ds

)
(0 ≤ l ≤ N − 1), Bn :=(∫ ci

0 K (tn,i , tn + sh)β j (s)ds
)
, C (l)

n := diag
(∫ 1

0 K (tn,i , tl + sh)ds
)

(0 ≤ l ≤
N − 1), and Cn := diag

(∫ ci
0 K (tn,i , tn + sh)ds

)
, we have

(
hA − h2Bn

)
Un = Gn + (hCn − Im) euh(tn) + h

n−1∑
l=0

[
C (l)
n euh(tl) + hB(l)

n Ul

]
,

(2.6)

where Im denotes the identity in L(Rm).
If g ∈ C(I ) and K ∈ C(D) (D := {(t, s) : 0 ≤ s ≤ t ≤ T }), (2.6) determines

a unique uh ∈ S(0)
m (Ih) for all sufficiently small mesh diameters, say h ∈ (0, h̄).
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1342 H. Liang, H. Brunner

However, the resulting collocation solution will not converge uniformly on I to the
exact solution of (1.1) for every choice of the collocation parameters {ci }: while the
convergence statement

lim
h→0

‖u − uh‖∞ = 0 (2.7)

holds whenever c1 > 0 and cm = 1 (cf. [3], and [7,8]), this will in general no longer
remain true when cm < 1. If (2.7) holds, the order of convergence will not be the same
for all {ci }.

2.2 The main convergence results

Theorem 2.1 Assume that g ∈ Cm+2(I ), K ∈ Cm+2(D), and uh ∈ S(0)
m (Ih) is the

collocation solution for the second-kind Volterra integral equation (1.1) defined by
the collocation equation (2.2) whose underlying meshes have mesh diameters h < h̄.
Then (2.7) holds if, and only if, the collocation parameters {ci } satisfy the condition

−1 ≤ ρm := (−1)m
m∏
i=1

1 − ci
ci

≤ 1.

The corresponding attainable global order of convergence is given by

max
t∈I |u(t) − uh(t)| ≤ C

{
hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1,

where the constant C depends on the collocation parameters {ci } but not on h.

3 Continuous collocation solutions for second kind VIEs with constant
delay

3.1 Meshes and collocation spaces

It is well known (see for example [2, Ch. 4]) that the constant delay τ > 0 in (1.2)
induces the primary discontinuity points ξμ = μτ (μ ≥ 0) at which the regularity of
the solution u(t) is, at least for small values of μ, lower than it is in (ξμ, ξμ+1). Thus,

the collocation solution uh ∈ S(0)
m (Ih)will attain an order of global convergence equal

to that for VIEs (1.1) without delay only if the underlying mesh Ih includes these
primary discontinuity points. Assuming for ease of notation that T = ξM+1 for some
M ≥ 1, we choose this so-called constrained mesh to be

Ih :=
M⋃

μ=0

I (μ)
h , with I (μ)

h := {t (μ)
n := ξμ + nh (n = 0, 1, . . . , N )}, (3.1)
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On the convergence of collocation solutions in continuous… 1343

where h = τ/N . We set σ (μ)
n := [t (μ)

n , t (μ)
n+1]. The solution u of (1.2) will be approxi-

mated by the collocation solution

uh ∈ S(0)
m (Ih) :=

{
v ∈ C(Ih) : v|

σ
(μ)
n

∈ πm (0 ≤ n ≤ N − 1)
}

,

using collocation points

Xh :=
M⋃

μ=0

X (μ)
h ,

with X (μ)
h := {t (μ)

n,i = t (μ)
n + ci h : i = 1, . . . ,m (0 ≤ n ≤ N − 1)}

(3.2)

corresponding to prescribed collocation parameters {ci }with 0 < c1 < · · · < cm ≤ 1.
Hence, the collocation equation for the subinterval σ (μ)

n is

uh(t) = g(t) +
∫ t

t−τ

K (t, s)uh(s)ds, t ∈ X (μ)
h (μ = 0, 1, . . . , M). (3.3)

If μ = 0, the values of uh at t ∈ [−τ, 0] are determined by the given initial function,
i.e., uh(t) = ϕ(t).

3.2 The main convergence results

Theorem 3.1 Assume that g ∈ Cm+2(I ), K ∈ Cm+2(D), ϕ ∈ Cm+1[−τ, 0], and let
uh ∈ S(0)

m (Ih) be the collocation solution for the second-kind VFIE (1.2) determined
by the collocation equation (3.3), using constrained meshes Ih of the form (3.1). Then
uh converges uniformly on I to the solution u of (1.2) if, and only if, the collocation
parameters in (3.2) satisfy the condition

−1 ≤ ρm := (−1)m
m∏
i=1

1 − ci
ci

≤ 1.

The resulting attainable global order of convergence is then given by

max
t∈I |u(t) − uh(t)| ≤ C

{
hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1,

where the constant C depends on the collocation parameters {ci } but not on h.

Remark 3.1 The convergence results for the case 0 < c1 < · · · < cm = 1 follow
trivially from the proof of Theorem 2.1 (see also [8] and [3]). A similar conclusion
holds in the case of second-kind VFIEs (Theorem 3.1 and its proof).
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Remark 3.2 The case ρm = 1 can happen only when m is even, but as Theorem 2.1
and Theorem 3.1 describe, this case leads to a reduction of the order of convergence.

4 Proof of Theorem 2.1

We assume that cm < 1.
According to the theory of Lagrange interpolation we may write

u′(tn + sh) =
m∑
j=1

L j (s)u
′(tn, j ) + hm R1

m,n(s), s ∈ [0, 1], (4.1)

where the Peano remainder term and Peano kernel (see [2]) are given by

R1
m,n(v) :=

∫ 1

0
Km(v, z)u(m+1)(tn + zh)dz

and

Km(v, z) := 1

(m − 1)!

{
(v − z)m−1+ −

m∑
k=1

Lk(v)(ck − z)m−1+

}
, v ∈ [0, 1].

Here, (v − z)m−1+ := 0 for v < z and (v − z)m−1+ := (v − z)m−1 for v ≥ z.
Integration of (4.1) leads to

u(tn + sh) = u(tn) + h
m∑
j=1

β j (s)u
′(tn, j ) + hm+1Rm,n(s), s ∈ [0, 1], (4.2)

where Rm,n(s) := ∫ s0 R1
m,n(v)dv.

We first consider the case of constant kernel K (t, s) ≡ 1. This case already contains
all important ideas.

By (2.4) and (4.2), the collocation error eh := u − uh on [tn, tn+1] may be written
as

eh(tn + sh) = eh(tn) + h
m∑
j=1

β j (s)εn, j + hm+1Rm,n(s), (4.3)

where εn,i := u′(tn,i ) − u′
h(tn,i ). Particularly,

eh(tn,i ) = eh(tn) + h
m∑
j=1

ai jεn, j + hm+1Rm,n(ci ). (4.4)
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By (1.1)–(2.2) and using (4.3), it can be shown that

eh(tn,i ) =
∫ tn,i

0
eh(s)ds = h

n−1∑
l=0

∫ 1

0
eh(tl + sh)ds + h

∫ ci

0
eh(tn + sh)ds

= h
n−1∑
l=0

eh(tl ) + h2
n−1∑
l=0

m∑
j=1

γ j (1)εl, j + hci eh(tn) + h2
m∑
j=1

bi jεn, j + hm+1 R̃m,n(ci ),

(4.5)

where γ j (s) := ∫ s
0 β j (v)dv, bi j := ∫ ci

0 β j (s)ds = γ j (ci ), and R̃m,n(ci ) :=∑n−1
l=0 h

∫ 1
0 Rm,l(s)ds + h

∫ ci
0 Rm,n(s)ds. So by (4.4) and (4.5), we have

eh(tn) + h
m∑
j=1

ai j εn, j + hm+1Rm,n(ci )

= h
n−1∑
l=0

eh(tl ) + h2
n−1∑
l=0

m∑
j=1

γ j (1)εl, j + hci eh(tn) + h2
m∑
j=1

bi j εn, j + hm+1 R̃m,n(ci ).

(4.6)

By the standard technique used by Brunner (see [2]), rewriting (4.6) with n replaced
by n − 1 and with i = m and subtract it from (4.6), we find

eh(tn) − eh(tn−1) + h
m∑
j=1

ai jεn, j − h
m∑
j=1

amjεn−1, j

+ hm+1Rm,n(ci ) − hm+1Rm,n−1(cm)

= heh(tn−1) + h2
m∑
j=1

γ j (1)εn−1, j + hci eh(tn) − hcmeh(tn−1)

+ h2
m∑
j=1

bi jεn, j − h2
m∑
j=1

bmjεn−1, j + hm+1 R̃m,n(ci ) − hm+1 R̃m,n−1(cm).

This can be written in the more concise form

(eh(tn) − eh(tn−1)) e + hAεn − heeTm Aεn−1

= heh(tn−1)e + h2eγ T εn−1 + hCeeh(tn) − hcmeeh(tn−1)

+ h2Bεn − h2eeTm Bεn−1 + hm+1Rm,n, (4.7)

with obvious meaning of Rm,n , and with C := diag(c1, . . . , cm), εn := (εn,1, . . . ,

εn,m)T , B := (bi j )m×m , γ := (γ1(1), . . . , γm(1))T .
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1346 H. Liang, H. Brunner

Since eh is continuous in I , and hence at the mesh points, by (4.3) and eh(0) = 0,
we also have the relation (see [2, (1.1.27)])

eh(tn) = eh(tn−1 + h) = eh(tn−1) + h
m∑
j=1

b jεn−1, j + hm+1Rm,n−1(1)

= h
n−1∑
l=0

m∑
j=1

b jεl, j + hm+1
n−1∑
l=0

Rm,l(1) = h
n−1∑
l=0

bT εl + hm+1
n−1∑
l=0

Rm,l(1),

(4.8)

where b j := ∫ 10 L j (s)ds and bT := (b1, . . . , bm).
Substituting (4.8) into (4.7), we have

ebT εn−1 + hmeRm,n−1(1) + Aεn − eeTm Aεn−1

= (1 − cm)e

[
h
n−2∑
l=0

bT εl + hm
n−2∑
l=0

hRm,l(1)

]
+ heγ T εn−1

+Ce

[
h
n−1∑
l=0

bT εl + hm
n−1∑
l=0

hRm,l(1)

]
+ hBεn − heeTm Bεn−1 + hm Rm,n .

This equation can be written in the form

(A − hB) εn =
(
eeTm A − ebT + heγ T − heeTm B

)
εn−1 + h(1 − cm)e

n−2∑
l=0

bT εl

+ hCe
n−1∑
l=0

bT εl + hm R̃m,n, (4.9)

or

εn =
(
A−1

(
eeTm A − ebT

)
+ O(h)

)
εn−1 + hD

n−1∑
l=0

εl + hm R̄m,n, (4.10)

with obvious meaning of R̃m,n, R̄m,n and D.
Since

eeTm A − ebT =

⎛
⎜⎜⎜⎝
am1 − b1 am2 − b2 · · · amm − bm
am1 − b1 am2 − b2 · · · amm − bm

· · · · · · · · · · · ·
am1 − b1 am2 − b2 · · · amm − bm

⎞
⎟⎟⎟⎠ ,
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On the convergence of collocation solutions in continuous… 1347

the rank of the matrix eeTm A − ebT is one, implying that the rank of the matrix
A−1(eeTm A − ebT ) is also one. This means that this matrix has exactly one nonzero
eigenvalue. Setting A−1 := (vi j )m×m , we have

A−1
(
eeTm A − ebT

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(am1 − b1)
m∑
j=1

v1 j (am2 − b2)
m∑
j=1

v1 j · · · (amm − bm)
m∑
j=1

v1 j

(am1 − b1)
m∑
j=1

v2 j (am2 − b2)
m∑
j=1

v2 j · · · (amm − bm)
m∑
j=1

v2 j

· · · · · · · · · · · ·
(am1 − b1)

m∑
j=1

vmj (am2 − b2)
m∑
j=1

vmj · · · (amm − bm)
m∑
j=1

vmj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the nonzero eigenvalue is

λ
(
A−1(eeTm A − ebT )

)
=

m∑
i=1

(ami − bi )
m∑
j=1

vi j = 1 − bT A−1e.

By Proposition 3.8 and Theorem 3.10 of [5], we know that the stability function
R(z) = P(z)/Q(z) of the collocation method has the value R(∞) = 1 − bT A−1e,
where Q(z) and P(z) are the polynomials

Q(z) = M (m)(0) + M (m−1)(0)z + · · · + M(0)zm,

P(z) = M (m)(1) + M (m−1)(1)z + · · · + M(1)zm,

with

M(z) = 1

m!
m∏
i=1

(z − ci ).

Therefore,

R(∞) = M(1)

M(0)
= (−1)m

m∏
i=1

1 − ci
ci

;

that is, the only nonzero eigenvalue of A−1(eeTm A − ebT ) is

1 − bT A−1e = (−1)m
m∏
i=1

1 − ci
ci

= ρm .

Therefore A−1
(
eeTm A − ebT

)
is diagonalizable and there exists a nonsingular matrix

T such that
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1348 H. Liang, H. Brunner

T−1A−1
(
eeTm A − ebT

)
T =: F = diag(ρm, 0, . . . , 0︸ ︷︷ ︸

m−1

).

Multiplying (4.10) by T−1 and setting Zn := T−1εn , we obtain

Zn = (F + O(h))Zn−1 + hT−1DT
n−1∑
l=0

Zl + hmT−1 R̄m,n . (4.11)

We consider the following three cases:

Case I −1 < ρm < 1

Using standard techniques of error estimation for collocation solutions of VIEs (see
[2,5,7]), we know that there exists a constant C1, such that

‖εn‖1 ≤ C1h
m . (4.12)

It follows from (4.6) that there exist constants C2 and C3 such that

|eh(tn)| ≤ hC2

n−1∑
l=0

|eh(tl)| + C3h
m+1, (4.13)

and hence by the discrete Gronwall inequality (see [2]), there exists a constant C4,
such that

|eh(tn)| ≤ C4h
m+1 (n = 1, . . . , N ). (4.14)

Case II ρm = −1

Rewriting (4.11) with n replaced by n − 1 and subtract it from (4.11), we have

Zn − Zn−1 = (F + O(h))(Zn−1 − Zn−2) + hT−1DT Zn−1

+ hmT−1(R̄m,n − R̄m,n−1). (4.15)

Therefore, (
Zn

Zn−1

)
=
(
Im + F + O(h) −F + O(h)

Im 0

)(
Zn−1

Zn−2

)

+
(
hmT−1

(
R̄m,n − R̄m,n−1

)
0

)
.

Since R̄m,n − R̄m,n−1 = O(h) for u ∈ Cm+2, we define rm,n := R̄m,n−R̄m,n−1
h and set

Xn :=
(

Zn

Zn−1

)
,G :=

(
Im + F −F

Im 0

)
, r̄m,n :=

(
T−1rm,n

0

)
.
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On the convergence of collocation solutions in continuous… 1349

We may then write

Xn = GXn−1 + O(h)Xn−1 + hm+1r̄m,n . (4.16)

The eigenvalues of the matrix G are 1, 1, . . . , 1︸ ︷︷ ︸
m

;−1, 0, . . . , 0︸ ︷︷ ︸
m−1

. The eigenvalue 1 of

multiplicity m has m linearly independent eigenvectors, while to the eigenvalue 0 of
multiplicitym−1 there correspondm−1 linearly independent eigenvectors. Therefore,
G is diagonalizable, and there exists a nonsingular matrix P such that

P−1GP =: Λ = diag(1, . . . , 1︸ ︷︷ ︸
m

,−1, 0, . . . , 0︸ ︷︷ ︸
m−1

).

Defining Yn := P−1Xn we obtain

Yn = (Λ + O(h))Yn−1 + hm+1P−1r̄m,n . (4.17)

Similar to [7] we can assert that there exist constants C5,C6 so that

‖Yn‖ ≤ (1 + C5h)‖Yn−1‖ + C6h
m+1.

An induction argument then leads to

‖Yn‖ ≤ (1 + C5h)n‖Y0‖ + (1 + C5h)n − 1

C5h
C6h

m+1,

and we can then show that there exists a constant C7 such that,

‖εn‖1 ≤ C7h
m . (4.18)

By (4.6), and as in Case I, there exists hence a constant C8 so that

|eh(tn)| ≤ C8h
m+1. (4.19)

Case III ρm = 1

Here, the eigenvalues of G defined in Case II are 1, 1, . . . , 1︸ ︷︷ ︸
m

; 1, 0, . . . , 0︸ ︷︷ ︸
m−1

, where now

the eigenvalue 1 of multiplicity m + 1 also has m linearly independent eigenvectors.
This means that G is not diagonalizable, but there exists a nonsingular matrix Q, such
that
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1350 H. Liang, H. Brunner

Q−1GQ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
1

. . .

1
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Defining Λ̄ := Q−1GQ, Ȳn := Q−1Xn and recalling (4.16) we obtain

Ȳn = (Λ̄ + O(h))Ȳn−1 + hm+1Q−1r̄m,n . (4.20)

An induction argument yields

Ȳn = (Λ̄ + O(h))nȲ0 + hm+1
n−1∑
l=0

(Λ̄ + O(h))l Q−1r̄m,n−l ,

and thus there exist constants C9,C10 such that

‖Ȳn‖ ≤ C9‖Λ̄n‖‖Ȳ0‖ + hm+1C10

n−1∑
l=0

‖Λ̄l‖.

It is easily to check that

Λ̄n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 n
1

. . .

1
0

. . .

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, there exists a constant C11 such that

‖εn‖1 ≤ C11h
m−1, (4.21)

and an argument analogous to the one employed in the analysis of Case I shows that
there exists a constant C12 such that

|eh(tn)| ≤ C12h
m . (4.22)

Obviously, the collocation solution uh is divergent if |ρm | > 1. The proof is completed
by recalling (2.3), (4.1) and (4.3).
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In the following, we prove the results for general, non-constant kernels. Now, by
(4.4), (1.1)–(2.2) and using (4.3), we obtain

eh(tn,i ) = eh(tn) + h
m∑
j=1

ai jεn, j + hm+1Rm,n(ci )

=
∫ tn,i

0
K (tn,i , s)eh(s)ds

= h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)eh(tl + sh)ds + h

∫ ci

0
K (tn,i , tn + sh)eh(tn + sh)ds

= h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)

⎡
⎣eh(tl ) + h

m∑
j=1

β j (s)εl, j

⎤
⎦ ds

+ h
∫ ci

0
K (tn,i , tn + sh)

⎡
⎣eh(tn) + h

m∑
j=1

β j (s)εn, j

⎤
⎦ ds

+ hm+1
n−1∑
l=0

h
∫ 1

0
K (tn,i , tl + sh)Rm,l (s)ds

+ hm+2
∫ ci

0
K (tn,i , tn + sh)Rm,n(s)ds

= h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)dseh(tl) + h2

n−1∑
l=0

m∑
j=1

∫ 1

0
K (tn,i , tl + sh)β j (s)dsεl, j

+ h
∫ ci

0
K (tn,i , tn + sh)dseh(tn) + h2

m∑
j=1

∫ ci

0
K (tn,i , tn + sh)β j (s)dsεn, j

+ hm+1
n−1∑
l=0

h
∫ 1

0
K (tn,i , tl+sh)Rm,l (s)ds+hm+2

∫ ci

0
K (tn,i , tn+sh)Rm,n(s)ds.

(4.23)

By the standard technique used by Brunner (see [2]), rewriting (4.23) with n replaced
by n − 1 and with i = m and subtract it from (4.23), we find

eh(tn) − eh(tn−1) + h
m∑
j=1

ai jεn, j − h
m∑
j=1

amjεn−1, j

= h
∫ 1

0
K (tn,i , tn−1 + sh)dseh(tn−1)

+ h2(ci + 1 − cm)

n−2∑
l=0

∫ 1

0
K ′
1(ξn,i , tl + sh)dseh(tl)

+ h2
m∑
j=1

∫ 1

0
K (tn,i , tn−1 + sh)β j (s)dsεn−1, j

123



1352 H. Liang, H. Brunner

+ h3(ci + 1 − cm)

n−2∑
l=0

m∑
j=1

∫ 1

0
K ′
1(ξn,i , tl + sh)β j (s)dsεl, j

+ h
∫ ci

0
K (tn,i , tn + sh)dseh(tn) − h

∫ cm

0
K (tn−1,m, tn−1 + sh)dseh(tn−1)

+ h2
m∑
j=1

∫ ci

0
K (tn,i , tn + sh)β j (s)dsεn, j

− h2
m∑
j=1

∫ cm

0
K (tn−1,m, tn−1 + sh)β j (s)dsεn−1, j

+ hm+1 R̃m,n(ci ),

where R̃m,n(ci ) := −Rm,n(ci )+Rm,n−1(cm)+h
∫ 1
0 K (tn,i , tn−1+sh)Rm,n−1(s)ds+∑n−2

l=0 h
∫ 1
0 [K (tn,i , tl + sh) − K (tn−1,m, tl + sh)]Rm,l(s)ds + h

∫ ci
0 K (tn,i , tn +

sh)Rm,n(s)ds − h
∫ cm
0 K (tn−1,m, tn−1 + sh)Rm,n−1(s)ds, ξn,i ∈ (tn−1,m, tn,i ).

This can be written in the more concise form

(eh(tn) − eh(tn−1)) e + hAεn − heeTm Aεn−1

= hC (n−1)
n eeh(tn−1) + h2 (C + (1 − cm)Im)

n−2∑
l=0

C̄ (l)
n eeh(tl) + h2B(n−1)

n εn−1

+ h3 (C + (1 − cm)Im)

n−2∑
l=0

B̄l
nεl + hCneeh(tn) − heeTmCn−1eeh(tn−1)

+ h2Bnεn − h2eeTm Bn−1εn−1 + hm+1R(1)
m,n, (4.24)

with obvious meaning of R(1)
m,n , and with C̄ (l)

n := diag(
∫ 1
0 K ′

1(ξn,i , tl + sh)ds) (0 ≤
l ≤ N − 1) and B̄(l)

n := (
∫ 1
0 K ′

1(ξn,i , tl + sh)β j (s)ds) (0 ≤ l ≤ N − 1).
Substituting (4.8) into (4.24), we have

ebT εn−1 + Aεn − eeTm Aεn−1

= hCn−1
n ebT

n−2∑
l=0

εl + h2 (C + (1 − cm)Im)

n−2∑
l=0

C̄ (l)
n e

l−1∑
k=0

εk + hB(n−1)
n εn−1

+ h2 (C + (1 − cm)Im)

n−2∑
l=0

B̄l
nεl + hCneb

T
n−1∑
l=0

εl − heeTmCn−1eeb
T

n−2∑
l=0

εl

+ hBnεn − heeTm Bn−1εn−1 + hm ¯̃Rm,n,
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with obvious meaning of ¯̃Rm,n . This equation can be written in the form

(A − hBn) εn

=
(
eeTm A − ebT + hB(n−1)

n − heeTm Bn−1

)
εn−1 + hCn−1

n ebT
n−2∑
l=0

εl

+ h2 (C + (1 − cm)Im)

n−2∑
l=0

C̄ (l)
n e

l−1∑
k=0

εk + h2 (C + (1 − cm)Im)

n−2∑
l=0

B̄l
nεl

+ hCneb
T

n−1∑
l=0

εl − heeTmCn−1eeb
T

n−2∑
l=0

εl + hm ¯̃Rm,n, (4.25)

or

εn =
(
A−1

(
eeTm A − ebT

)
+ O(h)

)
εn−1 + hD̃n

n−1∑
l=0

εl + hm ¯̄Rm,n, (4.26)

with obvious meaning of ¯̄Rm,n and D̃n .
Comparison (4.10) of the case K (t, s) ≡ 1 with (4.26), and similar to the proof of

the case K (t, s) ≡ 1, we can obtain now (4.11) becomes

Zn =(F + O(h))Zn−1 + hT−1 D̃nT
n−1∑
l=0

Zl + hmT−1 ¯̄Rm,n . (4.27)

We also consider the following three cases:

Case I −1 < ρm < 1

By the same technique of the case K (t, s) ≡ 1, we can prove that there exists a
constant C̃4, such that

|eh(tn)| ≤ C̃4h
m+1 (n = 1, . . . , N ). (4.28)

Case II ρm = −1

Rewriting (4.27) with n replaced by n − 1 and subtract it from (4.27), we find

Zn − Zn−1 = (F + O(h))(Zn−1 − Zn−2) + hT−1 D̃nT Zn−1

+ hT−1
(
D̃n − D̃n−1

)
T

n−2∑
l=0

Zl

+ hmT−1( ¯̄Rm,n − ¯̄Rm,n−1). (4.29)
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Notice that D̃n − D̃n−1 = O(h), therefore,

(
Zn

Zn−1

)
=
(
Im + F + O(h) −F + O(h)

Im 0

)(
Zn−1

Zn−2

)

+
n−2∑
l=1

(
O(h2) 0

0 0

)(
Zl

Zl−1

)
+
(
hmT−1

( ¯̄Rm,n − ¯̄Rm,n−1

)

0

)
.

Now (4.17) becomes

Yn = (Λ + O(h))Yn−1 + O(h2)
n−2∑
l=1

Yl + O(hm+1). (4.30)

Similar to the case of K (t, s) ≡ 1, we can assert that there exist constants C̃5, C̃ ′
5, C̃6

so that

‖Yn‖ ≤ (1 + C̃5h)‖Yn−1‖ + C̃ ′
5h

2
n−2∑
l=1

‖Yl‖ + C̃6h
m+1.

An induction argument then leads to

‖Yn‖ ≤ (1 + C̃5h)n‖Y0‖ + C̃ ′
5h

2 (1 + C̃5h)n − 1

C̃5h

n−2∑
l=1

‖Yl‖ + C̃6
(1 + C̃5h)n − 1

C̃5h
hm+1.

Therefore, by the discrete Gronwall inequality (see [2]), we can get that there exists
a constant C̃7 such that,

‖εn‖1 ≤ C̃7h
m, (4.31)

and similar to the case of K (t, s) ≡ 1, we can then show that there exists a constant
C̃8 so that

|eh(tn)| ≤ C̃8h
m+1. (4.32)

Case III ρm = 1

Using the technique of [7], we write the collocation approximation uh and the exact
solution in the form

uh(tn + sh) =
m∑
j=1

L j (s)uh(tn, j ) + hm
u(m)
h (ηn)

m!
m∏
i=1

(s − ci ), (4.33)
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and

u(tn + sh) =
m∑
j=1

L j (s)u(tn, j ) + hm
u(m)(η′

n)

m!
m∏
i=1

(s − ci ), (4.34)

where ηn, η
′
n ∈ (tn, tn+1).

So (4.34)–(4.33) yields

eh((tn + sh) =
m∑
j=1

L j (s)eh(tn, j ) + hm R̂n(s), (4.35)

where R̂n(s) := u(m)(η′
n)−u(m)

h (ηn)

m!
m∏
i=1

(s − ci ).

Now, by (1.1)–(2.2) and using (4.35), we obtain

eh(tn,i ) = h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)eh(tl + sh)ds

+ h
∫ ci

0
K (tn,i , tn + sh)eh(tn + sh)ds

= h
n−1∑
l=0

∫ 1

0
K (tn,i , tl + sh)

m∑
j=1

L j (s)dseh(tl, j )

+ h
∫ ci

0
K (tn,i , tn + sh)

m∑
j=1

L j (s)dseh(tn, j )

+ hm ¯̂Rn(s), (4.36)

with obvious meanings of ¯̂Rn(s).
Rewriting (4.36) with n replaced by n − 1 and i = m and subtract it from (4.36),

we can get

eh(tn,i ) − eh(tn−1,m)

= h
∫ 1

0
K (tn,i , tn−1 + sh)

m∑
j=1

L j (s)dseh(tn−1, j )

+ h2(ci + 1 − cm)

n−2∑
l=0

∫ 1

0
K ′
1(ξn,i , tl + sh)

m∑
j=1

L j (s)dseh(tl, j )

+ h
∫ ci

0
K (tn,i , tn + sh)

m∑
j=1

L j (s)dseh(tn, j )
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− h
∫ cm

0
K (tn−1,m, tn−1 + sh)

m∑
j=1

L j (s)dseh(tn−1, j )

+ hm ¯̂Rn(s) − hm ¯̂Rn−1(s). (4.37)

Denoting En := (eh(tn,1), . . . , eh(tn,m))T and noticing that ¯̂Rn(s)− ¯̂Rn−1(s) = O(h),
we can rewrite (4.37) as the more concise form

En − eeTmEn−1 = O(h)En−1 + O(h2)
n−2∑
l=0

El + O(h)En + O(hm+1). (4.38)

Since

eeTm =

⎛
⎜⎜⎝

0 · · · 0 1
0 · · · 0 1
· · · · · · · · · · · ·
0 · · · 0 1

⎞
⎟⎟⎠ ,

the rank of eeTm is 1, and the unique nonzero eigenvalue is 1, so eeTm is diagonalizable
and there exists a nonsingular matrix T̃ , such that

T̃−1eeTm T̃ =: F̃ = diag(1, 0, . . . , 0︸ ︷︷ ︸
m−1

).

Denote Ẽn = T̃−1En . Then (4.38) becomes

Ẽn =(F̃ + O(h))Ẽn−1 + O(h2)
n−2∑
l=0

Ẽl + O(hm+1).

Therefore, there exist constants C̄5, C̄ ′
5 and C̄6, such that

‖Ẽn‖ ≤ (1 + C̄5h)‖Ẽn−1‖ + C̄ ′
5h

2
n−2∑
l=0

‖Ẽl‖ + C̄6h
m+1. (4.39)

Similar to Case II, we can get that there exists a constant C̄7 such that

‖En‖ ≤ C̄7h
m .

By (4.35), we can then get there exists a constant C̄8 such that

|eh(tn + sh)| ≤ C̄8h
m .

Obviously, the collocation solution uh is divergent also if |ρm | > 1. The proof is
completed by recalling (2.3), (4.1) and (4.3).
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5 Proof of Theorems 3.1

On σ
(μ)
n := (t (μ)

n , t (μ)
n+1], the derivative u′

h of the collocation solution has the local
Lagrange representation,

u′
h(t

(μ)
n + sh) =

m∑
j=1

L j (s)U
(μ)
n, j , s ∈ (0, 1], (5.1)

where U (μ)
n,i := u′

h(t
(μ)
n,i ). Upon integration of (5.1) we obtain

uh(t
(μ)
n + sh) = uh(t

(μ)
n ) + h

m∑
j=1

β j (s)U
(μ)
n, j , s ∈ [0, 1]. (5.2)

Since on each subinterval σ
(μ)
n the exact solution of the delay VIE (1.2) is in Cm+2,

we may write

u′(t (μ)
n + sh) =

m∑
j=1

L j (s)u
′(t (μ)

n, j ) + hm R(1,μ)
m,n (s), s ∈ (0, 1], (5.3)

where the Peano remainder term is given by

R(1,μ)
m,n (v) :=

∫ 1

0
Km(v, z)u(m+1)(t (μ)

n + zh)dz.

Integration of (5.3) leads to

u(t (μ)
n + shn) = u(t (μ)

n ) + h
m∑
j=1

β j (s)u
′(t (μ)

n, j ) + hm+1R(μ)
m,n(s), s ∈ [0, 1],

(5.4)

with R(μ)
m,n(s) := ∫ s0 R(1,μ)

m,n (v)dv.
For ease of notation we will again assume that K (t, s) ≡ 1, and we can extend to

the proof to the non-constant kernel by the same technique as the proof of Theorem
2.1.

By (5.2) and (5.4), the collocation error eh := u − uh on σ̄n
(μ) := [t (μ)

n , t (μ)
n+1] can

be written as

eh(t
(μ)
n + sh) = eh(t

(μ)
n ) + h

m∑
j=1

β j (s)ε
(μ)
n, j + hm+1R(μ)

m,n(s), (5.5)
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where ε
(μ)
n,i = u′(t (μ)

n,i ) − u′
h(t

(μ)
n,i ). Particularly,

eh(t
(μ)
n,i ) = eh(t

(μ)
n ) + h

m∑
j=1

ai jε
(μ)
n, j + hm+1R(μ)

m,n(ci ). (5.6)

By (1.2)–(3.3) and using (5.5), we have

eh(t
(μ)
n,i ) =

∫ t (μ)
n,i

t (μ−1)
n,i

eh(s)ds = h
∫ 1

ci
eh(t

(μ−1)
n +sh)ds+h

N−1∑
l=n+1

∫ 1

0
eh(t

(μ−1)
l +sh)ds

+ h
n−1∑
l=0

∫ 1

0
eh(t

(μ)
l + sh)ds + h

∫ ci

0
eh(t

(μ)
n + sh)ds

= h
∫ 1

ci

⎡
⎣eh(t (μ−1)

n ) + h
m∑
j=1

β j (s)ε
(μ−1)
n, j

⎤
⎦ ds

+ h
N−1∑
l=n+1

∫ 1

0

⎡
⎣eh(t (μ−1)

l ) + h
m∑
j=1

β j (s)ε
(μ−1)
l, j

⎤
⎦ ds

+ h
n−1∑
l=0

∫ 1

0

⎡
⎣eh(t (μ)

l ) + h
m∑
j=1

β j (s)ε
(μ)
l, j

⎤
⎦ ds

+ h
∫ ci

0

⎡
⎣eh(t (μ)

n ) + h
m∑
j=1

β j (s)ε
(μ)
n, j

⎤
⎦ ds

+ hm+1
N−1∑
l=n+1

h
∫ 1

0
R(μ−1)
m,l (s)ds + hm+2

∫ 1

ci
R(μ−1)
m,n (s)ds

+ hm+1
n−1∑
l=0

h
∫ 1

0
R(μ)
m,l (s)ds + hm+2

∫ ci

0
R(μ)
m,n(s)ds

= h(1 − ci )eh(t
(μ−1)
n ) + h2

m∑
j=1

(γ j (1) − bi j )ε
(μ−1)
n, j + h

N−1∑
l=n+1

eh(t
(μ−1)
l )

+ h2
N−1∑
l=n+1

m∑
j=1

γ j (1)ε
(μ−1)
l, j + h

n−1∑
l=0

eh(t
(μ)
l )

+ h2
n−1∑
l=0

m∑
j=1

γ j (1)ε
(μ)
l, j + hci eh(t

(μ)
n )

+ h2
m∑
j=1

bi jε
(μ)
n, j + hm+1 R̃(μ)

m,n(ci ), (5.7)
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where R̃(μ)
m,n(ci ) = ∑N−1

l=n+1 h
∫ 1
0 R(μ−1)

m,l (s)ds + h
∫ 1
ci
R(μ−1)
m,n (s)ds + ∑n−1

l=0 h
∫ 1
0

R(μ)
m,l (s)ds + h

∫ ci
0 R(μ)

m,n(s)ds. Thus, by (5.5) and (5.7), we have

eh(t
(μ)
n ) + h

m∑
j=1

ai jε
(μ)
n, j + hm+1R(μ)

m,n(ci )

= h(1 − ci )eh(t
(μ−1)
n ) + h2

m∑
j=1

(γ j (1) − bi j )ε
(μ−1)
n, j + h

N−1∑
l=n+1

eh(t
(μ−1)
l )

+ h2
N−1∑
l=n+1

m∑
j=1

γ j (1)ε
(μ−1)
l, j + h

n−1∑
l=0

eh(t
(μ)
l ) + h2

n−1∑
l=0

m∑
j=1

γ j (1)ε
(μ)
l, j

+ hci eh(t
(μ)
n ) + h2

m∑
j=1

bi jε
(μ)
n, j + hm+1 R̃(μ)

m,n(ci ). (5.8)

Rewriting (5.8) with n replaced by n − 1 and with i = m and subtract it from (5.8),
we can obtain

eh(t
(μ)
n ) − eh(t

(μ)
n−1) + h

m∑
j=1

ai jε
(μ)
n, j − h

m∑
j=1

amjε
(μ)
n−1, j

+ hm+1R(μ)
m,n(ci ) − hm+1R(μ)

m,n−1(cm)

= h(1 − ci )eh(t
(μ−1)
n ) − h(1 − cm)eh(t

(μ−1)
n−1 ) + h2

m∑
j=1

(γ j (1) − bi j )ε
(μ−1)
n, j

− h2
m∑
j=1

(γ j (1) − bmj )ε
(μ−1)
n−1, j − heh(t

(μ−1)
n ) − h2

m∑
j=1

γ j (1)ε
(μ−1)
n, j

+ heh(t
(μ)
n−1) + h2

m∑
j=1

γ j (1)ε
(μ)
n−1, j + hci eh(t

(μ)
n ) − hcmeh(t

(μ)
n−1)

+ h2
m∑
j=1

bi jε
(μ)
n, j −h2

m∑
j=1

bmjε
(μ)
n−1, j +hm+1 R̃(μ)

m,n(ci )−hm+1 R̃(μ)
m,n−1(cm). (5.9)

By (5.5), the continuity of eh on I , and eh(0) = 0, we find by induction

eh(t
(μ)
n ) = eh(t

(μ)
n−1 + h) = eh(t

(μ)
n−1) + h

m∑
j=1

b jε
(μ)
n−1, j + hm+1R(μ)

m,n−1(1)

= h
μ∑

ν=1

N−1∑
l=0

bT ε
(ν−1)
l + hm+1

μ∑
ν=1

N−1∑
l=0

R(ν−1)
m,l (1) + h

n−1∑
l=0

bT ε
(μ)
l

+ hm+1
n−1∑
l=0

R(μ)
m,l (1). (5.10)
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For μ = 0, it follows from (5.9) and (5.10) that we can write the error equation in
the form

e
(
bT ε

(0)
n−1 + hm R(0)

m,n−1(1)
)

+ Aε(0)
n − eeTm Aε

(0)
n−1

= (1 − cm)e

(
h
n−2∑
l=0

bT ε
(0)
l + hm+1

n−2∑
l=0

R(0)
m,l(1)

)
+ heγ T ε

(0)
n−1

+Ce

(
h
n−1∑
l=0

bT ε
(0)
l + hm

n−1∑
l=0

R(0)
m,l(1)

)
+ hBε(0)

n − heeTm Bε
(0)
n−1 + hm R(0)

m,n,

or

(A − hB) ε(0)
n =

(
eeTm A − ebT + heγ T − heeTm B

)
ε
(0)
n−1

+ (1 − cm)eh
n−2∑
l=0

bT ε
(0)
l + Ceh

n−1∑
l=0

bT ε
(0)
l + hm R̃(0)

m,n,

with obvious meaning of R̃(0)
m,n .

The proof of Theorem 2.1 reveals that ε(0)
n converges if, and only if

−1 ≤ ρm = (−1)m
m∏
i=1

1 − ci
ci

≤ 1,

and that there exist constant C (0)
1 , such that

‖ε(0)
n ‖1 ≤ C (0)

1

{
hm, if − 1 ≤ ρm < 1;
hm−1, if ρm = 1.

(5.11)

Equation (5.8) implies that there exist constants C (0)
2 and C (0)

3 such that

|eh(t (0)n )| ≤ hC (0)
2

n−1∑
l=0

|eh(t (0)l )| + C (0)
3

{
hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1,
(5.12)

and thus the discrete Gronwall inequality (see [2]) guarantees the existence of a con-
stant C (0)

4 for which

|eh(t (0)n )| ≤ C (0)
4

{
hm+1, if − 1 ≤ ρm < 1,

hm, if ρm = 1,
(5.13)
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holds. Assume that for ν = 1, . . . , μ − 1, ε(ν)
n converges if, and only if

−1 ≤ ρm = (−1)m
m∏
i=1

1 − ci
ci

≤ 1,

and that there exist constants C (ν)
1 and C (ν)

4 such that

‖ε(ν)
n ‖1 ≤ C (ν)

1

{
hm, if − 1 ≤ ρm < 1,

hm−1, if ρm = 1,
(5.14)

and

|eh(t (ν)
n )| ≤ C (ν)

4

{
hm+1, if − 1 ≤ ρm < 1;
hm, if ρm = 1.

(5.15)

By (5.9) and (5.10), we have

ebT ε
(μ)
n−1 + Aε(μ)

n − eeTm Aε
(μ)
n−1

= (Im − C)eeh(t
(μ−1)
n ) − (1 − cm)eeh(t

(μ−1)
n−1 ) + h(eγ T − B)ε(μ−1)

n

− he(γ T − eTm B)ε
(μ−1)
n−1 − eeh(t

(μ−1)
n ) − heγ T ε(μ−1)

n

+ (1 − cm)e

(
h

μ∑
ν=1

N−1∑
l=0

bT ε
(ν−1)
l + h

n−2∑
l=0

bT ε
(μ)
l

)
+ heγ T ε

(μ)
n−1

+Ce

(
h

μ∑
ν=1

N−1∑
l=0

bT ε
(ν−1)
l + h

n−1∑
l=0

bT ε
(μ)
l

)
+ hBε(μ)

n

− heeTm Bε
(μ)
n−1 + hm R(μ)

m,n, (5.16)

with obvious meaning of R(μ)
m,n .

In the remaining part of the proof we consider the following three cases.

Case I −1 < ρm < 1

By assumption (5.14) and (5.15), we obtain from (5.16)

(A − hB) ε(μ)
n =

(
eeTm A − ebT + heγ T − heeTm B + hCebT

)
ε
(μ)
n−1

+ h ((1 − cm)e + Ce)
n−2∑
l=0

bT ε
(μ)
l + O(hm).

Proceeding as in the proof of Theorem 2.1 we see that there exists a constant C (μ)
1

such that
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‖ε(μ)
n ‖1 ≤ C (μ)

1 hm, (5.17)

and hence, by (5.8) and the discrete Gronwall lemma (see [2]), there exist constants
C (μ)
2 , C (μ)

3 and C (μ)
4 for which

|eh(t (μ)
n )| ≤ hC (μ)

2

n−1∑
l=0

|eh(t (μ)
l )| + C (μ)

3 hm+1

and

|eh(t (μ)
n )| ≤ C (μ)

4 hm+1

are true.

Case II ρm = −1

Rewriting (5.16) with n replaced by n − 1 and with i = m and subtract it from (5.16),
and by (5.10), we can obtain

ebT ε
(μ)
n−1 − ebT ε

(μ)
n−2 + Aε(μ)

n − Aε
(μ)
n−1 − eeTm Aε

(μ)
n−1 + eeTm Aε

(μ)
n−2

= (Im − C)e
(
eh(t

(μ−1)
n ) − eh(t

(μ−1)
n−1 )

)
− (1 − cm)e

(
eh(t

(μ−1)
n−1 ) − eh(t

(μ−1)
n−2 )

)

+ h(eγ T − B)
(
ε(μ−1)
n − ε

(μ−1)
n−1

)
− he(γ T − eTm B)

(
ε
(μ−1)
n−1 − ε

(μ−1)
n−2

)

− e
(
eh(t

(μ−1)
n ) − eh(t

(μ−1)
n−1 )

)
− heγ T

(
ε(μ−1)
n − ε

(μ−1)
n−1

)

+ h(1 − cm)ebT ε
(μ)
n−2 + heγ T

(
ε
(μ)
n−1 − ε

(μ)
n−2

)
+ hCebT ε

(μ)
n−1

+ hB
(
ε(μ)
n − ε

(μ)
n−1

)
− heeTm B

(
ε
(μ)
n−1 − ε

(μ)
n−2

)
+ hm

(
R(μ)
m,n − R(μ)

m,n−1

)

= −Ce
(
eh(t

(μ−1)
n ) − eh(t

(μ−1)
n−1 )

)
− (1 − cm)e

(
eh(t

(μ−1)
n−1 ) − eh(t

(μ−1)
n−2 )

)

− hB
(
ε(μ−1)
n − ε

(μ−1)
n−1

)
− he(γ T − eTm B)

(
ε
(μ−1)
n−1 − ε

(μ−1)
n−2

)

+ h(1 − cm)ebT ε
(μ)
n−2 + he

(
γ T − eTm B

) (
ε
(μ)
n−1 − ε

(μ)
n−2

)

+ hCebT ε
(μ)
n−1 + hB

(
ε(μ)
n − ε

(μ)
n−1

)
+ hm

(
R(μ)
m,n − R(μ)

m,n−1

)

= −hCebT ε
(μ−1)
n−1 − h(1 − cm)ebT ε

(μ−1)
n−2 − hB

(
ε(μ−1)
n − ε

(μ−1)
n−1

)

− he(γ T − eTm B)
(
ε
(μ−1)
n−1 − ε

(μ−1)
n−2

)
+ h(1 − cm)ebT ε

(μ)
n−2

+ he
(
γ T − eTm B

) (
ε
(μ)
n−1 − ε

(μ)
n−2

)
+ hCebT ε

(μ)
n−1

+ hB
(
ε(μ)
n − ε

(μ)
n−1

)
+ hm R̄(μ)

m,n, (5.18)
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with obvious meaning of R̄(μ)
m,n . Therefore,

(
A − hB 0

0 Im

)(
ε
(μ)
n

ε
(μ)
n−1

)

=
⎛
⎜⎝

A + e
(
eTm A − bT

)
e
(
bT − eTm A

)
+h
(
eγ T + CebT − B − eeTm B

) +he
(
(1 − cm)bT − γ T + eTm B

)
Im 0

⎞
⎟⎠
(

ε
(μ)
n−1

ε
(μ)
n−2

)

+

⎛
⎜⎜⎜⎝

−hCebT ε
(μ−1)
n−1 − h(1 − cm)ebT ε

(μ−1)
n−2 − hB

(
ε
(μ−1)
n − ε

(μ−1)
n−1

)

−he(γ T − eTm B)
(
ε
(μ−1)
n−1 − ε

(μ−1)
n−2

)
+ hm R̄(μ)

m,n

0

⎞
⎟⎟⎟⎠ .

Obviously, the inverse of the coefficient matrix is (
(A − hB)−1 0

0 Im
), so that by assumption

(5.14) we obtain

(
ε
(μ)
n

ε
(μ)
n−1

)
=
(
Im + A−1e(eTm A − bT ) + O(h) −A−1e(eTm A − bT ) + O(h)

Im 0

)(
ε
(μ)
n−1

ε
(μ)
n−2

)

+
(
hm ˜̄R(μ)

m,n

0

)
, (5.19)

where the meaning of ˜̄R(μ)
m,n is clear. Since the eigenvalues of the matrix on the right-

hand side are 1, 1, . . . , 1︸ ︷︷ ︸
m

;−1, 0, . . . , 0︸ ︷︷ ︸
m−1

, we may use an argument similar to the one

in Case II for Theorem 2.1 to establish the existence of constants C (μ)
5 and C (μ)

6 such
that

‖ε(μ)
n ‖ ≤ C (μ)

5 hm, |eh(t (μ)
n )| ≤ C (μ)

6 hm+1. (5.20)

Case III ρm = 1

Using the technique of [7], on σ
(μ)
n := (t (μ)

n , t (μ)
n+1], we write the collocation approxi-

mation uh and the exact solution in the form

uh(t
(μ)
n + sh) =

m∑
j=1

L j (s)uh(t
(μ)
n, j ) + hm

u(m)
h (η

(μ)
n )

m!
m∏
i=1

(s − ci ), (5.21)

and

u((t (μ)
n + sh) =

m∑
j=1

L j (s)u(t (μ)
n, j ) + hm

u(m)((η
(μ)
n )′)

m!
m∏
i=1

(s − ci ), (5.22)
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where η
(μ)
n , (η

(μ)
n )′ ∈ (t (μ)

n , t (μ)
n+1).

So (5.22)–(5.21) yields

eh((t
(μ)
n + sh) =

m∑
j=1

L j (s)eh(t
(μ)
n, j ) + hm R̂(μ)

n (s), (5.23)

where R̂(μ)
n (s) := u(m)((η

(μ)
n )′)−u(m)

h (η
(μ)
n )

m!
∏m

i=1(s − ci ). Therefore, the proof is com-
pleted by resorting to the finial argument in the proof of Theorem 2.1 and the
mathematical induction.

6 Numerical examples

In this section, we present two examples to illustrate the foregoing convergence results.
For the numerical solution of (1.1) and (1.2), we choosem = 1,m = 2 andm = 3. For
m = 1 we use c1 = 1

3 , 0.49, 0.5, 0.8, 1 respectively, and ρm = −2,− 51
49 ,−1,− 1

4 , 0

respectively. For m = 2 we use the Gauss collocation parameters, c1 = 3−√
3

6 , c2 =
3+√

3
6 ; the Radau IIA collocation parameters, c1 = 1

3 , c2 = 1; and three sets of
arbitrary collocation parameters, c1 = 1

2 , c2 = 1; c1 = 1
3 , c2 = 2

3 ; c1 = 1
6 , c2 = 0.82

respectively, and ρm = 1, 0, 0, 1, 45
41 respectively. For m = 3 we use the Gauss

collocation parameters, c1 = 5−√
15

10 , c2 = 1
2 , c3 = 5+√

15
10 ; the Radau IIA collocation

parameters, c1 = 4−√
6

10 , c2 = 4+√
6

10 , c3 = 1; and three sets of arbitrary collocation
parameters, c1 = 1

2 , c2 = 2
3 , c3 = 1; c1 = 1

3 , c2 = 1
2 , c3 = 2

3 ; c1 = 1
4 , c2 = 1

2 , c3 =
0.7 respectively, and ρm = −1, 0, 0,−1, 9

7 respectively. In Tables 1, 2, 3, 4, 5 and 6
we list the absolute errors for the five collocation parameters and for m = 1, m = 2
or m = 3.

Example 6.1 In (1.1) let K (t, s) = et−s and with g(t) such that the exact solution is
u(t) = e−t .

Table 1 The absolute errors for Example 6.1 with m = 1 at t = 1

N c1 = 1
3 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

(ρm = −2) (ρm = − 51
49 ) (ρm = −1) (ρm = − 1

4 ) (ρm = 0)

24 1.6769e+01 −1.1245e−03 −1.3797e−03 −1.1654e−03 −3.8162e−04

25 2.7879e+05 −1.5970e−04 −3.4871e−04 −2.9908e−04 −9.5274e−05

26 3.0145e+14 1.3160e−04 −8.7586e−05 −7.5737e−05 −2.3810e−05

27 1.3950e+33 7.4499e−04 −2.1943e−05 −1.9055e−05 −5.9521e−06

28 1.1887e+71 3.2355e−02 −5.4913e−06 −4.7789e−06 −1.4880e−06

29 3.4440e+147 2.2707e+02 −1.3735e−06 −1.1966e−06 −3.7200e−07

Ratio – – 3.9980e+00 3.9937e+00 4.0000e+00
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Table 2 The absolute errors for Example 6.1 with m = 2 at t = 1

N Gauss Radau IIA ( 12 , 1) ( 13 , 2
3 ) ( 16 , 0.82)

(ρm = 1) (ρm = 0) (ρm = 0) (ρm = 1) (ρm = 45
41 )

22 8.7567e−04 −1.5895e−04 1.0229e−05 1.6246e−03 7.2562e−04

23 2.2484e−04 −2.0608e−05 5.8522e−07 4.1289e−04 2.4094e−04

24 5.6609e−05 −2.6137e−06 3.4833e−08 1.0368e−04 1.0263e−04

25 1.4178e−05 −3.2878e−07 2.1220e−09 2.5949e−05 7.9295e−05

26 3.5461e−06 −4.1218e−08 1.3090e−10 6.4890e−06 2.3295e−04

27 8.8663e−07 −5.1596e−09 8.1272e−12 1.6224e−06 1.2191e−02

Ratio 3.9995e+00 7.9886e+00 1.6106e+01 3.9996e+00 –

Table 3 The absolute errors for Example 6.1 with m = 3 at t = 1

N Gauss Radau IIA ( 12 , 2
3 , 1) ( 13 , 1

2 , 2
3 ) ( 14 , 1

2 , 0.7)
(ρm = −1) (ρm = 0) (ρm = 0) (ρm = −1) (ρm = 9

7 )

22 1.6331e−06 −3.5692e−07 2.8600e−06 6.2657e−08 1.0811e−05

23 1.0388e−07 −1.1580e−08 1.8879e−07 −6.6111e−09 2.5177e−06

24 6.5215e−09 −3.6737e−10 1.2104e−08 −5.8375e−10 1.3325e−06

25 4.0806e−10 −1.1556e−11 7.6582e−10 −3.9167e−11 4.7302e−06

26 2.5513e−11 −3.6238e−13 4.8151e−11 −2.4919e−12 9.1983e−04

27 1.5855e−12 −1.1047e−14 3.0186e−12 −1.7691e−13 5.5577e+02

Ratio 1.6091e+01 3.2803e+01 1.5951e+01 1.4086e+01 –

Table 4 The absolute errors for Example 6.2 with m = 1 at t = 2

N c1 = 1
3 c1 = 0.49 c1 = 0.5 c1 = 0.8 c1 = 1

(ρm = −2) (ρm = − 51
49 ) (ρm = −1) (ρm = − 1

4 ) (ρm = 0)

24 −2.6353e+05 −4.4259e−03 −4.0549e−03 −5.3670e−03 −8.0719e−03

25 −2.7239e+14 −1.3943e−03 −1.0451e−03 −1.3628e−03 −2.0292e−03

26 −1.2319e+33 −1.2031e−03 −2.6516e−04 −3.4339e−04 −5.0897e−04

27 −1.0377e+71 −3.4330e−02 −6.6776e−05 −8.6191e−05 −1.2747e−04

28 −2.9890e+147 −2.3627e+02 −1.6754e−05 −2.1591e−05 −3.1898e−05

Ratio – – 3.9857e+00 3.9920e+00 3.9962e+00

Example 6.2 Consider (1.2) with K (t, s) = et−s, τ = 1 and φ(t) = 1, and with g(t)
such that the exact solution is u(t) = cos t for t ≥ 0.

From Tables 1, 2, 3, 4, 5 and 6, we can see that the numerical results are consistent
with our theoretical analysis.
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Table 5 The absolute errors for Example 6.2 with m = 2 at t = 2

N Gauss Radau IIA ( 12 , 1) ( 13 , 2
3 ) ( 16 , 0.82)

(ρm = 1) (ρm = 0) (ρm = 0) (ρm = 1) (ρm = 45
41 )

22 −2.1203e−03 4.2557e−04 −4.2732e−05 −4.6661e−03 −1.4824e−03

23 −5.3314e−04 5.5962e−05 −2.6318e−06 −1.1686e−03 −5.3870e−04

24 −1.3350e−04 7.1778e−06 −1.6357e−07 −2.9229e−04 −3.0280e−04

25 −3.3388e−05 9.0894e−07 −1.0200e−08 −7.3082e−05 −5.1290e−04

26 −8.3478e−06 1.1436e−07 −6.3685e−10 −1.8271e−05 −1.3128e−02

27 −2.0870e−06 1.4342e−08 −3.9786e−11 −4.5679e−06 −1.2168e+02

Ratio 3.9999e+00 7.9740e+00 1.6007e+01 4.0000e+00 –

Table 6 The absolute errors for Example 6.2 with m = 3 at t = 2

N Gauss Radau IIA ( 12 , 2
3 , 1) ( 13 , 1

2 , 2
3 ) ( 14 , 1

2 , 0.7)
(ρm = −1) (ρm = 0) (ρm = 0) (ρm = −1) (ρm = 9

7 )

22 6.3829e−06 −7.3679e−07 1.1411e−05 −3.8353e−07 3.9902e−05

23 3.9579e−07 −2.3465e−08 7.3205e−07 −3.6064e−08 1.8447e−05

24 2.4685e−08 −7.4033e−10 4.6325e−08 −2.4297e−09 6.0003e−05

25 1.5420e−09 −2.3252e−11 2.9129e−09 −1.5455e−10 1.1480e−02

26 9.6366e−11 −7.2664e−13 1.8260e−10 −9.6959e−12 6.9302e+03

Ratio 1.6001e+01 3.1999e+01 1.5952e+01 1.5940e+01 –

In practical applications one will rarely use collocation space S(0)
m (Ih) with m > 3,

since m = 3 yields the global convergence order p = m + 1 = 4 and very small
absolute errors already for moderately small stepsizes.

7 Concluding remark

As we mentioned in Sect. 1, the main purpose of this paper was to close a gap in pre-
vious convergence analyses of continuous piecewise polynomial collocation solutions
for second-kind Volterra integral equations. While such globally continuous collo-
cation approximations may occasionally be desirable (for example in VFIEs with
non-vanishing delays), their accuracy is in general inferior to the one obtained by
using discontinuous piecewise polynomials (at essentially the same computational
cost).
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