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Abstract Numerical integration of ordinary differential equations with some invari-
ants is considered. For such a purpose, certain projection methods have proved its
high accuracy and efficiency. Unfortunately, however, sometimes they can exhibit
instability. In this paper, a new, highly efficient projection method is proposed based
on explicit Runge—Kutta methods. The key there is to employ the idea of the perturbed
collocation method, which gives a unified way to incorporate scheme parameters for
projection. Numerical experiments confirm the stability of the proposed method.
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1 Introduction

In this paper, we are concerned with numerical integration of ordinary differential
equations with some invariants. For example, let us consider the Hamiltonian systems:

d
d—f = JVH(y(1)). y(0) =ypeR", (1.1)
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where J is the symplectic matrix and H : RY — R" is the Hamiltonian. We also
call it an energy function. From the formulation (1.1), we see that the exact solution
of the Hamiltonian system preserves the energy function H:

d d
T HOW) = W(y(r))Td—f = VH(y(1)" JVH(y(1)) = 0, (1.2)

where we used the chain rule and the skew symmetry of J. Such ODEs with (possibly
multiple) invariants appear in wide range of modern science and engineering.

For such systems, we hope that numerical solutions preserve the invariants, but
generally such expectation does not come true. In fact, Runge—Kutta (RK) methods
cannot preserve energy function in general [7]. Hence, in these several decades, several
invariants-preserving methods have been constructed (e.g. [1,3,9,18,20]). Then it has
been proved that such methods are in fact stabler than general RK methods, and often
well compare with other geometric numerical integration methods, such as symplectic
methods for Hamiltonian systems [13].

Energy-preserving methods for the Hamiltonian systems (1.1) (or more generally,
systems with invariants) can be divided into two groups: (i) methods whose numerical
solutions automatically satisfy H (y,+1) = H (y,) without using H or V H explicitly
(e.g. [9,17,19]), and (ii) methods that first get a temporary solution y,4+; by some
method, and obtain the next solution y,+| by projecting the temporary solution y,, 4
to some y, 41 satisfying H (y,+1) = H(y,) (e.g. [2,4,8,11]). Although methods in the
first group generate stable numerical solutions, they demands the solution of at least
N dimensional nonlinear system at every time step, thus demand much computation
time when N is large. Even worse, most of them have only second order accuracy,
and demand extra computational cost when further accuracy is necessary [12,21]. In
contrast to this, some methods in the second group only require the solution of a single
nonlinear equation (instead of N) in every time step, while keeping the same accuracy
as the base integrator. Therefore, from the view of actual computation, the second
group seems more promising unless we can count on some fast nonlinear solvers.

Here we review typical methods of the second group. Orthogonal projection method
(OPM) [13] projects ;11 along V H (¥,41) to obtain the next solution y,+; satisfy-
ing H(y,+1) = H(y,). Calvo-Herndndez-Abreu—Montijano—Randez [4] proposed
a projection method called “incremental direction technique” (IDT) that searches
the next solution along the direction y,,1 — y,., where y,, is the solution by
an embedded Runge—Kutta method. In contrast to these linear methods, recently a
method called EQUIP method that searches for y; nonlinearly has been proposed by
Brugnano-lavernaro—Trigiante [2]. The key of the method is the clever use of the
W-transformation associated with collocation methods.

Next let us focus on their solvability and accuracy. The known results gave in the
above mentioned studies can be reorganized in more general context as follows. Let us
introduce the concept of “l-parameter projection method”: we first prepare a family
of integrators {@,},cr depending on 1-parameter «; then, in every time step, we
adjust o such that H(®y(y9)) = H(yp) holds. This concept includes the OPM, IDT
and EQUIP, and forms a wider class of energy-preserving methods. By an obvious
generalization of the result of [2], we can prove that “1-parameter projection method”
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is solvable and has the same order of accuracy as the base integrator @ under quite
reasonable assumptions (see Theorem 2). This implies, at least theoretically, that all
1-parameter projection methods achieve high accuracy with low computational cost.

Although this gives a clear support for all the 1-parameter projection methods, here
a natural question arises from the viewpoint of actual computation: which method
among all the “1-parameter projection methods” is actually the best in terms of stability
and computational efficiency? Moreover, how can we construct it systematically?
Theoretical results mentioned above are of course mathematically quite important, but
do not answer these questions, because they hold only for sufficient small time step
h, and thus do not necessarily provide information on the behavior under practical
size of h. Some new perspective is needed to answer these questions. To this end, let
us again review each existing 1-parameter projection method and consider whether it
can be the ideal answer for the questions. OPM and IDT introduced before may be
the answers, since they can be arbitrary accurate and only require the solution of a 1-
dimensional nonlinear equation, i.e., they are highly efficient. Between these methods,
IDT is generally considered to be better because it preserves linear invariants; thus let
us below consider IDT with more details. IDT searches the next solution linearly along
the difference of two numerical solutions constructed by an embedding Runge—Kutta
method with no extra function evaluation. Thus this method needs surprisingly low
computational costs while keeping the original high accuracy, as mentioned above. In
this sense, IDT is quite a good method. However, it has a slight drawback that when
the direction ¥,41 — ¥, happens to be almost orthogonal to V H, the projection can
be quite unstable, i.e., the next solution might be far away from the exact solution.
In other words, the correction of the projection can be huge, and that may lead to
some instability. One way of working around this is to employ some adaptive step
size technique. In this case, IDT is really a good method, and practical. Nevertheless,
we feel that this observation reveals the possible essential limitation of the linear
search methods—they can yield fatal projection steps when they fail to suggest good
directions. This can happen in all linear search methods including OPM.

Another good candidate as the best 1-parameter projection method is EQUIP
method. Since it is based on the W-transformation, its parameterization does not
destroy the symplecticity of the Gauss method, which was the main subject in [2].
In the present paper, however, we like to see the method from a different perspective.
In [2], the authors chose to discard linear search, and turn to a completely new idea
of projection, where they introduced a clever, natural parameterization of the Gauss
method. There, the “search” is no longer linear, but thanks to the new view as a parame-
terized Gauss method, the correction by the projection is expected to remain relatively
small, avoiding possible fatal projections in linear search methods. In fact, in [2],
numerical examples show that EQUIP runs stably with constant time steps. However,
because the Gauss method is implicit, EQUIP method also demands the solution of
high dimensional nonlinear equations in every time step. Therefore, although EQUIP
method can generate much stabler numerical solutions, we like to continue the journey
to “the best” method, unless the computational cost can be substantially decreased by,
for example, the clever use of multiple core implementations.

From the discussion above, we are encouraged to construct 1-parameter projection
methods based on explicit Runge—Kutta methods for low computational cost. At the

@ Springer



1320 H. Kojima

same time, we hope to keep the good nature of EQUIP, i.e., the natural parameterization
of such RK methods for their stability. If we succeed in this challenge, we expect that
such methods can be the definitive answer for the questions.

The key idea for this challenge in the present paper is as follows. Recall that the
natural parameterization in EQUIP was done by viewing the Gauss method as col-
location method. But exactly this very trick implied the implicitness of the resulting
schemes. Then, how can we do a similar thing based on explicit RK methods? The
idea here is that we interpret explicit RK methods as perturbed collocation methods as
proposed by Ngrsett—Wanner [16]. With the aid of perturbation operators, perturbed
collocation methods can express larger class of RK methods, including both explicit
and implicit ones. Then we basically follow the strategy in EQUIP; we first consider
a RK method and its perturbed collocation method representation. Then we try to find
a natural way to parameterize the representation, so that the modification (which will
result in the correction of the projection) remains as small as possible. The latter step is
quite different from that of EQUIP. In EQUIP method, the small correction was made
in terms of the W-transformed expression of the Gauss method. In the perturbed col-
location method, however, no corresponding expression exists. Instead, in the present
paper, we propose to introduce parameterization only in higher order perturbation
terms. This sounds natural for achieving as small correction as possible. This task is,
however, not straightforward as one would simply imagine. Since as described above
the perturbed collocation method can express both explicit and implicit RK methods,
inappropriate parameterization of explicit RK methods should destroy the explicitness
and result in implicit schemes. This is not what we hope in terms of computational cost.
In the present paper, we show that this difficulty can be worked around by using the
characterization of explicitness obtained by Ngrsett—Wanner [16]. We also would like
to point out that the idea of perturbed collocation methods has not been intensively
utilized recently, as far as the author understands—in this sense, the present work
might be interesting for related researchers in that it breathes new life into perturbed
collocation methods themselves.

This paper is organized as follows. In Sect. 2, we introduce perturbed collocation
methods and the general theory for 1-parameter projection methods. In Sect. 3, we
propose a new method via perturbed collocation methods. In Sect. 4, we test the pro-
posed method and show its stability and efficiency comparing with existing methods.
In Sect. 5, we give conclusions of this paper.

2 Preliminaries
2.1 Perturbed collocation methods

Here we give a brief review of perturbed collocation methods [16]. These methods are
proposed mainly to expand the relation between the collocation methods and some
implicit RK methods. In fact, perturbed collocation methods can express a larger class
of RK methods, including some explicit RK methods.

First, we introduce the perturbation operator.
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Definition 1 (Perturbation operator [16]) Let I be the linear space of s-degree
polynomials. Then the perturbation operator Py, j, : IT; — I is defined as below:

N
t—1t . .
(Pyy,pu) (1) = u(t) + Zle ( - )um(zo)h% @.1)
j=
where N;(t) (j = 1,...,s) are s-degree polynomials defined as
1 < :
Nj(t)zf'Z(pij_‘sij)tlv 2.2)
J 20
pijeR (=0,1,...,5; j=1,2,...,9), 2.3)
5. — 1, ifi=j, 2.4)
v 0, otherwise. '

For convenience, fg and & will be omitted when they are fixed. Using this perturbation
operator, we define the perturbed collocation method.

Definition 2 (Perturbed collocation methods [16]) Let s be a positive integer and P
a perturbation operator. There is an s-degree polynomial u(¢) satisfying the following
conditions:

u(to) = yo. 2.5
u(to +cih) = f(Pu(to+cih)) (1 <i<s). (2.6)

Then the numerical solution of perturbed collocation methods is defined by y; :=
u(ty + h).

From these definitions, we see perturbed collocation methods are an extension of
collocation methods in the sense that they reduce to collocation methods when P is
the identity operator.

Next we review the relation between perturbed collocation methods and RK meth-
ods.

Proposition 1 [16] The perturbed collocation method defined by (2.5) and (2.6) is
equivalent to a Runge—Kutta method whose coefficients are the entries of

A=V.PJV 2.7)
b=q,....,HTgv1, (2.8)
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where
1 por ... Dpos
1 ¢ ... ¢f . .
. . 0 : :
Ve=|: ], P= , (2.9
1 ¢ ¢t o :
0 Ps1 Pss
o ... O
10 ... 0 La oo
J=|o 12 ... ol v=[: . (2.10)
.. . 1 c C‘sfl
0 0 1/s ’ ’

Conversely, a Runge—Kutta method that satisfies (2.8) and has distinct {c;}1<i<s can
be expressed by a perturbed collocation method.

Remark I Tt is not unique how to express a RK method by perturbed collocation
methods. Let us consider polynomial M (¢) = Hle (t — ¢;). Adding this M to N
(which compose the perturbation operator P) does not change the perturbed collo-
cation method (see [16, Prop. 4]). From this observation, we see that we can always
express a RK method by a perturbed collocation method whose perturbation operator
is P : I[Iy — [ly_1; in other words, p;; = 0 (j = 1,...,s). Hence we assume
Pu € I1;_; in what follows.

This proposition shows that perturbed collocation methods form a subclass of RK
methods. Moreover, in [16], a characterization for a perturbed collocation method
being an explicit RK method was given. This characterization will play a key role in
the clever parameterization of explicit RK methods in Sect. 3.

Proposition 2 [16] We consider a perturbed collocation method that satisfies Pu €
II;_ and define its RK coefficients triple by (A, b, c). Then the entry a;; is zero if and
only if the vector

5 T
((Nl—i-t)(ci),...,(s— 1)!(Ns+;) (c,-)) 2.11)
is a linear combination of
A, e DT k=1, =1, j+1,...,9). (2.12)

Moreover, a perturbed collocation method which satisfies Pu € Ily_1 corresponds
with an explicit Runge—Kutta method if and only if the perturbation operator P satisfies
212)for1 <i < j<s.
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2.2 A general theory for 1-parameter projection methods

As we mentioned in the introduction, we introduce a general theory for 1-parameter
projection methods. This theory is easily obtained by extending the results of
Brugnano-Iavernaro—Trigiante [2] (similar results can be found in Calvo—Hernandez-
Abreu—Montijano—Randez [4]). First we define a family of integrators.

Definition 3 We call {®,},cr a family of integrators with order reduction r when
each integrator @, («¢ # 0) is well-defined and has order p — r, where p is the
order of the “base integrator” with « = 0, i.e., @9. We also define the solution curve
yi(a, h) = @4 (yo).

In order to implement 1-parameter projection methods, we need to solve the fol-
lowing nonlinear equation in terms of o with / fixed:

g(a, h) = H(yi(a, h)) — H(yo)- (2.13)

Under this general setting, we can prove the existence of solutions of (2.13) and the
recovery of the order. To prove them, we suppose that the following assumptions %
and %, hold for {®, },cR for a fixed state yy.

%, g(a, h) is analytic near the origin.
%,: Let d be the order of the error in the energy function H when the base method
is applied:

(0, h) = H(y1(0, h)) — H(yo) = coh’ + O(h"™), (2.14)
where cg # 0. Then, for any fixed @ € R (o # 0),
g(a, h) = c()h®™" + om?"h (2.15)

holds with ¢’(0) # 0.

The above setting basically follows [2]. Here we rephrase the underlying idea. From
the fact that the base integrator @ has order p, it is obvious d is generally p + 1. But it
can happen that d > p + 1 holds coincidentally, and we do not hope to exclude such
cases. Thus we define d as the lowest integer with nonzero cg and ¢’(0). The order
p — r for g(a, h) comes from the fact that an integrator @ € {®,},r With a fixed
has order p — r.

Under these assumptions we prove the existence of the solution for (2.14). This
is essentially by Brugnano—lavernaro—Trigiante [2], although there they focused on
EQUIP method.

Theorem 1 Let us assume 9\ and %,. Then there exists a positive number hi and a
function o*(h) s.t.

(1) gla*(h),h) =0, h e (=hg, h§),
(2) a*(h) = const - h" + O(h"t1).
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Proof The following proof is a straightforward extension of the proof in [2]. From the
assumptions, g(«, k) can be expanded as

o0 o0
— J inJ
gla, h) = Z 'ahj(o 0)h +le Zd: zu'aa ah}( 0ol h . (2.16)
Jj= L j=d—r

The first term comes from (2.14), and the second from (2.15). Then we hope to apply
the implicit function theorem to search for a solution in the form of «(h) = n(h)h",
where n(h) is a real-valued function of /. To this end, we consider the change of
variable « = nh” and insert it into (2.16) to get

d+1

Jh) = ——2(0,00h% + ————— ——°(0, 0)h*!
gl ) = 2y gpa O OR + o et @0
1 gd—rtlg §d—r+2g
0, 0)h? 0, 0)hdt!
@ daand—r OO T Gt O O
+ o2, (2.17)
Hence, for & # 0, g(«, h) = 0 if and only if
1 8(1’ 1 d—Hg
T, h)= ~—2(0,0 0,0)h
g1 1) d—r+1)---(d—-1d ahd( )+(a’—r+ ---d(d+1) 8hd+1( )
gd—rtlg §d—1+24
— 20,0 0,0)h
t gaand—r O Ot T pagpa e OO0
+ O, (2.18)

is zero. By the assumption %5, % (0, 0) is not zero, and we can apply the implicit
function theorem which ensures that there is a real-valued function n(h) satisfying
g(n(h), h) = 0. In addition, from (2.18), (k) is calculated as follows. For sufficiently
small &,

1 a4 1 gd+1 2
@=rrn-a=nd g OO + @= P T DR 0,00k + O(hY)

n(h) =— d—r+1 d-r+24
Sag (0.0) + S dagprrir (0. 0)h
1 £(0,0
= i L O0h). (2.19)

d—-r+1)---(d-1d 3d '“g (0, 0)

Note that 32—5 (0, 0) is not zero from %,. This reveals that the solution of g(a, h) = 0
for o takes the form

1 Bhd(o)
d—r+1)---(d— 1)d 2"*ig
d=r+1)---( ) S0,

o (h) =nhh" = — W+ O, (2.20)
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This completes the proof.

From this theorem 1-parameter projection method recovers its order to the same
order as the base integrator.

Theorem 2 Let us consider 1-parameter projection methods defined in Definition 3.

These methods have the same order as the base integrator under the mild assumptions
P and %B».

Proof The following proof is also an obvious replication of the proof of [2]. Then we
apply the mean value theorem to obtain

1
0
Vile h) = y1 (0, h) +a / %(ra, hyd. 2.21)
0 o

When « is fixed, the solution yi(«, ) has the accuracy &' (h?*+!1=") because of Def-
inition 3. On the other hand, the solution y; (0, /) provided by the base integrator is
O (hP*1). Therefore we see

1
3
/0 %(nx, mydr = 6P, (2.22)

If we define a™* as the solution of (2.14), then from Theorem 1, we have o* = O'(h")
thus

1
0
yi(@* h) — y(to + h) = y1 (0, h) — y(to + h) + a*/o %(ra, hydr = 6P+,
(2.23)

This completes the proof.

3 Construction of new schemes

The proposed method belongs to 1-parameter projection methods. Thus we begin with
the construction of a family of integrators {@y }qcR.

3.1 Deriving a family of 1-parameter explicit Runge—-Kutta methods

In what follows, we will propose how to construct a family {®,},cr of explicit RK
methods. As we saw in Sect. 2, by perturbing classical collocation methods, we can
express larger class of RK methods. Recall that EQUIP method aimed at a natural
parameterization via collocation method which led to small correction. In the present
explicit RK method context, we parameterize higher order terms of perturbation oper-
ators, hoping it leads to small correction in a similar manner. In this project, a special
care is needed to keep the explicitness.

Our construction of a family {®@},cr of explicit RK methods consists of three
steps.

@ Springer



1326 H. Kojima

Definition 4 We derive a family of explicit Runge—Kutta methods in the following
three steps.

— Step 1. Take an explicit RK method which can be expressed by a perturbed collo-
cation method with {N;}1<j<sand¢; (i =1,...,5).

— Step 2. Calculate d;_1, ds by Gaussian elimination of the following matrix

- |: . 3.1)

Then we take d;_1, dy as

1~ 1~

dy_| = ——d;—1, dy = ———d;. 3.2
s—1 (S—Z)! s—1 s (S—l)! s ( )

— Step 3. Make a family {®q }4cRr of perturbed collocation methods whose expres-

sions are {N;}1<j<sand¢; (i =1,...,9):
Ni=N; (j=1,...,5 —2), (3.3)
_ s—1
Nj=Nj+edi[[t—c) (Gi=s-1.5). (3.4)
k=1

This family {®,},eRr is in fact a family of explicit RK methods.
Here we illustrate these steps taking an example.
Example 1 (Based on the 3/8 formula) We consider the 3/8 formula which is a 4-stage

explicit RK method.
Step 1. Take the 3/8 formula whose coefficient triple is (A, b, ¢) shown in Table 1.

Table 1 Butcher Tableau of the

3/8 formula 0 0 0 0 0
el 4 1/3 1/3 0 0 0

A = 2/3 | -1/3 1 0 0

1 1 -1 0

-
[og)

1
| /8 3/8 38 1
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Invariants preserving schemes based on explicit... 1327

This method can be expressed as the perturbed collocation method
with ({Nj}<j<s, {citi<i<s):

Ni(t) =0, (3.5)
7 2 3

Na(t) = —ct+4e* =30, (3.6)

Mmz—irﬂ#—lﬂ (3.7)
12 4 6

5 I, 134 1,
N4(t)—324t 12t +9t 24t, (3.8)

c1=0,c=1/3, c3=2/3, ca = 1. 3.9)

These can be calculated from the relation (2.7). Note that this expression satisfies
Puell_1 (psj=0(=1,...,9).

Step 2. To calculate d3, d4, the matrix is transformed into rank normal form.

0 0 0
1/3 19 1/27
2/3 4/9 8/27

1 C1 C12 C13 1
1
1
1 0 0 0
0
0

1 ¢ 6‘22 C23 =
1 3 632 C33

Gaussian;cli)mination 1/3 1/9 1/27 (3.10)
0o 2/9 2/9

Then we obtain d3, ds as those satisfying (2!d3, 3!ds) = (2/9,2/9) & (d3,ds) =
(1/9,1/27).

Step 3. Construct a family {®,},er Whose expressions are ({Z\NIj h<j<s, {€it<i<s):

Ni(1) =0, (3.11)

N 7 2 3

Na(t) = — i +46* = 3¢°, (3.12)

N3(t) = 1t+1t2 1t3+1 P Y P (3.13)
=TTyt T T 3 3) :

_ 5 1, 15 1, 1 1 2

Ny(t) = —1t — —t —t7 — —t —at |t — = t——=19, 3.14
O =gt -l gt Tt T 3 3 G.19

c1=0,c=1/3, c3=2/3, ca = 1. (3.15)

This family has the coefficients in Table 2 as RK methods. It is easy to see that the
method has order 3 for all values of « and has order 4 for o = 0.

Some comments on each step are in order.

Comment for Step 1. Recall the claim that RK methods satisfying (2.8) and having
distinct ¢;’s are equivalent to perturbed collocation methods. In addition, s must be
greater than 3 for Step 1 to be well-defined.
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Table 2 The family of the

proposed explicit RK method 0 0 0 0 0
based on the 3/8 formula ¢ | Aa) 173 173 0 0 0
b = 2/3 -1/3 1 0 0
1 l+aa —-1-200 1+o 0

| 1/8 3/8 3/8 1/8

Comment for Step 2. A crucial observation here is that this step is always feasible.
Lemma 1 Step 2 in Definition 4 is always feasible.

Proof The base integrator chosen in Step 1 can be expressed as a perturbed collocation
method, and thus ¢;’s are distinct and a (s — 1) x (s — 1) sub-matrix of the left hand
side matrix in (2.2) is a Vandermonde matrix. In other words, its rank is s — 1, and we
can always transform the matrix into a ladder matrix whose bottom row has the form
©,...,0,%,%)7.

Comment for Step 3. This step does not destroy the characterization of explicit RK
method. This is ensured by Theorem 3 below. Before its proof, we mention the idea
of the parameterization. As we mentioned in the beginning of this section, we aim (i)
to parameterize higher order terms of a perturbation operator and (ii) to construct a
family {@y }ocr of explicit RK methods. The construction in Definition 4 is designed
to achieve the above two goals.

For (i), recall (3.3) and (3.4). An important observation here is that parameterizing
only Nj is not feasible as we can see in the proof of Theorem 3 and the characterization
Proposition 2. The matrix (3.1) in Step 2 has s — 1 rank, and thus, in general, vectors
of the forms (0,0, ..., 0, %) " cannot be composed by linear combinations of (2.12).
In other words, parameterizing only Ny leads to a family of implicit RK methods in
general. This encourages us to employ the parameterization in Definition 4.

For (ii), the key idea is to add Hi;ll(t —c)toNj (j = s —1,s). Leaving its
detail to the proof of Theorem 3, here we emphasize that the polynomial Hi;ll (t—ck)
vanishes fort =¢; (j =1, ..., s — 1), which realizes (ii).

Theorem 3 The family of the perturbed collocation methods constructed in Defini-
tion 4 is actually a family of explicit RK methods.

Proof Let (A, b, ¢) be a coefficients triple of an explicit RK method in Step 1 and
({Nj}1<j<s, {ci}1<i<s) are the corresponding expression in terms of the perturbed col-
location method. Also we define P as a perturbation operator composed by {N;}1 <<y,
and assume P satisfies Pu € I1;_1. And let (A b, ¢) be the RK family which is con-
structed in Step 3 and ({N Y1<j<ss {citi<i<s) be the corresponding expressions of the
family. Also we define_ Pasa perturbation operator composed by {N}1 < j<s. Note that
both A = (g;;) and {N }1<j<s depend on « linearly and the claim of this proposition
isthata;; =0 (1 <i < j <s) hold.
To check Eij =0(1 <i <j <y),itis sufficient to show that
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Invariants preserving schemes based on explicit... 1329

({]V i}1<j<s, {ci}1<i<s) satisfies the assumption of Proposition 2. Here we define

a vector space Vi (k =1, ..., s) to simplify notation.
Vi := {v € R® : v is a linear combination of (1, ¢;, ..., ¢~ )T
wherel =1,...,k—1,k+1,..., s} (3.16)

We first note that, by construction, the perturbation operator P satisfies Pu € IT;_;.
From Proposition 2, for (i, j)in 1 <i < j <s,a;; =0 (1 <i < j <s)if and only
if

~ ~ 15 T
((N1 + 1)), .., (s — 1)!(Ns+;) (c,-)) eV;. (3.17)
Recall, by (3.3) and (3.4), this vector is equivalent to

S T
((Nl +0(ci), ..., (s — D! (Ns + ;) (Ci))

s—1 s—1

+alo0,...,0, (s—z)!dx,lkl_[l(ci—ck),(s—l)!dskl_[l(ci—ck) . (3.18)
s—2 = =

T

The first term of this vector belongs to V; forall i, jin1 <i < j < s, since the base
integrator is an explicit RK method. Note that the perturbation operator P satisfies
Pu e Il;_;.

Fori < s — 1, the second term of (3.18) trivially vanishes, and thus in total (3.17)
holds. This good nature comes from the fact that the modificationto N; (j = s —1, s)
takes the form of the polynomial Hi;ll (t — cy). Fori = s, the second term of (3.18)
does not vanish, but from (3.1), (3.2), it is equivalent to

o~

s—1
a[Jtes—eo (0,....0.d-1.d) " . (3.19)
k=1

which belongs to V; by construction. This completes the proof.

Remark 2 Note that, from the proof in [16], we see that the upper s — 1 rows of A
coincide with those of A. Therefore, if an approximation @,, is constructed for some
a, we just need an additional evaluation of f for the computation of @4 (& # «).
Thus the proposed method does not need many evaluations f in solving H (@4 (yp)) =
H (y9). Note that IDT needs no evaluation f for the construction of another integrator
@, (@ # «). Therefore the proposed method demands a bit longer computation time
than IDT.

Remark 3 From an easy calculation, for the family constructed in Definition 4, we
see that we can take r to p — 3 in Definition 3, if the base integrator has order p.
We can apply an adaptive step size control technique (see e.g. [14]), based on the two

@ Springer



1330 H. Kojima

numerical integrators with order p and 3. This implementation requires one additional
evaluation of f. A natural question here would be whether there exists a family whose
r is independent of p or not. The present author has a pessimistic view on this point.
Perturbed collocation methods were well investigated theoretically, in particular, in
terms of their order of accuracy by Ngrsett—Wanner [16]. The analysis was based
on the nonlinear Variation-Of-Constants formula. However, it is difficult to use the
formula for explicit RK methods because the derivative of the perturbed collocation
polynomial (# in Definition 2) may diverge as Ngrsett—Wanner [16] have already
pointed out.

Remark 4 Another, simple way to parameterize explicit RK methods would be to
consider parameterizations for each explicit RK method directly, carefully observing
order conditions. Of course this approach makes sense, but in the present paper we did
not employ it, since order conditions are generally quite complicated, and it seems dif-
ficult to discuss which conditions are important or safe to violate. Furthermore, even if
we can do that for a specific explicit RK method, we should do the whole thing all over
again from scratch when we move on to another RK method. The parameterization
technique proposed in this paper is free from this difficulty. Because parameteriz-
ing RK coefficients matrix A is equivalent to adding parameterized polynomials to
Nj (1 < j <s) which compose the perturbation operator, we can intuitively say that
a nice parameterization should be the one that changes the perturbation operator to
a minimum degree. One way to realize this is to only allow the changes in N; with
higher indices. The following numerical experiments support this view.

3.2 Preserving multiple invariants

We can generalize the proposed method to preserve several invariants. We realize this
by constructing a family of RK methods depending on a set of parameters. Namely we
parameterize them with the same number of parameters as the number of the targeted
invariants. For example, if two invariants are targeted, we should construct a family
with two parameters {@(«,g) } (0, g)cR2-

— Step 1. Take an explicit RK method which can be expressed by a perturbed collo-
cation method with {N;}1<;<y and {¢; }1<i<s-

— Step 2. Calculate d, 592, ds(l)l , ds(l) and d S(i)l , ds(z) from the elementary row opera-
tions of the following matrix

lep...ct lep ... Cls_1
— |- N (3.20)

. 5(1 5(1 (1

; 0+ d, a0, 4

) ~ A2

Loy ... e 0--- 0 4% a?
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Then we take ds(L)z, d;l)l , ds(]) and dﬁ)l , ds(z) as

1 n 1 A 1 A
(€Y) (e)) (€)) (e)) 1 1
s—2 = (S _ 3)!dS72’ dS*l = (S _ 2)!dsfl’ dA( ) = (S . 1)'d§ )’ (321)
1 A 1 A
d?. = a® d?® = d®. (3.22)

s—1 — (S _2)‘ s—1° s (S _ 1)| s

— Step 3. Make a family {® )} 4, p)cRr2 Of the perturbed collocation methods whose
expressions are {N;}1<j<s and{c; }1<j<s:

Ni=N; (j=1,....5 =3), (3.23)
s—1
Ny-2 = Nz +ad, [ = e, (3.24)
k=1
s—1
Noy = Noot + @d”) + gdP) [ — eo, (3.25)
k=1
s—1
Ny = Ny + (2d® + pd®) [ [ — co)- (3.26)
k=1

This family {P . p)} (o, p)er? is in fact a family of explicit RK methods.

In a similar manner as above, we are able to construct a family of explicit RK methods
with s — 1 parameters. The proof of the explicitness is similar to Theorem 3, and hence
we omit it here.

4 Numerical tests

In this section we show numerical tests that confirm the efficiency of the proposed
method. In particular, we focus on the consequences of the natural parameterization
of our approach.

We consider the Hénon—Heiles equation:

dy 4 _ (01 4x4
E_JVH(y), y € R*, J_(_IO)ER , 4.1)
1
H(y) = H(q1, 92, p1, p2) = 5(1712 +p22) +U(q1, q2), (4.2)

where U (q1, g2) is called potential (also we denote it as U (y) to simplify notation).
The Hénon-Heiles equation was derived to describe the stellar motion inside the
(gravitational) potential U (yg) for a very long time. The constant yy denotes the initial
state. See, e.g., [13]. In our experiment we set the potential to

_l 2 2 2 _l 3
U(%,qz)—z(ql +q27) +q1°q2 392 (4.3)
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0.5 <
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o
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-0.5 | s
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ql

Fig. 1 A reference solution (represented as a red line) by RK4 with sufficiently small step size 7 = 2/300
(color figure online)
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Fig. 2 IDT34: top the numerical solution with & = 2/3, bottom left value of the corrections by projection
(its label “projDistance” means the corrections by projection), bottom right value of the parameter
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N
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0.03 10
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£0.02
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T« 3 0
[a)
M
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a, -5
. 10 ‘
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t t

Fig. 3 IDT14: top the numerical solution with 7 = 2/3, bottom left value of the corrections by projection
(its label “projDistance” means the corrections by projection). The maximum value of projDistance is about
1.7 x 1073, bottom right value of the parameter. The maximum value of « is about 0.01

We will compare the proposed method with IDT to show the naturalness and effec-
tiveness of the proposed parameterization. We set the final time to 7 = 1000 and the

initial state to yo = (0, 0, ,/ %, 0) ". For comparison, in Fig. 1 we show a reference

solution constructed by the 3/8 RK4 with a sufficiently small step size &4 = 2/300.
For the proposed method and IDT, we take RK introduced in Example 1 as the base
integrator. In addition, for IDT, the third order method introduced in [14] and the first
order method (the Euler method) are taken as the embedded RK method. When we
need to distinguish these two methods, we call the former IDT34 and the latter IDT14,
clarifying the order of the embedded methods. Here IDT14 is considered in view of
[4]. In what follows we set the step size i to 2/3. The reason we take such a large
time step is that we aim to see how robust the methods are. Recall that, for sufficiently
small step size, Theorem 2 can be applied to all 1-parameter projection methods; but
that does not necessarily reflect actual behaviors. In addition we do not apply adaptive
step size controls in our experiments because this technique may conceal the differ-
ence among the methods, although from a practical point of view, we do not doubt
the effectiveness of the controls. Note that both the proposed method and IDT can
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Fig. 4 The proposed method: fop the numerical solution with 7 = 2/3, bottom left value of the correc-
tions by projection (its label “projDistance’ means the corrections by projection). The maximum value of
projDistance is about 3.5 x 1073, bottom right value of the parameter. The maximum value of « is about
0.3

utilize adaptive step size control (see Remark 4); however, the proposed method falls
slightly behind IDT, because the proposed method needs one extra evaluation of f,
unless some sophisticated technique such as FSAL is employed (see e.g. [13]).

In Figs. 2, 3 and 4 we show numerical solutions by IDT34, IDT 14 and the proposed
method respectively. All figures also include values of the parameter « and the cor-
rections by projection. Here we take the 2-norm of the differences between reference
solutions and the numerical solutions as the values of the corrections.

To observe the consequences of the proposed parameterization, let us pay attention
to the figures of the values of the parameter and the corrections by projection. From
these figures, we find that the values of IDT34 are often large, while the values of the
proposed method and IDT 14 remain constantly small. At the occasions where IDT34
takes large parameter it seems that the search direction is almost perpendicular to VH
and ceases to work with the constant step size k. Accordingly, there the corrections
made by projection also get large values. In contrast, the proposed method and IDT14
do not exhibit such a behavior even with this large time step 7 = 2/3, and consequently,
the correction remains small. For IDT14, the search directions seem to be stabler than
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Fig. 5 Lines which display ‘ ‘ ‘ L
gla,h) =0, (h,a) €
[—0.9,0.9] x [-9, 9]. Top shows st
lines of IDT34. Bottom shows
lines of the proposed method /
8 0 T
,5 r
|
-0.8 -0.4 0 0.4 0.8
h
st
3 of g
,5 \
A ‘
-0.8 -0.4 0 0.4 0.8
h

those of IDT34. However, these figures, in particular Fig. 2, indicate that linear search
methods can yield fatal projection steps without the special technique argued in [6].

Comparing the numerical solutions, we find that the solution by the proposed
method is closer to the reference solution than those by IDT34 and IDT14. In particular,
we see that the solution by the proposed method generates an appropriate trajectory.
This can be considered as a good consequence of the natural parameterization of the
proposed method.

The naturalness of the proposed parameterization can be seen from another per-
spective on robustness; i.e., how large the step size & can be safely. Theorem 1 does
not answer this because it is just a theoretical result in the limit of 2 — 0. However, in
actual computation, it is expected that the theorem can hold for large step 4. In Fig. 5,
we show lines which denote zeros of g(«, h) = H(yi(«, h)) — H(yp), (h,a) €
[—0.9, 0.9] x [—9, 9] where yj is a state vector which IDT34 takes large « (r = 8/3).
The top of Fig. 5 is the contour of IDT34 and the bottom is that of the proposed
method. The straight line on the axis -z = 0 is obvious (since no evolution occurs),
and thus should be ignored. Our attention should be paid to the horizontal curves
that touch the origin. From these figures, we see the proposed method can provide
appropriate parameters even for large /; in other words, the implicit function theorem
employed in Theorem 1 keeps working. On the contrary, the curve of IDT34 sharply
goes down near & = 0.6. This shows that Theorem 1 does not hold here, and in such
a case, the parameter o can be quite large, and the projection becomes fatal. There-
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fore we see the naturalness of the proposed parameterization. But again we would
like to emphasize that this issue usually happens only occasionally (recall Fig. 2; in
most time steps the corrections are small), and can be easily avoided by adaptive time
stepping if necessary. What we like to state here is the better stability of the proposed
method.

5 Conclusion

In this paper we gave a new strategy to parameterize explicit RK methods via the
perturbed collocation method. One of the advantages of this strategy is that we can
systematically parameterize explicit RK methods. Another advantage is that in the
strategy, we can demand the parameterization is done only in higher order terms of
the perturbation operators, in the hope of small projection correction. We showed that
such a parameterization is always feasible without destroying the explicitness of the
base explicit RK method. In addition we confirmed by numerical examples that the
proposed strategy in fact results in small corrections in a robust manner.

We conclude this paper with some remarks. First, we can also apply the proposed
method to other classes of ODEs, in particular, dissipative ODEs with a known Lya-
punov function. This is an obvious extension of the results [5,10]. Second, in this
paper, we mainly investigated the robustness of the parameterization; however, the
proposed method needs a bit longer computation time than IDT because the proposed
method needs more evaluations of f in solving H (P (yo)) = H (yp). This is a trade-
off between the robustness and stability. When we can take sufficiently small step
size h, IDT should beautifully work, and thus it might be sufficient. But if we hope
to take larger time step sizes, for example when we are considering integration over
long time, the proposed method can be a better solution since it works robustly even in
such a circumstance. Finally, when the system is essentially highly unstable, projec-
tions based on explicit methods might not work well, and implicit projections such as
EQUIP become necessary. Such trade-offs among methods should be more carefully
investigated.

A possible future work is to develop a rigorous theoretical explanation on
how the proposed parameterization, employed in higher order perturbations, results
in the actual small corrections. And through such theoretical investigations, we
hope the challenge for “the best 1-parameter projection method” continues. In
this sense, we feel the proposed strategy via perturbed collocation methods is
just a starting point of such a challenge, which reveals a certain aspect of good
parameterization.
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