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Abstract In the paper, a family of bivariate super spline spaces of arbitrary degree
defined on a triangulation with Powell–Sabin refinement is introduced. It includes
known spaces of arbitrary smoothness r and degree 3r − 1 but provides also other
choices of spline degree for the same r which, in particular, generalize a known space
of C 1 cubic super splines. Minimal determining sets of the proposed super spline
spaces of arbitrary degree are presented, and the interpolation problems that uniquely
specify their elements are provided. Furthermore, a normalized representation of the
discussed splines is considered. It is based on the definition of basis functions that
have local supports, are nonnegative, and form a partition of unity. The basis functions
share numerous similarities with classical univariate B-splines.

Keywords Super splines · Smooth splines on Powell–Sabin triangulations ·
Normalized B-splines · Macro-elements

Mathematics Subject Classification 41A05 · 41A15 · 65D07 · 65D17

1 Introduction

Despite extensive research, a natural generalization of univariate polynomial splines
to bivariate and multivariate ones is far from being clear and complete (see e.g. [12]
for discussion on this topic). Since the dimension of low degree spline spaces on
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triangulations depends substantially on the geometry of a particular triangulation,
usually splines on refined triangulations are considered. Themost common refinements
are the Clough–Tocher and the Powell–Sabin split.

On a Powell–Sabin refinement quadratic splines were originally considered (see
[13]). The so-called Powell–Sabin splines are characterized by the interpolation prob-
lem with values and derivatives prescribed at the vertices of the initial triangulation.
In [3] a representation of Powell–Sabin splines in terms of a normalized basis was
proposed, which led to many results and applications in different areas of numerical
analysis (see e.g. [11,16,20–24]). Also, splines of higher degrees on Powell–Sabin tri-
angulations were studied extensively. The problem of finding the spline spaces of arbi-
trary smoothness with degree as low as possible was addressed and solved in [1,6,7].
The spline spaces proposed therein have local and stable bases, but none of them forms
a convex partition of unity. Recently, several papers have dealt with the construction
of spline spaces on Powell–Sabin triangulations with bases possessing this property.
Namely, a family of spline spaces of arbitrary smoothness was proposed in [17], and
three different cubic spline spaces were studied in [5,10,19]. All of them have similar
normalized representations that generalize the representation of the quadratic space.

In this paper, a family of super spline spaces of arbitrary degree on Powell–Sabin
triangulations is introduced. It is a close extension of the family of super splines of
arbitrary smoothness r and degree 3r −1 analysed in [17,18]. Additionally, it contains
super spline spaces of degree 3r − 2 and 3r for every r . The spline spaces of degree
3r are a generalization of the cubic super spline space introduced in [2]. The paper
also deals with a construction of normalized bases for the discussed family of spaces.
The derived B-spline functions generalize the basis functions of degrees 3 and 3r − 1
provided in [10,17,18]. Since splines in a B-representation play an important role
in approximation theory and computer aided geometric design, this result may be
interesting from many applicative viewpoints.

The remaining of the paper is organized as follows. In Sect. 2, some preliminar-
ies about representation of bivariate polynomials and splines in the Bézier form are
reviewed. In Sect. 3, the definition of Powell–Sabin refinement is recalled, and super
spline spaces of arbitrary degree on a Powell–Sabin refinement are introduced. In what
follows, these spaces are characterized by minimal determining sets and interpolation
problems. Section 4 is devoted to a normalized representation of the discussed splines.
The Powell–Sabin B-splines of arbitrary degree are defined, and the associated rep-
resentation of super splines on Powell–Sabin triangulations is provided. It is proved
that B-splines have local supports, are nonnegative, and form a partition of unity. The
paper concludes with some applications and remarks.

2 Preliminaries

2.1 Bivariate polynomials on triangles

LetPd denote the space of bivariate polynomials of total degree less or equal to d ∈ N0.
It is a well known fact that every p ∈ Pd can be uniquely represented in the Bézier
form as
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Super splines of arbitrary degree on Powell–Sabin triangulations 1259

p =
∑

|i|=d

bi B
d
i . (2.1)

In the expression above Bd
i denotes the Bernstein basis polynomial of degree d on a

triangle T 〈V1, V2, V3〉, defined as

Bd
i (τ ) = d!

i1! i2! i3! τ
i1
1 τ

i2
2 τ

i3
3 ,

where i = (i1, i2, i3), and τ = (τ1, τ2, τ3) are barycentric coordinates with respect to
the triangle T . The coefficients bi are called the Bézier ordinates of p and are associ-

ated with the domain points Di determined by the barycentric coordinates
(

i1
d , i2

d , i3
d

)

with respect to the triangle T . Let

Ξd,T = {Di ∈ T ; |i| = d}

denote the set of all domain points in the triangle T . To describe particular subsets
of Ξd,T , let us define the notions of a disk and a row. The disk of radius r around the
vertex V1 is the set

Dr,T (V1) := {
Di1,i2,i3 ∈ Ξd,T ; i1 ≥ d − r

}
.

The convex hull of Dr,T (V1) is a triangle, which will be denoted by Dr,T (V1).
Moreover, the set

Er,T (〈V1, V2〉) := {
Di1,i2,i3 ∈ Ξd,T ; i3 = r

}

is the row at distance r parallel to the edge 〈V1, V2〉.
The representation (2.1) has a number of advantages in comparison to the standard

representation of p in terms of the power basis. Since Bernstein basis polynomials
form a partition of unity and are nonnegative onT , one can regard p onT as a convex
combination of its Bézier ordinates. The polynomial p can be evaluated using the de
Casteljau algorithm in a stable and efficient way. We refer to [4] for details.

The Bézier ordinates of p ∈ Pd can be expressed with its blossom. The blossom of
p is a map B[p] : (R2)d → R satisfying the following properties.

Property 2.1 (Symmetry) For any permutation π of d arguments,

B[p](P1, . . . , Pd) = B[p](π(P1, . . . , Pd)).

Property 2.2 (Multi-affinity) For any a, b ∈ R satisfying a + b = 1,

B[p](aP + bQ, P2, . . . , Pd) = aB[p](P, P2, . . . , Pd) + bB[p](Q, P2, . . . , Pd).

Property 2.3 (Diagonality) For any P ∈ R
2,

B[p](P, . . . , P) = p(P).
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1260 J. Grošelj

The Bézier ordinate bi, i = (i1, i2, i3), of p can be expressed as

bi = B[p](V1[i1], V2[i2], V3[i3]), (2.2)

where P[r ] means that the argument P is repeated r times.
If τ 1, . . . , τ d are the barycentric coordinates of points P1, . . . , Pd with respect to

T , the blossom of p may be written as

B[p](P1, . . . , Pd) = B[p,T ](τ 1, . . . , τ d).

It can be evaluated using the multi-affine de Casteljau algorithm. This representa-
tion of the blossom becomes particularly useful when one subdivides p on T . Let
T ′〈W1, W2, W3〉 be another (finer) triangle, and let σ �, � = 1, 2, 3, be the barycentric
coordinates of W� with respect to the triangle T . Suppose that the Bézier ordinates
of p expressed in the form (2.1) with respect to the triangle T ′ are denoted by b′

i. By
(2.2) and the defining properties of blossom, it follows that

b′
i = B[p,T ](σ 1[i1], σ 2[i2], σ 3[i3]).

Notice an important property that in the case when the Bézier ordinates of p with
respect to T are nonnegative, and the barycentric coordinates σ �, � = 1, 2, 3, are
nonnegative, the ordinates b′

i are nonnegative, too. We refer to [4,14,15] for details on
the blossoming principle.

2.2 Polynomial splines on triangulations

Let Ω be a simply connected subset of R2 with a polygonal boundary, and let � be
its regular triangulation. Denote by V the set of all vertices of � and by E the set of
all edges of �. Additionally, let the set M�(V) of all triangles in � sharing the vertex
V ∈ V be called the molecule of V in �.

The space of all polynomial splines of degree d ∈ N0 and smoothness r ∈ N0 on
� is defined as

S r
d (�) := {

s ∈ C r (Ω); s|T ∈ Pd , T ∈ �}
.

The restriction of a spline s ∈ S r
d (�) to an arbitrary triangle of � can be represented

in the Bézier form (2.1). In this way, the Bézier representation of s is obtained. As in
the polynomial case, the Bézier ordinates of s are associated with the domain points

Ξd,� :=
⋃

T ∈�
Ξd,T .

The Bézier ordinates of s ∈ S 0
d (�) corresponding toΞd,� uniquely specify s. The

situation becomes more complicated when r > 0 since smoothness constraints imply
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Super splines of arbitrary degree on Powell–Sabin triangulations 1261

relations between the Bézier ordinates of a spline. These relations are described in the
following theorem. Its proof can be found in [8].

Theorem 2.1 Let p and p′ be polynomials of total degree d written in the form (2.1)
on T 〈V1, V2, V3〉 and T ′〈V4, V3, V2〉 with Bézier ordinates bi and b′

i, respectively.
Suppose that V4 lies outside of T and has barycentric coordinates σ with respect to
T . Then Da

x Db
y p = Da

x Db
y p′, 0 ≤ a + b ≤ μ, on 〈V2, V3〉 if and only if

b′
m,i2,i3 =

∑

|j|=m

b j1,i3+ j2,i2+ j3 Bm
j (σ ) (2.3)

for m = 0, . . . , μ and i2 + i3 = d − m, where i = (i1, i2, i3) and j = ( j1, j2, j3).

A subset Mr
d(�) ⊆ Ξd,� is called a minimal determining set of S r

d (�) if every
s ∈ S r

d (�) is uniquely determined by the Bézier ordinates corresponding to the
points in Mr

d(�). Consequently, the dimension of S r
d (�) is equal to the cardinality

of Mr
d(�). For spline spaces S r

d (�) with d ≥ 3r + 2, an explicit construction of a
minimal determining set is given in [8]. For spaces with d < 3r + 2, among which
areS 1

2 (�) andS 1
3 (�), the dimensions in most cases depend on the geometry of the

underlying triangulations, and special classes of them must be considered.
When possible, the dimension of a spline space S r

d (�) is characterized by an
interpolation problem. It is desirable that interpolation data are provided at the vertices
of �. Note that the values Da

x Db
y p(V1), 0 ≤ a + b ≤ ρ ≤ d, of a polynomial p ∈ Pd

on T 〈V1, V2, V3〉 uniquely determine the Bézier ordinates of p corresponding to
the domain points in the disk Dρ,T (V1), and vice versa. Suppose now that s ∈
S r

d (�) ∩ C ρ(V), V ∈ V , with ρ ≥ r , and let

Dρ,�(V) :=
⋃

T ∈M�(V)

Dρ,T (V) (2.4)

be the disk of radius ρ around V in the triangulation �. The Bézier ordinates of s
corresponding to the domain points in Dρ,�(V) are then consistently determined by
the values Da

x Db
ys(V), 0 ≤ a + b ≤ ρ. We refer to [8] for details.

3 Super splines on Powell–Sabin triangulations

3.1 Powell–Sabin refinement

The Powell–Sabin refinement �∗ of a triangulation � was introduced in [13]. It par-
titions each triangle of � into six smaller triangles and is obtained in the following
way. First, an interior split point Zm for every triangle Tm ∈ � is chosen such that
the line segment 〈Zk, Zk′ 〉 for any two neighbouring triangles Tk〈V1, V2, V3〉 and
Tk′ 〈V4, V3, V2〉 intersects the interior of the common edge 〈V2, V3〉 (see Fig. 1).
The point of intersection is denoted by R23. Additionally, for every boundary edge
〈Vi , V j 〉 of �, the point Ri j in its interior is chosen. The desired refinement is then
acquired by connecting every interior split point with the vertices and the edge split

123



1262 J. Grošelj

V 1 V 2

V 3

V 4

Zk

Zk

R12

R13
R23

R24

R34

Fig. 1 A Powell–Sabin refinement of two neighbouring triangles

points inside a particular triangle. For arbitrary �, the Powell–Sabin refinement can
always be realized by choosing the incenters of triangles in � to be the interior split
points of �∗. In the remaining of the paper, the set of all interior split points of �∗
will be denoted by Z . Furthermore, the set of all edges of �∗ that connect a triangle
interior split point to an edge split point will be denoted by E ∗.

3.2 Super spline spaces on Powell–Sabin triangulations

The well known Powell–Sabin splines are the elements ofS 1
2 (�∗), namely the quad-

ratic splines of smoothness order one defined on a triangulation�with a Powell–Sabin
refinement�∗. As it was proved in [13], every s ∈ S 1

2 (�∗) is uniquely determined by
the values Da

x Db
ys(V), 0 ≤ a+b ≤ 1, at the vertices V ∈ V of the initial triangulation

�. Therefore, the dimension of this spline space is equal to 3|V |, independently of
the geometry of the triangulation �.

Several authors considered splines of a higher smoothness on aPowell–Sabin refine-
ment. In order to obtain a spline space for which the dimension is independent of the
geometry of the triangulation, the degree of splines has to be increased. It also seems
to be inevitable to impose certain additional smoothness constraints at particular ver-
tices and edges of the refinement. Such splines spaces are, in general, denoted as super
spline spaces. Among others, the super spline space

S 2,3
5 (�∗) = S 2

5 (�∗) ∩ C 3(V ∪ Z ∪ E ∗) (3.1)

of quintic splines of smoothness order two on �∗ was introduced in [7]. It was proved
therein that every s ∈ S 2,3

5 (�∗) is uniquely determined by the values Da
x Db

ys(V),
0 ≤ a + b ≤ 3, at the vertices V ∈ V of the initial triangulation � and the values
s(Z) at the interior split points Z ∈ Z of the refinement �∗. This result was extended
in [17] to the spaces
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Super splines of arbitrary degree on Powell–Sabin triangulations 1263

Table 1 Parameters defining Sd (�∗) for d = 1, . . . , 36

d rd ρd μd d rd ρd μd d rd ρd μd d rd ρd μd

1 0 0 1 10 3 6 7 19 6 12 13 28 9 18 19

2 1 1 1 11 4 7 7 20 7 13 13 29 10 19 19

3 1 2 1 12 4 8 7 21 7 14 13 30 10 20 19

4 1 2 3 13 4 8 9 22 7 14 15 31 10 20 21

5 2 3 3 14 5 9 9 23 8 15 15 32 11 21 21

6 2 4 3 15 5 10 9 24 8 16 15 33 11 22 21

7 2 4 5 16 5 10 11 25 8 16 17 34 11 22 23

8 3 5 5 17 6 11 11 26 9 17 17 35 12 23 23

9 3 6 5 18 6 12 11 27 9 18 17 36 12 24 23

S r,2r−1
3r−1 (�∗) = S r

3r−1(�∗) ∩ C 2r−1(V ∪ Z ∪ E ∗) (3.2)

for arbitrary r ∈ N. This family also contains the standard space of Powell–Sabin
splines, which is obtained by choosing r = 1. Every s ∈ S r,2r−1

3r−1 (�∗) is uniquely
determined by the values Da

x Db
ys(V), 0 ≤ a + b ≤ 2r − 1, at the vertices V ∈ V of

� and the values Da
x Db

ys(Z), 0 ≤ a + b ≤ r − 2, at the interior split points Z ∈ Z
of �∗. A particular super spline space,

S 1,2
3 (�∗) = S 1

3 (�∗) ∩ C 2(V ), (3.3)

that does not fit into (3.2) was studied in [2], and it was shown therein that every
s ∈ S 1,2

3 (�∗) is uniquely determined by the values Da
x Db

ys(V), 0 ≤ a + b ≤ 2, at
the vertices V ∈ V of �.

In order to unify and to generalize the spaces in (3.1), (3.2), and (3.3), let us consider
the spaces

S r,ρ,μ
d (�∗) = S r

d (�∗) ∩ C ρ(V ) ∩ C μ(Z ∪ E ∗)

for different choices of d, r , ρ, and μ. More precisely, our prime interest will be the
spaces

Sd(�∗) := S rd ,ρd ,μd
d (�∗) =

⎧
⎪⎨

⎪⎩

S r−1,2r−2,2r−1
d (�∗); d = 3r − 2

S r,2r−1,2r−1
d (�∗); d = 3r − 1

S r,2r,2r−1
d (�∗); d = 3r

(3.4)

for arbitrary degree d ∈ N. Notice that Sd(�∗) for d = 3r − 1 coincides with (3.2),
andS3(�∗) agrees with (3.3). The elements ofS1(�∗) are simply continuous linear
splines on �. Table 1 contains parameters defining Sd(�∗) for d up to 36. In the
following theorem, a characterization of the spaces Sd(�∗) for arbitrary degree d is
given in terms of interpolation problems.
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1264 J. Grošelj

Fig. 2 Macro-triangles of Sd (�∗) with domain points for d ∈ {3r − 2, 3r − 1, 3r}, r = 4. The black
coloured points represent minimal determining sets

Theorem 3.1 For arbitrary d ∈ N, consider the spline spaceSd(�∗) defined in (3.4).
There exists a unique spline s ∈ Sd(�∗) satisfying

Da
x Db

ys(V�) = fxa yb,�, 0 ≤ a + b ≤ ρd , � = 1, . . . , |V |, (3.5a)

and

Da
x Db

ys(Zm) = gxa yb,m, 0 ≤ a + b ≤ r − 2, m = 1, . . . , |�|, (3.5b)

for a given set of values fxa yb,� and gxa yb,m.

The proof of the correctness of the interpolation problem (3.5) for d = 3r − 1,
r ∈ N, can be found in [17]. In principle, the statement for d = 3r −2 and d = 3r can
be verified in a very similar way. In order to make the proof shorter and less technical,
let us pursue the idea that a single macro-triangle for d = 3r − 2 can be viewed as an
inscribed triangle in a macro-triangle for d = 3r − 1. Similarly, a macro-triangle for
d = 3r is nothing else than an extension of a macro-triangle for d = 3r − 1. See Fig.
2 for an illustration of this perspective. The following theorem restates Theorem 3.1
in terms of the theory of minimal determining sets.

Theorem 3.2 For any vertex V� ∈ V , let us define Mv
� = Dρd ,�∗(V�) ∩ T ∗

� , where
T ∗

� is an arbitrary triangle in �∗ with a vertex at V�. Similarly, for any macro-triangle
Tm ∈ �, let us define Mt

m = Dr−2,�∗(Zm) ∩ T ∗
m , where T ∗

m is an arbitrary triangle
in �∗ with a vertex at Zm. Then

123



Super splines of arbitrary degree on Powell–Sabin triangulations 1265

Md(�∗) :=
|V |⋃

�=1

Mv
� ∪

|�|⋃

m=1

Mt
m

is a minimal determining set of Sd(�∗).

The proof of Theorem 3.2 will follow based on the next three lemmas. In the first
two of them, Theorem3.2 is verified on a singlemacro-triangle for the cases d = 3r−2
and d = 3r by referring to the fact that Theorem 3.2 holds for d = 3r − 1.

Lemma 3.1 Let Tk〈V1, V2, V3〉 ∈ �. Then M3r−2({Tk}∗) is a minimal determining
set of S3r−2({Tk}∗).
Proof Consider the triangle T ′

k with the vertices

V′
� =

(
1 + 1

d

)
V� − 1

d
Zk, � = 1, 2, 3,

and let {T ′
k }∗ be derived from {Tk}∗ so that the domain points of both Powell–Sabin

triangulations satisfyΞ3r−2,{Tk }∗ ⊆ Ξ3r−1,{T ′
k }∗ . Denote by M ′ the set M3r−1({T ′

k }∗)
defined in Theorem 3.2. As proved in [17], M ′ is a minimal determining set of
S3r−1({T ′

k }∗). Let us show that M = M ′ ∩ Ξ3r−2,{Tk }∗ is a minimal determin-
ing set of S3r−2({Tk}∗). Associate with the points in M an arbitrary set of Bézier
ordinates. Additionally, specify arbitrary Bézier ordinates for the points in M ′\M , and
let s′ be the element of S3r−1({T ′

k }∗) uniquely determined by the Bézier ordinates
corresponding to the points in M ′. The Bézier ordinates of s′ associated with the points
in Ξ3r−1,{T ′

k }∗\M ′ are uniquely determined by smoothness constraints. Namely, by
Theorem 2.1 they can be expressed as (2.3) with the Bézier ordinates correspond-
ing to the points in Ξ3r−1,{T ′

k }∗ for particular pairs of triangles in {T ′
k }∗. Notice that

these expressions are completely independent of the degree of s′ and only depend on
the smoothness constraints across the interior edges of {T ′

k }∗. Since the smoothness
constraints across the interior edges of {T ′

k }∗ and {Tk}∗ are the same, it follows that
the Bézier ordinates corresponding to the points in M ′ uniquely define an element of
S3r−2({Tk}∗). Moreover, none of the Bézier ordinates of s′ that belongs to a domain
point in Ξ3r−1,{T ′

k }∗\Ξ3r−2,{Tk }∗ appears in the expression of the Bézier ordinate
corresponding to a domain point in Ξ3r−2,{Tk }∗\M . This means that an element of
S3r−2({Tk}∗) is completely determined by the Bézier ordinates associated with M ,
which in turn proves that M is a minimal determining set of S3r−2({Tk}∗). ��
Lemma 3.2 Let Tk〈V1, V2, V3〉 ∈ �. Then M3r ({Tk}∗) is a minimal determining
set of S3r ({Tk}∗).
Proof The idea of the proof is similar to the proof of Lemma 3.1. In this case, consider
the triangle T ′′

k with the vertices

V′′
� =

(
1 − 1

d

)
V� + 1

d
Zm, � = 1, 2, 3,
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1266 J. Grošelj

and let {T ′′
k }∗ be derived from {Tk}∗ so that Ξ3r−1,{T ′′

k }∗ ⊆ Ξ3r,{Tk }∗ . Denote by
M ′′ the set M3r−1({T ′′

k }∗), which is known to be a minimal determining set of
S3r−1({T ′′

k }∗). Let M = M3r ({Tk}∗) be such that M ′′ ⊆ M . Suppose that a cer-
tain set of Bézier ordinates is associated with the points in M . The subset of these
ordinates corresponding to the domain points in M ′′ uniquely specifies an element
s′′ from S3r−1({T ′′

k }∗). The Bézier ordinates that belong to the domain points in
Ξ3r−1,T ′′

k
\M ′′ are uniquely determined by the smoothness constraints across the inte-

rior edges of {T ′′
k }∗. By the same line of arguments as in the proof of Lemma 3.1, it

follows that the Bézier ordinates associated with M ′′ uniquely specify the Bézier ordi-
nates of a spline inS3r ({Tk}∗) that belong to the domain points in Ξ3r−1,{T ′′

k }∗\M ′′.
The remaining Bézier ordinates, i. e., the ordinates associated with the points in
Ξ3r,{Tk }∗\(Ξ3r−1,{T ′′

k }∗ ∪ M) located on the edges of Tk , can be determined by the
known ordinates as follows. The unknown ordinates corresponding to the points in
disks D3r,{Tk }∗(V�), � = 1, 2, 3, are determined by the smoothness constraints across
the edges 〈V�, Zk〉 that are implied by the smoothness at the vertices V�. The rest of
them can be thought of as the Bézier ordinates (after subdivision) of a one-dimensional
polynomial of degree 2r − 1 defined on the line segment 〈Wi j , W j i 〉, where

Wi j = 2r − 1

3r
Vi +

(
r + 1

3r

)
Ri j , W j i = 2r − 1

3r
V j +

(
r + 1

3r

)
Ri j ,

and 〈Vi , V j 〉 is an edge ofTk . This observation follows from the smoothness constraint
of order 2r − 1 across the edge 〈Ri j , Zk〉. Of these 4r − 1 ordinates, 2r are known,
and they completely specify the polynomial. ��

Let us return to the statement of Theorem 3.2, which has to be proved for the
cases d = 3r − 2 and d = 3r . Suppose that a set of Bézier ordinates is assigned
to the points in Md(�∗). By Lemma 3.1 and Lemma 3.2, these ordinates uniquely
determine a spline on every single triangle of �. In order to show that Md(�∗) is a
minimal determining set of Sd(�∗), it has to be verified that any two such splines
defined on neighbouring triangles of � admit the smoothness constraint of order rd

across the common edge. The following lemma proves this fact by following the same
reasoning as used in the last part of the proof of [17, Theorem 4].

Lemma 3.3 Let Tk and Tk′ be triangles in � with a common edge 〈Vi , V j 〉, and let
{Tk}∗ and {T ′

k }∗ be parts of �∗. Let sk ∈ Sd({Tk}∗) and sk′ ∈ Sd({Tk′ }∗). If

Da
x Db

ysk(V�) = Da
x Db

ysk′(V�), � = i, j, 0 ≤ a + b ≤ ρd ,

then
Da

x Db
ysk = Da

x Db
ysk′ , 0 ≤ a + b ≤ rd ,

on 〈Vi , V j 〉.
Proof Consider the triangles T ∗

�,m〈V�, Ri j , Zm〉, � = i, j , m = k, k′, in �∗. Denote
theBézier ordinates corresponding to the points inΞd,T ∗

�,m
by b�,m

i with i = (i1, i2, i3),

123



Super splines of arbitrary degree on Powell–Sabin triangulations 1267

|i| = d. By Theorem 2.1, the smoothness constraints of order rd across 〈V�, Ri j 〉,
� = i, j , are of the form

b�,k′
i =

i3∑

p=0

αi3
p b�,k

i1,d−p−i1,p, 0 ≤ i3 ≤ rd , |i| = d, (3.6)

where the weights α
i3
p , given in (2.3), are the same for � = i and � = j since 〈Zk, Ri j 〉

and 〈Zk′ , Ri j 〉 lie on the line segment 〈Zk, Zk′ 〉 by the definition of the Powell–Sabin
refinement. The smoothness constraints at the vertices imply that conditions (3.6) are
satisfied for i1 ≥ r . In order to prove that they are also satisfied for i1 < r , consider
the smoothness constraints of order μd across the edges 〈Zm, Ri j 〉, m = k, k′. The
ordinates bi,m

i for 0 ≤ i1 < r and 0 ≤ i3 ≤ rd can be expressed as

bi,m
i =

r−1∑

q=0

β i1
q bi,m

r+q,d−r−q−i3,i3
+

r−1∑

q=0

γ i1
q b j,m

r+q,d−r−q−i3,i3
,

where the weights β
i1
q and γ

i1
q are the same for m = k and m = k′. Combining these

observations leads to the conclusion that

bi,k′
i =

r−1∑

q=0

β i1
q

⎛

⎝
i3∑

p=0

αi3
p bi,k

r+q,d−r−p−q,p

⎞

⎠ +
r−1∑

q=0

γ i1
q

⎛

⎝
i3∑

p=0

αi3
p b j,k

r+q,d−r−p−q,p

⎞

⎠

=
i3∑

p=0

αi3
p

⎛

⎝
r−1∑

q=0

β i1
q bi,k

r+q,d−r−p−q,p +
r−1∑

q=0

γ i1
q b j,k

r+q,d−r−p−q,p

⎞

⎠

=
i3∑

p=0

αi3
p bi,k

i1,d−p−i1,p

for i1 < r . It can be similarly verified that (3.6) holds for � = j , too. ��

Two additional observations can be made from the above discussion. It is easy to
see that the restriction of s ∈ S3r−2(�∗) to every triangle of � is of smoothness r .
Moreover, every s ∈ S3r (�∗) is of smoothness r +1 across the edges of �. Note that
these smoothness constraints are satisfied automatically by the prescribed constraints.

Corollary 3.1 The dimension of Sd(�∗) is given by

dimSd(�∗) =
(

ρd + 2

2

)
|V | +

(
r

2

)
|�|.

Proof The proof follows directly from Theorem 3.2. ��
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1268 J. Grošelj

4 A normalized representation of super splines

As already mentioned, a normalized representation of elements of a spline space is of
a particular interest in many areas of numerical analysis. In [17], a normalized repre-
sentation for S r,2r−1

3r−1 (�∗), r ∈ N, was introduced. It extends the representation for

S 1
2 (�∗) given in [3] and the representation forS 2,3

5 (�∗) presented in [16]. Recently,
a similar construction forS 1,2

3 (�∗) was derived in [10]. In this section, these results
are extended to a normalized representation forSd(�∗) with arbitrary d ∈ N, and its
main properties are proved. The notation and main ideas are adopted from [17,18].

4.1 Construction of Powell–Sabin B-splines

The construction of Powell–Sabin B-splines relies on the interpolation problems of
the form (3.5). The goal is to choose suitable values for the interpolation data so that
the resulting functions will form a basis and will possess desirable properties such as
a partition of unity and a local support.

1. For each vertex Vi ∈ V , choose θi ∈ (0, 1), and identify the PS-points associated
with Vi as

Si� = (1 − θi ) Vi + θi V�

for all edges 〈Vi , V�〉 of �, together with the point Vi itself. Then choose a
PS-triangle ti 〈Qi,1, Qi,2, Qi,3〉, i. e., an arbitrary triangle that contains all the PS-
points associated with the vertex Vi . See Fig. 3a for a demonstration. Consider
the Bernstein basis polynomials Bρd

j , |j| = ρd , of degree ρd on ti , and define
parameters

αab
i,j,d := (θi )

a+b

( d
a+b

)
(

ρd
a+b

) Da
x Db

y Bρd
j (Vi ) (4.1)

for 0 ≤ a + b ≤ ρd and j ∈ N
3
0 with |j| = ρd .

V i

V

S
Qi,1

Qi,2

Qi,3

(a)
V 1 V 2

V 3

W 1 W 2

W 3

Zk

(b)

Fig. 3 a A PS-triangle ti 〈Qi,1, Qi,2, Qi,3〉 and PS-points associated with Vi . b A macro-triangle
Tk 〈V1, V2, V3〉 and its associated triangle Wk 〈W1, W2, W3〉
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Super splines of arbitrary degree on Powell–Sabin triangulations 1269

2. For each macro-triangle Tk〈V1, V2, V3〉 ∈ �, denote by Wk the triangle with
vertices

W� = μd

d
V� +

(
1 − μd

d

)
Zk, � = 1, 2, 3.

See Fig. 3b. In this case, consider the Bernstein basis polynomials Bμd
i , |i| = μd ,

of degree μd on Wk , and define parameters

βab
k,j,d :=

(μd

d

)a+b
( d

a+b

)
(

μd
a+b

) Da
x Db

x Bμd
r−1− j1,r−1− j2,r−1− j3

(Zk) (4.2)

for 0 ≤ a + b ≤ r − 2 and j = ( j1, j2, j3) ∈ N
3
0 with |j| = r − 2.

3. For each vertex V1 ∈ V , each macro-triangle Tk〈V1, V2, V3〉 with a vertex at
V1, and each j ∈ N

3
0 with |j| = ρd , denote by pd

1,k,j the polynomial of degree μd

defined as follows. LetT ∗
k ∈ �∗ be a triangle inTk with a vertex at V1. Consider

the polynomial q of degree ρd on the triangle Dρd ,T ∗
k
(V1) that is completely

specified by the interpolation conditions Da
x Db

yq(V1) = αab
1,j,d , 0 ≤ a + b ≤ ρd .

Let its Bézier ordinates be denoted by b�, |�| = ρd . Specify the polynomial pd
1,k,j

as
pd
1,k,j =

∑

|i|=μd

di B
μd
i

with respect to the triangle Wk〈W1, W2, W3〉. Let di, i = (i1, i2, i3), with i1 < r
be equal to 0, and let di with i1 ≥ r be determined so that the ordinates of the
subdivided polynomial pd

1,k,j onDμd ,T ∗
k
(Zk) that correspond to the domain points

in Dρd ,T ∗
k
(V1) ∩ Dμd ,T ∗

k
(Zk) coincide with the ordinates b� of q associated with

the same domain points. For an illustration, see Fig. 4. With the help of pd
1,k,j,

define parameters

γ ab
1,k,j,d :=

(μd

d

)a+b
( d

a+b

)
(

μd
a+b

) Da
x Db

y pd
1,k,j(Zk) (4.3)

for 0 ≤ a + b ≤ r − 2.

Let us use the parameters introduced in (4.1), (4.2), and (4.3) to define Powell–
Sabin B-splines as unique solutions of interpolation problems of the form (3.5). For
every Vi ∈ V and j ∈ N

3
0 with |j| = ρd , denote by Bv,d

i,j the unique solution of the
interpolation problem with

fxa yb,� =
{

αab
i,j,d ; � = i

0; else
and gxa yb,m =

{
γ ab

i,m,j,d ; Tm ∈ M�(Vi )

0; else
.
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1270 J. Grošelj

V 1 V 2

V 3

W 1 W 1 W 2W 2

W 3

W 3

Zk

Fig. 4 Construction of the polynomial pd
1,k,j associated with a vertex V1 and a macro-triangle

Tk 〈V1, V2, V3〉 for d = 12. On the left-hand side, pd
1,k,j is represented on the triangle Dμd ,T ∗

k
(Zk ),

where T ∗
k is the triangle with the vertices V1, R12, Zk . The black coloured points are associated with

the Bézier ordinates determined by αab
i,j,d . On the right-hand side, pd

1,k,j is represented with respect to the
triangle Wk 〈W1, W2, W3〉. The Bézier ordinates corresponding to the uncoloured points are equal to 0

Furthermore, for every Tk ∈ � and j ∈ N
3
0 with |j| = r − 2, define Bt,d

k,j as the unique
solution of the interpolation problem with

fxa yb,� = 0 and gxa yb,m =
{

βab
m,j,d; m = k

0; else
.

4.2 B-spline representation

To get an insight into the definition of Powell Sabin B-splines, the theorem proved in
[18] is first considered.

Theorem 4.1 Let pd1 be a polynomial of degree d1 that is defined on the triangle
T1〈V1, V2, V3〉, and let pd2 be a polynomial of degree d2 (with d2 ≤ d1) that is
defined on the triangle T2〈V1, U2, U3〉, where

U2 = (1 − θ)V1 + θV2, U3 = (1 − θ)V1 + θV3

for some θ ∈ (0, 1). Suppose that the Bézier ordinates of the polynomial pd1 are
denoted by bi, |i| = d1, and the Bézier ordinates of the polynomial pd2 are denoted
by b′

i, |i| = d2. Then

Da
x Db

y pd1(V1) = (θ)a+b

( d1
a+b

)
( d2

a+b

) Da
x Db

y pd2(V1)

for a given value 0 ≤ ν ≤ d2 and all 0 ≤ a + b ≤ ν if and only if

bd1−ν+i1,i2,i3 = b′
d2−ν+i1,i2,i3

for all i = (i1, i2, i3) with |i| = ν.
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Super splines of arbitrary degree on Powell–Sabin triangulations 1271

In what follows, two lemmas extending [18, Lemmas 1 and 2] are presented. They
show how to describe an element of Sd(�∗) locally at the points of � and at the
interior split points of �∗ in terms of polynomials.

Lemma 4.1 For Vi ∈ V and parameter θi , let

T v
i =

∑

|j|=ρd

cv,d
i,j Bρd

j

be a polynomial of degree ρd with the Bernstein basis polynomials Bρd
j defined on a

PS-triangle ti 〈Qi,1, Qi,2, Qi,3〉. Furthermore, let s ∈ Sd(�∗). Then

Da
x Db

ys(Vi ) = (θi )
a+b

( d
a+b

)
(

ρd
a+b

) Da
x Db

y T v
i (Vi ) (4.4)

for all 0 ≤ a + b ≤ ρd if and only if the Bézier ordinates cv,d
i,j , j = ( j1, j2, j3),

|j| = ρd , of T v
i with respect to the PS-triangle ti are given by

cv,d
i,j = B[s|T ∗

i
] (

Vi [r ], Q̂i,1[ j1], Q̂i,2[ j2], Q̂i,3[ j3]
)
, (4.5)

where T ∗
i is an arbitrary triangle in �∗ with a vertex at Vi , and

Q̂i,� =
(
1 − 1

θi

)
Vi + 1

θi
Qi,�, � = 1, 2, 3.

Proof Without loss of generality assume that i = 1, and let V1, V∗
2, and V∗

3 denote
the vertices of T ∗

1 . Let T̂ ∗
1 be the triangle with the vertices V1 and

S∗
1� = (1 − θ1) V1 + θ1V∗

�, � = 2, 3.

Suppose that bi, |i| = d, are the Bézier ordinates of s|T ∗
1
with respect to T ∗

1 , and

dj, |j| = ρd , are the Bézier ordinates of T v
1 with respect to T̂ ∗

1 . By Theorem 4.1, the
equality (4.4) holds if and only if dj = br+ j1, j2, j3 , j = ( j1, j2, j3). This is equivalent
to the condition that

B[T v
1 , T̂ ∗

1 ]
(
τ 1, . . . , τρd

)
= B[s|T ∗

1
,T ∗

1 ]
(

e1[r ], τ 1, . . . , τρd
)

(4.6)

for any set of barycentric coordinates τ 1, . . . , τρd , where e1 = (1, 0, 0). It is known
that

cv,d
1,j = B[T v

1 ] (
Q1,1[ j1], Q1,2[ j2], Q1,3[ j3]

)
.

Let σ � = (σ �
1 , σ �

2 , σ �
3 ), � = 1, 2, 3, denote the barycentric coordinates of Q1,� with

respect to T̂ ∗
1 , i. e.,

Q1,� = σ�
1V1 + σ�

2S∗
12 + σ�

3S∗
13.
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1272 J. Grošelj

One can easily verify that

Q̂1,� = σ�
1V1 + σ�

2V∗
2 + σ�

3V∗
3, � = 1, 2, 3. (4.7)

By (4.6), it follows that

cv,d
i,j = B[T v

1 , T̂ ∗
1 ]

(
σ 1[ j1], σ 2[ j2], σ 3[ j3]

)

= B[s|T ∗
1
,T ∗

1 ]
(

e1[r ], σ 1[ j1], σ 2[ j2], σ 3[ j3]
)

,

which by (4.7) implies (4.5). ��
In case when the Bézier ordinates of T v

i are determined as in (4.5), the spline
s ∈ Sd(�∗) and the polynomial T v

i have the same value atVi . Also, the first derivative
values coincide if θi is chosen to be equal to ρd

d .

Lemma 4.2 For s ∈ Sd(�∗) and Tk〈V1, V2, V3〉 ∈ �, let

T t
k =

3∑

�=1

∑

|j|=ρd

cv,d
�,j pd

�,k,j +
∑

|j|=r−2,
j=( j1, j2, j3)

ct,d
k,j Bμd

r−1− j1,r−1− j2,r−1− j3

be a polynomial of degree μd , where the coefficients cv,d
�,j are given by (4.5), the

polynomials pd
�,k,j are specified in the Sect. 4.1, and the Bernstein basis polynomials

Bμd
r−1− j1,r−1− j2,r−1− j3

are defined on Wk〈W1, W2, W3〉. Then

Da
x Db

ys(Zk) =
(μd

d

)a+b
( d

a+b

)
(

μd
a+b

) Da
x Db

y T t
k (Zk)

for every 0 ≤ a + b ≤ μd if and only if

ct,d
k,j = B[s|T ∗

k
] (Zk[d − μd ], V1[r − 1 − j1], V2[r − 1 − j2], V3[r − 1 − j3]) ,

(4.8)
where T ∗

k is an arbitrary triangle in �∗ with a vertex at Zk .

Proof The smoothness of order μd at the vertex Zk implies that the Bézier ordinates
of s corresponding to the domain points in Dμd ,�∗(Zk) can be regarded as the Bézier
ordinates (after subdivision) of a polynomial p of order μd onWk . Consider a triangle
T ∗

� ∈ �∗, � ∈ {1, 2, 3}, with a vertex at V�. Since the Bézier ordinates of p on
Dμd ,T ∗

�
(Zk) and s|T ∗

�
onT ∗

� associated with the domain points in Dμd ,T ∗
�
(Zk) agree,

Theorem 4.1 implies that the polynomial p satisfies the condition

Da
x Db

ys(Zk) = Da
x Db

ys|T ∗
�
(Zk) =

(μd

d

)a+b
( d

a+b

)
(

μd
a+b

) Da
x Db

y p(Zk).
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Super splines of arbitrary degree on Powell–Sabin triangulations 1273

By the same argument, the blossom of p on Dμd ,T ∗
�
(Zk) can be expressed as the

blossom of s|T ∗
�
on T ∗

� . With the help of the subdivision property of the blossom, it
can be easily verified that the identity

B[p,Wk](τ 1, . . . , τμd ) = B[s|T ∗
�
,Tk](z[d − μd ], τ 1, . . . , τμd )

holds for any set of barycentric coordinates τ 1, . . . , τμd , where z denotes the bary-
centric coordinates of Zk with respect to Tk . This proves that the Bézier ordinates bi,
|i| = μd , of p with respect to the triangle Wk can be expressed as

bi = B[s|T ∗
�
](Zk[d − μd ], V1[i1], V2[i2], V3[i3])

for � = 1, 2, 3. Let us write the polynomial p in the form

p =
3∑

�=1

∑

|i|=μd ,
i�≥r

bi B
μd
i +

∑

|i|=μd ,
i1,i2,i3<r

bi B
μd
i .

To complete the proof, it remains to check that

∑

|j|=ρd

cv,d
�,j pd

�,k,j =
∑

|i|=μd ,
i�≥r

bi B
μd
i , � = 1, 2, 3,

since this implies that T t
k = p if and only if ct,d

k,j is given as in (4.8). Consider the
polynomials in the above identity on the triangleDμd ,T ∗

�
(Zk). They are both uniquely

determined by the Bézier ordinates corresponding to the domain points contained in
Dρd ,T ∗

�
(V�) ∩ Dμd ,T ∗

�
(Zk). The referring ordinates of the polynomial on the right-

hand side are clearly equal to the ordinates of s|T ∗
�
on T ∗

� . By Lemma 4.1, this also
holds for the polynomial on the left-hand side since, by definition, the ordinates of
pd
�,k,j agree with the ordinates of Bv,d

�,j with respect to T ∗
� . ��

Under the assumption that the Bézier ordinates of T t
k are equal to (4.8), the value

and the first derivative values of s ∈ Sd(�∗) and T t
k at Zk coincide. The following

theorem is analogous to [18, Theorem 5] and justifies the representation of an arbitrary
spline inSd(�∗) in terms of B-splines.

Theorem 4.2 Every s ∈ Sd(�∗) can be expressed as

s =
|V |∑

�=1

∑

|j|=ρd

cv,d
�,j Bv,d

�,j +
|�|∑

m=1

∑

|j|=r−2

ct,d
m,j Bt,d

m,j, (4.9)

where Bv,d
�,j and Bt,d

�,j are Powell–Sabin B-splines defined in the Sect. 4.1, and the

coefficients cv,d
�,j and ct,d

m,j are given in (4.5) and (4.8), respectively.
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Proof Denote by s′ the right hand-side of the Eq. (4.9). In order to prove that s = s′,
it is sufficient to check that s and s′ satisfy the same interpolation conditions in (3.5).
The result then follows from Theorem 3.1.

Let Vi ∈ V and 0 ≤ a + b ≤ ρd . From definition of the B-splines and the
parameters αab

�,j,d in (4.1), it follows that

Da
x Db

ys′(Vi ) =
∑

|j|=ρd

cv,d
i,j Da

x Db
y Bv,d

i,j (Vi )

=
∑

|j|=ρd

cv,d
i,j αab

i,j,d

= (θi )
a+b

( d
a+b

)
(

ρd
a+b

) Da
x Db

y T v
i (Vi ).

By Lemma 4.1, this is equal to Da
x Db

ys(Vi ). Similarly, let Tk〈V1, V2, V3〉 ∈ � and

0 ≤ a + b ≤ r − 2. According to definition of the B-splines and the parameters βab
m,j,d

and γ ab
�,m,j,d in (4.2) and (4.3),

Da
x Db

ys′(Zk) =
3∑

�=1

∑

|j|=ρd

cv,d
�,j Da

x Db
y Bv,d

�,j (Zk) +
∑

|j|=r−2

ct,d
k,j Da

x Db
y Bt,d

k,j (Zk)

=
3∑

�=1

∑

|j|=ρd

cv,d
�,j γ ab

�,k,j,d +
∑

|j|=r−2

ct,d
k,j β

ab
k,j,d

=
(μd

d

)a+b
( d

a+b

)
(

μd
a+b

) Da
x Db

y T t
k (Zk).

By Lemma 4.2, this is equal to Da
x Db

ys(Zk), which completes the proof. ��

4.3 Bézier representation of B-splines

In the following remarks, the computation of the Bézier representation of Powell–
Sabin B-splines is investigated. The remarks rephrase [17, Lemmas 1–4] in order to
validate the results for an arbitrary degree. The goal is to express B-spline Bézier
ordinates in terms of blossoms of Bernstein basis polynomials defined either on a PS-
triangle or on a scaled triangle of a macro-triangle. The resulting observations can be
rather easily extended to the instructions on computation of the Bézier representation
of a spline given in the form (4.9), but most of all they will be of a great help in the
proof of nonnegativity of the basis functions.

First, let us examine a B-spline Bv,d
1,j , |j| = ρd , associated with the vertex V1 of �

on a macro-triangle Tk〈V1, V2, V3〉 ∈ �. See Fig. 5a.

Remark 4.1 Consider the triangle T ∗
k 〈V1, R12, Zk〉 ∈ �∗. By definition of the B-

splines associated with the vertex and by Theorem 4.1, the Bézier ordinates br+ j1, j2, j3
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V 1 V 2

V 3

(a)
V 1 V 2

V 3

(b)
Fig. 5 Representation of Bézier ordinates of B-splines of degree 12 on a macro-triangle Tk 〈V1, V2, V3〉.
The uncoloured domain point indicates that the corresponding Bézier ordinate is equal to 0. a A B-spline
associated with the vertex V1. b A B-spline associated with the triangle Tk

of Bv,d
1,j , j = ( j1, j2, j3), |j| = ρd , corresponding to the domain points in Dρd ,T ∗

k
(V1)

can be regarded as the Bézier ordinates (after subdivision) of the Bernstein basis
polynomial Bρd

j defined on the PS-triangle t1. Thus, they can be expressed in terms
of blossom as

br+ j1, j2, j3 = B[Bρd
j , t1]

(
σ 1[ j1], σ 2[ j2], σ 3[ j3]

)
, (4.10)

where σ 1, σ 2, σ 3 are the barycentric coordinates of the vertices of Dρd ,T ∗
k
(V1) with

respect to t1. Similarly, one can express the ordinates of Bv,d
1,j associated with the

points in the disk of radius ρd around V1 on the triangle determined by the vertices
V1, R13, Zk .

In Remark 4.1, a compact representation of the ordinates of Bv,d
1,j corresponding to

the points in Dρd ,{Tk }∗(V1) is derived. By definition of the B-spline, it is obvious that
the ordinates associated with the points in disks Dρd ,{Tk }∗(V2) and Dρd ,{Tk }∗(V3) are
equal to 0.

Remark 4.2 Consider the triangle T ∗
k 〈V1, R12, Zk〉 ∈ �∗, and let Dμd ,T ∗

k
(Zk) be

denoted by W ∗
k 〈W1, T12, Zk〉, where T12 is the intersection point of 〈W1, W2〉 and

〈R12, Zk〉. Let us specify a polynomial of degree μd on W ∗
k . Suppose that its Bézier

ordinates are denoted by bi, |i| = μd , and let them be equal to the Bézier ordinates
of the B-splines Bv,d

1,j with respect to T ∗
k corresponding to the same domain points.

Based on Remark 4.1, the ordinates bi, i = (i1, i2, i3), with i1 ≥ r can be expressed
as

bi = B[Bρd
j , t1]

(
σ 1[i1 − r ], σ 2[i2], σ 3[i3 + d − μd ]

)
(4.11)

under the assumption that σ 1 corresponds to the vertex V1 and σ 3 corresponds to the
vertex of Dρd ,T ∗

k
(V1) located on the edge 〈V1, Zk〉. By construction, the ordinates bi
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can be regarded as the Bézier ordinates (after subdivision) of the polynomial pd
1,k,j

of degree μd defined on Wk〈W1, W2, W3〉. Let us denote by di, |i| = μd , the Bézier
ordinates of pd

1,k,j with respect to the triangle Wk . They can be expressed as

di = B[pd
1,k,j,W

∗
k ]

(
�1[i1], �2[i2], �3[i3]

)
, i = (i1, i2, i3),

where ρ� = (ρ�
1, ρ

�
2, ρ

�
3), � = 1, 2, 3, are the barycentric coordinates of W� with

respect to the triangle W ∗
k . Note that ρ1 = (1, 0, 0). The calculation of di with i1 ≥

r can be carried out by the multi-affine de Casteljau algorithm. Suppose that the
algorithm begins with the weight ρ1. After the first r steps, only the ordinates bi with
i1 ≥ r are still involved in the calculation. If they are expressed as in (4.11), the
remaining μd − r steps of the algorithm result in the identity

di = B[Bρd
j , t1]

(
σ 1[i1 − r ], σ 3[d − μd ],

3∑

�=1

�2
�σ

�[i2],
3∑

�=1

�3
�σ

�[i3]
)

(4.12)

for i1 ≥ r . The Bézier ordinates di with i1 < r are known to be 0. Using subdivision,
one can explicitly compute the Bézier ordinates of Bv,d

1,j corresponding to the domain
points in the disk Dμd ,{Tk }∗(Zk).

The Bézier ordinates of Bv,d
1,j associated with the points in Ξd,{Tk }∗ that were not

taken into the consideration in Remark 4.1 and Remark 4.2 all correspond to the
points on the rows parallel to the edges ofTk at distance less than d −μd . Clearly, the
ordinates associated with the points in Em,{T }∗(〈V2, V3〉), m = 0, . . . , d − μd − 1,
are equal to 0. The ordinates in the rows parallel to 〈V1, V2〉 are determined in the
following remark. The ordinates in the rows parallel to 〈V1, V3〉 can be treated in an
analogue way.

Remark 4.3 For everym ∈ {0, . . . , d−μd−1}, theBézier ordinates of Bv,d
1,j associated

with the points in the row Em,{Tk }∗(〈V1, V2〉) are partially determined since those
corresponding to the points in Dρd ,T ∗

k
(V1) were expressed in Remark 4.1, and those

corresponding to the points in Dρd ,{Tk }∗(V2) are equal to 0. The remaining ordinates
can be obtained byusing the assumption ofC μd -smoothness across the edge 〈R12, Zk〉.
By this constraint, they can be regarded as the ordinates (after subdivision) of a one-
dimensional polynomial of degree μd . Let its Bézier ordinates with respect to the line
segment 〈W̃1, W̃2〉,

W̃� = μd

d
V� + d − μd − m

d
R12 + m

d
Zk, � = 1, 2,

be denoted by di, |i| = μd . Similarly as in Remark 4.2, it can be derived that the
ordinates di, i = (i1, i2), with i1 ≥ r can be expressed as

di = B[Bρd
j , t1]

(
σ 1[i1 − r ], σ 2[d − μd − m], σ 3[m],

2∑

�=1

�2
�σ

�[i2]
)

, (4.13)
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where ρ2 = (ρ2
1 , ρ

2
2 ) denotes the barycentric coordinates of W̃2 with respect to the

line segment determined by W̃1 and the intersection point between 〈R12, Zk〉 and
〈W̃1, W̃2〉. The values di with i1 < r are equal to 0.

Consider now a B-spline Bt,d
k,j , |j| = r − 2, associated with the macro-triangle

Tk〈V1, V2, V3〉 ∈ �. See Fig. 5b. By definition, its Bézier ordinates corresponding to
the domain points in the disks Dρd ,{Tk }∗(V�), � = 1, 2, 3, are equal to 0. Consequently,
all its Bézier ordinates corresponding to the points in the rows parallel to the edges of
Tk at distance less or equal to d −μd are 0. The remaining ordinates can be expressed
in a similar manner as the ordinates of a B-spline associated with a vertex in Remark
4.1.

Remark 4.4 Consider the Bézier ordinates of Bt,d
k,j , j = ( j1, j2, j3), |j| = r − 2, with

respect toT ∗
k 〈V1, R12, Zk〉 that are associatedwith the points in the disk Dμd ,T ∗

k
(Zk).

Let them be denoted by bi1,i2,d−μd+i3 , where i1 + i2 + i3 = μd . From definition (4.2)
and Theorem 4.1, it can be deduced that they can be regarded as the Bézier ordinates
(after subdivision) of the Bernstein basis polynomial Bμd

r−1− j1,r−1− j2,r−1− j3
defined

on Wk . It then follows immediately that

bi1,i2,d−μd+i3 = B[Bμd
r−1− j1,r−1− j2,r−1− j3

,Wk]
(
λ1[i1],λ2[i2],λ3[i3]

)
, (4.14)

where λ1, λ2, λ3 denote the barycentric coordinates of W1, T12, Zk with respect to
the triangle Wk .

4.4 Properties of B-splines

It remains us to prove the main properties of the derived Powell–Sabin B-splines
Bv,d

i,j , i = 1, . . . , |V |, |j| = ρd , and Bt,d
k,j , k = 1, . . . , |�|, |j| = r − 2. The following

theorems are generalizations of [17, Theorems 7–9].

Theorem 4.3 The Powell–Sabin B-splines have local supports.

Proof From the proof of Theorem 3.1 it follows that an element of Sd(�∗) is iden-
tically equal to zero on every macro-triangle with zero interpolation conditions at its
vertices and at the interior split point of its Powell–Sabin refinement. Thus, by defin-
ition, every Bv,d

i,j is nonzero only on the molecule M�(Vi ), and every Bt,d
k,j is nonzero

only on the macro-triangle Tk ∈ �. ��
Theorem 4.4 The Powell–Sabin B-splines are nonnegative.

Proof It is sufficient to show that Bézier ordinates of B-splines are nonnegative. For
each Bv,d

i,j , this needs to be verified on the molecule M�(Vi ) since other ordinates are
equal to 0 by Theorem 4.3. To simplify the notation, let i = 1, and letTk〈V1, V2, V3〉
be a triangle in M�(V1). By Remark 4.1, the ordinates associated with the points in
the disk Dρd ,{Tk }∗(V1) can be expressed in the form (4.10), i. e., as the blossom of
Bernstein basis polynomials on the PS-triangle t1 with nonnegative arguments, which
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confirms that they are nonnegative. The ordinates corresponding to the points in the
disks Dρd ,{Tk }∗(V2) and Dρd ,{Tk }∗(V3) are equal to 0. By Remark 4.2, the ordinates
associated with the points in the disk Dμd ,{Tk }∗(Zk) can be obtained from (4.12) by

using subdivision. It can be easily verified that
∑3

�=1 �2
�σ

� and
∑3

�=1 �3
�σ

� are the
barycentric coordinates of PS-points S12 and S13, respectively, and since these two are
contained in the PS-triangle t1, the arguments of expression (4.12) are nonnegative.
After applying subdivision to a subtriangle, the sign of ordinates does not change. For
the remaining ordinates, the nonnegativity follows from Remark 4.3 and expression
(4.13) by similar arguments. The same result for each Bt,d

k,j can be obtained from the
property of a local support proved in Theorem 4.3 and the expression (4.14) of its
ordinates described in Remark 4.4. ��
Theorem 4.5 The Powell–Sabin B-splines form a partition of unity.

Proof It needs to be shown that

|V |∑

�=1

∑

|j|=ρd

Bv,d
�,j +

|�|∑

m=1

∑

|j|=r−2

Bt,d
m,j = 1.

The constant 1 is an element of Sd(�∗) so it can be expressed as (4.9). By Theorem
4.2, the coefficients can be expressed as the blossom of 1. Since the blossom of 1 is
equal to one irrespective of the arguments, all coefficients are equal to one. ��

5 Conclusion

In this paper, super spline spaces on Powell–Sabin triangulations of arbitrary degree d
were proposed. Their definition is inspired by the construction of super spline spaces of
arbitrary smoothness r and degree d = 3r − 1 introduced in [17]. The two additional
families consist of spline spaces of degree d = 3r − 2 and d = 3r with global
smoothness r − 1 and r , respectively. This means that within the considered spline
spaces, the ones presented in [17] have the lowest degree for a certain smoothness.
However, the accompanying families studied in this paper possess some additional
super smoothness across certain edges and may thus be a relevant extension of the
original family.

The main motivation to consider these splines is the ability to represent them in
terms of nonnegative locally supported B-splines that form a partition of unity. It has
been shown that the B-spline representation of s ∈ Sd(�∗) is uniquely determined
by the choice of a PS-triangle ti and a parameter θi for every point Vi of the initial
triangulation �. If θi = ρd

d , the polynomial T v
i introduced in Lemma 4.1 agree with s

in the value and in the first derivative values at the point Vi . Consequently, it might be
an interesting geometric tool for modelling. By changing the shape of the polynomial
patch on ti , only the coefficients cv,d

i,j , |j| = ρd , corresponding to Vi are modified, and
the surface of s is changed locally due to Theorem 4.3. The polynomial T t

k proposed
in Lemma 4.2 can be used in the same way, but only a certain subset of its Bézier
ordinates may be modified. In order to obtain a meaningful tool, PS-triangles with
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small area should be considered. On the other hand, it is useful to choose the values of
parameters θi independently of the degree d. This enables the choice of PS-triangles
in advance, and the same PS-triangles can be used for the construction of splines
of arbitrary degree. From this point of view, PS-triangles can be understood as an
analogue of knots for univariate B-splines, and thus the parallel between the Powell–
Sabin B-splines and the univariate B-splines is further improved.

Some additional properties and applications of the proposed family of super splines
are straightforward. The Marsden’s identity can be simply derived as a corollary of
Theorem 4.2 by taking s ∈ Sd(�∗) to be equal to a polynomial of degree d. Extension
of functional splines to parametric splines can be carried out componentwise. Similarly
as in [24] for d = 2, polynomial splines of arbitrary degree d can be generalized to
rational splines. In [9,10,18] quasi-interpolants for splines of degrees 3 and 3r − 1,
r ∈ N, were studied. These results can also be adapted for general degree. Considering
these options, super splines of arbitrary degree on Powell–Sabin triangulations might
be a potentially interesting subject for a future research.

References

1. Alfeld, P., Schumaker, L.L.: Smooth macro-elements based on Powell–Sabin triangle splits. Adv.
Comput. Math. 16, 29–46 (2002)

2. Chen, S.K., Liu, H.W.: A bivariateC1 cubic super spline space on Powell–Sabin triangulation. Comput.
Math. Appl. 56, 1395–1401 (2008)

3. Dierckx, P.: On calculating normalized Powell–Sabin B-splines. Comput. AidedGeom. Des. 15, 61–78
(1997)

4. Farin, G.: Curves and Surfaces for CAGD. Morgan Kaufmann Publishers, San Francisco (2002)
5. Grošelj, J., Krajnc, M.: C1 cubic splines on Powell-Sabin triangulations. Appl. Math. Comput. 272,

Part 1, 114–126 (2016)
6. Lai, M.J.: On C2 quintic spline functions over triangulations of Powell–Sabin’s type. J. Comput. Appl.

Math. 73, 135–155 (1996)
7. Lai, M.J., Schumaker, L.L.: Macro-elements and stable local bases for splines on Powell–Sabin trian-

gulations. Math. Comput. 72, 335–354 (2003)
8. Lai, M.J., Schumaker, L.L.: Spline Functions on Triangulations, Encyclopedia of Mathematics and its

Applications. Cambridge University Press, Cambridge (2007)
9. Lamnii, A., Lamnii, M., Mraoui, H.: Cubic spline quasi-interpolants on Powell–Sabin partitions. BIT

Numer Math 54, 1099–1118 (2014)
10. Lamnii, M., Mraoui, H., Tijini, A., Zidna, A.: A normalized basis for C1 cubic super spline space on

Powell–Sabin triangulation. Math. Comput. Simul. 99, 108–124 (2014)
11. Manni, C., Sablonnière, P.: Quadratic spline quasi-interpolants on Powell–Sabin partitions. Adv. Com-

put. Math. 26, 283–304 (2007)
12. Neamtu, M.: What is the natural generalization of univariate splines to higher dimensions? In: Lyche,

T., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces: Oslo 2000, pp. 355–392.
Vanderbilt University Press, Saint-Malo (2001)

13. Powell, M.J.D., Sabin, M.A.: Piecewise quadratic approximations on triangles. ACM T. Math. Softw.
3, 316–325 (1977)

14. Ramshaw, L.: Blossoming: a connect-the-dots approach to splines. Tech. Rep. 19 (1987) Digital Sys-
tems Research Center

15. Seidel, H.: An introduction to polar forms. IEEE Comput. Graph. Appl. 13, 38–46 (1993)
16. Speleers, H.: A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Design 27,

438–457 (2010)
17. Speleers, H.: Construction of normalized B-splines for a family of smooth spline spaces over Powell–

Sabin triangulations. Constr. Approx. 37, 41–72 (2013)

123



1280 J. Grošelj

18. Speleers, H.: A family of smooth quasi-interpolants defined over Powell–Sabin triangulations. Constr.
Approx. 41, 297–324 (2015)

19. Speleers, H.: A new B-spline representation for cubic splines over Powell–Sabin triangulations. Com-
put. Aided Geom. Des. 37, 42–56 (2015)

20. Speleers, H., Dierckx, P., Vandewalle, S.: Local subdivision of Powell–Sabin splines. Comput. Aided
Geom. Des. 23, 446–462 (2006)

21. Speleers, H., Dierckx, P., Vandewalle, S.: Numerical solution of partial differential equations with
Powell–Sabin splines. J. Comput. Appl. Math. 189, 643–659 (2006)

22. Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell–Sabin B-splines. Comput. Aided
Geom. Des. 26, 174–191 (2009)

23. Vanraes, E., Windmolders, J., Bultheel, A., Dierckx, P.: Automatic construction of control triangles
for subdivided Powell–Sabin splines. Comput. Aided Geom. Des. 21, 671–682 (2004)

24. Windmolders, J., Dierckx, P.: From PS-splines to NURPS. In: Cohen, A., Rabut, C., Schumaker, L.
(eds.) Proceedings of Curve and Surface Fitting, pp. 45–54. Vanderbilt University Press, Saint-Malo
(2000)

123


	A normalized representation of super splines of arbitrary degree on Powell--Sabin triangulations
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bivariate polynomials on triangles
	2.2 Polynomial splines on triangulations

	3 Super splines on Powell--Sabin triangulations
	3.1 Powell--Sabin refinement
	3.2 Super spline spaces on Powell--Sabin triangulations

	4 A normalized representation of super splines
	4.1 Construction of Powell--Sabin B-splines
	4.2 B-spline representation
	4.3 Bézier representation of B-splines
	4.4 Properties of B-splines

	5 Conclusion
	References




